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Preface

This book describes the SunOS™ 5.9 network and system interfaces used by
application developers.

SunOS 5.9 is fully compatible with UNIX® System V, Release 4 (SVR4) and conforms
to the third edition of the System V Interface Description (SVID). SunOS 5.9 supports
all System V network services.

All utilities, their options, and library functions in this manual reflect SunOS Release
5.8.

Audience
This book is intended for programmers who are new to the SunOS™ platform or want
more familiarity with some portion of the interfaces provided. Additional interfaces
and facilities for networked applications are described in the ONC+ Developer’s Guide.

This manual assumes basic competence in programming, a working familiarity with
the C programming language, and familiarity with the UNIX operating system,
particularly networking concepts. For more information on UNIX networking basics,
see W. Richard Stevens’ UNIX Network Programming, second edition, Upper Saddle
River, Prentice Hall, 1998.
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Organization of the Manual
The services and capabilities of the basic system interfaces and basic network
interfaces of the SunOS 5.9 platform are described in the following chapters.

Chapter 1 describes the interfaces that create and manage memory mappings, do high
performance file I/O, and control other aspects of memory management.

Chapter 2 describes the Application Programming Interface (API) framework and
library functions for remote shared memory.

Chapter 3 describes the operation of the SunOS process scheduler, modification of the
scheduler’s behavior, the scheduler’s interactions with process management interfaces,
and performance effects.

Chapter 5 describes basic and old-style buffered file I/O and other elements of I/O.

Chapter 6 describes older forms of non-networked interprocess communication.

Chapter 7 describes the use of sockets, which are the basic mode of networked
communication.

Chapter 8 describes the use of XTI and TLI to do transport-independent networked
communication.

Chapter 9 describes the network selection mechanisms used by applications to select a
network transport and its configuration.

Chapter 10 describes real-time programming facilities in the SunOS environment and
their use.

Chapter 11 describes the Solaris™ Application Binary Interface (ABI) and the tools
used to verify an application’s compliance with the Solaris™ ABI, appcert and
apptrace.

Appendix A describes UNIX domain sockets.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.
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Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Preface 13
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TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #
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CHAPTER 1

Memory Management

This chapter describes an application developer’s view of virtual memory in SunOS.

� “Memory Management Interfaces” on page 15 describes interfaces and cache
control.

� Library level dynamic memory allocation and debugging are described in
“Library-Level Dynamic Memory” on page 17.

� “Other Memory Control Interfaces” on page 20 describes other memory control
interfaces.

Memory Management Interfaces
Applications use the virtual memory facilities through several sets of interfaces. This
section summarizes these interfaces. This section also provides examples of the
interfaces’ use.

Creating and Using Mappings
mmap(2) establishes a mapping of a named file system object into a process address
space. A named file system object can also be partially mapped into a process address
space. This basic memory management interface is very simple. Use open(2) to open
the file, then use mmap(2) to create the mapping with appropriate access and sharing
options. Then, proceed with your application.

The mapping established by mmap(2) replaces any previous mappings for the specified
address range.
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The flags MAP_SHARED and MAP_PRIVATE specify the type of mapping. You must
specify a mapping type. If the MAP_SHARED flag is set, write operations modify the
mapped object. No further operations on the object are needed to make the change. If
the MAP_PRIVATE flag is set, the first write operation to the mapped area creates a
copy of the page. All further write operations reference the copy. Only modified pages
are copied.

A mapping type is retained across a fork(2).

After you have established the mapping through mmap(2), the file descriptor used in
the call is no longer used. If you close the file, the mapping remains until munmap(2)
undoes the mapping. Creating a new mapping replaces an existing mapping.

A mapped file can be shortened by a call to truncate. An attempt to access the area of
the file that no longer exists causes a SIGBUS signal.

Mapping /dev/zero gives the calling program a block of zero-filled virtual memory.
The size of the block is specified in the call to mmap(2). The following code fragment
demonstrates a use of this technique to create a block of zeroed storage in a program.
The block’s address is chosen by the system.

removed to fr.ch4/pl1.create.mapping.c

Some devices or files are useful only when accessed by mapping. Frame buffer devices
used to support bit-mapped displays are an example of this phenomenon. Display
management algorithms are much simpler to implement when the algorithms operate
directly on the addresses of the display.

Removing Mappings
munmap(2) removes all mappings of pages in the specified address range of the calling
process. munmap(2) has no affect on the objects that were mapped.

Cache Control
The virtual memory system in SunOS is a cache system, in which processor memory
buffers data from file system objects. Interfaces are provided to control or interrogate
the status of the cache.

Using mincore

The mincore(2) interface determines the residency of the memory pages in the
address space covered by mappings in the specified range. Because the status of a
page can change after mincore checks the page but before mincore returns the data,
returned information can be outdated. Only locked pages are guaranteed to remain in
memory.
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Using mlock and munlock

mlock(3C) causes the pages in the specified address range to be locked in physical
memory. References to locked pages in this process or in other processes do not result
in page faults that require an I/O operation. Because this I/O operation interferes with
normal operation of virtual memory, as well as slowing other processes, the use of
mlock is limited to the superuser. The limit to the number of pages that can be locked
in memory is dependent on system configuration. The call to mlock fails if this limit is
exceeded.

munlock releases the locks on physical pages. If multiple mlock calls are made on an
address range of a single mapping, a single munlock call releases the locks. However,
if different mappings to the same pages are locked by mlock, the pages are not
unlocked until the locks on all the mappings are released.

Removing a mapping also releases locks, either through being replaced with an
mmap(2) operation or removed with munmap(2).

The copy-on-write event that is associated with a MAP_PRIVATE mapping transfers a
lock on the source page to the destination page. Thus locks on an address range that
includes MAP_PRIVATE mappings are retained transparently along with the
copy-on-write redirection. For a discussion of this redirection, see “Creating and Using
Mappings” on page 15.

Using mlockall and munlockall

mlockall(3C) and munlockall(3C) are similar to mlock and munlock, but
mlockall and munlockall operate on entire address spaces. mlockall sets locks
on all pages in the address space and munlockall removes all locks on all pages in
the address space, whether established by mlock or mlockall.

Using msync

msync(3C) causes all modified pages in the specified address range to be flushed to
the objects mapped by those addresses. This command is similar to fsync(3C), which
operates on files.

Library-Level Dynamic Memory
Library-level dynamic memory allocation provides an easy-to-use interface to
dynamic memory allocation.

Chapter 1 • Memory Management 17



Dynamic Memory Allocation
The most often used interfaces are:

� malloc(3C)
� free(3C)
� calloc(3C)
� cfree(3MALLOC)

Other dynamic memory allocation interfaces are memalign(3C), valloc(3C), and
realloc(3C)

� malloc returns a pointer to a block of memory at least as large as the amount of
memory that is requested. The block is aligned to store any type of data.

� free returns the memory that is obtained from malloc, calloc, realloc,
memalign, or valloc to system memory. Trying to free a block that was not
reserved by a dynamic memory allocation interface is an error that can cause a
process to crash.

� calloc returns a pointer to a block of memory that is initialized to zeros. Memory
reserved by calloc can be returned to the system through either cfree or free.
The memory is allocated and aligned to contain an array of a specified number of
elements of a specified size.

� memalign allocates a specified number of bytes on a specified alignment
boundary. The alignment boundary must be a power of 2.

� valloc allocates a specified number of bytes that are aligned on a page boundary.
� realloc changes the size of the memory block allocated to a process. realloc

can be used to increase or reduce the size of an allocated block of memory.
realloc is the only way to shrink a memory allocation without causing a
problem. The location in memory of the reallocated block might be changed, but
the contents up to the point of the allocation size change remain the same.

Dynamic Memory Debugging
The Sun™ WorkShop package of tools is useful in finding and eliminating errors in
dynamic memory use. The Run Time Checking (RTC) facility of the Sun WorkShop
uses the functions that are described in this section to find errors in dynamic memory
use.

RTC does not require the program be compiled using -g in order to find all errors.
However, symbolic (-g) information is sometimes needed to guarantee the correctness
of certain errors, particularly errors that are read from uninitialized memory. For this
reason, certain errors are suppressed if no symbolic information is available. These
errors are rui for a.out and rui + aib + air for shared libraries. This behavior
can be changed by using suppress and unsuppress.
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check -access

The -access option turns on access checking. RTC reports the following errors:

baf Bad free

duf Duplicate free

maf Misaligned free

mar Misaligned read

maw Misaligned write

oom Out of memory

rua Read from unallocated memory

rui Read from uninitialized memory

rwo Write to read-only memory

wua Write to unallocated memory

The default behavior is to stop the process after detecting each access error. This
behavior can be changed using the rtc_auto_continue dbxenv variable. When set
to on, RTC logs access errors to a file. The file name is determined by the value of the
rtc_error_log_file_name dbxenv variable. By default, each unique access error
is only reported the first time the error happens. Change this behavior using the
rtc_auto_suppress dbxenv variable. The default setting of this variable is on.

check -leaks [-frames n] [-match m]
The -leaks option turns on leak checking. RTC reports the following errors:

aib Possible memory leak – The only pointer points in the middle of the block

air Possible memory leak – The pointer to the block exists only in register

mel Memory leak – No pointers to the block

With leak checking turned on, you get an automatic leak report when the program
exits. All leaks, including potential leaks, are reported at that time. By default, a
non-verbose report is generated. This default is controlled by the dbxenv
rtc_mel_at_exit. However, you can ask for a leak report at any time.

The -frames n variable displays up to n distinct stack frames when reporting leaks.
The -match m variable combines leaks. If the call stack at the time of allocation for
two or more leaks matches m frames, these leaks are reported in a single combined
leak report. The default value of n is the larger of 8 or the value of m. The maximum
value of n is 16. The default value of m is 2.

Chapter 1 • Memory Management 19



check -memuse [-frames n] [-match m]
The -memuse option turns on memory use (memuse) checking. Using check
-memuse implies using check -leaks. In addition to a leak report at program exit,
you also get a report listing blocks in use, biu. By default, a non-verbose report on
blocks in use is generated. This default is controlled by the dbxenv
rtc_biu_at_exit. At any time during program execution, you can see where the
memory in your program has been allocated.

The -frames n and -match m variables function as described in the following
section.

check -all [-frames n] [-match m]
Equivalent to check -access; check -memuse [-frames n] [-match m]. The
value of rtc_biu_at_exit dbxenv variable is not changed with check -all. So,
by default, no memory use report is generated at exit.

check [funcs] [files] [loadobjects]
Equivalent to check -all; suppress all; unsuppress all in funcs files
loadobjects. You can use this option to focus RTC on places of interest.

Other Memory Control Interfaces
This section discusses additional memory control interfaces.

Using sysconf

sysconf(3C) returns the system dependent size of a memory page. For portability,
applications should not embed any constants that specify the size of a page. Note that
varying page sizes are not unusual, even among implementations of the same
instruction set.

Using mprotect

mprotect(2) assigns the specified protection to all pages in the specified address
range. The protection cannot exceed the permissions that are allowed on the
underlying object.
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Using brk and sbrk

A break is the greatest valid data address in the process image that is not in the stack.
When a program starts executing, the break value is normally set by execve(2) to the
greatest address defined by the program and its data storage.

Use brk(2) to set the break to a greater address. You can also use sbrk(2) to add an
increment of storage to the data segment of a process. You can get the maximum
possible size of the data segment by a call to getrlimit(2).

caddr_t
brk(caddr_t addr);

caddr_t

sbrk(intptr_t incr);

brk identifies the lowest data segment location not used by the caller as addr. This
location is rounded up to the next multiple of the system page size.

sbrk, the alternate interface, adds incr bytes to the caller data space and returns a
pointer to the start of the new data area.
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CHAPTER 2

Remote Shared Memory API for
Solaris Clusters

Solaris Cluster OS™ systems can be configured with a memory-based interconnect
such as Dolphin-SCI and layered system software components. These components
implement a mechanism for user-level inter-node messaging that is based on direct
access to memory residing on remote nodes. This mechanism is referred to as Remote
Shared Memory (RSM). This chapter defines the RSM Application Programming
Interface (RSMAPI).

� “API Framework” on page 24 describes the RSM API framework.
� “API Library Functions” on page 25 covers RSM API library functions.
� “RSMAPI Usage Example” on page 48 shows an example of use.

Overview of the Shared Memory Model
In the shared memory model, an application process creates an RSM export segment
from the process’s local address space. One or more remote application processes
create an RSM import segment with a virtual connection between export and import
segments across the interconnect. All processes make memory references for the
shared segment with addresses local to their specific address space.

An application process creates an RSM export segment by allocating locally
addressable memory to the export segment. This allocation is done by using one of the
standard Solaris interfaces, such as System V Shared Memory, mmap(2), or
valloc(3C). The process then calls on the RSMAPI for the creation of a segment,
which provides a reference handle for the allocated memory. The RSM segment is
published through one or more interconnect controllers. A published segment is
remotely accessible. A list of access privileges for the nodes that are permitted to
import the segment is also published.
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A segment ID is assigned to the exported segment. This segment ID, along with the
cluster node ID of the creating process, allows an importing process to uniquely
specify an export segment. Successfully creating an export segment returns a segment
handle to the process for use in subsequent segment operations.

An application process obtains access to a published segment by using the RSMAPI to
create an import segment. After creating the import segment, the application process
forms a virtual connection across the interconnect. Successfully creating this import
segment returns an RSM import segment handle to the application process for use in
subsequent segment import operations. After establishing the virtual connection, the
application might request RSMAPI to provide a memory map for local access, if
supported by the interconnect. If memory mapping is not supported, the application
can use memory access primitives provided by RSMAPI.

The RSMAPI provides a mechanism to support remote access error detection and to
resolve write-order memory model issues. This mechanism is called a barrier.

RSMAPI provides a notification mechanism to synchronize local and remote accesses.
An export process can call a function to block while an import process finishes a data
write operation. When the import process finishes writing, the process unblocks the
export process by calling a signal function. Once unblocked, the export process
processes the data.

API Framework
The RSM application support components are delivered in software packages as
follows:

� SUNWrsm

� A shared library (/usr/lib/librsm.so) that exports the RSMAPI functions.
� A Kernel Agent (KA) pseudo device driver (/usr/kernel/drv/rsm) that

interfaces with the memory interconnect driver through the RSMAPI interface
on behalf of the user library.

� A cluster interface module for obtaining interconnect topology.
� SUNWrsmop

Interconnect driver service module (/kernel/misc/rsmops).
� SUNWrsmdk

Header files providing API function and data structure prototypes
(/opt/SUNWrsmdk/include).

� SUNWinterconnect
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An optional extension to librsm.so that provides RSM support for the specific
interconnect is configured in the system. The extension is provided in the form of a
library, librsminterconnect.so.

Cluster interface Kernel Agent

Application

API Library
Functions

Generic Library
Functions

Service Module for
Interconnect Drivers

Interconnect Specific
Extension Library

Library Operations
Vector

User level

Kernel level

RSMAPI

API Library Functions
The API library functions support the following operations:

� Interconnect controller operations
� Cluster topology operations
� Memory segment operations, including segment management and data access
� Barrier operations
� Event operations
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Interconnect Controller Operations
The controller operations provide mechanisms for obtaining access to a controller.
Controller operations can also determine the characteristics of the underlying
interconnect. The following list contains information on controller operations:

� Get controller
� Get controller attributes
� Release controller

rsm_get_controller

int rsm_get_controller(char *name, rsmapi_controller_handle_t *controller);

The rsm_get_controller operation acquires a controller handle for the given
controller instance, such as sci0 or loopback. The returned controller handle is used
for subsequent RSM library calls.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_CTLR_NOT_PRESENT Controller not present

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_BAD_LIBRARY_VERSION Invalid library version

RSMERR_BAD_ADDR Bad address

rsm_release_controller

int rsm_release_controller(rsmapi_controller_handle_t chdl);

This function releases the controller associated with the given controller handle. Each
call to rsm_release_controller must have a matching rsm_get_controller.
When all the controller handles associated with a controller are released, the system
resources associated with the controller are freed. Attempting to access a controller
handle, or attempting to access import or export segments on a released controller
handle, is not legal. The results of such an attempt are undefined.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

rsm_get_controller_attr

int
rsm_get_controller_attr(rsmapi_controller_handle_t chdl, rsmapi_controller_attr_t *attr);
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This function retrieves attributes for the specified controller handle. The following list
describes the currently defined attributes for this function:

typedef struct {
uint_t attr_direct_access_sizes;
uint_t attr_atomic_sizes;
size_t attr_page_size;
size_t attr_max_export_segment_size;
size_t attr_tot_export_segment_size;
ulong_t attr_max_export_segments;
size_t attr_max_import_map_size;
size_t attr_tot_import_map_size;
ulong_t attr_max_import_segments;

} rsmapi_controller_attr_t;

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_BAD_ADDR Bad address

Cluster Topology Operations
The key interconnect data required for export operations and import operations are:

� Export cluster node ID
� Import cluster node ID
� Controller name

As a fundamental constraint, the controller specified for a segment import must have a
physical connection with the controller used for the associated segment export. This
interface defines the interconnect topology, which helps applications establish efficient
export and import policies. The data that is provided includes local node ID, local
controller instance name, and remote connection specification for each local controller.

An application component that exports memory can use the data provided by the
interface to find the set of existing local controllers. The data provided by the interface
can also be used to correctly assign controllers for the creation and publishing of
segments. Application components can efficiently distribute exported segments over
the set of controllers that is consistent with the hardware interconnect and with the
application software distribution.

An application component that is importing memory must be informed of the
segment IDs and controllers used in the memory export. This information is typically
conveyed by a predefined segment and controller pair. The importing component can
use the topology data to determine the appropriate controllers for the segment import
operations.
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rsm_get_interconnect_topology

int rsm_get_interconnect_topology(rsm_topology_t **topology_data);

This function returns a pointer to the topology data in a location specified by an
application pointer. The topology data structure is defined next.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_TOPOLOGY_PTR Invalid topology pointer

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_BAD_ADDR Insufficient memory

rsm_free_interconnect_topology

void rsm_free_interconnect_topology(rsm_topology_t *topology_data);

The rsm_free_interconnect_topology operation frees the memory allocated by
rsm_get_interconnect_topology.

Return Values: None.

Data Structures
The pointer returned from rsm_get_topology_data references a
rsm_topology_t structure. This structure provides the local node ID and an
array of pointers to a connections_t structure for each local controller.

typedef struct rsm_topology {
rsm_nodeid_t local_nodeid;
uint_t local_cntrl_count;
connections_t *connections[1];

} rsm_topology_t;

Administrative Operations
RSM segment IDs can be specified by the application or generated by the system using
the rsm_memseg_export_publish() function. Applications that specify segment
IDs require a reserved range of segment IDs to use. To reserve a range of segment IDs,
use rsm_get_segmentid_range and define the reserved range of segment IDs in
the segment ID configuration file /etc/rsm/rsm.segmentid. The
rsm_get_segmentid_range function can be used by applications to obtain the
segment ID range that is reserved for the applications. This function reads the segment
ID range defined in the /etc/rsm/rsm.segmentid file for a given application ID.
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An application ID is a null-terminated string that identifies the application. The
application can use any value equal to or greater than baseid and less than
baseid+length. If baseid or length are modified, the segment ID returned to the
application might be outside the reserved range. To avoid this problem, use an offset
within the range of reserved segment IDs to obtain a segment ID.

Entries in the /etc/rsm/rsm.segmentid file are of the form:

#keyword appid baseid length

reserve SUNWfoo 0x600000 100

The entries are composed of strings, which can be separated by tabs or blanks. The
first string is the keyword reserve, followed by the application identifier, which is a
string without spaces. Following the application identifier is the baseid, which is the
starting segment ID of the reserved range in hexadecimal. Following the baseid is
the length, which is the number of segment IDs that are reserved. Comment lines
have a # in the first column. The file should not contain blank or empty lines. Segment
IDs that are reserved for the system are defined in the
/usr/include/rsm/rsm_common.h header file. The segment IDs that are reserved
for the system cannot be used by the applications.

The rsm_get_segmentid_range function returns 0 to indicate success. If the
function fails, the function returns one of the following error values:

RSMERR_BAD_ADDR The address that is passed is invalid

RSMERR_BAD_APPID Application ID not defined in
the/etc/rsm/rsm.segmentid file

RSMERR_BAD_CONF The configuration file /etc/rsm/rsm.segmentid is not
present or not readable. The file format’s configuration is
incorrect

Memory Segment Operations
An RSM segment represents a set of (generally) non-contiguous physical memory
pages mapped to a contiguous virtual address range. RSM segment export and
segment import operations enable the sharing of regions of physical memory among
systems on an interconnect. A process of the node on which the physical pages reside
is referred to as the exporter of the memory. An exported segment that is published for
remote access will have a segment identifier that is unique for the given node. The
segment ID might be specified by the exporter or assigned by the RSMAPI framework.

Processes of nodes on the interconnect obtain access to exported memory by creating
an RSM import segment. The RSM import segment has a connection with an exported
segment, rather than local physical pages. When the interconnect supports memory
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mapping, importers can read and write the exported memory by using the local
memory-mapped addresses of the import segment. When the interconnect does not
support memory mapping, the importing process uses memory access primitives.

Export-Side Memory Segment Operations
When exporting a memory segment, the application begins by allocating memory in
its virtual address space through the normal operating system interfaces such as the
System V Shared Memory Interface, mmap, or valloc. After allocating memory, the
application calls the RSMAPI library interfaces to create and label a segment. After
labelling the segment, the RSMAPI library interfaces bind physical pages to the
allocated virtual range. After binding the physical pages, the RSMAPI library
interfaces publish the segment for access by importing processes.

Note – If virtual address space is obtained by using mmap, the mapping must be
MAP_PRIVATE.

Export side memory segment operations include:

� Memory segment creation and destruction
� Memory segment publishing and unpublishing
� Rebinding backing store for a memory segment

Memory Segment Creation and Destruction

Establishing a new memory segment with rsm_memseg_export_create enables
the association of physical memory with the segment at creation time. The operation
returns an export-side memory segment handle to the new memory segment. The
segment exists for the lifetime of the creating process or until destroyed with
rsm_memseg_export_destroy.

Note – If destroy operation is performed before an import side disconnect, the
disconnect is forced.

Segment Creation

int rsm_memseg_export_create(rsmapi_controller_handle_t controller,
rsm_memseg_export_handle_t *memseg, void *vaddr, size_t size, uint_t flags);
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This function creates a segment handle. After the segment handle is created, the
segment handle is bound to the specified virtual address range
[vaddr..vaddr+size]. The range must be valid and aligned on the controller’s
alignment property. The flags argument is a bitmask, which enables:

� Unbinding on the segment
� Rebinding on the segment
� Passing RSM_ALLOW_REBIND to flags
� Support of lock operations
� Passing RSM_LOCK_OPS to flags

Note – The RSM_LOCK_OPS flag is not included in the initial release of RSMAPI.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_CTLR_NOT_PRESENT Controller not present

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_LENGTH Length zero or length exceeds controller
limits

RSMERR_BAD_ADDR Invalid address

RSMERR_PERM_DENIED Permission denied

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

RSMERR_BAD_MEM_ALIGNMENT Address not aligned on page boundary

RSMERR_INTERRUPTED Operation interrupted by signal

Segment Destruction

int rsm_memseg_export_destroy(rsm_memseg_export_handle_t memseg);

This function deallocates segment and its free resources. All importing processes are
forcibly disconnected.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_POLLFD_IN_USE pollfd in use
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Memory Segment Publish, Republish, and Unpublish

The publish operation enables the importing of a memory segment by other nodes on
the interconnect. An export segment might be published on multiple interconnect
adapters.

The segment ID might be specified from within authorized ranges or specified as zero,
in which case a valid segment ID is generated by the RSMAPI framework and is
passed back.

The segment access control list is composed of pairs of node ID and access
permissions. For each node ID specified in the list, the associated read/write
permissions are provided by three octal digits for owner, group and other, as with
Solaris file permissions. In the access control list, each octal digit can have the
following values:

2 Write access.

4 Read only access.

6 Read and write access.

An access permission value of 0624 specifies the following kind of access:

� An importer with the same uid as the exporter has both read and write access.
� An importer with the same gid as the exporter has write access only.
� All other importers have read access only.

When an access control list is provided, nodes not included in the list cannot import
the segment. However, if the access list is null, any node can import the segment. The
access permissions on all nodes equal the owner-group-other file creation permissions
of the exporting process.

Note – Node applications have the responsibility of managing the assignment of
segment identifiers to ensure uniqueness on the exporting node.

Publish Segment

int rsm_memseg_export_publish(rsm_memseg_export_handle_t memseg,
rsm_memseg_id_t *segment_id, rsmapi_access_entry_t access_list[],
uint_t access_list_length);

typedef struct {
rsm_node_id_t ae_node; /* remote node id allowed to access resource */
rsm_permission_t ae_permissions; /* mode of access allowed */

}rsmapi_access_entry_t;.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle
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RSMERR_SEG_ALREADY_PUBLISHED Segment already published

RSMERR_BAD_ACL Invalid access control list

RSMERR_BAD_SEGID Invalid segment identifier

RSMERR_SEGID_IN_USE Segment identifier in use

RSMERR_RESERVED_SEGID Segment identifier reserved

RSMERR_NOT_CREATOR Not creator of segment

RSMERR_BAD_ADDR Bad address

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

Authorized Segment ID Ranges:

#define RSM_DRIVER_PRIVATE_ID_BASE
0

#define RSM_DRIVER_PRIVATE_ID_END
0x0FFFFF

#define RSM_CLUSTER_TRANSPORT_ID_BASE
0x100000

#define RSM_CLUSTER_TRANSPORT_ID_END
0x1FFFFF

#define RSM_RSMLIB_ID_BASE
0x200000

#define RSM_RSMLIB_ID_END
0x2FFFFF

#define RSM_DLPI_ID_BASE
0x300000

#define RSM_DLPI_ID_END
0x3FFFFF

#define RSM_HPC_ID_BASE
0x400000

#define RSM_HPC_ID_END
0x4FFFFF

The following range is reserved for allocation by the system when the publish value is
zero.

#define RSM_USER_APP_ID_BASE 0x80000000

#define RSM_USER_APP_ID_END 0xFFFFFFF

Republish Segment
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int rsm_memseg_export_republish(rsm_memseg_export_handle_t memseg,
rsmapi_access_entry_t access_list[], uint_t access_list_length);

This function establishes a new node access list and segment access mode. These
changes only affect future import calls and do not revoke already granted import
requests.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_SEG_NOT_PUBLISHED Segment not published

RSMERR_BAD_ACL Invalid access control list

RSMERR_NOT_CREATOR Not creator of segment

RSMERR_INSUFFICIENT_MEMF Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

RSMERR_INTERRUPTED Operation interrupted by signal

Unpublish Segment

int rsm_memseg_export_unpublish(rsm_memseg_export_handle_t memseg);

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_SEG_NOT_PUBLISHED Segment not published

RSMERR_NOT_CREATOR Not creator of segment

RSMERR_INTERRUPTED Operation interrupted by signal

Memory Segment Rebind

The rebind operation releases the current backing store for an export segment. After
releasing the current backing store for an export segment, the rebind operation
allocates a new backing store. The application must first obtain a new virtual memory
allocation for the segment. This operation is transparent to importers of the segment.

Note – The application has the responsibility of preventing access to segment data until
the rebind operation is complete. Retrieving data from a segment during rebinding
does not cause a system failure, but the results of such an operation are undefined.

Rebind Segment
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int rsm_memseg_export_rebind(rsm_memseg_export_handle_t memseg,
void *vaddr, offset_t off, size_t size);

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_LENGTH Invalid length

RSMERR_BAD_ADDR Invalid address

RSMERR_REBIND_NOT_ALLOWED Rebind not allowed

RSMERR_NOT_CREATOR Not creator of segment

RSMERR_PERM_DENIED Permission denied

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

RSMERR_INTERRUPTED Operation interrupted by signal

Import-Side Memory Segment Operations
The following list describes Import-side operations:

� Memory segment connection and disconnection

� Access to imported segment memory

� Barrier operations used to impose order on data access operations and for access
error detection

The connect operation is used to create an RSM import segment and form a logical
connection with an exported segment.

Access to imported segment memory is provided by three interface categories:

� Segment access.
� Data transfer.
� Segment memory mapping.

Memory Segment Connection and Disconnection

Connect to Segment

int rsm_memseg_import_connect(rsmapi_controller_handle_t controller,
rsm_node_id_t node_id, rsm_memseg_id_t segment_id, rsm_permission_t perm,
rsm_memseg_import_handle_t *im_memseg);
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This function connects to segment segment_id on remote node node_id by using the
specified permission perm. The function returns a segment handle after connecting to
the segment.

The argument perm specifies the access mode requested by the importer for this
connection. To establish the connection, the access permissions specified by the
exporter are compared to the access mode, user ID, and group ID used by the
importer. If the request mode is not valid, the connection request is denied. The perm
argument is limited to the following octal values:

0400 Read mode

0200 Write mode

0600 Read/write mode

The specified controller must have a physical connection to the controller that is used
in the export of the segment.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_CTLR_NOT_PRESENT Controller not present

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_PERM_DENIED Permission denied

RSMERR_SEG_NOT_PUBLISHED_TO_NODE Segment not published to node

RSMERR_SEG_NOT_PUBLISHED No such segment published

RSMERR_REMOTE_NODE_UNREACHABLE Remote node not reachable

RSMERR_INTERRUPTED Connection interrupted

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

RSMERR_BAD_ADDR Bad address

Disconnect from Segment

int rsm_memseg_import_disconnect(rsm_memseg_import_handle_t im_memseg);

This function disconnects a segment. This function frees a segment’s resources after
disconnecting a segment. All existing mappings to the disconnected segment are
removed. The handle im_memseg is freed.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_SEG_STILL_MAPPED Segment still mapped

36 Programming Interfaces Guide • December 2003



RSMERR_POLLFD_IN_USE pollfd in use

Memory Access Primitives

The following interfaces provide a mechanism for transferring between 8 bits and 64
bits of data. The get interfaces use a repeat count (rep_cnt) to indicate the number of
data items of a given size the process will read from successive locations. The locations
begin at byte offset offset in the imported segment. The data is written to successive
locations that begin at datap. The put interfaces use a repeat count (rep_cnt). The count
indicates the number of data items the process will read from successive locations. The
locations begin at datap. The data is then written to the imported segment at successive
locations. The locations begin at the byte offset specified by the offset argument.

These interfaces also provide byte swapping in case the source and destination have
incompatible endian characteristics.

Function Prototypes:

int rsm_memseg_import_get8(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint8_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get16(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint16_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get32(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint32_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get64(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint64_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_put8(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint8_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_put16(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint16_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_put32(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint32_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_put64(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint64_t *datap, ulong_t rep_cnt);

The following interfaces are intended for data transfers that are larger than the ones
supported by the segment access operations.

Segment Put

int rsm_memseg_import_put(rsm_memseg_import_handle_t im_memseg,
off_t offset, void *src_addr, size_t length);
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This function copies data from local memory, specified by the src_addr and length, to
the corresponding imported segment locations specified by the handle and offset.

Segment Get

int rsm_memseg_import_get(rsm_memseg_import_handle_t im_memseg,
off_t offset, void *dst_addr, size_t length);

This function is similar to rsm_memseg_import_put(), but data flows from the
imported segment into local regions defined by the dest_vec argument

The put and get routines write or read the specified quantity of data from the byte
offset location specified by the argument offset. The routines begin at the base of the
segment. The offset must align at the appropriate boundary. For example,
rsm_memseg_import_get64() requires that offset and datap align at a double-word
boundary, while rsm_memseg_import_put32() requires an offset that is aligned at
a word boundary.

By default, the barrier mode attribute of a segment is implicit. Implicit barrier
mode means that the caller assumes the data transfer has completed or has failed
upon return from the operation. Because the default barrier mode is implicit, the
application must initialize the barrier. The application initializes the barrier by using
the rsm_memseg_import_init_barrier() function before calling put or get
routines when using the default mode. To use the explicit operation mode, the caller
must use a barrier operation to force the completion of a transfer. After forcing the
completion of the transfer, the caller must determine if any errors have occurred as a
result of the forced completion.

Note – An import segment can be partially mapped by passing an offset in the
rsm_memseg_import_map() routine. If the import segment is partially mapped, the
offset argument in the put or get routines is from the base of the segment. The user
must make sure that the correct byte offset is passed to put and get routines.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_ADDR Bad address

RSMERR_BAD_MEM_ALIGNMENT Invalid memory alignment

RSMERR_BAD_OFFSET Invalid offset

RSMERR_BAD_LENGTH Invalid length

RSMERR_PERM_DENIED Permission denied

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized

RSMERR_BARRIER_FAILURE I/O completion error
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RSMERR_CONN_ABORTED Connection aborted

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

Scatter-Gather Access

The rsm_memseg_import_putv() and rsm_memseg_import_getv() functions
allow the use of a list of I/O requests instead of a single source and single destination
address.

Function Prototypes:

int rsm_memseg_import_putv(rsm_scat_gath_t *sg_io);

int rsm_memseg_import_getv(rsm_scat_gath_t *sg_io);

The I/O vector component of the scatter-gather list (sg_io) enables the specification
of local virtual addresses or local_memory_handles. Handles are an efficient way
to repeatedly use a local address range. Allocated system resources, such as locked
down local memory, are maintained until the handle is freed. The supporting
functions for handles are rsm_create_localmemory_handle() and
rsm_free_localmemory_handle().

You can gather virtual addresses or handles into the vector in order to write to a single
remote segment. You can also scatter the results of reading from a single remote
segment to the vector of virtual addresses or handles.

I/O for the entire vector is initiated before returning. The barrier mode attribute of the
import segment determines whether the I/O has completed before the function
returns. Setting the barrier mode attribute to implicit guarantees that data transfer
is completed in the order entered in the vector. An implicit barrier open and close
surrounds each list entry. If an error is detected, I/O for the vector is terminated and
the function returns immediately. The residual count indicates the number of entries
for which the I/O either did not complete or was not initiated.

You can specify that a notification event be sent to the target segment when a putv or
getv operation is successful. To specify the delivery of a notification event, specify the
RSM_IMPLICIT_SIGPOST value in the flags entry of the rsm_scat_gath_t
structure. The flags entry can also contain the value
RSM_SIGPOST_NO_ACCUMULATE, which is passed on to the signal post operation if
RSM_IMPLICIT_SIGPOST is set.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SGIO Invalid scatter-gather structure pointer

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_BAD_ADDR Bad address
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RSMERR_BAD_OFFSET Invalid offset

RSMERR_BAD_LENGTH Invalid length

RSMERR_PERM_DENIED Permission denied

RSMERR_BARRIER_FAILURE I/O completion error

RSMERR_CONN_ABORTED Connection aborted

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

RSMERR_INTERRUPTED Operation interrupted by signal

Get Local Handle

int rsm_create_localmemory_handle(rsmapi_controller_handle_t cntrl_handle,
rsm_localmemory_handle_t *local_handle, caddr_t local_vaddr, size_t length);

This function obtains a local handle for use in the I/O vector for subsequent calls to
putv or getv. Freeing the handle as soon as possible conserves system resources,
notably the memory spanned by the local handle, which might be locked down.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_BAD_LOCALMEM_HNDL Invalid local memory handle

RSMERR_BAD_LENGTH Invalid length

RSMERR_BAD_ADDR Invalid address

RSMERR_INSUFFICIENT_MEM Insufficient memory

Free Local Handle

rsm_free_localmemory_handle(rsmapi_controller_handle_t cntrl_handle,
rsm_localmemory_handle_t handle);

This function releases the system resources associated with the local handle. While all
handles that belong to a process are freed when the process exits, calling this function
conserves system resources.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_BAD_LOCALMEM_HNDL Invalid local memory handle

The following example demonstrates the definition of primary data structures.

EXAMPLE 2–1 Primary Data Structures

typedef void *rsm_localmemory_handle_t
typedef struct {

ulong_t io_request_count; number of rsm_iovec_t entries
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EXAMPLE 2–1 Primary Data Structures (Continued)

ulong_t io_residual_count; rsm_iovec_t entries not completed

in flags;
rsm_memseg_import_handle_t remote_handle; opaque handle for

import segment
rsm_iovec_t *iovec; pointer to

array of io_vec_t
} rsm_scat_gath_t;

typedef struct {
int io_type; HANDLE or VA_IMMEDIATE
union {

rsm_localmemory_handle_t handle; used with HANDLE
caddr_t virtual_addr; used with

VA_IMMEDIATE
} local;
size_t local_offset; offset from handle base vaddr
size_t import_segment_offset; offset from segment base vaddr
size_t transfer_length;

} rsm_iovec_t;

Segment Mapping

Mapping operations are only available for native architecture interconnects such as
Dolphin-SCI or NewLink. Mapping a segment grants CPU memory operations access
to that segment, saving the overhead of calling memory access primitives.

Imported Segment Map

int rsm_memseg_import_map(rsm_memseg_import_handle_t im_memseg,
void **address, rsm_attribute_t attr, rsm_permission_t perm, off_t offset, size_t length);

This function maps an imported segment into the caller address space. If the attribute
RSM_MAP_FIXED is specified, the function maps the segment at the value specified in
**address.

typedef enum {
RSM_MAP_NONE = 0x0, /* system will choose available virtual address */
RSM_MAP_FIXED = 0x1, /* map segment at specified virtual address */

} rsm_map_attr_t;

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_ADDR Invalid address

RSMERR_BAD_LENGTH Invalid length

RSMERR_BAD_OFFSET Invalid offset
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RSMERR_BAD_PERMS Invalid permissions

RSMERR_SEG_ALREADY_MAPPED Segment already mapped

RSMERR_SEG_NOT_CONNECTED Segment not connected

RSMERR_CONN_ABORTED Connection aborted

RSMERR_MAP_FAILED Error during mapping

RSMERR_BAD_MEM_ALIGNMENT Address not aligned on page boundary

Unmap segment

int rsm_memseg_import_unmap(rsm_memseg_import_handle_t im_memseg);

This function unmaps an imported segment from user virtual address space.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

Barrier Operations

Use Barrier operations to resolve order-of-write-access memory model issues. Barrier
operations also provide remote memory access error detection.

The barrier mechanism is made up of the following operations:

� Initialization
� Open
� Close
� Order

The open and close operations define a span-of-time interval for error detection and
ordering. The initialization operation enables barrier creation for each imported
segment, as well as barrier type specification. The only barrier type currently
supported has a span-of-time scope per segment. Use a type argument value of
RSM_BAR_DEFAULT.

Successfully performing a close operation guarantees the successful completion of
covered access operations, which take place between the barrier open and the barrier
close. After a barrier open operation, failures of individual data access operations,
both reads and writes, are not reported until the barrier close operation.

To impose a specific order of write completion within a barrier’s scope, use an explicit
barrier-order operation. A write operation that is issued before the barrier-order
operation finishes before operations that are issued after the barrier-order operation.
Write operations within a given barrier scope are ordered with respect to another
barrier scope.

Initialize Barrier
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int
rsm_memseg_import_init_barrier(rsm_memseg_import_handle_t im_memseg,
rsm_barrier_type_t type, rsmapi_barrier_t *barrier);

Note – At present, RSM_BAR_DEFAULT is the only supported type.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

RSMERR_INSUFFICIENT_MEM Insufficient memory

Open Barrier

int rsm_memseg_import_open_barrier(rsmapi_barrier_t *barrier);

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

Close Barrier

int rsm_memseg_import_close_barrier(rsmapi_barrier_t *barrier);

This function closes the barrier and flushes all store buffers. This call assumes that the
calling process will retry all remote memory operations since the last
rsm_memseg_import_open_barrier call if the call to
rsm_memseg_import_close_barrier() fails.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized

RSMERR_BARRIER_NOT_OPENED Barrier not opened

RSMERR_BARRIER_FAILURE Memory access error

RSMERR_CONN_ABORTED Connection aborted

Order Barrier

int rsm_memseg_import_order_barrier(rsmapi_barrier_t *barrier);

This function flushes all store buffers.
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Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized

RSMERR_BARRIER_NOT_OPENED Barrier not opened

RSMERR_BARRIER_FAILURE Memory access error

RSMERR_CONN_ABORTED Connection aborted

Destroy Barrier

int rsm_memseg_import_destroy_barrier(rsmapi_barrier_t *barrier);

This function deallocates all barrier resources.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

Set Mode

int rsm_memseg_import_set_mode(rsm_memseg_import_handle_t im_memseg,
rsm_barrier_mode_t mode);

This function supports the optional explicit barrier scoping that is available in the put
routines. The two valid barrier modes are RSM_BARRIER_MODE_EXPLICIT and
RSM_BARRIER_MODE_IMPLICIT. The default value of the barrier mode is
RSM_BARRIER_MODE_IMPLICIT. While in implicit mode, an implicit barrier open
and barrier close is applied to each put operation. Before setting the barrier mode
value to RSM_BARRIER_MODE_EXPLICIT, use the
rsm_memseg_import_init_barrier routine to initialize a barrier for the imported
segment im_memseg.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

Get Mode

int rsm_memseg_import_get_mode(rsm_memseg_import_handle_t im_memseg,
rsm_barrier_mode_t *mode);

This function obtains the current mode value for barrier scoping in the put routines.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle.

44 Programming Interfaces Guide • December 2003



Event Operations
Event operations enable processes synchronization on memory access events. If a
process cannot use the rsm_intr_signal_wait() function, it can multiplex event
waiting by obtaining a poll descriptor with rsm_memseg_get_pollfd() and using
the poll system call.

Note – Using the rsm_intr_signal_post() and rsm_intr_signal_wait()
operations incurs the need to process of ioctl calls to the kernel.

Post Signal

int rsm_intr_signal_post(void *memseg, uint_t flags);

The void pointer *memseg can be type cast to either an import segment handle or an
export segment handle. If *memseg refers to an import handle, this function sends a
signal the exporting process. If *memseg refers to an export handle, this function
sends a signal to all importers of that segment. Setting the flags argument to
RSM_SIGPOST_NO_ACCUMULATE discards this event if an event is already pending
for the target segment.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_REMOTE_NODE_UNREACHABLE Remote node not reachable

Wait for Signal

int rsm_intr_signal_wait(void * memseg, int timeout);

The void pointer *memseg can be type cast to either an import segment handle or an
export segment handle. The process blocks for up to timeout milliseconds or until an
event occurs. If the value is -1, the process blocks until an event occurs or until
interrupted.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_TIMEOUT Timer expired

RSMERR_INTERRUPTED Wait interrupted

Get pollfd

int rsm_memseg_get_pollfd(void *memseg, struct pollfd *pollfd);
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This function initializes the specified pollfd structure with a descriptor for the
specified segment and the singular fixed event generated by
rsm_intr_signal_post(). Use the pollfd structure with the poll system call to
wait for the event signalled by rsm_intr_signal_post. If the memory segment is
not currently published, the poll system call does not return a valid pollfd. Each
successful call increments a pollfd reference count for the specified segment.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

Release pollfd

int rsm_memseg_release_pollfd(oid *memseg);

This call decrements the pollfd reference count for the specified segment. If the
reference count is nonzero, operations that unpublish, destroy, or unmap the segment
fail.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMAPI General Usage Notes
These usage notes describe general considerations for the export and import sides of a
shared-memory operation. These usage notes also contain general information
regarding segments, file descriptors, and RSM configurable parameters.

Segment Allocation and File Descriptor Usage
The system allocates a file descriptor, which is inaccessible to the application
importing or exporting memory, for each export operation or import operation. The
default limit on file descriptor allocation for each process is 256. The importing or
exporting application must adjust the allocation limit appropriately. If the application
increases the file descriptor limit beyond 256, the values of the file descriptors that are
allocated for export segments and import segments starts at 256. These file descriptor
values are chosen to avoid interfering with normal file descriptor allocation by the
application. This behavior accommodates the use of certain libc functions in 32-bit
applications that only work with file descriptor values lower than 256.
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Export-Side Considerations
The application must prevent access to segment data until the rebind operation is
complete. Segment data access during rebind does not cause a system failure, but data
content results are undefined. The virtual address space must be currently mapped
and valid.

Import-Side Considerations
The controller that is specified for a segment import must have a physical connection
with the controller that is used in the export of the segment.

RSM Configurable Parameters
The SUNWrsm software package includes an rsm.conf file. This file is located in
/usr/kernel/drv. This file is a configuration file for RSM. The rsm.conf file can
be used to specify values for certain configurable RSM properties. The configurable
properties currently defined in rsm.conf include max-exported-memory and
enable-dynamic-reconfiguration.

max-exported-memory This property specifies an upper limit on
the amount of exportable memory. The
upper limit is expressed as a percentage
of total available memory. Giving this
property a value of zero indicates that the
amount of exportable memory is
unlimited.

enable-dynamic-reconfiguration The value of this property indicates
whether dynamic reconfiguration is
enabled. A value of zero indicates
dynamic reconfiguration is disabled. A
value of one enables dynamic
reconfiguration support. The default
value for this property is one.
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RSMAPI Usage Example
This section provides a simple program to illustrate the usage of the RSMAPI. The
program runs on two nodes: an exporter node and an importer node. The exporter
node creates and publishes a memory segment, then waits for a message to be written
in the segment. The importer node connects to the exported segment, writes a
message, and then signals the exporter.

/*
* Copyright (c) 1998 by Sun Microsystems, Inc.
* All rights reserved.
*/
#include <stdio.h>
#include <rsm/rsmpai.h>
#include <errno.h>

/*
To run this program do the following:

First node(assuming node id = 1):
rsmtest -e -n 2

Second node(assuming node id = 2):
rsmtest -i -n 1

The program will prompt the importer for a message at the
console. Enter any message and hit return. The message will
be displayed on the export console.

*/

typedef struct {
char out;
char in;
char data[1];

}msg_t;

#define SEG_ID 0x400000
#define EXPORT 0
#define IMPORT 1

#define BUFSIZE (1024 * 8)
#define DEFAULT_SEGSZ BUFSIZE

#define RSM_PERM_READ 0400
#define RSM_PERM_WRITE 0200
#define RSM_PERM_RDWR (RSM_PERM_READ|RSM_PERM_WRITE)
#define
RSM_ACCESS_TRUSTED
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0666

rsm_topology_t *tp;

int iterations = 10;

int mode = EXPORT;
int test = 0;

char *buf;
int buflen = BUFSIZE;
int offset = 0;
volatile char *iva;

int status;
rsm_memseg_id_t segid;
rsmapi_controller_handle_t ctrl;
rsmapi_controller_attr_t attr;
rsm_memseg_export_handle_t seg;
rsm_memseg_import_handle_t imseg;
rsm_access_entry_t list[2];
rsm_node_id_t dest;

extern void *valloc(size_t);
extern void exit();
extern void sleep();
extern int atoi(const char *);

/* The following function exports a segment and publishes it.
*/
static int
export()
{

int i;

/* allocate and clear memory */
buf = (char *)valloc(buflen);

if (!buf) {

(void) fprintf(stderr, "Unable to allocate memory\n");

exit (1);

}
for (i = 0; i < buflen; i++)

buf[i] = 0;

/* Create an export memory segment */

Chapter 2 • Remote Shared Memory API for Solaris Clusters 49



status = rsm_memseg_export_create(ctrl, &seg, (void *)buf, buflen);
if (status != 0) {

(void) fprintf(stderr,
"unable to create an exported segment %d\n", status);

exit(1);
}

/* Set up access list for publishing to nodes 1 and 2 */
list[0].ae_node = tp->topology_hdr.local_nodeid ;

/* Allow read and write permissions */
list[0].ae_permission = RSM_ACCESS_TRUSTED;
list[1].ae_node = tp->topology_hdr.local_nodeid + 1;

/* Allow read and write permissions */
list[1].ae_permission = RSM_ACCESS_TRUSTED;

/* Publish the created export segment */
status = rsm_memseg_export_publish(seg, &segid, list, 0);
if (status != 0) {

(void) fprintf(stderr, "unable to pub segment %d\n", status);
exit(1);

}
return (0);

}

/* The following function is used to connect to an exported memory segment.
*/
static void
import()
{

/* Connect to exported segment and set up mapping for
* access through local virtual addresses.
*/

again:
status = rsm_memseg_import_connect(ctrl, dest, segid, RSM_PERM_RDWR,

&imseg);
if (status != 0) {

(void) fprintf(stderr,
"unable to conect to segment %x err %x\n",
segid, status);

sleep(1);
goto again;

}

iva = NULL;
status = rsm_memseg_import_map(imseg, (void **)&iva,

RSM_MAP_NONE, RSM_PERM_RDWR, 0, buflen);
if (status != 0) {

(void) fprintf(stderr, "unable to mmap segment %d\n", status);
exit(1);

}
}

50 Programming Interfaces Guide • December 2003



/* Unpublish and destroy the export segment */
static void
export_close()
{
again:

status = rsm_memseg_export_unpublish(seg);
if (status != 0) {

(void) fprintf(stderr,
"unable to create an unpub segment %d\n", status);

sleep(10);
goto again;

}

status = rsm_memseg_export_destroy(seg);
if (status != 0) {

(void) fprintf(stderr, "unable to destroy segment %d\n",
status);

exit(1);
}

}

/* Unmap the virtual address mapping and disconnect the segment */
static void
import_close()
{

status = rsm_memseg_import_unmap(imseg);
if (status != 0) {

(void) fprintf(stderr, "unable to unmap segment %d\n", status);

exit(1);
}

status = rsm_memseg_import_disconnect(imseg);
if (status != 0) {

(void) fprintf(stderr,
"unable to disconnect segment %d\n", status);

exit(1);
}

}

static void
test0()
{

volatile msg_t *mbuf;
/* Barrier to report error */
rsmapi_barrier_t bar;
int i;

if (mode == EXPORT) {
(void) export();
mbuf = (msg_t *)(buf + offset);
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mbuf->in = mbuf->out = 0;
} else {

import();
mbuf = (msg_t *)(iva + offset);
rsm_memseg_import_init_barrier(imseg, RSM_BARRIER_NODE, &bar);

}

(void) printf("Mbuf is %x\n", (uint_t)mbuf);
while (iterations-- > 0) {

int e;

switch (mode) {
case EXPORT:

while (mbuf->out == mbuf->in) {
(void) rsm_intr_signal_wait(seg, 1000);

}
(void) printf("msg [0x%x %d %d] ",

(uint_t)mbuf, (int)mbuf->out, mbuf->in);
for (i = 0; mbuf->data[i] != ’\0’ && i < buflen; i++) {

(void) putchar(mbuf->data[i]);
mbuf->data[i] = ’?’;

}
(void) putchar(’\n’);

mbuf->out++;
break;

case IMPORT:
(void) printf("Enter msg [0x%x %d]: ",

(uint_t)mbuf, mbuf->out, mbuf->in);
retry:

e = rsm_memseg_import_open_barrier(&bar);
if (e != 0) {

(void) printf("Barrier open failed %x\n", e);
exit(1);

}
for (i = 0; (mbuf->data[i] = getchar()) != ’\n’; i++)

;
mbuf->data[i] = ’\0’;
rsm_memseg_import_order_barrier(&bar);
mbuf->in++;

e = rsm_memseg_import_close_barrier(&bar);
if (e != 0) {

(void) printf("Barrier close failed, %d\n", e);
goto retry;

}

(void)rsm_intr_signal_post(imseg);
break;
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}
}

if (mode == IMPORT) {
import_close();

} else {
export_close();

}
}

void
main(int argc, char *argv[])
{

int unit = 0;
char *device = "sci0";
int i;

segid = SEG_ID;
buflen = DEFAULT_SEGSZ;
while ((i = getopt(argc, argv, "OCGeid:b:sl:n:k:t:c:u:v")) != -1) {

switch (i) {
case ’e’:

mode = EXPORT;
break;

case ’i’:
mode = IMPORT;
break;

case ’n’:
dest = atoi(optarg);
if ((int)dest < 0) dest = 0;
break;

default:

(void) fprintf(stderr, "Usage: %s -ei -n dest\n",

argv[0]);

exit(1);
}

}

status = rsm_get_controller(device, &ctrl);
if (status != 0) {

(void) fprintf(stderr, "Unable to get controller\n");
exit(1);
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}

status = rsm_get_controller_attr(ctrl, &attr);

status = rsm_get_interconnect_topology(&tp);

if (status != 0) {

(void) fprintf(stderr, "Unable to get topology\n");

exit(1);

} else {

(void) printf("Local node id = %d\n",

tp->topology_hdr.local_nodeid);

}

if (dest == 0) {

dest = tp->topology_hdr.local_nodeid;

(void) printf("Dest is adjusted to %d\n", dest);

}

switch (test) {
case 0:

test0();
break;

default:
(void) printf("No test executed\n");
break;

}

}
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CHAPTER 3

Process Scheduler

This chapter describes the scheduling of processes and how to modify scheduling.

� “Overview of the Scheduler” on page 55 contains an overview of the scheduler
and the time-sharing scheduling class. Other scheduling classes are briefly
described.

� “Commands and Interfaces” on page 59 describes the commands and interfaces
that modify scheduling.

� “Interactions With Other Interfaces” on page 62 describes the effects of scheduling
changes on kernel processes and certain interfaces.

� Performance issues to consider when using these commands or interfaces are
covered in “Scheduling and System Performance” on page 63.

The chapter is for developers who need more control over the order of process
execution than default scheduling provides. See Multithreaded Programming Guide for a
description of multithreaded scheduling.

Overview of the Scheduler
When a process is created, the system assigns a lightweight process (LWP) to the
process. If the process is multithreaded, more LWPs might be assigned to the process.
An LWP is the object that is scheduled by the UNIX system scheduler, which
determines when processes run. The scheduler maintains process priorities that are
based on configuration parameters, process behavior, and user requests. The scheduler
uses these priorities to determine which process runs next. The six priority classes are
real-time, system, interactive (IA), fixed-priority (FX), fair-share (FSS), and
time-sharing (TS).
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The default scheduling is a time-sharing policy. This policy dynamiccally adjusts
process priorities to balance the response time of interactive processes. The policy also
dynamically adjusts priorities to balance the throughput of processes that use a lot of
CPU time. The time-sharing class has the lowest priority.

The SunOS 5.9 scheduler also provides a real-time scheduling policy. Real-time
scheduling enables the assigning of fixed priorities to specific processes by users. The
highest-priority real-time user process always gets the CPU as soon as the process is
runnable .

The SunOS 5.9 scheduler also provides a policy for fixed-priority scheduling.
Fixed-priority scheduling enables the assignment of fixed priorities to specific
processes by users. Fixed-priority scheduling uses the same priority range as the
time-sharing scheduling class by default.

A program can be written so that its real-time processes have a guaranteed response
time from the system. See Chapter 10 for detailed information.

The control of process scheduling provided by real-time scheduling is rarely needed.
However, when the requirements for a program include strict timing constraints,
real-time processes might be the only way to satisfy those constraints.

Caution – Careless use of real-time processes can have a dramatic negative effect on the
performance of time-sharing processes.

Because changes in scheduler administration can affect scheduler behavior,
programmers might also need to know something about scheduler administration.
The following interfaces affect scheduler administration:

� dispadmin(1M) displays or changes scheduler configuration in a running system.

� ts_dptbl(4) and rt_dptbl(4) are tables that contain the time-sharing and
real-time parameters that are used to configure the scheduler.

A process inherits its scheduling parameters, including scheduling class and priority
within that class, when the process is created. A process changes class only by user
request. The system bases its adjustments of a process’ priority on user requests and
the policy associated with the scheduler class of the process.

In the default configuration, the initialization process belongs to the time-sharing
class. Therefore, all user login shells begin as time-sharing processes.

The scheduler converts class-specific priorities into global priorities. The global
priority of a process determines when the process runs. The scheduler always runs the
runnable process with the highest global priority. Higher priorities run first. A process
assigned to the CPU runs until the process sleeps, uses its time slice, or is pre-empted
by a higher-priority process. Processes with the same priority run in sequence, around
a circle.
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All real-time processes have higher priorities than any kernel process, and all kernel
processes have higher priorities than any time-sharing process.

Note – In a single processor system, no kernel process and no time-sharing process
runs while a runnable real-time process exists.

Administrators specify default time slices in the configuration tables. Users can assign
per-process time slices to real-time processes.

You can display the global priority of a process with the -cl options of the ps(1)
command. You can display configuration information about class-specific priorities
with the priocntl(1) command and the dispadmin(1M) command.

The following sections describe the scheduling policies of the six scheduling classes.

Time-Sharing Class
The goal of the time-sharing policy is to provide good response time to interactive
processes and good throughput to CPU-bound processes. The scheduler switches CPU
allocation often enough to provide good response time, but not so often that the
system spends too much time on switching. Time slices are typically a few hundred
milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices of
different lengths. The scheduler raises the priority of a process that sleeps after only a
little CPU use. For example, a process sleeps when the process starts an I/O operation
such as a terminal read or a disk read. Frequent sleeps are characteristic of interactive
tasks such as editing and running simple shell commands. The time-sharing policy
lowers the priority of a process that uses the CPU for long periods without sleeping.

The time-sharing policy that is the default gives larger time slices to processes with
lower priorities. A process with a low priority is likely to be CPU-bound. Other
processes get the CPU first, but when a low-priority process finally gets the CPU, that
process gets a larger time slice. If a higher-priority process becomes runnable during a
time slice, however, the higher-priority process pre-empts the running process.

Global process priorities and user-supplied priorities are in ascending order: higher
priorities run first. The user priority runs from the negative of a configuration-
dependent maximum to the positive of that maximum. A process inherits its user
priority. Zero is the default initial user priority.

The “user priority limit” is the configuration-dependent maximum value of the user
priority. You can set a user priority to any value lower than the user priority limit.
With appropriate permission, you can raise the user priority limit. Zero is the user
priority limit by default.
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You can lower the user priority of a process to give the process reduced access to the
CPU. Alternately, with the appropriate permission, raise the user priority to get faster
service. The user priority cannot be set to a value that is higher than the user priority
limit. Therefore, you must raise the user priority limit before raising the user priority if
both have their default values at zero.

An administrator configures the maximum user priority independent of global
time-sharing priorities. For example, in the default configuration a user can set a user
priority in the –20 to +20 range. However, 60 time-sharing global priorities are
configured.

The scheduler manages time-sharing processes by using configurable parameters in
the time-sharing parameter table ts_dptbl(4). This table contains information
specific to the time-sharing class.

System Class
The system class uses a fixed-priority policy to run kernel processes such as servers
and housekeeping processes like the paging daemon. The system class is reserved to
the kernel. Users cannot add a process to the system class. Users cannot remove a
process from the system class. Priorities for system class processes are set up in the
kernel code. The priorities of system processes do not change once established. User
processes that run in kernel mode are not in the system class.

Real-time Class
The real-time class uses a scheduling policy with fixed priorities so that critical
processes run in predetermined order. Real-time priorities never change except when a
user requests a change. Privileged users can use the priocntl(1) command or the
priocntl(2) interface to assign real-time priorities.

The scheduler manages real-time processes by using configurable parameters in the
real-time parameter table rt_dptbl(4). This table contains information specific to the
real-time class.

Interactive Class
The IA class is very similar to the TS class. When used in conjunction with a
windowing system, processes have a higher priority while running in a window with
the input focus. The IA class is the default class while the system runs a windowing
system. The IA class is otherwise identical to the TS class, and the two classes share
the same ts_dptbl dispatch parameter table.
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Fair-Share Class
The FSS class is used by the Fair-Share Scheduler (FSS(7)) to manage application
performance by explicitly allocating shares of CPU resources to projects. A share
indicates a project’s entitlement to available CPU resources. The system tracks
resource usage over time. The system reduces entitlement when usage is heavy. The
system increases entitlement when usage is light. The FSS schedules CPU time among
processes according to their owners’ entitlements, independent of the number of
processes each project owns. The FSS class uses the same priority range as the TS and
IA classes. See the FSS man page for more details.

Fixed-Priority Class
The FX class provides a fixed-priority pre-emptive scheduling policy. This policy is
used by processes that require user or application control of scheduling priorities but
are not dynamically adjusted by the system. By default, the FX class has the same
priority range as the TS, IA, and FSS classes. The FX class allows user or application
control of scheduling priorities through user priority values assigned to processes
within the class. These user priority values determine the scheduling priority of a
fixed-priority process relative to other processes within its class.

The scheduler manages fixed-priority processes by using configurable parameters in
the fixed-priority dispatch parameter table fx_dptbl(4). This table contains
information specific to the fixed-priority class.

Commands and Interfaces
The following figure illustrates the default process priorities.
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FIGURE 3–1 Process Priorities (Programmer’s View)

A process priority has meaning only in the context of a scheduler class. You specify a
process priority by specifying a class and a class-specific priority value. The class and
class-specific value are mapped by the system into a global priority that the system
uses to schedule processes.

A system administrator’s view of priorities is different from the view of a user or
programmer. When configuring scheduler classes, an administrator deals directly with
global priorities. The system maps priorities supplied by users into these global
priorities. See System Administration Guide: Basic Administration for more information
about priorities.

The ps(1) command with -cel options reports global priorities for all active
processes. The priocntl(1) command reports the class-specific priorities that users
and programmers use.

The priocntl(1) command and the priocntl(2) and priocntlset(2) interfaces
are used to set or retrieve scheduler parameters for processes. Setting priorities
generally follows the same sequence for the command and both interfaces:

1. Specify the target processes.
2. Specify the scheduler parameters that you want for those processes.
3. Execute the command or interface to set the parameters for the processes.

Process IDs are basic properties of UNIX processes. See Intro(2) for more
information. The class ID is the scheduler class of the process. priocntl(2) works
only for the time-sharing and the real-time classes, not for the system class.
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priocntl Usage
The priocntl(1) utility performs four different control interfaces on the scheduling
of a process:

priocntl -l Displays configuration information

priocntl -d Displays the scheduling parameters of processes

priocntl -s Sets the scheduling parameters of processes

priocntl -e Executes a command with the specified scheduling parameters

The following examples demonstrate the use of priocntl(1).

� The -l option for the default configuration produces the following output:

$ priocntl -l
CONFIGURED CLASSES
==================

SYS (System Class)

TS (Time Sharing)
Configured TS User Priority Range -60 through 60

RT (Real Time)

Maximum Configured RT Priority: 59

� To display information on all processes, do the following:

$ priocntl -d -i all

� To display information on all time-sharing processes:

$ priocntl -d -i class TS

� To display information on all processes with user ID 103 or 6626, do the following:

$ priocntl -d -i uid 103 6626

� To make the process with ID 24668 a real-time process with default parameters, do
the following:

$ priocntl -s -c RT -i pid 24668

� To make 3608 RT with priority 55 and a one-fifth second time slice:

$ priocntl -s -c RT -p 55 -t 1 -r 5 -i pid 3608

� To change all processes into time-sharing processes, do the following:

$ priocntl -s -c TS -i all

� To reduce TS user priority and user priority limit to -10 for uid 1122:

$ priocntl -s -c TS -p -10 -m -10 -i uid 1122

� To start a real-time shell with default real-time priority, do the following:
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$ priocntl -e -c RT /bin/sh

� To run make with a time-sharing user priority of -10, do the following:

$ priocntl -e -c TS -p -10 make bigprog

priocntl(1) includes the interface of nice(1). nice works only on time-sharing
processes and uses higher numbers to assign lower priorities. The previous example is
equivalent to using nice(1) to set an increment of 10:

$ nice -10 make bigprog

priocntl Interface
priocntl(2) manages the scheduling parameters of a process or set of processes. An
invocation of priocntl(2) can act on a LWP, on a single process, or on a group of
processes. A group of processes can be identified by parent process, process group,
session, user, group, class, or all active processes. For more details, see the priocntl
man page.

The PC_GETCLINFO command gets a scheduler class name and parameters when
given the class ID. This command enables you to write programs that make no
assumptions about what classes are configured.

The PC_SETXPARMS command sets the scheduler class and parameters of a set of
processes. The idtype and id input arguments specify the processes to be changed.

Interactions With Other Interfaces
Altering the priority of a process in the TS class can affect the behavior of other
processes in the TS class. This section identifies ways in which a scheduling change
can affect other processes.

Kernel Processes
The kernel’s daemon and housekeeping processes are members of the system
scheduler class. Users can neither add processes to nor remove processes from this
class, nor can users change the priorities of these processes. The command ps -cel
lists the scheduler class of all processes. A SYS entry in the CLS column identifies
processes in the system class when you run ps(1) with the -f option.
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Using fork and exec
Scheduler class, priority, and other scheduler parameters are inherited across the
fork(2) and exec(2) interfaces.

Using nice
The nice(1) command and the nice(2) interface work as in previous versions of the
UNIX system. These commands enable you to change the priority of a time-sharing
process. Use lower numeric values to assign higher time-sharing priorities with these
interfaces.

To change the scheduler class of a process or to specify a real-time priority, use
priocntl(2). Use higher numeric values to assign higher priorities.

init(1M)
Theinit(1M) process is a special case to the scheduler. To change the scheduling
properties of init(1M), init must be the only process specified by idtype and id
or by the procset structure.

Scheduling and System Performance
The scheduler determines when and for how long processes run. Therefore, the
scheduler’s behavior strongly affects a system’s performance.

By default, all user processes are time-sharing processes. A process changes class only
by a priocntl(2) call.

All real-time process priorities have a higher priority than any time-sharing process.
Time-sharing processes or system processes cannot run while any real-time process is
runnable. A real-time application that occasionally fails to relinquish control of the
CPU can completely lock out other users and essential kernel housekeeping.

Besides controlling process class and priorities, a real-time application must also
control other factors that affect its performance. The most important factors in
performance are CPU power, amount of primary memory, and I/O throughput. These
factors interact in complex ways. The sar(1) command has options for reporting on all
performance factors.
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Process State Transition
Applications that have strict real-time constraints might need to prevent processes
from being swapped or paged out to secondary memory. A simplified overview of
UNIX process states and the transitions between states is shown in the following
figure.

running

runnable 
in memory

runnable 
swapped

sleep

sleeping 
in memory

swap out swap outswap in

wakeup

wakeup

assign CPU preempt

sleeping 
swapped

FIGURE 3–2 Process State Transition Diagram

An active process is normally in one of the five states in the diagram. The arrows show
how the process changes states.

� A process is running if the process is assigned to a CPU. A process is removed from
the running state by the scheduler if a process with a higher priority becomes
runnable. A process is also pre-empted if a process of equal priority is runnable
when the original process consumes its entire time slice.

� A process is runnable in memory if the process is in primary memory and ready to
run, but is not assigned to a CPU.

� A process is sleeping in memory if the process is in primary memory but is waiting
for a specific event before continuing execution. For example, a process sleeps
while waiting for an I/O operation to complete, for a locked resource to be
unlocked, or for a timer to expire. When the event occurs, a wakeup call is sent to
the process. If the reason for its sleep is gone, the process becomes runnable.

� When a process’ address space has been written to secondary memory, and that
process is not waiting for a specific event, the process is runnable and swapped.

� If a process is waiting for a specific event and has had its whole address space
written to secondary memory, the process is sleeping and swapped.
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If a machine does not have enough primary memory to hold all its active
processes, that machine must page or swap some address space to secondary
memory.

� When the system is short of primary memory, the system writes individual pages
of some processes to secondary memory but leaves those processes runnable.
When a running process, accesses those pages, the process sleeps while the pages
are read back into primary memory.

� When the system encounters a more serious shortage of primary memory, the
system writes all the pages of some processes to secondary memory. The system
marks the pages that have been written to secondary memory as swapped. Such
processes can only be scheduled when the system scheduler daemon selects these
processes to be read back into memory.

Both paging and swapping cause delay when a process is ready to run again. For
processes that have strict timing requirements, this delay can be unacceptable.

To avoid swapping delays, real-time processes are never swapped, though parts of
such processes can be paged. A program can prevent paging and swapping by locking
its text and data into primary memory. For more information, see the memcntl(2) man
page. How much memory can be locked is limited by how much memory is
configured. Also, locking too much can cause intolerable delays to processes that do
not have their text and data locked into memory.

Trade-offs between the performance of real-time processes and the performance of
other processes depend on local needs. On some systems, process locking might be
required to guarantee the necessary real-time response.

Note – See “Dispatch Latency” on page 211 for information about latencies in real-time
applications.
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CHAPTER 4

Locality Group APIs

This chapter describes the APIs that applications use to interact with locality groups.

“Locality Groups Overview” on page 68 describes the locality group abstraction.

“Verifying the Interface Version” on page 70 describes the functions that give
information about the interface.

“Initializing the Locality Group Interface” on page 70 describes function calls that
initialize and shut down the portion of the interface that is used to traverse the locality
group hierarchy and to discover the contents of a locality group.

“Locality Group Hierarchy” on page 72 describes function calls that navigate the
locality group hierarchy and get characteristics of the locality group hierarchy.

“Locality Group Contents” on page 74 describes function calls that retrieve
information about a locality group’s contents.

“Locality Group Characteristics” on page 75 describes function calls that retrieve
information about a locality group’s characteristics.

“Locality Groups and Thread and Memory Placement” on page 76 describes how to
affect a thread’s memory placement and other memory management techniques.

“Examples of API usage” on page 84 contains code that performs example tasks by
using the APIs that are described in this chapter.
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Locality Groups Overview
Shared memory multiprocessor computers contain multiple CPUs. Each CPU can
access all of the memory in the machine. In some shared memory multiprocessors, the
memory architecture enables each CPU to access some areas of memory more quickly
than other areas.

When a machine with such a memory architecture runs Solaris, giving the kernel
information about the shortest access times between a given CPU and a given area of
memory can improve the system’s performance. The locality group (lgroup)
abstraction has been introduced in Solaris to handle this information. The lgroup
abstraction is part of the Memory Placement Optimization (MPO) feature.

An lgroup is a set of CPU–like and memory–like devices in which each member of the
set can access another member of that set within a bounded latency interval. The
latency value of each lgroup is chosen by the operating system.

Lgroups are hierarchical. The lgroup hierarchy is a Directed Acyclic Graph (DAG) and
is similar to a tree, except that an lgroup may have more than one parent. Like a tree,
there is a root. The root lgroup contains all the resources in the system and can include
child lgroups. Furthermore, the root lgroup can be characterized as having the highest
latency value of all the lgroups in the system. All of its child lgroups will have lower
latency values. The lgroups closer to the root have a higher latency while lgroups
closer to leaves have lower latency.

A computer in which all the CPUs can access all the memory in the same amount of
time can be represented with a single lgroup (see Figure 4–1). A computer in which
some of the CPUs can access some areas of memory in a shorter time than other areas
can be represented using multiple lgroups (see Figure 4–2).

Machine with single latency
is represented by one lgroup

Memory

CPU CPU CPU

FIGURE 4–1 Single Locality Group Schematic
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FIGURE 4–2 Multiple Locality Groups Schematic

The organization of the lgroup hierarchy simplifies the task of finding the nearest
resources in the system. Each thread is assigned a home lgroup upon creation. The
operating system attempts to allocate resources for the thread from the thread’s home
lgroup by default. For example, the Solaris kernel attempts to schedule a thread to run
on the CPUs in the thread’s home lgroup and allocate the thread’s memory in a way
that optimizes for locality. If the desired resources are not available from the thread’s
home lgroup, the kernel can traverse the lgroup hierarchy to find the next nearest
resources from parents of the home lgroup.

The lgroup APIs export the lgroup abstraction for applications to use for observability
and operformance tuning. Applications can use the APIs to traverse the lgroup
hierarchy, discover the contents and characteristics of a given lgroup, and affect the
thread and memory placement on lgroups. A new library, called liblgrp, contains
the new APIs.
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Verifying the Interface Version
The lgrp_version() function discussed in this section must be used to verify the
presence of a supported lgroup interface before using the lgroup API.

Using lgrp_version()
#include <sys/lgrp_user.h>

int lgrp_version(const int version);

The lgrp_version() function takes a version number for the lgroup interface as an
argument and returns the lgroup interface version that the system supports. When the
current implementation of the lgroup API supports the version number in the
version argument, the lgrp_version() function returns that version number.
Otherwise, the lgrp_version() function returns LGRP_VER_NONE.

EXAMPLE 4–1 Example of lgrp_version() use

#include <sys/lgrp_user.h>
if (lgrp_version(LGRP_VER_CURRENT) != LGRP_VER_CURRENT) {

fprintf(stderr, "Built with unsupported lgroup interface %d\n",
LGRP_VER_CURRENT);

exit (1);

}

Initializing the Locality Group Interface
Applications must call lgrp_init() in order to use the APIs for traversing the
lgroup hierarchy and discover the contents of the lgroup hierarchy. The call to
lgrp_init() gives the application a consistent snapshot of the lgroup hierarchy. The
application developer can specify whether the snapshot contains only the resources
available to the calling thread specifically or the resources available to the operating
system in general. The lgrp_init() function returns a cookie that is used for the
following tasks:

� Navigating the lgroup hierarchy
� Determining the contents of an lgroup
� Determining whether or not the snapshot is current
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Using lgrp_init()
The lgrp_init() function initializes the lgroup interface and takes a snapshot of the
lgroup hierarchy.

#include <sys/lgrp_user.h>

lgrp_cookie_t lgrp_init(lgrp_view_t view);

When the lgrp_init() function is called with LGRP_VIEW_CALLER as the view, the
function returns a snapshot that contains only the resources available to the calling
thread. When the lgrp_init() function is called with LGRP_VIEW_OS as the view,
the function returns a snapshot that contains the resources that are available to the
operating system. When a thread successfully calls the lgrp_init() function, the
function returns a cookie that is used by any function that interacts with the lgroup
hierarchy.

The lgroup hierarchy consists of a root lgroup that contains all of the machine’s CPU
and memory resources. The root lgroup may contain other locality groups defined by
bounded latency intervals.

The lgrp_init() function can return two errors. When a view is invalid, the
function returns EINVAL. When there is insufficient memory to allocate the snapshot
of the lgroup hierarchy, the function returns ENOMEM.

Using lgrp_fini()
The lgrp_fini() function ends the usage of a given cookie and frees the
corresponding lgroup hierarchy snapshot.

#include <sys/lgrp_user.h>

int lgrp_fini(lgrp_cookie_t cookie);

The lgrp_fini() function takes a cookie which represents an lgroup hierarchy
snapshot created by a previous call to lgrp_init(). The lgrp_fini() function
frees the memory that is allocated to that snapshot. After the call to lgrp_fini(), the
cookie is invalid. Do not use that cookie again.

When the cookie passed to the lgrp_fini() function is invalid, lgrp_fini()
returns EINVAL.
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Locality Group Hierarchy
The APIs that are described in this section enable the calling thread to navigate the
lgroup hierarchy. The lgroup hierarchy is a directed acyclic graph that is similar to a
tree, except that a node may have more than one parent. The root lgroup represents
the whole machine and is the lgroup with the highest latency value in the system.
Each of the child lgroups contains a subset of the hardware in the root lgroup and is
bounded by a lower latency value. Locality groups that are closer to the root have
more resources and a higher latency. Locality groups that are closer to the leaves have
fewer resources and a lower latency.

Using lgrp_cookie_stale()
The lgrp_cookie_stale() function determines whether the snapshot of the lgroup
hierarchy represented by the given cookie is current.

#include <sys/lgrp_user.h>

int lgrp_cookie_stale(lgrp_cookie_t cookie);

The cookie returned by the lgrp_init() function can become stale due to several
reasons that depend on the view the snapshot represents. A cookie returned by calling
the lgrp_init() function with the view set to LGRP_VIEW_OS can become stale due
to changes in the lgroup hierarchy such as dynamic reconfiguration or a change in a
CPU’s online status. A cookie returned by calling the lgrp_init() function with the
view set to LGRP_VIEW_CALLER can become stale due to changes in the calling
thread’s processor set or changes in the lgroup hierarchy. A stale cookie is refreshed by
calling the lgrp_fini() function with the old cookie, followed by calling
lgrp_init() to generate a new cookie.

The lgrp_cookie_stale() function returns EINVAL when the given cookie is
invalid.

Using lgrp_view()
The lgrp_view() function determines the view with which a given lgroup hierarchy
snapshot was taken.

#include <sys/lgrp_user.h>

lgrp_view_t lgrp_view(lgrp_cookie_t cookie);

The lgrp_view() function takes a cookie representing a snapshot of the lgroup
hierarchy and returns the snapshot’s view of the lgroup hierarchy. Snapshots taken
with the view LGRP_VIEW_CALLER contain only the resources that are available to the
calling thread. Snapshots taken with the view LGRP_VIEW_OS contain all the
resources that are available to the operating system.
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The lgrp_view() function returns EINVAL when the given cookie is invalid.

Using lgrp_nlgrps()
The lgrp_nlgrps() function returns the number of locality groups in the system. If
a system has only one locality group, memory placement optimizations have no effect.

#include <sys/lgrp_user.h>

int lgrp_nlgrps(lgrp_cookie_t cookie);

The lgrp_nlgrps() function takes a cookie representing a snapshot of the lgroup
hierarchy and returns the number of lgroups available in the hierarchy.

The lgrp_nlgrps() function returns EINVAL when the cookie is invalid.

Using lgrp_root()
The lgrp_root() function returns the root lgroup ID.

#include <sys/lgrp_user.h>

lgrp_id_t lgrp_root(lgrp_cookie_t cookie);

The lgrp_root() function takes a cookie representing a snapshot of the lgroup
hierarchy and returns the root lgroup ID.

Using lgrp_parents()
The lgrp_parents() function takes a cookie representing a snapshot of the lgroup
hierarchy and returns the number of parent lgroups for the specified lgroup.

#include <sys/lgrp_user.h>
int lgrp_parents(lgrp_cookie_t cookie, lgrp_id_t child,

lgrp_id_t *lgrp_array, uint_t lgrp_array_size);

If lgrp_array() is not NULL and the value of lgrp_array_size is not zero, the
lgrp_parents() function fills the array with parent lgroup IDs until the array is full
or all parent lgroup IDs are in the array. The root lgroup has zero parents. When the
lgrp_parents() function is called for the root lgroup, lgrp_array will not be
filled in.

The lgrp_parents() function returns EINVAL when the cookie is invalid. The
lgrp_parents() function returns ESRCH when the specified lgroup ID is not found.
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Using lgrp_children()
The lgrp_children() function takes a cookie representing the calling thread’s
snapshot of the lgroup hierarchy and returns the number of child lgroups for the
specified lgroup.

#include <sys/lgrp_user.h>
int lgrp_children(lgrp_cookie_t cookie, lgrp_id_t parent,

lgrp_id_t *lgrp_array, uint_t lgrp_array_size);

If lgrp_array is not NULL and the value of lgrp_array_size is not zero, the
lgrp_children() function fills the array with child lgroup IDs until the array is full
or all child lgroup IDs are in the array.

The lgrp_children() function returns EINVAL when the cookie is invalid. The
lgrp_children() function returns ESRCH when the specified lgroup ID is not
found.

Locality Group Contents
The following APIs retrieve information about the contents of a given lgroup.

Using lgrp_cpus()
The lgrp_cpus() function takes a cookie representing a snapshot of the lgroup
hierarchy and returns the number of CPUs in a given lgroup.

#include <sys/lgrp_user.h>
int lgrp_cpus(lgrp_cookie_t cookie, lgrp_id_t lgrp, processorid_t *cpuids,

uint_t count, int content);

If the cpuid[] argument is not NULL and the CPU count is not zero, the lgrp_cpus()
function fills the array with CPU IDs until the array is full or all the CPU IDs are in the
array.

The content argument can have the following two values:

LGRP_CONTENT_HIERARCHY The lgrp_cpus() function returns IDs for the
CPUs in this lgroup and this lgroup’s descendants.

LGRP_CONTENT_DIRECT The lgrp_cpus() function returns IDs for the
CPUs in this lgroup only.

The lgrp_cpus() function returns EINVAL when the cookie, lgroup ID, or one of the
flags is not valid. The lgrp_cpus() function returns ESRCH when the specified
lgroup ID is not found.
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Using lgrp_mem_size()
The lgrp_mem_size() function takes a cookie representing a snapshot of the lgroup
hierarchy and returns the size of installed or free memory in the given lgroup. The
lgrp_mem_size() function reports memory sizes in bytes.

#include <sys/lgrp_user.h>
lgrp_mem_size_t lgrp_mem_size(lgrp_cookie_t cookie, lgrp_id_t lgrp,

int type, int content)

The type argument can have the following two values:

LGRP_MEM_SZ_FREE The lgrp_mem_size() function returns the amount
of free memory in bytes.

LGRP_MEM_SZ_INSTALLED The lgrp_mem_size() function returns the amount
of installed memory in bytes.

The content argument can have the following two values:

LGRP_CONTENT_HIERARCHY The lgrp_mem_size() function returns the
amount of memory in this lgroup and this lgroup’s
descendants.

LGRP_CONTENT_DIRECT The lgrp_mem_size() function returns the
amount of memory in this lgroup only.

The lgrp_mem_size() function returns EINVAL when the cookie, lgroup ID, or one
of the flags is not valid. The lgrp_mem_size() function returns ESRCH when the
specified lgroup ID is not found.

Locality Group Characteristics
The following API retrieves information about the characteristics of a given lgroup.

Using lgrp_latency()
The lgrp_latency() function returns the latency between a CPU in one lgroup to
the memory in another lgroup.

#include <sys/lgrp_user.h>

int lgrp_latency(lgrp_id_t from, lgrp_id_t to);
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The lgrp_latency() function returns a value that represents the latency between a
CPU in the lgroup given by the value of the from argument and the memory in the
lgroup given by the value of the to argument. If both arguments point to the same
lgroup, the lgrp_latency() function returns the latency value within that lgroup.

Note – The latency value returned by the lgrp_latency() function is defined by the
operating system and is platform-specific. This value does not necessarily represent
the actual latency between hardware devices and may only be used for comparison
within one domain.

The lgrp_latency() function returns EINVAL when the lgroup ID is not valid.
When the lgrp_latency() function does not find the specified lgroup ID, the ’from’
lgroup does not contain any CPUs, or the ’to’ lgroup does not have any memory, the
lgrp_latency() function returns ESRCH.

Locality Groups and Thread and
Memory Placement
This section discusses the APIs used to discover and affect thread and memory
placement with respect to lgroups. The lgrp_home() function is used to discover
thread placement. The meminfo(2) system call is used to discover memory placement.
The MADV_ACCESS flags to the madvise(3C) function are used to affect memory
allocation among lgroups. The lgrp_affinity_set() function can affect thread
and memory placement by setting a thread’s affinity for a given lgroup. The affinities
of an lgroup may specify an order of preference for lgroups from which to allocate
resources. The kernel needs information about the likely pattern of an application’s
memory use in order to allocate memory resources efficiently. The madvise()
function, and its shared object analogue madv.so.1, provide this information to the
kernel. A running process can gather memory usage information about itself by using
the meminfo() system call.

Using lgrp_home()
The lgrp_home() function returns the home lgroup for the specified process or
thread.

#include <sys/lgrp_user.h>

lgrp_id_t lgrp_home(idtype_t idtype, id_t id);
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The lgrp_home() function returns EINVAL when the ID type is not valid. The
lgrp_home() function returns EPERM when the effective user of the calling process is
not the superuser and the calling process’ real or effective user ID does not match the
real or effective user ID of one of the threads. The lgrp_home() function returns
ESRCH when the specified process or thread is not found.

Using madvise()
The madvise() function advises the kernel that a region of user virtual memory in
the range starting at the address specified in addr and with length equal to the value of
the len parameter is expected to follow a particular pattern of use. The kernel uses this
information to optimize the procedure for manipulating and maintaining the resources
associated with the specified range. Use of the madvise() function can increase
system performance when used by programs that have specific knowledge of their
access patterns over memory.

#include <sys/types.h>
#include <sys/mman.h>

int madvise(caddr_t addr, size_t len, int advice);

The madvise() function provides the following flags to affect how a thread’s
memory is allocated among lgroups:

MADV_ACCESS_DEFAULT This flag resets the kernel’s expected access pattern for
the specified range to the default.

MADV_ACCESS_LWP This flag advises the kernel that the next LWP to touch
the specified address range is the LWP that will access
that range the most. The kernel allocates the memory
and other resources for this range and the LWP
accordingly.

MADV_ACCESS_MANY This flag advises the kernel that many processes or
LWPs will access the specified address range randomly
across the system. The kernel allocates the memory and
other resources for this range accordingly.

The madvise() function returns EAGAIN when some or all of the mappings in the
specified address range, from addr to addr+len, are locked for I/O. The madvise()
function returns EINVAL when the value of the addr parameter is not a multiple of the
page size as returned by sysconf(3C). The madvise() function returns EINVAL
when the length of the specified address range is less than or equal to zero. The
madvise() function returns EINVAL when the advice is invalid. The madvise()
function returns EIO when an I/O error occurs while reading from or writing to the
file system. The madvise() function returns ENOMEM when addresses in the specified
address range are outside the valid range for the address space of a process, or the
addresses in the specified address range specifiy one or more pages that are not
mapped. The madvise() function returns ESTALE when the NFS file handle is stale.
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Using madv.so.1
The madv.so.1 shared object enables the selective configuration of virtual memory
advice for launched processes and their descendants. To use the shared object, the
following string must be present in the environment:

LD_PRELOAD=$LD_PRELOAD:madv.so.1

The madv.so.1 shared object applies memory advice as specified by the value of the
MADV environment variable. The MADV environment variable specifies the virtual
memory advice to use for all heap, shared memory, and mmap regions in the process
address space. This advice is applied to all created processes. The following values of
the MADV environment variable affect resource allocation among lgroups:

access_default This value resets the kernel’s expected access pattern to the
default.

access_lwp This value advises the kernel that the next LWP to touch an
address range is the LWP that will access that range the most.
The kernel allocates the memory and other resources for this
range and the LWP accordingly.

access_many This value advises the kernel that many processes or LWPs will
access memory randomly across the system. The kernel
allocates the memory and other resources accordingly.

The value of the MADVCFGFILE environment variable is the name of a text file that
contains one or more memory advice configuration entries in the form
<exec-name>:<advice-opts>.

The value of <exec-name> is the name of an application or executable. The value of
<exec-name> can be a full pathname, a base name, or a pattern string.

The value of <advice-opts> is of the form <region>=<advice>. The values of
<advice> are the same as the values for the MADV environment variable. Replace
<region> with any of the following legal values:

madv Advice applies to all heap, shared memory, and mmap(2) regions in
the process address space.

heap The heap is defined to be the brk(2) area. Advice applies to the
existing heap and to any additional heap memory allocated in the
future.

shm Advice applies to shared memory segments. See shmat(2) for more
information on shared memory operations.

ism Advice applies to shared memory segments that are using the
SHM_SHARE_MMU flag. The ism option takes precedence over shm.

dsm Advice applies to shared memory segments that are using the
SHM_PAGEABLE flag. The dsm option takes precedence over shm.
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mapshared Advice applies to mappings established by the mmap() system call
using the MAP_SHARED flag.

mapprivate Advice applies to mappings established by the mmap() system call
using the MAP_PRIVATE flag.

mapanon Advice applies to mappings established by the mmap() system call
using the MAP_ANON flag. The mapanon option takes precendence
when multiple options apply.

The value of the MADVERRFILE environment variable is the pathname where error
messages are logged. In the absence of a MADVERRFILE location, the madv.so.1
shared object logs errors by using syslog(3C) with a LOG_ERR as the severity level
and LOG_USER as the facility descriptor.

Memory advice is inherited. A child process has the same advice as its parent. The
advice is set back to the system default advice after a call to exec(2) unless a different
level of advice is configured via the madv.so.1 shared object. Advice is only applied
to mmap() regions explicitly created by the user program. Regions established by the
run-time linker or by system libraries that make direct system calls are not affected.

madv.so.1 Usage Examples
The following examples illustrate specific aspects of the madv.so.1 shared object.

EXAMPLE 4–2 Setting Advice for a Set of Applications

This configuration applies advice to all ISM segments for applications with exec
names that begin with foo.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1
$ MADVCFGFILE=madvcfg
$ export LD_PRELOAD MADVCFGFILE
$ cat $MADVCFGFILE

foo*:ism=access_lwp

EXAMPLE 4–3 Excluding a Set of Applications From Advice

This configuration sets advice for all applications with the exception of ls.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1
$ MADV=access_many
$ MADVCFGFILE=madvcfg
$ export LD_PRELOAD MADV MADVCFGFILE
$ cat $MADVCFGFILE

ls:
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EXAMPLE 4–4 Pattern Matching in a Configuration File

Because the configuration specified in MADVCFGFILE takes precedence over the value
set in MADV, specifying * as the <exec-name> of the last configuration entry is
equivalent to setting MADV. This example is equivalent to the previous example.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1
$ MADVCFGFILE=madvcfg
$ export LD_PRELOAD MADVCFGFILE
$ cat $MADVCFGFILE

ls:
*:madv=access_many

EXAMPLE 4–5 Advice for Multiple Regions

This configuration applies one type of advice for mmap() regions and different advice
for heap and shared memory regions for applications whose exec() names begin
with foo.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1
$ MADVCFGFILE=madvcfg
$ export LD_PRELOAD MADVCFGFILE
$ cat $MADVCFGFILE

foo*:madv=access_many,heap=sequential,shm=access_lwp

Using meminfo()
The meminfo() function gives the calling process information about the virtual
memory and physical memory that the system has allocated to that process.

#include <sys/types.h>
#include <sys/mman.h>
int meminfo(const uint64_t inaddr[], int addr_count,

const uint_t info_req[], int info_count, uint64_t outdata[],

uint_t validity[]);

The meminfo() function can return the following types of information:

MEMINFO_VPHYSICAL The physical memory address corresponding to the
given virtual address.

MEMINFO_VLGRP The lgroup to which the physical page corresponding
to the given virtual address belongs.

MEMINFO_VPAGESIZE The size of the physical page corresponding to the
given virtual address.

MEMINFO_VREPLCNT The number of replicated physical pages that
correspond to the given virtual address.

MEMINFO_VREPL|n The nth physical replica of the given virtual address.
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MEMINFO_VREPL_LGRP|n The lgroup to which the nth physical replica of the
given virtual address belongs.

MEMINFO_PLGRP The lgroup to which the given physical address
belongs.

The meminfo() function takes the following parameters:

inaddr An array of input addresses.

addr_count The number of addresses that are passed to meminfo().

info_req An array listing the types of information that are being requested.

info_count The number of pieces of information that are requested for each address
in the inaddr array.

outdata An array where the meminfo() function places the results. The array’s
size is equal to the product of the values of the info_req and addr_count
parameters.

validity An array of size equal to the value of the addr_count parameter. The
validity array contains bitwise result codes. The 0th bit of the result code
evaluates the validity of the corresponding input address. Each
successive bit in the result code evaluates the validity of the response to
the members of the info_req array in turn.

The meminfo() function returns EFAULT when the area of memory that the outdata or
validity arrays point to cannot be written to. The meminfo() function returns EFAULT
when the area of memory that the info_req or inaddr arrays point to cannot be read
from. The meminfo() function returns EINVAL when the value of info_count exceeds
31 or is less than 1. The meminfo() function returns EINVAL when the value of
addr_count is less than zero.

EXAMPLE 4–6 Use of meminfo() to print out physical pages and page sizes corresponding to
a set of virtual addresses

void
print_info(void **addrvec, int how_many)
{

static const int info[] = {
MEMINFO_VPHYSICAL,
MEMINFO_VPAGESIZE};

uint64_t * inaddr = alloca(sizeof(uint64_t) * how_many);
uint64_t * outdata = alloca(sizeof(uint64_t) * how_many * 2;
uint_t * validity = alloca(sizeof(uint_t) * how_many);

int i;

for (i = 0; i < how_many; i++)
inaddr[i] = (uint64_t *)addr[i];

if (meminfo(inaddr, how_many, info,
sizeof (info)/ sizeof(info[0]),
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EXAMPLE 4–6 Use of meminfo() to print out physical pages and page sizes corresponding to
a set of virtual addresses (Continued)

outdata, validity) < 0)
...

for (i = 0; i < how_many; i++) {
if (validity[i] & 1 == 0)

printf("address 0x%llx not part of address
space\n",

inaddr[i]);

else if (validity[i] & 2 == 0)
printf("address 0x%llx has no physical page

associated with it\n",
inaddr[i]);

else {
char buff[80];
if (validity[i] & 4 == 0)

strcpy(buff, "<Unknown>");
else

sprintf(buff, "%lld", outdata[i * 2 +
1]);

printf("address 0x%llx is backed by physical
page 0x%llx of size %s\n",
inaddr[i], outdata[i * 2], buff);

}
}

}

Locality Group Affinity
The kernel assigns a thread to a locality group when the light weight process (LWP)
for that thread is created. That lgroup is called the thread’s home lgroup. The kernel
runs the thread on the CPUs in the thread’s home lgroup and allocates memory from
that lgroup whenever possible. If resources from the home lgroup are unavailable, the
kernel allocates resources from other lgroups. When a thread has affinity for more than
one lgroup, the operating system allocates resources from lgroups chosen in order of
affinity strength. There are three affinity levels:

1. LGRP_AFF_STRONG indicates strong affinity. If this lgroup is the thread’s home
lgroup, the operating system avoids rehoming the thread to another lgroup if
possible. Events such as dynamic reconfiguration, processor, offlining, processor
binding, and processor set binding and manipulation may still result in thread
rehoming.

2. LGRP_AFF_WEAK indicates weak affinity. If this lgroup is the thread’s home lgroup,
the operating system rehomes the thread if necessary for load balancing purposes.
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3. LGRP_AFF_NONE indicates no affinity. If a thread has no affinity to any lgroup, the
operating system assigns the thread a home lgroup.

The operating system uses lgroup affinities as advice when allocating resources for a
given thread. The advice is factored in with the other system constraints. Processor
binding and processor sets do not change lgroup affinities, but may restrict the lgroups
on which a thread can run.

Using lgrp_affinity_get()

The lgrp_affinity_get() function returns the affinity that a LWP or set of LWPs
have for a given lgroup.

#include <sys/lgrp_user.h>

lgrp_affinity_t lgrp_affinity_get(idtype_t idtype, id_t id, lgrp_id_t lgrp);

The idtype and id arguments specify the LWP or set of LWPs that the
lgrp_affinity_get() function examines. If the value of idtype is P_PID, the
lgrp_affinity_get() function gets the lgroup affinity for one of the LWPs in the
process whose process ID matches the value of the id argument. If the value of idtype is
P_LWPID, the lgrp_affinity_get() function gets the lgroup affinity for the LWP
of the current process whose LWP ID matches the value of the id argument. If the
value of idtype is P_MYID, the lgrp_affinity_get() function gets the lgroup
affinity for the current LWP or process.

The lgrp_affinity_get() function returns EINVAL when the given lgroup,
affinity, or ID type is not valid. The lgrp_affinity_get() function returns EPERM
when the effective user of the calling process is not the superuser and the calling
process’ ID does not match the real or effective user ID of one of the LWPs. The
lgrp_affinity_get() function returns ESRCH when a given lgroup or LWP is not
found.

Using lgrp_affinity_set()

The lgrp_affinity_set() function sets the affinity that a LWP or set of LWPs have
for a given lgroup.

#include <sys/lgrp_user.h>
int lgrp_affinity_set(idtype_t idtype, id_t id, lgrp_id_t lgrp,

lgrp_affinity_t affinity);

The idtype and id arguments specify the LWP or set of LWPs the
lgrp_affinity_set() function examines. If the value of idtype is P_PID, the
lgrp_affinity_set() function sets the lgroup affinity for all of the LWPs in the
process whose process ID matches the value of the id argument to the affinity level
specified in the affinity argument. If the value of idtype is P_LWPID, the
lgrp_affinity_set() function sets the lgroup affinity for the LWP of the current
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process whose LWP ID matches the value of the id argument to the affinity level
specified in the affinity argument. If the value of idtype is P_MYID, the
lgrp_affinity_set() function sets the lgroup affinity for the current LWP or
process to the affinity level specified in the affinity argument.

The lgrp_affinity_set() function returns EINVAL when the given lgroup,
affinity, or ID type is not valid. The lgrp_affinity_set() function returns EPERM
when the effective user of the calling process is not the superuser and the calling
process’ ID does not match the real or effective user ID of one of the LWPs. The
lgrp_affinity_set() function returns ESRCH when a given lgroup or LWP is not
found.

Examples of API usage
This section contains code that performs example tasks by using the APIs that are
described in this chapter.

EXAMPLE 4–7 Move Memory to a Thread

The following code sample moves the memory in the range from the address specified
by addr to the address specified by addr+len to the thread specified by
MADV_ACCESS_LWP.

#include <sys/mman.h>
#include <sys/types.h>

/*
* Move memory to thread
*/
mem_to_thread(caddr_t addr, size_t len)
{

if (madvise(addr, len, MADV_ACCESS_LWP) < 0)
perror("madvise");

}

EXAMPLE 4–8 Move a Thread to Memory

This sample code uses the meminfo() function to return the lgroup of a specified
memory page and raises the specified thread’s affinity to that lgroup with the
lgrp_affinity_set function().

#include <sys/lgrp_user.h>
#include <sys/mman.h>
#include <sys/types.h>
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EXAMPLE 4–8 Move a Thread to Memory (Continued)

/*
* Move a Thread to Memory
*/
int
thread_to_memory(caddr_t va)
{

uint64_t addr;
ulong_t count;
lgrp_id_t home;
uint64_t lgrp;
uint_t request;
uint_t valid;

addr = (uint64_t)va;
count = 1;
request = MEMINFO_VLGRP;
if (meminfo(&addr, 1, &request, 1, &lgrp, &valid) != 0) {

perror("meminfo");
return (1);

}

if (lgrp_affinity_set(P_LWPID, P_MYID, lgrp, LGRP_AFF_STRONG) != 0) {
perror("lgrp_affinity_set");
return (2);

}

home = lgrp_home(P_LWPID, P_MYID);
if (home == -1) {

perror ("lgrp_home");
return (3);

}

if (home != lgrp)
return (-1);

return (0);

}

EXAMPLE 4–9 Walk the lgroup Hierarchy

The following sample code walks through and prints out the lgroup hierarchy.

#include <stdlib.h>
#include <sys/lgrp_user.h>
#include <sys/types.h>

/*
* Walk and print lgroup hierarchy from given lgroup
* through all its descendants
*/
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EXAMPLE 4–9 Walk the lgroup Hierarchy (Continued)

int
lgrp_walk(lgrp_cookie_t cookie, lgrp_id_t lgrp, lgrp_content_t content)
{

lgrp_affinity_t aff;
lgrp_id_t *children;
processorid_t *cpuids;
int i;
int ncpus;
int nchildren;
int nparents;
lgrp_id_t *parents;
lgrp_mem_size_t size;

/*
* Print given lgroup, caller’s affinity for lgroup,
* and desired content specified
*/
printf("LGROUP #%d:\n", lgrp);

aff = lgrp_affinity_get(P_MYID, P_MYID, lgrp);
if (aff == -1)

perror ("lgrp_affinity_get");
printf("\tAFFINITY: %d\n", aff);

printf("CONTENT %d:\n", content);

/*
* Get CPUs
*/
ncpus = lgrp_cpus(cookie, lgrp, NULL, 0, content);
printf("\t%d CPUS: ", ncpus);
if (ncpus == -1) {

perror("lgrp_cpus");
return (-1);

} else if (ncpus > 0) {
cpuids = malloc(ncpus * sizeof (processorid_t));
ncpus = lgrp_cpus(cookie, lgrp, cpuids, ncpus, content);
if (ncpus == -1) {

free(cpuids);
perror("lgrp_cpus");
return (-1);

}
for (i = 0; i < ncpus; i++)

printf("%d ", cpuids[i]);
free(cpuids);

}
printf("\n");

/*
* Get memory size
*/
printf("\tMEMORY: ");

86 Programming Interfaces Guide • December 2003



EXAMPLE 4–9 Walk the lgroup Hierarchy (Continued)

size = lgrp_mem_size(cookie, lgrp, LGRP_MEM_SZ_INSTALLED, content);
if (size == -1) {

perror("lgrp_mem_size");
return (-1);

}
printf("installed bytes 0x%llx, ", size);
size = lgrp_mem_size(cookie, lgrp, LGRP_MEM_SZ_FREE, content);
if (size == -1) {

perror("lgrp_mem_size");
return (-1);

}
printf("free bytes 0x%llx\n", size);

/*
* Get parents
*/
nparents = lgrp_parents(cookie, lgrp, NULL, 0);
printf("\t%d PARENTS: ", nparents);
if (nparents == -1) {

perror("lgrp_parents");
return (-1);

} else if (nparents > 0) {
parents = malloc(nparents * sizeof (lgrp_id_t));
nparents = lgrp_parents(cookie, lgrp, parents, nparents);
if (nparents == -1) {

free(parents);
perror("lgrp_parents");
return (-1);

}
for (i = 0; i < nparents; i++)

printf("%d ", parents[i]);
free(parents);

}
printf("\n");

/*
* Get children
*/
nchildren = lgrp_children(cookie, lgrp, NULL, 0);
printf("\t%d CHILDREN: ", nchildren);
if (nchildren == -1) {

perror("lgrp_children");
return (-1);

} else if (nchildren > 0) {
children = malloc(nchildren * sizeof (lgrp_id_t));
nchildren = lgrp_children(cookie, lgrp, children, nchildren);
if (nchildren == -1) {

free(children);
perror("lgrp_children");
return (-1);

}
printf("Children: ");
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EXAMPLE 4–9 Walk the lgroup Hierarchy (Continued)

for (i = 0; i < nchildren; i++)
printf("%d ", children[i]);

printf("\n");

for (i = 0; i < nchildren; i++)
lgrp_walk(cookie, children[i], content);

free(children);
}
printf("\n");

return (0);

}

EXAMPLE 4–10 Find the Closest lgroup With Available Memory Outside a Given lgroup

#include <stdlib.h>
#include <sys/lgrp_user.h>
#include <sys/types.h>

#define INT_MAX 2147483647

/*
* Find next closest lgroup outside given one with available memory
*/
lgrp_id_t
lgrp_next_nearest(lgrp_cookie_t cookie, lgrp_id_t from)
{

lgrp_id_t closest;
int i;
int latency;
int lowest;
int nparents;
lgrp_id_t *parents;
lgrp_mem_size_t size;

/*
* Get number of parents
*/
nparents = lgrp_parents(cookie, from, NULL, 0);
if (nparents == -1) {

perror("lgrp_parents");
return (LGRP_NONE);

}

/*
* No parents, so current lgroup is next nearest
*/
if (nparents == 0) {

return (from);

88 Programming Interfaces Guide • December 2003



EXAMPLE 4–10 Find the Closest lgroup With Available Memory Outside a Given lgroup
(Continued)

}

/*
* Get parents
*/
parents = malloc(nparents * sizeof (lgrp_id_t));
nparents = lgrp_parents(cookie, from, parents, nparents);
if (nparents == -1) {

perror("lgrp_parents");
free(parents);
return (LGRP_NONE);
}

/*
* Find closest parent (ie. the one with lowest latency)
*/
closest = LGRP_NONE;
lowest = INT_MAX;
for (i = 0; i < nparents; i++) {

lgrp_id_t lgrp;

/*
* See whether parent has any free memory
*/
size = lgrp_mem_size(cookie, parents[i], LGRP_MEM_SZ_FREE,

LGRP_CONTENT_HIERARCHY);
if (size > 0)

lgrp = parents[i];
else {

if (size == -1)
perror("lgrp_mem_size");

/*
* Find nearest ancestor if parent doesn’t
* have any memory
*/
lgrp = lgrp_next_nearest(cookie, parents[i]);
if (lgrp == LGRP_NONE)

continue;
}

/*
* Get latency within parent lgroup
*/
latency = lgrp_latency(lgrp, lgrp);
if (latency == -1) {

perror("lgrp_latency");
continue;

}

/*
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EXAMPLE 4–10 Find the Closest lgroup With Available Memory Outside a Given lgroup
(Continued)

* Remember lgroup with lowest latency
*/
if (latency < lowest) {

closest = lgrp;
lowest = latency;

}
}

free(parents);
return (closest);

}

/*
* Find lgroup with memory nearest home lgroup of current thread
*/
lgrp_id_t
lgrp_nearest(lgrp_cookie_t cookie)
{

lgrp_id_t home;
longlong_t size;

/*
* Get home lgroup
*/
home = lgrp_home(P_LWPID, P_MYID);

/*
* See whether home lgroup has any memory available in its hierarchy
*/
size = lgrp_mem_size(cookie, home, LGRP_MEM_SZ_FREE,

LGRP_CONTENT_HIERARCHY);
if (size == -1)

perror("lgrp_mem_size");

/*
* It does, so return the home lgroup.
*/
if (size > 0)

return (home);

/*
* Otherwise, find next nearest lgroup outside of the home.
*/
return (lgrp_next_nearest(cookie, home));

}
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EXAMPLE 4–11 Find Nearest lgroup With Free Memory

This example code finds the nearest lgroup with free memory to a given thread’s
home lgroup.

#include <stdlib.h>
#include <sys/lgrp_user.h>
#include <sys/types.h>

#define INT_MAX 2147483647

/*
* Find next closest lgroup outside given one with available memory
*/
lgrp_id_t
lgrp_next_nearest(lgrp_cookie_t cookie, lgrp_id_t from)
{

lgrp_id_t closest;
int i;
int latency;
int lowest;
int nparents;
lgrp_id_t *parents;
lgrp_mem_size_t size;

/*
* Get number of parents
*/
nparents = lgrp_parents(cookie, from, NULL, 0);
if (nparents == -1) {

perror("lgrp_parents");
return (LGRP_NONE);

}

/*
* No parents, so current lgroup is next nearest
*/
if (nparents == 0) {

return (from);
}

/*
* Get parents
*/
parents = malloc(nparents * sizeof (lgrp_id_t));
nparents = lgrp_parents(cookie, from, parents, nparents);
if (nparents == -1) {

perror("lgrp_parents");
free(parents);
return (LGRP_NONE);
}
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EXAMPLE 4–11 Find Nearest lgroup With Free Memory (Continued)

/*
* Find closest parent (ie. the one with lowest latency)
*/
closest = LGRP_NONE;
lowest = INT_MAX;
for (i = 0; i < nparents; i++) {

lgrp_id_t lgrp;

/*
* See whether parent has any free memory
*/
size = lgrp_mem_size(cookie, parents[i], LGRP_MEM_SZ_FREE,

LGRP_CONTENT_HIERARCHY);
if (size > 0)

lgrp = parents[i];
else {

if (size == -1)
perror("lgrp_mem_size");

/*
* Find nearest ancestor if parent doesn’t
* have any memory
*/
lgrp = lgrp_next_nearest(cookie, parents[i]);
if (lgrp == LGRP_NONE)

continue;
}

/*
* Get latency within parent lgroup
*/
latency = lgrp_latency(lgrp, lgrp);
if (latency == -1) {

perror("lgrp_latency");
continue;

}

/*
* Remember lgroup with lowest latency
*/
if (latency < lowest) {

closest = lgrp;
lowest = latency;

}
}

free(parents);
return (closest);

}
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EXAMPLE 4–11 Find Nearest lgroup With Free Memory (Continued)

/*
* Find lgroup with memory nearest home lgroup of current thread
*/
lgrp_id_t
lgrp_nearest(lgrp_cookie_t cookie)
{

lgrp_id_t home;
longlong_t size;

/*
* Get home lgroup
*/
home = lgrp_home(P_LWPID, P_MYID);

/*
* See whether home lgroup has any memory available in its hierarchy
*/
size = lgrp_mem_size(cookie, home, LGRP_MEM_SZ_FREE,

LGRP_CONTENT_HIERARCHY);
if (size == -1)

perror("lgrp_mem_size");

/*
* It does, so return the home lgroup.
*/
if (size > 0)

return (home);

/*
* Otherwise, find next nearest lgroup outside of the home.
*/
return (lgrp_next_nearest(cookie, home));

}

Chapter 4 • Locality Group APIs 93



94 Programming Interfaces Guide • December 2003



CHAPTER 5

Input/Output Interfaces

This chapter introduces file input/output operations, as provided on systems that do
not provide virtual memory services. The chapter discusses the improved
input/output method provided by the virtual memory facilities. The chapter describes
the older method of locking files and records in “Using File and Record Locking”
on page 98.

Files and I/O Interfaces
Files that are organized as a sequence of data are called regular files. Regular files can
contain ASCII text, text in some other binary data encoding, executable code, or any
combination of text, data, and code.

A regular file is made up of the following components:

� Control data, which is called the inode. This data includes the file type, the access
permissions, the owner, the file size, and the location of the data blocks.

� File contents: a nonterminated sequence of bytes.

The Solaris operating environment provides the following basic forms of file
input/output interfaces:

� The traditional, raw style of file I/O is described in “Basic File I/O” on page 96.
� The standard I/O buffering provides an easier interface and improved efficiency to

an application run on a system without virtual memory. In an application running
in a virtual memory environment, such as on the SunOS™ operating system,
standard file I/O is outdated.

� The memory mapping interface is described in “Memory Management Interfaces”
on page 15. Mapping files is the most efficient form of file I/O for most
applications run under the SunOS™ platform.
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Basic File I/O
The following interfaces perform basic operations on files and on character I/O
devices.

TABLE 5–1 Basic File I/O Interfaces

Interface Name Purpose

open(2) Open a file for reading or writing

close(2) Close a file descriptor

read(2) Read from a file

write(2) Write to a file

creat(2) Create a new file or rewrite an existing one

unlink(2) Remove a directory entry

lseek(2) Move read/write file pointer

The following code sample demonstrates the use of the basic file I/O interface.
read(2) and write(2) both transfer no more than the specified number of bytes,
starting at the current offset into the file. The number of bytes actually transferred is
returned. The end of a file is indicated on a read(2) by a return value of zero.

EXAMPLE 5–1 Basic File I/O Interface

#include <fcntl.h>
#define MAXSIZE 256

main()
{

int fd;
ssize_t n;
char array[MAXSIZE];

fd = open ("/etc/motd", O_RDONLY);
if (fd == -1) {

perror ("open");
exit (1);

}
while ((n = read (fd, array, MAXSIZE)) > 0)

if (write (1, array, n) != n)
perror ("write");

if (n == -1)
perror ("read");

close (fd);

}

When you are done reading or writing a file, always call close(2). Do not call
close(2) for a file descriptor that was not returned from a call to open(2).
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File pointer offsets into an open file are changed by using read(2), write(2), or by
calls to lseek(2). The following example demonstrates the uses of lseek.

off_t start, n;
struct record rec;

/* record current offset in start */
start = lseek (fd, 0L, SEEK_CUR);

/* go back to start */
n = lseek (fd, -start, SEEK_SET);
read (fd, &rec, sizeof (rec));

/* rewrite previous record */
n = lseek (fd, -sizeof (rec), SEEK_CUR);

write (fd, (char *&rec, sizeof (rec));

Advanced File I/O
The following table lists the tasks performed by advanced file I/O interfaces.

TABLE 5–2 Advanced File I/O Interfaces

Interface Name Purpose

link(2) Link to a file

access(2) Determine accessibility of a file

mknod(2) Make a special or ordinary file

chmod(2) Change mode of file

chown(2), lchown(2), fchown(2) Change owner and group of a file

utime(2) Set file access and modification times

stat(2), lstat(2), fstat(2) Get file status

fcntl(2) Perform file control functions

ioctl(2) Control device

fpathconf(2) Get configurable path name variables

opendir(3C), readdir(3C), closedir(3C) Perform directory operations

mkdir(2) Make a directory

readlink(2) Read the value of a symbolic link

rename(2) Change the name of a file

rmdir(2) Remove a directory
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TABLE 5–2 Advanced File I/O Interfaces (Continued)
Interface Name Purpose

symlink(2) Make a symbolic link to a file

File System Control
The file system control interfaces listed in the following table enable the control of
various aspects of the file system.

TABLE 5–3 File System Control Interfaces

Interface Name Purpose

ustat(2) Get file system statistics

sync(2) Update super block

mount(2) Mount a file system

statvfs(2), fstatvfs(2) Get file system information

sysfs(2) Get file system type information

Using File and Record Locking
You do not need to use traditional file I/O to lock file elements. Use the lighter weight
synchronization mechanisms that are described in Multithreaded Programming Guide
with mapped files.

Locking files prevents errors that can occur when several users try to update a file at
the same time. You can lock a portion of a file.

File locking blocks access to an entire file. Record locking blocks access to a specified
segment of the file. In SunOS, all files are a sequence of bytes of data: a record is a
concept of the programs that use the file.

Choosing a Lock Type
Mandatory locking suspends a process until the requested file segments are free.
Advisory locking returns a result indicating whether the lock was obtained or not. A
process can ignore the result of advisory locking. You cannot use both mandatory and
advisory file locking on the same file at the same time. The mode of a file at the time
the file is opened determines whether locks on a file are treated as mandatory or
advisory.
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Of the two basic locking calls, fcntl(2) is more portable, more powerful, and less
easy to use than lockf(3C). fcntl(2) is specified in POSIX 1003.1 standard.
lockf(3C) is provided to be compatible with older applications.

Selecting Advisory or Mandatory Locking
For mandatory locks, the file must be a regular file with the set-group-ID bit on and
the group execute permission off. If either condition fails, all record locks are advisory.

Set a mandatory lock as follows.

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

...
if (stat(filename, &buf) < 0) {

perror("program");
exit (2);

}
/* get currently set mode */
mode = buf.st_mode;
/* remove group execute permission from mode */
mode &= ~(S_IEXEC>>3);

/* set ’set group id bit’ in mode */
mode |= S_ISGID;
if (chmod(filename, mode) < 0) {

perror("program");
exit(2);

}

...

The operating system ignores record locks when the system is executing a file. Any
files with record locks should not have execute permissions set.

The chmod(1) command can also be used to set a file to permit mandatory locking.

$ chmod +l file

This command sets the O20n0 permission bit in the file mode, which indicates
mandatory locking on the file. If n is even, the bit is interpreted as enabling mandatory
locking. If n is odd, the bit is interpreted as “set group ID on execution.”

The ls(1) command shows this setting when you ask for the long listing format with
the −l option:

$ ls -l file

This command displays the following information:

-rw---l--- 1 user group size mod_time file
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The letter “l” in the permissions indicates that the set-group-ID bit is on. Since the
set-group-ID bit is on, mandatory locking is enabled. Normal semantics of set group
ID are also enabled.

Cautions About Mandatory Locking
Keep in mind the following aspects of locking:

� Mandatory locking works only for local files. Mandatory locking is not supported
when accessing files through NFS.

� Mandatory locking protects only the segments of a file that are locked. The
remainder of the file can be accessed according to normal file permissions.

� If multiple reads or writes are needed for an atomic transaction, the process should
explicitly lock all such segments before any I/O begins. Advisory locks are
sufficient for all programs that perform in this way.

� Arbitrary programs should not have unrestricted access permission to files on
which record locks are used.

� Advisory locking is more efficient because a record lock check does not have to be
performed for every I/O request.

Supported File Systems
Both advisory and mandatory locking are supported on the file systems listed in the
following table.

TABLE 5–4 Supported File Systems

File System Description

ufs The default disk-based file system

fifofs A pseudo file system of named pipe files that give processes common
access to data

namefs A pseudo file system used mostly by STREAMS for dynamic mounts of
file descriptors on top of file

specfs A pseudo file system that provides access to special character devices and
block devices

Only advisory file locking is supported on NFS. File locking is not supported for the
proc and fd file systems.
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Opening a File for Locking
You can only request a lock for a file with a valid open descriptor. For read locks, the
file must be open with at least read access. For write locks, the file must also be open
with write access. In the following example, a file is opened for both read and write
access.

...
filename = argv[1];
fd = open (filename, O_RDWR);
if (fd < 0) {

perror(filename);
exit(2);

}

...

Setting a File Lock
To lock an entire file, set the offset to zero and set the size to zero.

You can set a lock on a file in several ways. The choice of method depends on how the
lock interacts with the rest of the program, performance, and portability. This example
uses the POSIX standard-compatible fcntl(2) interface. The interface tries to lock a
file until one of the following happens:

� The file lock is set successfully.

� An error occurs.

� MAX_TRY is exceeded, and the program stops trying to lock the file.

#include <fcntl.h>

...
struct flock lck;

...
lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lck.l_start = (off_t)0;
lck.l_len = (off_t)0; /* until the end of the file */
if (fcntl(fd, F_SETLK, &lck) <0) {

if (errno == EAGAIN || errno == EACCES) {
(void) fprintf(stderr, "File busy try again later!\n");
return;

}
perror("fcntl");
exit (2);

}

...

Using fcntl(2), you can set the type and start of the lock request by setting
structure variables.
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Note – You cannot lock mapped files with flock(3UCB). However, you can use the
multithread-oriented synchronization mechanisms with mapped files. These
synchronization mechanisms can be used in POSIX styles as well as in Soalris
styles. See the mutex(3THR), condition(3THR), semaphore(3THR), mmap(2),
and rwlock(3THR) man pages.

Setting and Removing Record Locks
When locking a record, do not set the starting point and length of the lock segment to
zero. The locking procedure is otherwise identical to file locking.

Contention for data is why you use record locking. Therefore, you should have a
failure response for when you cannot obtain all the required locks:

� Wait a certain amount of time, then try again
� Abort the procedure, warn the user
� Let the process sleep until signaled that the lock has been freed
� Do some combination of the previous

This example shows a record being locked by using fcntl(2).

{
struct flock lck;
...

lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lck.l_start = here;
lck.l_len = sizeof(struct record);

/* lock "this" with write lock */
lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* "this" lock failed. */
return (-1);

...

}

The next example shows the lockf(3C) interface.

#include <unistd.h>

{
...

/* lock "this" */
(void) lseek(fd, this, SEEK_SET);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "this" failed. Clear lock on "here". */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
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return (-1);
}

You remove locks in the same way the locks were set. Only the lock type is different
(F_ULOCK). An unlock cannot be blocked by another process and affects only locks
placed by the calling process. The unlock affects only the segment of the file specified
in the preceding locking call.

Getting Lock Information
You can determine which process is holding a lock. A lock is set, as in the previous
examples, and F_GETLK is used in fcntl(2).

The next example finds and prints identifying data on all the locked segments of a file.

EXAMPLE 5–2 Printing Locked Segments of a File

struct flock lck;

lck.l_whence = 0;
lck.l_start = 0L;
lck.l_len = 0L;
do {

lck.l_type = F_WRLCK;
(void) fcntl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNLCK) {

(void) printf("%d %d %c %8ld %8ld\n", lck.l_sysid, lck.l_pid,
(lck.l_type == F_WRLCK) ? ’W’ : ’R’, lck.l_start, lck.l_len);
/* If this lock goes to the end of the address space, no
* need to look further, so break out. */
if (lck.l_len == 0) {
/* else, look for new lock after the one just found. */

lck.l_start += lck.l_len;
}

}

} while (lck.l_type != F_UNLCK);

fcntl(2) with the F_GETLK command can sleep while waiting for a server to
respond. The command can fail, returning ENOLCK, if either the client or the server
have a resource shortage.

Use lockf(3C) with the F_TEST command to test if a process is holding a lock. This
interface does not return information about the lock’s location or ownership.

EXAMPLE 5–3 Testing a Process With lockf

(void) lseek(fd, 0, 0L);
/* set the size of the test region to zero (0). to test until the

end of the file address space. */

Chapter 5 • Input/Output Interfaces 103



EXAMPLE 5–3 Testing a Process With lockf (Continued)

if (lockf(fd, (off_t)0, SEEK_SET) < 0) {
switch (errno) {

case EACCES:
case EAGAIN:

(void) printf("file is locked by another process\n");
break;

case EBADF:
/* bad argument passed to lockf */
perror("lockf");
break;

default:
(void) printf("lockf: unexpected error <%d>\n", errno);
break;

}

Process Forking and Locks
When a process forks, the child receives a copy of the file descriptors that the parent
opened. Locks are not inherited by the child because the locks are owned by a specific
process. The parent and child share a common file pointer for each file. Both processes
can try to set locks on the same location in the same file. This problem occurs with
both lockf(3C) and fcntl(2). If a program holding a record lock forks, the child
process should close the file. After closing the file, the child process should reopen the
file to set a new, separate file pointer.

Deadlock Handling
The UNIX locking facilities provide deadlock detection and avoidance. Deadlocks can
occur only when the system is ready to put a record−locking interface to sleep. A
search is made to determine whether two processes are in a deadlock. If a potential
deadlock is detected, the locking interface fails and sets errno to indicate deadlock.
Processes setting locks that use F_SETLK do not cause a deadlock because these
processes do not wait when the lock cannot be granted immediately.

Terminal I/O Functions
Terminal I/O interfaces deal with a general terminal interface for controlling
asynchronous communications ports, as shown in the following table. For more
information, see the termios(3C) and termio(7I) man pages.
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TABLE 5–5 Terminal I/O Interfaces

Interface Name Purpose

tcgetattr(3C), tcsetattr(3C) Get and set terminal attributes

tcsendbreak(3C), tcdrain(3C), tcflush(3C),
tcflow(3C)

Perform line control interfaces

cfgetospeed(3C),
cfgetispeed(3C)cfsetispeed(3C),
cfsetospeed(3C)

Get and set baud rate

tcsetpgrp(3C) Get and set terminal foreground process
group ID

tcgetsid(3C) Get terminal session ID

The following example shows how the server dissociates from the controlling terminal
of its invoker in the non-DEBUG mode of operation.

EXAMPLE 5–4 Dissociating From the Controlling Terminal

(void) close(0);
(void) close(1);
(void) close(2);
(void) open("/", O_RDONLY);
(void) dup2(0, 1);
(void) dup2(0, 2);

setsid();

This operation mode prevents the server from receiving signals from the process
group of the controlling terminal. A server cannot send reports of errors to a terminal
after the server has dissociated. The dissociated server must log errors with
syslog(3C).
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CHAPTER 6

Interprocess Communication

This chapter is for programmers who develop multiprocess applications.

SunOS 5.9 and compatible operating environments have a large variety of mechanisms
for concurrent processes to exchange data and synchronize execution. All of these
mechanisms, except mapped memory, are introduced in this chapter.

� Pipes (anonymous data queues) are described in “Pipes Between Processes”
on page 107.

� Named pipes (data queues with file names.) “Named Pipes” on page 109 covers
named pipes.

� System V message queues, semaphores, and shared memory are described in
“System V IPC” on page 112.

� POSIX message queues, semaphores, and shared memory are described in “POSIX
Interprocess Communication” on page 110.

� “Sockets Overview” on page 109 describes interprocess communication using
sockets.

� Mapped memory and files are described in “Memory Management Interfaces”
on page 15.

Pipes Between Processes
A pipe between two processes is a pair of files that is created in a parent process. The
pipe connects the resulting processes when the parent process forks. A pipe has no
existence in any file name space, so it is said to be anonymous. A pipe usually
connects only two processes, although any number of child processes can be
connected to each other and their related parent by a single pipe.
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A pipe is created in the process that becomes the parent by a call to pipe(2). The call
returns two file descriptors in the array passed to it. After forking, both processes read
from p[0] and write to p[1]. The processes actually read from and write to a circular
buffer that is managed for them.

Because calling fork(2) duplicates the per-process open file table, each process has
two readers and two writers. Closing the extra readers and writers enables the proper
functioning of the pipe. For example, no end-of-file indication would ever be returned
if the other end of a reader is left open for writing by the same process. The following
code shows pipe creation, a fork, and clearing the duplicate pipe ends.

#include <stdio.h>
#include <unistd.h>
...

int p[2];
...

if (pipe(p) == -1) exit(1);
switch( fork() )
{

case 0: /* in child */
close( p[0] );
dup2( p[1], 1);
close P[1] );
exec( ... );
exit(1);

default: /* in parent */
close( p[1] );
dup2( P[0], 0 );
close( p[0] );
break;

}

...

The following table shows the results of reads from a pipe and writes to a pipe, under
certain conditions.

TABLE 6–1 Read/Write Results in a Pipe

Attempt Conditions Result

read Empty pipe, writer attached Read blocked

write Full pipe, reader attached Write blocked

read Empty pipe, no writer attached EOF returned

write No reader SIGPIPE

Blocking can be prevented by calling fcntl(2) on the descriptor to set FNDELAY. This
causes an error return (-1) from the I/O call with errno set to EWOULDBLOCK.
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Named Pipes
Named pipes function much like pipes, but are created as named entities in a file
system. This enables the pipe to be opened by all processes with no requirement that
they be related by forking. A named pipe is created by a call to mknod(2). Any process
with appropriate permission can then read or write to a named pipe.

In the open(2) call, the process opening the pipe blocks until another process also
opens the pipe.

To open a named pipe without blocking, the open(2) call joins the O_NDELAY mask
(found in sys/fcntl.h) with the selected file mode mask using the Boolean or
operation on the call to open(2). If no other process is connected to the pipe when
open(2) is called, -1 is returned with errno set to EWOULDBLOCK.

Sockets Overview
Sockets provide point-to-point, two-way communication between two processes.
Sockets are a basic component of interprocess and intersystem communication. A
socket is an endpoint of communication to which a name can be bound. It has a type
and one or more associated processes.

Sockets exist in communication domains. A socket domain is an abstraction that
provides an addressing structure and a set of protocols. Sockets connect only with
sockets in the same domain. Twenty three socket domains are identified (see
sys/socket.h), of which only the UNIX and Internet domains are normally used in
Solaris 9 and compatible operating environments.

You can use sockets to communicate between processes on a single system, like other
forms of IPC. The UNIX domain (AF_UNIX) provides a socket address space on a
single system. UNIX domain sockets are named with UNIX paths. UNIX domain
sockets are further described in “UNIX Domain Sockets” in Programming Interfaces
Guide. Sockets can also be used to communicate between processes on different
systems. The socket address space between connected systems is called the Internet
domain (AF_INET). Internet domain communication uses the TCP/IP internet
protocol suite. Internet domain sockets are described in “Socket Interfaces” in
Programming Interfaces Guide.
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POSIX Interprocess Communication
POSIX interprocess communication (IPC) is a variation of System V interprocess
communication. It was introduced in the Solaris 7 release. Like System V objects,
POSIX IPC objects have read and write, but not execute, permissions for the owner,
the owner’s group, and for others. There is no way for the owner of a POSIX IPC
object to assign a different owner. POSIX IPC includes the following features:

� Messages allow processes to send formatted data streams to arbitrary processes.
� Semaphores allow processes to synchronize execution.
� Shared memory allows processes to share parts of their virtual address space.

Unlike the System V IPC interfaces, the POSIX IPC interfaces are all multithread safe.

POSIX Messages
The POSIX message queue interfaces are listed in the following table.

TABLE 6–2 POSIX Message Queue Interfaces

Interface Name Purpose

mq_open(3RT) Connects to, and optionally creates, a named message
queue

mq_close(3RT) Ends the connection to an open message queue

mq_unlink(3RT) Ends the connection to an open message queue and
causes the queue to be removed when the last process
closes it

mq_send(3RT) Places a message in the queue

mq_receive(3RT) Receives (removes) the oldest, highest priority message
from the queue

mq_notify(3RT) Notifies a process or thread that a message is available
in the queue

mq_setattr(3RT),
mq_getattr(3RT)

Set or get message queue attributes

POSIX Semaphores
POSIX semaphores are much lighter weight than are System V semaphores. A POSIX
semaphore structure defines a single semaphore, not an array of up to 25 semaphores.
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The POSIX semaphore interfaces are shown below.

TABLE 6–3 POSIX Semaphore Interfaces

sem_open(3RT) Connects to, and optionally creates, a named
semaphore

sem_init(3RT) Initializes a semaphore structure (internal to
the calling program, so not a named
semaphore)

sem_close(3RT) Ends the connection to an open semaphore

sem_unlink(3RT) Ends the connection to an open semaphore
and causes the semaphore to be removed
when the last process closes it

sem_destroy(3RT) Initializes a semaphore structure (internal to
the calling program, so not a named
semaphore)

sem_getvalue(3RT) Copies the value of the semaphore into the
specified integer

sem_wait(3RT), sem_trywait(3RT) Blocks while the semaphore is held by other
processes or returns an error if the semaphore
is held by another process

sem_post(3RT) Increments the count of the semaphore

POSIX Shared Memory
POSIX shared memory is actually a variation of mapped memory (see “Creating and
Using Mappings” on page 15). The major differences are:

� You use shm_open(3RT) to open the shared memory object instead of calling
open(2).

� You use shm_unlink(3RT) to close and delete the object instead of calling
close(2) which does not remove the object.

The options in shm_open(3RT) are substantially fewer than the number of options
provided in open(2).
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System V IPC
SunOS 5.9 and compatible operating environments also provide the System V inter
process communication (IPC) package. System V IPC has effectively been replaced by
POSIX IPC, but is maintained to support older applications.

See the ipcrm(1), ipcs(1), Intro(2), msgctl(2), msgget(2), msgrcv(2), msgsnd(2),
semget(2), semctl(2), semop(2), shmget(2), shmctl(2), shmop(2), and ftok(3C)
man pages for more information about System V IPC.

Permissions for Messages, Semaphores, and Shared
Memory
Messages, semaphores, and shared memory have read and write permissions, but no
execute permission, for the owner, group, and others, which is similar to ordinary
files. Like files, the creating process identifies the default owner. Unlike files, the
creating process can assign ownership of the facility to another user or revoke an
ownership assignment.

IPC Interfaces, Key Arguments, and Creation Flags
Processes requesting access to an IPC facility must be able to identify the facility. To
identify the facility to which the process requests access, interfaces that initialize or
provide access to an IPC facility use a key_t key argument. The key is an arbitrary
value or one that can be derived from a common seed at runtime. One way to derive
such a key is by using ftok(3C), which converts a file name to a key value that is
unique within the system.

Interfaces that initialize or get access to messages, semaphores, or shared memory
return an ID number of type int. IPC Interfaces that perform read, write, and control
operations use this ID.

If the key argument is specified as IPC_PRIVATE, the call initializes a new instance of
an IPC facility that is private to the creating process.

When the IPC_CREAT flag is supplied in the flags argument appropriate to the call,
the interface tries to create the facility if it does not exist already.

When called with both theIPC_CREAT and IPC_EXCL flags, the interface fails if the
facility already exists. This behavior can be useful when more than one process might
attempt to initialize the facility. One such case might involve several server processes
having access to the same facility. If they all attempt to create the facility with
IPC_EXCL in effect, only the first attempt succeeds.
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If neither of these flags is given and the facility already exists, the interfaces return the
ID of the facility to get access. If IPC_CREAT is omitted and the facility is not already
initialized, the calls fail.

Using logical (bitwise) OR, IPC_CREAT and IPC_EXCL are combined with the octal
permission modes to form the flags argument. For example, the statement below
initializes a new message queue if the queue does not exist:

msqid = msgget(ftok("/tmp", ’A’), (IPC_CREAT | IPC_EXCL | 0400));

The first argument evaluates to a key (’A’) based on the string ("/tmp"). The second
argument evaluates to the combined permissions and control flags.

System V Messages
Before a process can send or receive a message, you must initialize the queue through
msgget(2). The owner or creator of a queue can change its ownership or permissions
using msgctl(2). Any process with permission can use msgctl(2) for control
operations.

IPC messaging enables processes to send and receive messages and queue messages
for processing in an arbitrary order. Unlike the file byte-stream data flow of pipes,
each IPC message has an explicit length.

Messages can be assigned a specific type. A server process can thus direct message
traffic between clients on its queue by using the client process PID as the message
type. For single-message transactions, multiple server processes can work in parallel
on transactions sent to a shared message queue.

Operations to send and receive messages are performed by msgsnd(2) and msgrcv(2),
respectively. When a message is sent, its text is copied to the message queue.
msgsnd(2) and msgrcv(2) can be performed as either blocking or non-blocking
operations. A blocked message operation remains suspended until one of the
following three conditions occurs:

� The call succeeds.
� The process receives a signal.
� The queue is removed.

Initializing a Message Queue
msgget(2) initializes a new message queue. It can also return the message queue ID
(msqid) of the queue corresponding to the key argument. The value passed as the
msgflg argument must be an octal integer with settings for the queue’s permissions
and control flags.

The MSGMNI kernel configuration option determines the maximum number of unique
message queues that the kernel supports. msgget(2) fails when this limit is exceeded.
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The following code illustrates msgget(2).

#include <sys/ipc.h>
#include <sys/msg.h>

...
key_t key; /* key to be passed to msgget() */
int msgflg, /* msgflg to be passed to msgget() */

msqid; /* return value from msgget() */
...
key = ...
msgflg = ...
if ((msqid = msgget(key, msgflg)) == -1)
{

perror("msgget: msgget failed");
exit(1);

} else
(void) fprintf(stderr, "msgget succeeded");

...

Controlling Message Queues
msgctl(2) alters the permissions and other characteristics of a message queue. The
msqid argument must be the ID of an existing message queue. The cmd argument is
one of the following:

IPC_STAT Place information about the status of the queue in the data structure
pointed to by buf. The process must have read permission for this call
to succeed.

IPC_SET Set the owner’s user and group ID, the permissions, and the size (in
number of bytes) of the message queue. A process must have the
effective user ID of the owner, creator, or superuser for this call to
succeed.

IPC_RMID Remove the message queue specified by the msqid argument.

The following code illustrates msgctl(2) with all its various flags.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

...
if (msgctl(msqid, IPC_STAT, &buf) == -1) {

perror("msgctl: msgctl failed");
exit(1);

}
...
if (msgctl(msqid, IPC_SET, &buf) == –1) {

perror("msgctl: msgctl failed");
exit(1);

}
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...

Sending and Receiving Messages
msgsnd(2) and msgrcv(2) send and receive messages, respectively. The msqid
argument must be the ID of an existing message queue. The msgp argument is a
pointer to a structure that contains the type of the message and its text. The msgsz
argument specifies the length of the message in bytes. The msgflg argument passes
various control flags.

The following code illustrates msgsnd(2) and msgrcv(2).

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

...
int msgflg; /* message flags for the operation */
struct msgbuf *msgp; /* pointer to the message buffer */
size_t msgsz; /* message size */

size_t maxmsgsize;
long msgtyp; /* desired message type */
int msqid /* message queue ID to be used */
...
msgp = malloc(sizeof(struct msgbuf) – sizeof (msgp–>mtext)

+ maxmsgsz);
if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %ld byte messages.\n",
"could not allocate message buffer for", maxmsgsz);

exit(1);
...
msgsz = ...
msgflg = ...
if (msgsnd(msqid, msgp, msgsz, msgflg) == –1)

perror("msgop: msgsnd failed");
...
msgsz = ...
msgtyp = first_on_queue;
msgflg = ...
if (rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg) == –1)

perror("msgop: msgrcv failed");

...

System V Semaphores
Semaphores enable processes to query or alter status information. They are often used
to monitor and control the availability of system resources such as shared memory
segments. Semaphores can be operated on as individual units or as elements in a set.
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Because System V IPC semaphores can be in a large array, they are extremely heavy
weight. Much lighter-weight semaphores are available in the threads library (see the
semaphore(3THR) man page). Also, POSIX semaphores are the most current
implementation of System V semaphores (see “POSIX Semaphores” on page 110).
Threads library semaphores must be used with mapped memory (see “Memory
Management Interfaces” on page 15).

A semaphore set consists of a control structure and an array of individual semaphores.
A set of semaphores can contain up to 25 elements. The semaphore set must be
initialized using semget(2). The semaphore creator can change its ownership or
permissions using semctl(2). Any process with permission can use semctl(2) to do
control operations.

Semaphore operations are performed by semop(2). This interface takes a pointer to an
array of semaphore operation structures. Each structure in the array contains data
about an operation to perform on a semaphore. Any process with read permission can
test whether a semaphore has a zero value. Operations to increment or decrement a
semaphore require write permission.

When an operation fails, none of the semaphores are altered. The process blocks
unless the IPC_NOWAIT flag is set, and remains blocked until:

� The semaphore operations can all finish, so the call succeeds.
� The process receives a signal.
� The semaphore set is removed.

Only one process at a time can update a semaphore. Simultaneous requests by
different processes are performed in an arbitrary order. When an array of operations is
given by a semop(2) call, no updates are done until all operations on the array can
finish successfully.

If a process with exclusive use of a semaphore terminates abnormally and fails to
undo the operation or free the semaphore, the semaphore stays locked in memory in
the state the process left it. To prevent this occurrence, the SEM_UNDO control flag
makes semop(2) allocate an undo structure for each semaphore operation, which
contains the operation that returns the semaphore to its previous state. If the process
dies, the system applies the operations in the undo structures. This prevents an
aborted process from leaving a semaphore set in an inconsistent state.

If processes share access to a resource controlled by a semaphore, operations on the
semaphore should not be made with SEM_UNDO in effect. If the process that currently
has control of the resource terminates abnormally, the resource is presumed to be
inconsistent. Another process must be able to recognize this to restore the resource to a
consistent state.
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When performing a semaphore operation with SEM_UNDO in effect, you must also
have SEM_UNDO in effect for the call that performs the reversing operation. When the
process runs normally, the reversing operation updates the undo structure with a
complementary value. This ensures that, unless the process is aborted, the values
applied to the undo structure are canceled to zero. When the undo structure reaches
zero, it is removed.

Using SEM_UNDO inconsistently can lead to memory leaks because allocated undo
structures might not be freed until the system is rebooted.

Initializing a Semaphore Set
semget(2) initializes or gains access to a semaphore. When the call succeeds, it returns
the semaphore ID (semid). The key argument is a value associated with the
semaphore ID. The nsems argument specifies the number of elements in a semaphore
array. The call fails when nsems is greater than the number of elements in an existing
array. When the correct count is not known, supplying 0 for this argument ensures
that it will succeed. The semflg argument specifies the initial access permissions and
creation control flags.

The SEMMNI system configuration option determines the maximum number of
semaphore arrays allowed. The SEMMNS option determines the maximum possible
number of individual semaphores across all semaphore sets. Because of fragmentation
between semaphore sets, allocating all available semaphores might not be possible.

The following code illustrates semget(2).

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
...

key_t key; /* key to pass to semget() */
int semflg; /* semflg to pass to semget() */
int nsems; /* nsems to pass to semget() */
int semid; /* return value from semget() */

...
key = ...
nsems = ...
semflg = ...
...
if ((semid = semget(key, nsems, semflg)) == –1) {

perror("semget: semget failed");
exit(1);

} else
exit(0);

...
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Controlling Semaphores
semctl(2) changes permissions and other characteristics of a semaphore set. It must
be called with a valid semaphore ID. The semnum value selects a semaphore within an
array by its index. The cmd argument is one of the following control flags.

GETVAL Return the value of a single semaphore.

SETVAL Set the value of a single semaphore. In this case, arg is taken as
arg.val, an int.

GETPID Return the PID of the process that performed the last operation on the
semaphore or array.

GETNCNT Return the number of processes waiting for the value of a semaphore to
increase.

GETZCNT Return the number of processes waiting for the value of a particular
semaphore to reach zero.

GETALL Return the values for all semaphores in a set. In this case, arg is taken
as arg.array, a pointer to an array of unsigned short values.

SETALL Set values for all semaphores in a set. In this case, arg is taken as
arg.array, a pointer to an array of unsigned short values.

IPC_STAT Return the status information from the control structure for the
semaphore set and place it in the data structure pointed to by
arg.buf, a pointer to a buffer of type semid_ds.

IPC_SET Set the effective user and group identification and permissions. In this
case, arg is taken as arg.buf.

IPC_RMID Remove the specified semaphore set.

A process must have an effective user identification of owner, creator, or superuser to
perform an IPC_SET or IPC_RMID command. Read and write permission is required,
as for the other control commands.

The following code illustrates semctl(2).

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
...

register int i;
...

i = semctl(semid, semnum, cmd, arg);
if (i == –1) {

perror("semctl: semctl failed");
exit(1);

...
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Semaphore Operations
semop(2) performs operations on a semaphore set. The semid argument is the
semaphore ID returned by a previous semget(2) call. The sops argument is a pointer
to an array of structures, each containing the following information about a
semaphore operation:

� The semaphore number
� The operation to be performed
� Control flags, if any

The sembuf structure specifies a semaphore operation, as defined in sys/sem.h. The
nsops argument specifies the length of the array, the maximum size of which is
determined by the SEMOPM configuration option. This option determines the
maximum number of operations allowed by a single semop(2) call, and is set to 10 by
default.

The operation to be performed is determined as follows:

� Positive integer increments the semaphore value by that amount.

� Negative integer decrements the semaphore value by that amount. An attempt to
set a semaphore to a value less than zero fails or blocks, depending on whether
IPC_NOWAIT is in effect.

� Value of zero means to wait for the semaphore value to reach zero.

The two control flags that can be used with semop(2) are IPC_NOWAIT and
SEM_UNDO.

IPC_NOWAIT Can be set for any operations in the array. Makes the interface return
without changing any semaphore value if it cannot perform any of the
operations for which IPC_NOWAIT is set. The interface fails if it tries to
decrement a semaphore more than its current value, or tests a nonzero
semaphore to be equal to zero.

SEM_UNDO Allows individual operations in the array to be undone when the
process exits.

The following code illustrates semop(2).

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
...

int i; /* work area */
int nsops; /* number of operations to do */
int semid; /* semid of semaphore set */
struct sembuf *sops; /* ptr to operations to perform */
...
if ((i = semop(semid, sops, nsops)) == –1) {

perror("semop: semop failed");
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} else
(void) fprintf(stderr, "semop: returned %d\n", i);

...

System V Shared Memory
In the SunOS 5.9 operating system, the most efficient way to implement shared
memory applications is to rely on mmap(2) and on the system’s native virtual memory
facility. See Chapter 1 for more information.

The SunOS 5.9 platform also supports System V shared memory, which is a less
efficient way to enable the attachment of a segment of physical memory to the virtual
address spaces of multiple processes. When write access is allowed for more than one
process, an outside protocol or mechanism, such as a semaphore, can be used to
prevent inconsistencies and collisions.

A process creates a shared memory segment using shmget(2). This call is also used to
get the ID of an existing shared segment. The creating process sets the permissions
and the size in bytes for the segment.

The original owner of a shared memory segment can assign ownership to another user
with shmctl(2). The owner can also revoke this assignment. Other processes with
proper permission can perform various control functions on the shared memory
segment using shmctl(2).

Once created, you can attach a shared segment to a process address space using
shmat(2). You can detach it using shmdt(2). The attaching process must have the
appropriate permissions for shmat(2). Once attached, the process can read or write to
the segment, as allowed by the permission requested in the attach operation. A shared
segment can be attached multiple times by the same process.

A shared memory segment is described by a control structure with a unique ID that
points to an area of physical memory. The identifier of the segment is called the
shmid. The structure definition for the shared memory segment control structure can
be found in sys/shm.h.

Accessing a Shared Memory Segment
shmget(2) is used to obtain access to a shared memory segment. When the call
succeeds, it returns the shared memory segment ID (shmid). The following code
illustrates shmget(2).

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
...

key_t key; /* key to be passed to shmget() */
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int shmflg; /* shmflg to be passed to shmget() */
int shmid; /* return value from shmget() */
size_t size; /* size to be passed to shmget() */
...
key = ...
size = ...
shmflg) = ...
if ((shmid = shmget (key, size, shmflg)) == –1) {

perror("shmget: shmget failed");
exit(1);

} else {
(void) fprintf(stderr,

"shmget: shmget returned %d\n", shmid);
exit(0);

}

...

Controlling a Shared Memory Segment
shmctl(2) is used to alter the permissions and other characteristics of a shared
memory segment. The cmd argument is one of following control commands.

SHM_LOCK Lock the specified shared memory segment in memory. The process
must have the effective ID of superuser to perform this command.

SHM_UNLOCK Unlock the shared memory segment. The process must have the effective
ID of superuser to perform this command.

IPC_STAT Return the status information contained in the control structure and
place it in the buffer pointed to by buf. The process must have read
permission on the segment to perform this command.

IPC_SET Set the effective user and group identification and access permissions.
The process must have an effective ID of owner, creator or superuser to
perform this command.

IPC_RMID Remove the shared memory segment. The process must have an
effective ID of owner, creator, or superuser to perform this command.

The following code illustrates shmctl(2).

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
...
int cmd; /* command code for shmctl() */
int shmid; /* segment ID */
struct shmid_ds shmid_ds; /* shared memory data structure to

hold results */
...
shmid = ...
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cmd = ...
if ((rtrn = shmctl(shmid, cmd, shmid_ds)) == –1) {

perror("shmctl: shmctl failed");
exit(1);

...

Attaching and Detaching a Shared Memory Segment
shmat() and shmdt() are used to attach and detach shared memory segments (see
the shmop(2) man page). shmat(2) returns a pointer to the head of the shared
segment. shmdt(2) detaches the shared memory segment located at the address
indicated by shmaddr. The following code illustrates calls to shmat(2) and shmdt(2)

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

static struct state { /* Internal record of attached segments. */
int shmid; /* shmid of attached segment */
char *shmaddr; /* attach point */
int shmflg; /* flags used on attach */
} ap[MAXnap]; /* State of current attached segments. */
int nap; /* Number of currently attached segments. */

...
char *addr; /* address work variable */
register int i; /* work area */
register struct state *p; /* ptr to current state entry */

...
p = &ap[nap++];
p–>shmid = ...
p–>shmaddr = ...
p–>shmflg = ...
p–>shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
if(p–>shmaddr == (char *)-1) {

perror("shmat failed");
nap–-;

} else
(void) fprintf(stderr, "shmop: shmat returned %p\n",

p–>shmaddr);
...
i = shmdt(addr);
if(i == –1) {

perror("shmdt failed");
} else {

(void) fprintf(stderr, "shmop: shmdt returned %d\n", i);
for (p = ap, i = nap; i–-; p++) {

if (p–>shmaddr == addr) *p = ap[–-nap];
}

}

...
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CHAPTER 7

Socket Interfaces

This chapter presents the socket interface. Sample programs are included to illustrate
key points. The following topics are discussed in this chapter:

� “SunOS 4 Binary Compatibility” on page 123 discusses binary compatibility with
the SunOS™ 4 environment.

� Socket creation, connection, and closure are discussed in “Socket Basics”
on page 127.

� Client-Server architecture is discussed in “Client-Server Programs” on page 146.
� Advanced topics such as multicast and asynchronous sockets are discussed in

“Advanced Socket Topics” on page 150.

Note – The interface that is described in this chapter is multithread safe. You can call
applications that contain socket interface calls freely in a multithreaded application.
Note, however, that the degree of concurrency that is available to applications is not
specified.

SunOS 4 Binary Compatibility
Two major changes from the SunOS 4 environment hold true for SunOS 5.9 releases.
The binary compatibility package enables dynamically linked socket applications that
are based on SunOS 4 to run on SunOS 5.9.

� You must explicitly specify the socket library (-lsocket or libsocket) on the
compilation line.

� You might also need to link with libnsl by using -lsocket -lnsl, not -lnsl
-lsocket.

� You must recompile all SunOS™ 4 socket-based applications with the socket
library to run in a SunOS 5.9 environment.
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Overview of Sockets
Sockets have been an integral part of SunOS releases since 1981. A socket is an
endpoint of communication to which a name can be bound. A socket has a type and an
associated process. Sockets were designed to implement the client-server model for
interprocess communication where:

� The interface to network protocols needs to accommodate multiple communication
protocols, such as TCP/IP, Xerox internet protocols (XNS), and the UNIX family.

� The interface to network protocols needs to accommodate server code that waits
for connections and client code that initiates connections.

� Operations differ depending on whether communication is connection-oriented or
connectionless.

� Application programs might want to specify the destination address of the
datagrams that are being delivered instead of binding the address with the open(2)
call.

Sockets make network protocols available while behaving like UNIX files.
Applications create sockets as sockets are needed. Sockets work with the close(2),
read(2), write(2), ioctl(2), and fcntl(2) interfaces. The operating system
differentiates between the file descriptors for files and the file descriptors for sockets.

Socket Libraries
The socket interface routines are in a library that must be linked with the application.
The library libsocket.so is contained in /usr/lib with the rest of the system
service libraries. Use libsocket.so for dynamic linking.

Socket Types
Socket types define the communication properties that are visible to a user. The
Internet family sockets provide access to the TCP/IP transport protocols. The Internet
family is identified by the value AF_INET6, for sockets that can communicate over
both IPv6 and IPv4. The value AF_INET is also supported for source compatibility
with old applications and for “raw” access to IPv4.

The SunOS environment supports three types of sockets:

� Stream sockets enable processes to communicate using TCP. A stream socket
provides a bidirectional, reliable, sequenced, and unduplicated flow of data with
no record boundaries. After the connection has been established, data can be read
from and written to these sockets as a byte stream. The socket type is
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SOCK_STREAM.

� Datagram sockets enable processes to use UDP to communicate. A datagram socket
supports a bidirectional flow of messages. A process on a datagram socket can
receive messages in a different order from the sending sequence. A process on a
datagram socket can receive duplicate messages. Record boundaries in the data are
preserved. The socket type is SOCK_DGRAM.

� Raw sockets provide access to ICMP. These sockets are normally datagram
oriented, although their exact characteristics are dependent on the interface
provided by the protocol. Raw sockets are not for most applications. Raw sockets
are provided to support the development of new communication protocols, or for
access to more esoteric facilities of an existing protocol. Only superuser processes
can use raw sockets. The socket type is SOCK_RAW.

See “Selecting Specific Protocols” on page 156 for further information.

Interface Sets
The SunOS 5.9 platform provides two sets of socket interfaces. The BSD socket
interfaces are provided and, since SunOS™ version 5.7, the XNS 5 (Unix98) socket
interfaces are also provided. The XNS 5 interfaces differ slightly from the BSD
interfaces.

The XNS 5 socket interfaces are documented in the following man pages:

� accept(3XNET)
� bind(3XNET)
� connect(3XNET)
� endhostent(3XNET)
� endnetent(3XNET)
� endprotoent(3XNET)
� endservent(3XNET)
� gethostbyaddr(3XNET)
� gethostbyname(3XNET)
� gethostent(3XNET)
� gethostname(3XNET)
� getnetbyaddr(3XNET)
� getnetbyname(3XNET)
� getnetent(3XNET)
� getpeername(3XNET)
� getprotobyname(3XNET)
� getprotobynumber(3XNET)
� getprotoent(3XNET)
� getservbyname(3XNET)
� getservbyport(3XNET)
� getservent(3XNET)
� getsockname(3XNET)
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� getsockopt(3XNET)
� htonl(3XNET)
� htons(3XNET)
� inet_addr(3XNET)
� inet_lnaof(3XNET)
� inet_makeaddr(3XNET)
� inet_netof(3XNET)
� inet_network(3XNET)
� inet_ntoa(3XNET)
� listen(3XNET)
� ntohl(3XNET)
� ntohs(3XNET)
� recv(3XNET)
� recvfrom(3XNET)
� recvmsg(3XNET)
� send(3XNET)
� sendmsg(3XNET)
� sendto(3XNET)
� sethostent(3XNET)
� setnetent(3XNET)
� setprotoent(3XNET)
� setservent(3XNET)
� setsockopt(3XNET)
� shutdown(3XNET)
� socket(3XNET)
� socketpair(3XNET)

The traditional BSD Socket behavior is documented in the corresponding 3N man
pages. In addition, the following new interfaces have been added to section 3N:

� freeaddrinfo(3SOCKET)
� freehostent(3SOCKET)
� getaddrinfo(3SOCKET)
� getipnodebyaddr(3SOCKET)
� getipnodebyname(3SOCKET)
� getnameinfo(3SOCKET)
� inet_ntop(3SOCKET)
� inet_pton(3SOCKET)

See the standards(5) man page for information on building applications that use the
XNS 5 (Unix98) socket interface.
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Socket Basics
This section describes the use of the basic socket interfaces.

Socket Creation
The socket(3SOCKET) call creates a socket in the specified family and of the
specified type.

s = socket(family, type, protocol);

If the protocol is unspecified, the system selects a protocol that supports the requested
socket type. The socket handle is returned. The socket handle is a file descriptor.

The family is specified by one of the constants that are defined in sys/socket.h.
Constants that are named AF_suite specify the address format to use in interpreting
names:

AF_APPLETALK Apple Computer Inc. Appletalk network

AF_INET6 Internet family for IPv6 and IPv4

AF_INET Internet family for IPv4 only

AF_PUP Xerox Corporation PUP internet

AF_UNIX UNIX file system

Socket types are defined in sys/socket.h. These types, SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW, are supported by AF_INET6, AF_INET, and AF_UNIX.
The following example creates a stream socket in the Internet family:

s = socket(AF_INET6, SOCK_STREAM, 0);

This call results in a stream socket. The TCP protocol provides the underlying
communication. Set the protocol argument to 0, the default, in most situations. You can
specify a protocol other than the default, as described in “Advanced Socket Topics”
on page 150.

Binding Local Names
A socket is created with no name. A remote process has no way to refer to a socket
until an address is bound to the socket. Processes that communicate are connected
through addresses. In the Internet family, a connection is composed of local and
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remote addresses and local and remote ports. Duplicate ordered sets, such as:
protocol, local address, local port, foreign address, foreign port
cannot exist. In most families, connections must be unique.

The bind(3SOCKET) interface enables a process to specify the local address of the
socket. This interface forms the local address, local port set.
connect(3SOCKET) and accept(3SOCKET) complete a socket’s association by fixing
the remote half of the address tuple. The bind(3SOCKET) call is used as follows:

bind (s, name, namelen);

The socket handle is s. The bound name is a byte string that is interpreted by the
supporting protocols. Internet family names contain an Internet address and port
number.

This example demonstrates binding an Internet address.

#include <sys/types.h>
#include <netinet/in.h>
...

struct sockaddr_in6 sin6;
...

s = socket(AF_INET6, SOCK_STREAM, 0);
bzero (&sin6, sizeof (sin6));
sin6.sin6_family = AF_INET6;
sin6.sin6_addr.s6_addr = in6addr_arg;
sin6.sin6_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sin6, sizeof sin6);

The content of the address sin6 is described in “Address Binding” on page 156,
where Internet address bindings are discussed.

Connection Establishment
Connection establishment is usually asymmetric, with one process acting as the client
and the other as the server. The server binds a socket to a well-known address
associated with the service and blocks on its socket for a connect request. An unrelated
process can then connect to the server. The client requests services from the server by
initiating a connection to the server’s socket. On the client side, the
connect(3SOCKET) call initiates a connection. In the Internet family, this connection
might appear as:

struct sockaddr_in6 server;
...
connect(s, (struct sockaddr *)&server, sizeof server);
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If the client’s socket is unbound at the time of the connect call, the system
automatically selects and binds a name to the socket. For more information, see
“Address Binding” on page 156. This automatic selection is the usual way to bind
local addresses to a socket on the client side.

To receive a client’s connection, a server must perform two steps after binding its
socket. The first step is to indicate how many connection requests can be queued. The
second step is to accept a connection.

struct sockaddr_in6 from;
...
listen(s, 5); /* Allow queue of 5 connections */
fromlen = sizeof(from);
newsock = accept(s, (struct sockaddr *) &from, &fromlen);

The socket handle s is the socket bound to the address to which the connection request
is sent. The second parameter of listen(3SOCKET) specifies the maximum number
of outstanding connections that might be queued. The from structure is filled with the
address of the client. A NULL pointer might be passed. fromlen is the length of the
structure. In the UNIX family, from is declared a struct sockaddr_un.

The accept(3SOCKET) routine normally blocks processes. accept(3SOCKET)
returns a new socket descriptor that is connected to the requesting client. The value of
fromlen is changed to the actual size of the address.

A server cannot indicate that the server accepts connections from only specific
addresses. The server can check the from address returned by accept(3SOCKET)
and close a connection with an unacceptable client. A server can accept connections on
more than one socket, or avoid blocking on the accept(3SOCKET) call. These
techniques are presented in “Advanced Socket Topics” on page 150.

Connection Errors
An error is returned if the connection is unsuccessful, but an address bound by the
system remains. If the connection is successful, the socket is associated with the server
and data transfer can begin.

The following table lists some of the more common errors returned when a connection
attempt fails.

TABLE 7–1 Socket Connection Errors

Socket Errors Error Description

ENOBUFS Lack of memory available to support the call.

EPROTONOSUPPORT Request for an unknown protocol.
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TABLE 7–1 Socket Connection Errors (Continued)
Socket Errors Error Description

EPROTOTYPE Request for an unsupported type of socket.

ETIMEDOUT No connection established in specified time. This error
happens when the destination host is down or when problems
in the network cause in lost transmissions.

ECONNREFUSED The host refused service. This error happens when a server
process is not present at the requested address.

ENETDOWN or EHOSTDOWN These errors are caused by status information delivered by the
underlying communication interface.

ENETUNREACH or
EHOSTUNREACH

These operational errors can occur because no route to the
network or host exists. These errors can also occur because of
status information returned by intermediate gateways or
switching nodes. The status information that is returned is not
always sufficient to distinguish between a network that is
down and a host that is down.

Data Transfer
This section describes the interfaces to send and receive data. You can send or receive
a message with the normal read(2) and write(2) interfaces:

write(s, buf, sizeof buf);
read(s, buf, sizeof buf);

You can also use send(3SOCKET) and recv(3SOCKET):

send(s, buf, sizeof buf, flags);
recv(s, buf, sizeof buf, flags);

send(3SOCKET) and recv(3SOCKET) are very similar to read(2) and write(2), but
the flags argument is important. The flags argument, which is defined in
sys/socket.h, can be specified as a nonzero value if one or more of the following is
required:

MSG_OOB Send and receive out-of-band data

MSG_PEEK Look at data without reading

MSG_DONTROUTE Send data without routing packets

Out-of-band data is specific to stream sockets. When MSG_PEEK is specified with a
recv(3SOCKET) call, any data present is returned to the user, but treated as still
unread. The next read(2) or recv(3SOCKET) call on the socket returns the same data.
The option to send data without routing packets applied to the outgoing packets is
currently used only by the routing table management process.
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Closing Sockets
A SOCK_STREAM socket can be discarded by a close(2) interface call. If data is
queued to a socket that promises reliable delivery after a close(2), the protocol
continues to try to transfer the data. The data is discarded if it remains undelivered
after an arbitrary period.

A shutdown(3SOCKET) closes SOCK_STREAM sockets gracefully. Both processes can
acknowledge that they are no longer sending. This call has the form:

shutdown(s, how);

where how is defined as

0 Disallows further data reception

1 Disallows further data transmission

2 Disallows further transmission and further reception

Connecting Stream Sockets
The following two examples illustrate initiating and accepting an Internet family
stream connection.
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FIGURE 7–1 Connection-Oriented Communication Using Stream Sockets

The following example program is a server. The server creates a socket and binds a
name to the socket, then displays the port number. The program calls
listen(3SOCKET) to mark the socket as ready to accept connection requests and to
initialize a queue for the requests. The rest of the program is an infinite loop. Each
pass of the loop accepts a new connection and removes it from the queue, creating a
new socket. The server reads and displays the messages from the socket and closes the
socket. The use of in6addr_any is explained in “Address Binding” on page 156.

EXAMPLE 7–1 Accepting an Internet Stream Connection (Server)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include >stdio.h>
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EXAMPLE 7–1 Accepting an Internet Stream Connection (Server) (Continued)

#define TRUE 1
/*
* This program creates a socket and then begins an infinite loop.
* Each time through the loop it accepts a connection and prints
* data from it. When the connection breaks, or the client closes
* the connection, the program accepts a new connection.
*/
main() {

int sock, length;
struct sockaddr_in6 server;
int msgsock;
char buf[1024];
int rval;
/* Create socket. */
sock = socket(AF_INET6, SOCK_STREAM, 0);
if (sock == -1) {
perror("opening stream socket");
exit(1);

}
/* Bind socket using wildcards.*/
bzero (&server, sizeof(server));

/* bzero (&sin6, sizeof (sin6)); */
server.sin6_family = AF_INET6;
server.sin6_addr = in6addr_any;
server.sin6_port = 0;
if (bind(sock, (struct sockaddr *) &server, sizeof server)

== -1) {
perror("binding stream socket");
exit(1);

}
/* Find out assigned port number and print it out. */
length = sizeof server;
if (getsockname(sock,(struct sockaddr *) &server, &length)

== -1) {
perror("getting socket name");
exit(1);

}
printf("Socket port #%d\n", ntohs(server.sin6_port));
/* Start accepting connections. */
listen(sock, 5);
do {

msgsock = accept(sock,(struct sockaddr *) 0,(int *) 0);
if (msgsock == -1)

perror("accept");
else do {

memset(buf, 0, sizeof buf);
if ((rval = read(msgsock,buf, 1024)) == -1)

perror("reading stream message");
if (rval == 0)

printf("Ending connection\n");
else

/* assumes the data is printable */

Chapter 7 • Socket Interfaces 133



EXAMPLE 7–1 Accepting an Internet Stream Connection (Server) (Continued)

printf("-->%s\n", buf);
} while (rval > 0);
close(msgsock);

} while(TRUE);
/*
* Since this program has an infinite loop, the socket "sock" is
* never explicitly closed. However, all sockets are closed
* automatically when a process is killed or terminates normally.
*/
exit(0);

}

To initiate a connection, the client program in Example 7–2 creates a stream socket,
then calls connect(3SOCKET), specifying the address of the socket for connection. If
the target socket exists, and the request is accepted, the connection is complete. The
program can now send data. Data is delivered in sequence with no message
boundaries. The connection is destroyed when either socket is closed. For more
information about data representation routines in this program, such as
ntohl(3SOCKET), ntohs(3SOCKET), htons(3SOCKET), and htonl(3XNET), see the
byteorder(3SOCKET) man page.

EXAMPLE 7–2 Internet Family Stream Connection (Client)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define DATA "Half a league, half a league . . ."
/*
* This program creates a socket and initiates a connection with
* the socket given in the command line. Some data are sent over the
* connection and then the socket is closed, ending the connection.
* The form of the command line is: streamwrite hostname portnumber
* Usage: pgm host port
*/
main(argc, argv)

int argc;
char *argv[];

{
int sock, errnum, h_addr_index;
struct sockaddr_in6 server;
struct hostent *hp;
char buf[1024];
/* Create socket. */
sock = socket( AF_INET6, SOCK_STREAM, 0);
if (sock == -1) {

perror("opening stream socket");
exit(1);

}
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EXAMPLE 7–2 Internet Family Stream Connection (Client) (Continued)

/* Connect socket using name specified by command line. */
bzero (&server, sizeof (server));
server.sin6_family = AF_INET6;
hp = getipnodebyname(argv[1], AF_INET6, AI_DEFAULT, &errnum);

/*
* getipnodebyname returns a structure including the network address
* of the specified host.
*/

if (hp == (struct hostent *) 0) {
fprintf(stderr, "%s: unknown host\n", argv[1]);
exit(2);

}
h_addr_index = 0;
while (hp->h_addr_list[h_addr_index] != NULL) {

bcopy(hp->h_addr_list[h_addr_index], &server.sin6_addr,
hp->h_length);

server.sin6_port = htons(atoi(argv[2]));
if (connect(sock, (struct sockaddr *) $server,

sizeof (server)) == -1) {
if (hp->h_addr_list[++h_addr_index] != NULL) {

/* Try next address */
continue;

}
perror("connecting stream socket");
freehostent(hp);
exit(1);

}
break;

}
freehostent(hp);
if (write( sock, DATA, sizeof DATA) == -1)

perror("writing on stream socket");
close(sock);
freehostent (hp);
exit(0);

}

Input/Output Multiplexing
Requests can be multiplexed among multiple sockets or multiple files. Use
select(3C) to multiplex:

#include <sys/time.h>
#include <sys/types.h>
#include <sys/select.h>
...
fd_set readmask, writemask, exceptmask;
struct timeval timeout;
...
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select(nfds, &readmask, &writemask, &exceptmask, &timeout);

The first argument of select(3C) is the number of file descriptors in the lists pointed
to by the next three arguments.

The second, third, and fourth arguments of select(3C) point to three sets of file
descriptors: a set of descriptors to read on, a set to write on, and a set on which
exception conditions are accepted. Out-of-band data is the only exceptional condition.
You can designate any of these pointers as a properly cast null. Each set is a structure
that contains an array of long integer bit masks. Set the size of the array with
FD_SETSIZE, which is defined in select.h. The array is long enough to hold one bit
for each FD_SETSIZE file descriptor.

The macros FD_SET (fd, &mask) and FD_CLR (fd, &mask) add and delete, respectively,
the file descriptor fd in the set mask. The set should be zeroed before use and the
macro FD_ZERO (&mask) clears the set mask.

The fifth argument of select(3C) enables the specification of a time-out value. If the
timeout pointer is NULL, select(3C) blocks until a descriptor is selectable, or until a
signal is received. If the fields in timeout are set to 0, select(3C) polls and returns
immediately.

The select(3C) routine normally returns the number of file descriptors that are
selected, or a zero if the time-out has expired. The select(3C) routine returns −1 for
an error or interrupt, with the error number in errno and the file descriptor masks
unchanged. For a successful return, the three sets indicate which file descriptors are
ready to be read from, written to, or have exceptional conditions pending.

Test the status of a file descriptor in a select mask with the FD_ISSET (fd, &mask)
macro. The macro returns a nonzero value if fd is in the set mask. Otherwise, the
macro returns zero. Use select(3C) followed by a FD_ISSET (fd, &mask) macro on
the read set to check for queued connect requests on a socket.

The following example shows how to select on a listening socket for readability to
determine when a new connection can be picked up with a call to accept(3SOCKET).
The program accepts connection requests, reads data, and disconnects on a single
socket.

EXAMPLE 7–3 Using select(3C) to Check for Pending Connections

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time/h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1
/*
* This program uses select to check that someone is
* trying to connect before calling accept.
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EXAMPLE 7–3 Using select(3C) to Check for Pending Connections (Continued)

*/
main() {

int sock, length;
struct sockaddr_in6 server;
int msgsock;
char buf[1024];
int rval;
fd_set ready;
struct timeval to;
/* Open a socket and bind it as in previous examples. */
/* Start accepting connections. */
listen(sock, 5);
do {

FD_ZERO(&ready);
FD_SET(sock, &ready);
to.tv_sec = 5;
to.tv_usec = 0;
if (select(sock + 1, &ready, (fd_set *)0,

(fd_set *)0, &to) == -1) {
perror("select");
continue;

}
if (FD_ISSET(sock, &ready)) {

msgsock = accept(sock, (struct sockaddr *)0, (int *)0);
if (msgsock == -1)

perror("accept");
else do {

memset(buf, 0, sizeof buf);
if ((rval = read(msgsock, buf, 1024)) == -1)

perror("reading stream message");
else if (rval == 0)

printf("Ending connection\n");
else

printf("-->%s\n", buf);
} while (rval > 0);
close(msgsock);

} else
printf("Do something else\n");

} while (TRUE);
exit(0);

}

In previous versions of the select(3C) routine, its arguments were pointers to
integers instead of pointers to fd_sets. This style of call still works if the number of
file descriptors is smaller than the number of bits in an integer.

The select(3C) routine provides a synchronous multiplexing scheme. The SIGIO
and SIGURG signals, which is described in “Advanced Socket Topics” on page 150,
provide asynchronous notification of output completion, input availability, and
exceptional conditions.
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Datagram Sockets
A datagram socket provides a symmetric data exchange interface without requiring
connection establishment. Each message carries the destination address. The following
figure shows the flow of communication between server and client.

The bind(3SOCKET) step for the server is optional.
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data
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data

Normally block until a 
request is received
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Normally block 
waiting 
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socket()

sendto()
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FIGURE 7–2 Connectionless Communication Using Datagram Sockets
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Create datagram sockets as described in “Socket Creation” on page 127. If a particular
local address is needed, the bind(3SOCKET) operation must precede the first data
transmission. Otherwise, the system sets the local address or port when data is first
sent. Use sendto(3SOCKET) to send data.

sendto(s, buf, buflen, flags, (struct sockaddr *) &to, tolen);

The s, buf, buflen, and flags parameters are the same as in connection-oriented sockets.
The to and tolen values indicate the address of the intended recipient of the message. A
locally detected error condition, such as an unreachable network, causes a return of −1
and errno to be set to the error number.

recvfrom(s, buf, buflen, flags, (struct sockaddr *) &from, &fromlen);

To receive messages on a datagram socket, recvfrom(3SOCKET) is used. Before the
call, fromlen is set to the size of the from buffer. On return, fromlen is set to the size of
the address from which the datagram was received.

Datagram sockets can also use the connect(3SOCKET) call to associate a socket with
a specific destination address. The socket can then use the send(3SOCKET) call. Any
data that is sent on the socket that does not explicitly specify a destination address is
addressed to the connected peer. Only the data that is received from that peer is
delivered. A socket can have only one connected address at a time. A second
connect(3SOCKET) call changes the destination address. Connect requests on
datagram sockets return immediately. The system records the peer’s address. Neither
accept(3SOCKET) nor listen(3SOCKET) are used with datagram sockets.

A datagram socket can return errors from previous send(3SOCKET) calls
asynchronously while the socket is connected. The socket can report these errors on
subsequent socket operations. Alternately, the socket can use an option of
getsockopt(3SOCKET), SO_ERROR to interrogate the error status.

The following example code shows how to send an Internet call by creating a socket,
binding a name to the socket, and sending the message to the socket.

EXAMPLE 7–4 Sending an Internet Family Datagram

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define DATA "The sea is calm, the tide is full . . ."
/*
* Here I send a datagram to a receiver whose name I get from
* the command line arguments. The form of the command line is:
* dgramsend hostname portnumber
*/
main(argc, argv)

int argc;
char *argv[];

{
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EXAMPLE 7–4 Sending an Internet Family Datagram (Continued)

int sock, errnum;
struct sockaddr_in6 name;
struct hostent *hp;
/* Create socket on which to send. */
sock = socket(AF_INET6,SOCK_DGRAM, 0);
if (sock == -1) {

perror("opening datagram socket");
exit(1);

}
/*
* Construct name, with no wildcards, of the socket to ‘‘send’’
* to. getinodebyname returns a structure including the network
* address of the specified host. The port number is taken from
* the command line.
*/
hp = getipnodebyname(argv[1], AF_INET6, AI_DEFAULT, &errnum);
if (hp == (struct hostent *) 0) {

fprintf(stderr, "%s: unknown host\n", argv[1]);
exit(2);

}
bzero (&name, sizeof (name));
memcpy((char *) &name.sin6_addr, (char *) hp->h_addr,

hp->h_length);
name.sin6_family = AF_INET6;
name.sin6_port = htons(atoi(argv[2]));
/* Send message. */
if (sendto(sock,DATA, sizeof DATA ,0,

(struct sockaddr *) &name,sizeof name) == -1)
perror("sending datagram message");

close(sock);
exit(0);

}

The following sample code shows how to read an Internet call by creating a socket,
binding a name to the socket, and then reading from the socket.

EXAMPLE 7–5 Reading Internet Family Datagrams

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
/*
* This program creates a datagram socket, binds a name to it, then
* reads from the socket.
*/
main()
{

int sock, length;
struct sockaddr_in6 name;
char buf[1024];
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EXAMPLE 7–5 Reading Internet Family Datagrams (Continued)

/* Create socket from which to read. */
sock = socket(AF_INET6, SOCK_DGRAM, 0);
if (sock == -1) {

perror("opening datagram socket");
exit(1);

}
/* Create name with wildcards. */
bzero (&name, sizeof (name));
name.sin6_family = AF_INET6;
name.sin6_addr = in6addr_any;
name.sin6_port = 0;
if (bind (sock, (struct sockaddr *)&name, sizeof (name)) == -1) {

perror("binding datagram socket");
exit(1);

}
/* Find assigned port value and print it out. */
length = sizeof(name);
if (getsockname(sock,(struct sockaddr *) &name, &length)

== -1) {
perror("getting socket name");
exit(1);

}
printf("Socket port #%d\n", ntohs(name.sin6_port));
/* Read from the socket. */
if (read(sock, buf, 1024) == -1 )

perror("receiving datagram packet");
/* Assumes the data is printable */
printf("-->%s\n", buf);
close(sock);
exit(0);

}

Standard Routines
This section describes the routines that you can use to locate and construct network
addresses. Unless otherwise stated, interfaces presented in this section apply only to
the Internet family.

Locating a service on a remote host requires many levels of mapping before the client
and server communicate. A service has a name for human use. The service and host
names must translate to network addresses. Finally, the network address must be
usable to locate and route to the host. The specifics of the mappings can vary between
network architectures. Preferably, a network does not require that hosts be named,
thus protecting the identity of their physical locations.
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Standard routines map host names to network addresses, network names to network
numbers, protocol names to protocol numbers, and service names to port numbers.
The standard routines also indicate the appropriate protocol to use in communicating
with the server process. The file netdb.h must be included when using any of these
routines.

Host and Service Names
The interfaces getaddrinfo(3SOCKET), getnameinfo(3SOCKET), and
freeaddrinfo(3SOCKET) provide a simplified way to translate between the names
and addresses of a service on a host. For IPv6, you can use these interfaces instead of
calling getipnodebyname(3SOCKET) and getservbyname(3SOCKET). Similarly,
for IPv4, you can use these interfaces instead of gethostbyname(3NSL) and
getservbyname(3SOCKET). Both IPv6 and IPv4 addresses are handled transparently.

The getaddrinfo(3SOCKET) routine returns the combined address and port number
of the specified host and service names. Because the information returned by
getaddrinfo(3SOCKET) is dynamically allocated, the information must be freed by
freeaddrinfo(3SOCKET) to prevent memory leaks. getnameinfo(3SOCKET)
returns the host and services names associated with a specified address and port
number. Call gai_strerror(3SOCKET) to print error messages based on the
EAI_xxx codes returned by getaddrinfo(3SOCKET) and
getnameinfo(3SOCKET).

An example of using getaddrinfo(3SOCKET) follows.

struct addrinfo *res, *aip;
struct addrinfo hints;
int sock = -1;
int error;

/* Get host address. Any type of address will do. */
bzero(&hints, sizeof (hints));
hints.ai_flags = AI_ALL|AI_ADDRCONFIG;
hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo(hostname, servicename, &hints, &res);
if (error != 0) {
(void) fprintf(stderr, "getaddrinfo: %s for host %s service %s\n",
gai_strerror(error), hostname, servicename);
return (-1);
}

After processing the information returned by getaddrinfo(3SOCKET) in the
structure pointed to by res, the storage should be released by freeaddrinfo(res).
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The getnameinfo(3SOCKET) routine is particularly useful in identifying the cause of
an error, as in the following example:

struct sockaddr_storage faddr;
int sock, new_sock, sock_opt;
socklen_t faddrlen;
int error;
char hname[NI_MAXHOST];
char sname[NI_MAXSERV];

...
faddrlen = sizeof (faddr);
new_sock = accept(sock, (struct sockaddr *)&faddr, &faddrlen);
if (new_sock == -1) {

if (errno != EINTR && errno != ECONNABORTED) {
perror("accept");

}
continue;

}
error = getnameinfo((struct sockaddr *)&faddr, faddrlen, hname,

sizeof (hname), sname, sizeof (sname), 0);
if (error) {
(void) fprintf(stderr, "getnameinfo: %s\n",

gai_strerror(error));
} else {

(void) printf("Connection from %s/%s\n", hname, sname);

}

Host Names – hostent
An Internet host-name-to-address mapping is represented by the hostent structure
as defined in gethostent(3NSL):

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* hostaddrtype(e.g.,AF_INET6) */
int h_length; /* length of address */
char **h_addr_list; /* list of addrs, null terminated */

};
/*1st addr, net byte order*/

#define h_addr h_addr_list[0]

getipnodebyname(3SOCKET) Maps an Internet host name to a hostent
structure

getipnodebyaddr(3SOCKET) Maps an Internet host address to a hostent
structure

freehostent(3SOCKET) Frees the memory of a hostent structure
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inet_ntop(3SOCKET) Maps an Internet host address to a displayable
string

The routines return a hostent structure that contains the name of the host, its aliases,
the address type, and a NULL-terminated list of variable length addresses. The list of
addresses is required because a host can have many addresses. The h_addr definition
is for backward compatibility, and is the first address in the list of addresses in the
hostent structure.

Network Names – netent
The routines to map network names to numbers and the reverse return a netent
structure:

/*
* Assumes that a network number fits in 32 bits.
*/
struct netent {

char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
int n_net; /* net number, host byte order */

};

getnetbyname(3SOCKET), getnetbyaddr_r(3SOCKET), and
getnetent(3SOCKET) are the network counterparts to the host routines previously
described.

Protocol Names – protoent
The protoent structure defines the protocol-name mapping used with
getprotobyname(3SOCKET), getprotobynumber(3SOCKET), and
getprotoent(3SOCKET) and defined in getprotoent(3SOCKET):

struct protoent {
char *p_name; /* official protocol name */
char **p_aliases /* alias list */
int p_proto; /* protocol number */

};

Service Names – servent
An Internet family service resides at a specific, well-known port, and uses a particular
protocol. A service-name-to-port-number mapping is described by the servent
structure that is defined in getprotoent(3SOCKET):
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struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number, network byte order */
char *s_proto; /* protocol to use */

};

getservbyname(3SOCKET) maps service names and, optionally, a qualifying
protocol to a servent structure. The call:

sp = getservbyname("telnet", (char *) 0);

returns the service specification of a telnet server that is using any protocol. The call:

sp = getservbyname("telnet", "tcp");

returns the telnet server that uses the TCP protocol. getservbyport(3SOCKET) and
getservent(3SOCKET) are also provided. getservbyport(3SOCKET) has an
interface that is similar to the interface used by getservbyname(3SOCKET). You can
specify an optional protocol name to qualify lookups.

Other Routines
Several other routines that simplify manipulating names and addresses are available.
The following table summarizes the routines for manipulating variable-length byte
strings and byte-swapping network addresses and values.

TABLE 7–2 Runtime Library Routines

Interface Synopsis

memcmp(3C) Compares byte-strings; 0 if same, not 0 otherwise

memcpy(3C) Copies n bytes from s2 to s1

memset(3C) Sets n bytes to value starting at base

htonl(3SOCKET) 32-bit quantity from host into network byte order

htons(3SOCKET) 16-bit quantity from host into network byte order

ntohl(3SOCKET) 32-bit quantity from network into host byte order

ntohs(3SOCKET) 16-bit quantity from network into host byte order

The byte-swapping routines are provided because the operating system expects
addresses to be supplied in network order. On some architectures, the host byte
ordering is different from network byte order, so programs must sometimes byte-swap
values. Routines that return network addresses do so in network order. Byte-swapping
problems occur only when interpreting network addresses. For example, the following
code formats a TCP or UDP port:
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printf("port number %d\n", ntohs(sp->s_port));

On machines that do not need these routines, the routines are defined as null macros.

Client-Server Programs
The most common form of distributed application is the client/server model. In this
scheme, client processes request services from a server process.

An alternate scheme is a service server that can eliminate dormant server processes.
An example is inetd(1M), the Internet service daemon. inetd(1M) listens at a
variety of ports, determined at startup by reading a configuration file. When a
connection is requested on an inetd(1M) serviced port, inetd(1M) spawns the
appropriate server to serve the client. Clients are unaware that an intermediary has
played any part in the connection. inetd(1M) is described in more detail in “inetd
Daemon” on page 160.

Sockets and Servers
Most servers are accessed at well-known Internet port numbers or UNIX family
names. The service rlogin is an example of a well-known UNIX family name. The
main loop of a remote login server is shown in Example 7–6.

The server dissociates from the controlling terminal of its invoker unless the server is
operating in DEBUG mode.

(void) close(0);
(void) close(1);
(void) close(2);
(void) open("/", O_RDONLY);
(void) dup2(0);
(void) dup2(0);

setsid();

Dissociating prevents the server from receiving signals from the process group of the
controlling terminal. After a server has dissociated from the controlling terminal, the
server cannot send reports of errors to the terminal. The dissociated server must log
errors with syslog(3C).

The server gets its service definition by calling getaddrinfo(3SOCKET).

bzero(&hints, sizeof (hints));
hints.ai_flags = AI_ALL|AI_ADDRCONFIG;
hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo(NULL, "rlogin", &hints, &aip);
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The result, which is returned in aip, defines the Internet port at which the program
listens for service requests. Some standard port numbers are defined in
/usr/include/netinet/in.h.

The server then creates a socket, and listens for service requests. The bind(3SOCKET)
routine ensures that the server listens at the expected location. Because the remote
login server listens at a restricted port number, the server runs as superuser. The main
body of the server is the following loop.

EXAMPLE 7–6 Server Main Loop

/* Wait for a connection request. */
for (;;) {

faddrlen = sizeof (faddr);
new_sock = accept(sock, (struct sockaddr *)&faddr, &faddrlen);
if (new_sock == -1) {

if (errno != EINTR && errno != ECONNABORTED) {
perror("rlogind: accept");

}
continue;

}
if (fork() == 0) {

close (sock);
doit (new_sock, &faddr);

}
close (new_sock);

}

/*NOTREACHED*/

accept(3SOCKET) blocks messages until a client requests service. Furthermore,
accept(3SOCKET) returns a failure indication if accept is interrupted by a signal,
such as SIGCHLD. The return value from accept(3SOCKET) is checked, and an error
is logged with syslog(3C), if an error occurs.

The server then forks a child process, and invokes the main body of the remote login
protocol processing. The socket used by the parent to queue connection requests is
closed in the child. The socket created by accept(3SOCKET) is closed in the parent.
The address of the client is passed to the server application’s doit() routine, which
authenticates the client.

Sockets and Clients
This section describes the steps taken by a client process. As in the server, the first step
is to locate the service definition for a remote login.

bzero(&hints, sizeof (hints));
hints.ai_flags = AI_ALL|AI_ADDRCONFIG;
hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo(hostname, servicename, &hints, &res);
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if (error != 0) {
(void) fprintf(stderr, "getaddrinfo: %s for host %s service %s\n",

gai_strerror(error), hostname, servicename);
return (-1);

}

getaddrinfo(3SOCKET) returns the head of a list of addresses in res. The desired
address is found by creating a socket and trying to connect to each address returned in
the list until one works.

for (aip = res; aip != NULL; aip = aip->ai_next) {
/*
* Open socket. The address type depends on what
* getaddrinfo() gave us.
*/
sock = socket(aip->ai_family, aip->ai_socktype,

aip->ai_protocol);
if (sock == -1) {

perror("socket");
freeaddrinfo(res);
return (-1);

}

/* Connect to the host. */
if (connect(sock, aip->ai_addr, aip->ai_addrlen) == -1) {

perror("connect");
(void) close(sock);
sock = -1;
continue;

}
break;

}

The socket has been created and has been connected to the desired service. The
connect(3SOCKET) routine implicitly binds sock, because sock is unbound.

Connectionless Servers
Some services use datagram sockets. The rwho(1) service provides status information
on hosts that are connected to a local area network. Avoid running in.rwhod(1M)
because in.rwho causes heavy network traffic. The rwho service broadcasts
information to all hosts connected to a particular network. The rwho service is an
example of datagram socket use.

A user on a host that is running the rwho(1) server can get the current status of
another host with ruptime(1). Typical output is illustrated in the following example.

EXAMPLE 7–7 Output of ruptime(1) Program

itchy up 9:45, 5 users, load 1.15, 1.39, 1.31
scratchy up 2+12:04, 8 users, load 4.67, 5.13, 4.59
click up 10:10, 0 users, load 0.27, 0.15, 0.14
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EXAMPLE 7–7 Output of ruptime(1) Program (Continued)

clack up 2+06:28, 9 users, load 1.04, 1.20, 1.65
ezekiel up 25+09:48, 0 users, load 1.49, 1.43, 1.41
dandy 5+00:05, 0 users, load 1.51, 1.54, 1.56
peninsula down 0:24
wood down 17:04
carpediem down 16:09

chances up 2+15:57, 3 users, load 1.52, 1.81, 1.86

Status information is periodically broadcast by the rwho(1) server processes on each
host. The server process also receives the status information. The server also updates a
database. This database is interpreted for the status of each host. Servers operate
autonomously, coupled only by the local network and its broadcast capabilities.

Use of broadcast is fairly inefficient because broadcast generates a lot of net traffic.
Unless the service is used widely and frequently, the expense of periodic broadcasts
outweighs the simplicity.

The following example shows a simplified version of the rwho(1) server. The sample
code receives status information broadcast by other hosts on the network and supplies
the status of the host on which the sample code is running. The first task is done in the
main loop of the program: Packets received at the rwho(1) port are checked to be sure
they were sent by another rwho(1) server process and are stamped with the arrival
time. The packets then update a file with the status of the host. When a host has not
been heard from for an extended time, the database routines assume the host is down
and logs this information. Because a server might be down while a host is up, this
application is prone to error.

EXAMPLE 7–8 rwho(1) Server

main()
{

...
sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin6_addr = inet_makeaddr(net->n_net, in6addr_any);
sin.sin6_port = sp->s_port;
...
s = socket(AF_INET6, SOCK_DGRAM, 0);
...
on = 1;
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on)

== −1) {
syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m");
exit(1);

}
bind(s, (struct sockaddr *) &sin, sizeof sin);
...
signal(SIGALRM, onalrm);
onalrm();
while(1) {
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EXAMPLE 7–8 rwho(1) Server (Continued)

struct whod wd;
int cc, whod, len = sizeof from;

cc = recvfrom(s, (char *) &wd, sizeof(struct whod), 0,
(struct sockaddr *) &from, &len);

if (cc <= 0) {
if (cc == −1 && errno != EINTR)

syslog(LOG_ERR, "rwhod: recv: %m");
continue;
}
if (from.sin6_port != sp->s_port) {

syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin6_port));

continue;
}
...
if (!verify( wd.wd_hostname)) {

syslog(LOG_ERR, "rwhod: bad host name from %x",
ntohl(from.sin6_addr.s6_addr));

continue;
}
(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname);
whod = open(path, O_WRONLY|O_CREAT|O_TRUNC, 0666);
...
(void) time(&wd.wd_recvtime);
(void) write(whod, (char *) &wd, cc);
(void) close(whod);

}
exit(0);

}

The second server task is to supply the status of its host. This requires periodically
acquiring system status information, packaging it in a message, and broadcasting it on
the local network for other rwho(1) servers to hear. This task is run by a timer. This
task is triggered by a signal.

Status information is broadcast on the local network. For networks that do not support
broadcast, use multicast.

Advanced Socket Topics
For most programmers, the mechanisms already described are enough to build
distributed applications. This section describes additional features.
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Out-of-Band Data
The stream socket abstraction includes out-of-band data. Out-of-band data is a
logically independent transmission channel between a pair of connected stream
sockets. Out-of-band data is delivered independent of normal data. The out-of-band
data facilities must support the reliable delivery of at least one out-of-band message at
a time. This message can contain at least one byte of data. At least one message can be
pending delivery at any time.

With in-band signaling, urgent data is delivered in sequence with normal data, and
the message is extracted from the normal data stream. The extracted message is stored
separately. Users can choose between receiving the urgent data in order and receiving
the data out of sequence, without having to buffer the intervening data.

Using MSG_PEEK, you can peek at out-of-band data. If the socket has a process group,
a SIGURG signal is generated when the protocol is notified of its existence. A process
can set the process group or process ID to deliver SIGURG to with the appropriate
fcntl(2) call, as described in “Interrupt-Driven Socket I/O” on page 154 for SIGIO. If
multiple sockets have out-of-band data waiting for delivery, a select(3C) call for
exceptional conditions can determine which sockets have such data pending.

A logical mark is placed in the data stream at the point at which the out-of-band data
was sent. The remote login and remote shell applications use this facility to propagate
signals between client and server processes. When a signal is received, all data up to
the mark in the data stream is discarded.

To send an out-of-band message, apply the MSG_OOB flag to send(3SOCKET) or
sendto(3SOCKET). To receive out-of-band data, specify MSG_OOB to
recvfrom(3SOCKET) or recv(3SOCKET). If out-of-band data is taken in line the
MSG_OOB flag is not needed. The SIOCATMARK ioctl(2) indicates whether the read
pointer currently points at the mark in the data stream:

int yes;

ioctl(s, SIOCATMARK, &yes);

If yes is 1 on return, the next read returns data after the mark. Otherwise, assuming
out-of-band data has arrived, the next read provides data sent by the client before
sending the out-of-band signal. The routine in the remote login process that flushes
output on receipt of an interrupt or quit signal is shown in the following example.
This code reads the normal data up to the mark to discard the normal data, then reads
the out-of-band byte.

A process can also read or peek at the out-of-band data without first reading up to the
mark. Accessing this data when the underlying protocol delivers the urgent data
in-band with the normal data, and sends notification of its presence only ahead of
time, is more difficult. An example of this type of protocol is TCP, the protocol used to
provide socket streams in the Internet family. With such protocols, the out-of-band
byte might not yet have arrived when recv(3SOCKET) is called with the MSG_OOB
flag. In that case, the call returns the error of EWOULDBLOCK. Also, the amount of
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in-band data in the input buffer might cause normal flow control to prevent the peer
from sending the urgent data until the buffer is cleared. The process must then read
enough of the queued data to clear the input buffer before the peer can send the
urgent data.

EXAMPLE 7–9 Flushing Terminal I/O on Receipt of Out-of-Band Data

#include <sys/ioctl.h>
#include <sys/file.h>
...
oob()
{

int out = FWRITE;
char waste[BUFSIZ];
int mark = 0;

/* flush local terminal output */
ioctl(1, TIOCFLUSH, (char *) &out);
while(1) {

if (ioctl(rem, SIOCATMARK, &mark) == −1) {
perror("ioctl");
break;

}
if (mark)

break;
(void) read(rem, waste, sizeof waste);

}
if (recv(rem, &mark, 1, MSG_OOB) == −1) {

perror("recv");
...

}
...

}

A facility to retain the position of urgent in-line data in the socket stream is available
as a socket-level option, SO_OOBINLINE. See getsockopt(3SOCKET) for usage. With
this socket-level option, the position of urgent data remains. However, the urgent data
immediately following the mark in the normal data stream is returned without the
MSG_OOB flag. Reception of multiple urgent indications moves the mark, but does not
lose any out-of-band data.

Nonblocking Sockets
Some applications require sockets that do not block. For example, a server would
return an error code, not executing a request that cannot complete immediately. This
error could cause the process to be suspended, awaiting completion. After creating
and connecting a socket, issuing a fcntl(2) call, as shown in the following example,
makes the socket non-blocking.

152 Programming Interfaces Guide • December 2003



EXAMPLE 7–10 Set Nonblocking Socket

#include <fcntl.h>
#include <sys/file.h>
...
int fileflags;
int s;
...
s = socket(AF_INET6, SOCK_STREAM, 0);
...
if (fileflags = fcntl(s, F_GETFL, 0) == −1)

perror("fcntl F_GETFL");
exit(1);

}
if (fcntl(s, F_SETFL, fileflags | FNDELAY) == −1)

perror("fcntl F_SETFL, FNDELAY");
exit(1);

}

...

When performing I/O on a nonblocking socket, check for the error EWOULDBLOCK in
errno.h, which occurs when an operation would normally block.
accept(3SOCKET), connect(3SOCKET), send(3SOCKET), recv(3SOCKET),
read(2), and write(2) can all return EWOULDBLOCK. If an operation such as a
send(3SOCKET) cannot be done in its entirety but partial writes work, as when using
a stream socket, all available data is processed. The return value is the amount of data
actually sent.

Asynchronous Socket I/O
Asynchronous communication between processes is required in applications that
simultaneously handle multiple requests. Asynchronous sockets must be of the
SOCK_STREAM type. To make a socket asynchronous, you issue a fcntl(2) call, as
shown in the following example.

EXAMPLE 7–11 Making a Socket Asynchronous

#include <fcntl.h>
#include <sys/file.h>
...
int fileflags;
int s;
...
s = socket(AF_INET6, SOCK_STREAM, 0);
...
if (fileflags = fcntl(s, F_GETFL ) == −1)

perror("fcntl F_GETFL");
exit(1);

}
if (fcntl(s, F_SETFL, fileflags | FNDELAY | FASYNC) == −1)

perror("fcntl F_SETFL, FNDELAY | FASYNC");
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EXAMPLE 7–11 Making a Socket Asynchronous (Continued)

exit(1);
}

...

After sockets are initialized, connected, and made nonblocking and asynchronous,
communication is similar to reading and writing a file asynchronously. Initiate a data
transfer by using send(3SOCKET), write(2), recv(3SOCKET), or read(2). A
signal-driven I/O routine completes a data transfer, as described in the next section.

Interrupt-Driven Socket I/O
The SIGIO signal notifies a process when a socket, or any file descriptor, has finished
a data transfer. The steps in using SIGIO are as follows:

1. Set up a SIGIO signal handler with the signal(3C) or sigvec(3UCB) calls.

2. Use fcntl(2) to set the process ID or process group ID to route the signal to its
own process ID or process group ID. The default process group of a socket is group
0.

3. Convert the socket to asynchronous, as shown in “Asynchronous Socket I/O”
on page 153.

The following sample code enables receipt of information on pending requests as the
requests occur for a socket by a given process. With the addition of a handler for
SIGURG, this code can also be used to prepare for receipt of SIGURG signals.

EXAMPLE 7–12 Asynchronous Notification of I/O Requests

#include <fcntl.h>
#include <sys/file.h>
...
signal(SIGIO, io_handler);
/* Set the process receiving SIGIO/SIGURG signals to us. */
if (fcntl(s, F_SETOWN, getpid()) < 0) {

perror("fcntl F_SETOWN");
exit(1);

}

Signals and Process Group ID
For SIGURG and SIGIO, each socket has a process number and a process group ID.
These values are initialized to zero, but can be redefined at a later time with the
F_SETOWN fcntl(2) command, as in the previous example. A positive third argument
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to fcntl(2) sets the socket’s process ID. A negative third argument to fcntl(2) sets
the socket’s process group ID. The only allowed recipient of SIGURG and SIGIO
signals is the calling process. A similar fcntl(2), F_GETOWN, returns the process
number of a socket.

You can also enable reception of SIGURG and SIGIO by using ioctl(2) to assign the
socket to the user’s process group.

/* oobdata is the out-of-band data handling routine */
sigset(SIGURG, oobdata);
int pid = -getpid();
if (ioctl(client, SIOCSPGRP, (char *) &pid) < 0) {

perror("ioctl: SIOCSPGRP");

}

Another signal that is useful in server processes is SIGCHLD. This signal is delivered
to a process when any child process changes state. Normally, servers use the signal to
“reap” child processes that have exited without explicitly awaiting their termination
or periodically polling for exit status. For example, the remote login server loop that
was shown previously can be augmented, as shown in the following example.

EXAMPLE 7–13 SIGCHLD Signal

int reaper();
...
sigset(SIGCHLD, reaper);
listen(f, 5);
while (1) {

int g, len = sizeof from;
g = accept(f, (struct sockaddr *) &from, &len);
if (g < 0) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
...

}

#include <wait.h>

reaper()
{

int options;
int error;
siginfo_t info;

options = WNOHANG | WEXITED;
bzero((char *) &info, sizeof(info));
error = waitid(P_ALL, 0, &info, options);

}

If the parent server process fails to reap its children, zombie processes result.
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Selecting Specific Protocols
If the third argument of the socket(3SOCKET) call is 0, socket(3SOCKET) selects a
default protocol to use with the returned socket of the type requested. The default
protocol is usually correct, and alternate choices are not usually available. When using
raw sockets to communicate directly with lower-level protocols or lower-level
hardware interfaces, set up de-multiplexing with the protocol argument.

Using raw sockets in the Internet family to implement a new protocol on IP ensures
that the socket only receives packets for the specified protocol. To obtain a particular
protocol, determine the protocol number as defined in the protocol family. For the
Internet family, use one of the library routines that are discussed in “Standard
Routines” on page 141, such as getprotobyname(3SOCKET).

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
...
pp = getprotobyname("newtcp");

s = socket(AF_INET6, SOCK_STREAM, pp->p_proto);

Using getprotobyname results in a socket s by using a stream-based connection, but
with a protocol type of newtcp instead of the default tcp.

Address Binding
For addressing, TCP and UDP use a 4-tuple of:

� Local IP address
� Local port number
� Foreign IP address
� Foreign port number

TCP requires these 4-tuples to be unique. UDP does not. User programs do not always
know proper values to use for the local address and local port, because a host can
reside on multiple networks. The set of allocated port numbers is not directly
accessible to a user. To avoid these problems, leave parts of the address unspecified
and let the system assign the parts appropriately when needed. Various portions of
these tuples can be specified by various parts of the sockets API:

bind(3SOCKET) Local address or local port or both

connect(3SOCKET) Foreign address and foreign port

A call to accept(3SOCKET) retrieves connection information from a foreign client.
This causes the local address and port to be specified to the system even though the
caller of accept(3SOCKET) did not specify anything. The foreign address and foreign
port are returned.
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A call to listen(3SOCKET) can cause a local port to be chosen. If no explicit
bind(3SOCKET) has been done to assign local information, listen(3SOCKET)
assigns an ephemeral port number.

A service that resides at a particular port can bind(3SOCKET) to that port. Such a
service can leave the local address unspecified if the service does not require local
address information. The local address is set to in6addr_any, a variable with a
constant value in <netinet/in.h>. If the local port does not need to be fixed, a call
to listen(3SOCKET) causes a port to be chosen. Specifying an address of
in6addr_any or a port number of 0 is known as “wildcarding.” For AF_INET,
INADDR_ANY is used in place of in6addr_any.

The wildcard address simplifies local address binding in the Internet family. The
following sample code binds a specific port number that was returned by a call to
getaddrinfo(3SOCKET) to a socket and leaves the local address unspecified:

#include <sys/types.h>
#include <netinet/in.h>
...

struct addrinfo *aip;
...

if (bind(sock, aip->ai_addr, aip->ai_addrlen) == -1) {
perror("bind");
(void) close(sock);
return (-1);

}

Each network interface on a host typically has a unique IP address. Sockets with
wildcard local addresses can receive messages that are directed to the specified port
number. Messages that are sent to any of the possible addresses that are assigned to a
host are also received by sockets with wildcard local addresses. To allow only hosts on
a specific network to connect to the server, a server binds the address of the interface
on the appropriate network.

Similarly, a local port number can be left unspecified, in which case the system selects
a port number. For example, to bind a specific local address to a socket, but to leave
the local port number unspecified, you could use bind as follows:

bzero (&sin, sizeof (sin));
(void) inet_pton (AF_INET6, ":ffff:127.0.0.1", sin.sin6_addr.s6_addr);
sin.sin6_family = AF_INET6;
sin.sin6_port = htons(0);

bind(s, (struct sockaddr *) &sin, sizeof sin);

The system uses two criteria to select the local port number:

� Internet port numbers less than 1024 (IPPORT_RESERVED) are reserved for
privileged users. Nonprivileged users can use any Internet port number that is
greater than 1024. The largest Internet port number is 65535.

� The port number is not currently bound to some other socket.
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The port number and IP address of the client are found through either
accept(3SOCKET) or getpeername(3SOCKET).

In certain cases, the algorithm used by the system to select port numbers is unsuitable
for an application due to the two-step creation process for associations. For example,
the Internet file transfer protocol specifies that data connections must always originate
from the same local port. However, duplicate associations are avoided by connecting
to different foreign ports. In this situation, the system would disallow binding the
same local address and local port number to a socket if a previous data connection’s
socket still existed.

To override the default port selection algorithm, you must perform an option call
before address binding:

...
int on = 1;
...
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof on);

bind(s, (struct sockaddr *) &sin, sizeof sin);

With this call, local addresses already in use can be bound. This binding does not
violate the uniqueness requirement. The system still verifies at connect time that any
other sockets with the same local address and local port do not have the same foreign
address and foreign port. If the association already exists, the error EADDRINUSE is
returned.

Zero Copy and Checksum Off-load
In SunOS version 5.6 and compatible versions, the TCP/IP protocol stack has been
enhanced to support two new features: zero copy and TCP checksum off-load.

� Zero copy uses virtual memory MMU remapping together with a copy-on-write
technique to move data between the application and the kernel space.

� Checksum off-loading relies on special hardware logic to off-load the TCP
checksum calculation.

Although zero copy and checksum off-loading are functionally independent of each
other, these functions must work together to obtain optimal performance. Checksum
off-loading requires hardware support from the network interface. Without this
hardware support, zero copy is not enabled.

Zero copy requires that the applications supply page-aligned buffers before applying
virtual memory page remapping. Applications should use large, circular buffers on the
transmit side to avoid expensive copy-on-write faults. A typical buffer allocation is
sixteen 8K buffers.
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Socket Options
You can set and get several options on sockets through setsockopt(3SOCKET) and
getsockopt(3SOCKET). For example, you can change the send or receive buffer
space. The general forms of the calls are in the following list:

setsockopt(s, level, optname, optval, optlen);

and

getsockopt(s, level, optname, optval, optlen);

The operating system can adjust the values appropriately at any time.

The arguments of setsockopt(3SOCKET) and getsockopt(3SOCKET) calls are in
the following list:

s Socket on which the option is to be applied

level Specifies the protocol level, such as socket level, indicated by the symbolic
constant SOL_SOCKET in sys/socket.h

optname Symbolic constant defined in sys/socket.h that specifies the option

optval Points to the value of the option

optlen Points to the length of the value of the option

For getsockopt(3SOCKET), optlen is a value-result argument. This argument is
initially set to the size of the storage area pointed to by optval. On return, the
argument’s value is set to the length of storage used.

When a program needs to determine an existing socket’s type, the program should
invoke inetd(1M) by using the SO_TYPE socket option and the
getsockopt(3SOCKET) call:

#include <sys/types.h>
#include <sys/socket.h>

int type, size;

size = sizeof (int);
if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) <0) {

...

}

After getsockopt(3SOCKET), type is set to the value of the socket type, as defined
in sys/socket.h. For a datagram socket, type would be SOCK_DGRAM.
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inetd Daemon
The inetd(1M) daemon is invoked at startup time and gets the services for which the
daemon listens from the /etc/inet/inetd.conf file. The daemon creates one
socket for each service that is listed in /etc/inet/inetd.conf, binding the
appropriate port number to each socket. See the inetd(1M) man page for details.

The inetd(1M) daemon polls each socket, waiting for a connection request to the
service corresponding to that socket. For SOCK_STREAM type sockets, inetd(1M)
accepts (accept(3SOCKET)) on the listening socket, forks (fork(2)), duplicates
(dup(2)) the new socket to file descriptors 0 and 1 (stdin and stdout), closes other
open file descriptors, and executes (exec(2)) the appropriate server.

The primary benefit of using inetd(1M) is that services not in use do not consume
machine resources. A secondary benefit is that inetd(1M) does most of the work to
establish a connection. The server started by inetd(1M) has the socket connected to
its client on file descriptors 0 and 1. The server can immediately read, write, send, or
receive. Servers can use buffered I/O as provided by the stdio conventions, as long
as the servers use fflush(3C) when appropriate.

The getpeername(3SOCKET) routine returns the address of the peer (process)
connected to a socket. This routine is useful in servers started by inetd(1M). For
example, you could use this routine to log the Internet address such as
fec0::56:a00:20ff:fe7d:3dd2, which is conventional for representing the IPv6
address of a client. An inetd(1M) server could use the following sample code:

struct sockaddr_storage name;
int namelen = sizeof (name);
char abuf[INET6_ADDRSTRLEN];
struct in6_addr addr6;
struct in_addr addr;

if (getpeername(fd, (struct sockaddr *)&name, &namelen) == -1) {
perror("getpeername");
exit(1);

} else {
addr = ((struct sockaddr_in *)&name)->sin_addr;
addr6 = ((struct sockaddr_in6 *)&name)->sin6_addr;
if (name.ss_family == AF_INET) {

(void) inet_ntop(AF_INET, &addr, abuf, sizeof (abuf));
} else if (name.ss_family == AF_INET6 &&

IN6_IS_ADDR_V4MAPPED(&addr6)) {
/* this is a IPv4-mapped IPv6 address */
IN6_MAPPED_TO_IN(&addr6, &addr);
(void) inet_ntop(AF_INET, &addr, abuf, sizeof (abuf));

} else if (name.ss_family == AF_INET6) {
(void) inet_ntop(AF_INET6, &addr6, abuf, sizeof (abuf));

}
syslog("Connection from %s\n", abuf);

}
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Broadcasting and Determining Network
Configuration
Broadcasting is not supported in IPv6. Broadcasting is supported only in IPv4.

Messages sent by datagram sockets can be broadcast to reach all of the hosts on an
attached network. The network must support broadcast because the system provides
no simulation of broadcast in software. Broadcast messages can place a high load on a
network because broadcast messages force every host on the network to service the
broadcast messages. Broadcasting is usually used for either of two reasons:

� To find a resource on a local network without having its address
� For functions that require information to be sent to all accessible neighbors

To send a broadcast message, create an Internet datagram socket:

s = socket(AF_INET, SOCK_DGRAM, 0);

Bind a port number to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sin, sizeof sin);

The datagram can be broadcast on only one network by sending to the network’s
broadcast address. A datagram can also be broadcast on all attached networks by
sending to the special address INADDR_BROADCAST, which is defined in
netinet/in.h.

The system provides a mechanism to determine a number of pieces of information
about the network interfaces on the system. This information includes the IP address
and broadcast address. The SIOCGIFCONF ioctl(2) call returns the interface
configuration of a host in a single ifconf structure. This structure contains an array
of ifreq structures. Every address family supported by every network interface to
which the host is connected has its own ifreq structure.

The following example shows the ifreq structures defined in net/if.h.

EXAMPLE 7–14 net/if.h Header File

struct ifreq {
#define IFNAMSIZ 16
char ifr_name[IFNAMSIZ]; /* if name, e.g., "en0" */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char ifru_oname[IFNAMSIZ]; /* other if name */
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
char ifru_data[1]; /* interface dependent data */
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EXAMPLE 7–14 net/if.h Header File (Continued)

char ifru_enaddr[6];
} ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr
#define ifr_dstaddr ifr_ifru.ifru_dstaddr
#define ifr_oname ifr_ifru.ifru_oname
#define ifr_broadaddr ifr_ifru.ifru_broadaddr
#define ifr_flags ifr_ifru.ifru_flags
#define ifr_metric ifr_ifru.ifru_metric
#define ifr_data ifr_ifru.ifru_data
#define ifr_enaddr ifr_ifru.ifru_enaddr

};

The call that obtains the interface configuration is:

/*
* Do SIOCGIFNUM ioctl to find the number of interfaces
*
* Allocate space for number of interfaces found
*
* Do SIOCGIFCONF with allocated buffer
*
*/
if (ioctl(s, SIOCGIFNUM, (char *)&numifs) == −1) {

numifs = MAXIFS;
}
bufsize = numifs * sizeof(struct ifreq);
reqbuf = (struct ifreq *)malloc(bufsize);
if (reqbuf == NULL) {

fprintf(stderr, "out of memory\n");
exit(1);

}
ifc.ifc_buf = (caddr_t)&reqbuf[0];
ifc.ifc_len = bufsize;
if (ioctl(s, SIOCGIFCONF, (char *)&ifc) == −1) {

perror("ioctl(SIOCGIFCONF)");
exit(1);

}
...

}

After this call, buf contains an array of ifreq structures. Every network to which the
host connects has an associated ifreq structure. The sort order these structures
appear in is:

� Alphabetical by interface name
� Numerical by supported address families

The value of ifc.ifc_len is set to the number of bytes used by the ifreq
structures.
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Each structure has a set of interface flags that indicate whether the corresponding
network is up or down, point-to-point or broadcast, and so on. The following example
shows ioctl(2) returning the SIOCGIFFLAGS flags for an interface specified by an
ifreq structure.

EXAMPLE 7–15 Obtaining Interface Flags

struct ifreq *ifr;
ifr = ifc.ifc_req;
for (n = ifc.ifc_len/sizeof (struct ifreq); −−n >= 0; ifr++) {

/*
* Be careful not to use an interface devoted to an address
* family other than those intended.
*/
if (ifr->ifr_addr.sa_family != AF_INET)

continue;
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

...
}
/* Skip boring cases */
if ((ifr->ifr_flags & IFF_UP) == 0 ||

(ifr->ifr_flags & IFF_LOOPBACK) ||
(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTOPOINT)) == 0)
continue;

}

The following example uses the SIOGGIFBRDADDR ioctl(2) command to obtain the
broadcast address of an interface.

EXAMPLE 7–16 Broadcast Address of an Interface

if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {
...

}
memcpy((char *) &dst, (char *) &ifr->ifr_broadaddr,

sizeof ifr->ifr_broadaddr);

You can also use SIOGGIFBRDADDR ioctl(2) to get the destination address of a
point-to-point interface.

After the interface broadcast address is obtained, transmit the broadcast datagram
with sendto(3SOCKET):

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof dst);

Use one sendto(3SOCKET) for each interface to which the host is connected, if that
interface supports the broadcast or point-to-point addressing.
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Using Multicast
IP multicasting is supported only on AF_INET6 and AF_INET sockets of type
SOCK_DGRAM and SOCK_RAW. IP multicasting is only supported on subnetworks for
which the interface driver supports multicasting.

Sending IPv4 Multicast Datagrams
To send a multicast datagram, specify an IP multicast address in the range 224.0.0.0 to
239.255.255.255 as the destination address in a sendto(3SOCKET) call.

By default, IP multicast datagrams are sent with a time-to-live (TTL) of 1. This value
prevents the datagrams from being forwarded beyond a single subnetwork. The
socket option IP_MULTICAST_TTL allows the TTL for subsequent multicast
datagrams to be set to any value from 0 to 255. This ability is used to control the scope
of the multicasts.

u_char ttl;
setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl,sizeof(ttl))

Multicast datagrams with a TTL of 0 are not transmitted on any subnet, but can be
delivered locally if the sending host belongs to the destination group and if multicast
loopback has not been disabled on the sending socket. Multicast datagrams with a
TTL greater than one can be delivered to more than one subnet if one or more
multicast routers are attached to the first-hop subnet. To provide meaningful scope
control, the multicast routers support the notion of TTL thresholds. These thresholds
prevent datagrams with less than a certain TTL from traversing certain subnets. The
thresholds enforce the conventions for multicast datagrams with initial TTL values as
follows:

0 Are restricted to the same host

1 Are restricted to the same subnet

32 Are restricted to the same site

64 Are restricted to the same region

128 Are restricted to the same continent

255 Are unrestricted in scope

Sites and regions are not strictly defined and sites can be subdivided into smaller
administrative units as a local matter.
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An application can choose an initial TTL other than the ones previously listed. For
example, an application might perform an expanding-ring search for a network
resource by sending a multicast query, first with a TTL of 0 and then with larger and
larger TTLs until a reply is received.

The multicast router does not forward any multicast datagram with a destination
address between 224.0.0.0 and 224.0.0.255 inclusive, regardless of its TTL. This range
of addresses is reserved for the use of routing protocols and other low-level topology
discovery or maintenance protocols, such as gateway discovery and group
membership reporting.

Each multicast transmission is sent from a single network interface, even if the host
has more than one multicast-capable interface. If the host is also a multicast router and
the TTL is greater than 1, a multicast can be forwarded to interfaces other than the
originating interface. A socket option is available to override the default for
subsequent transmissions from a given socket:

struct in_addr addr;

setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr))

where addr is the local IP address of the desired outgoing interface. Revert to the
default interface by specifying the address INADDR_ANY. The local IP address of an
interface is obtained with the SIOCGIFCONF ioctl. To determine if an interface
supports multicasting, fetch the interface flags with the SIOCGIFFLAGS ioctl and
test if the IFF_MULTICAST flag is set. This option is intended primarily for multicast
routers and other system services specifically concerned with Internet topology.

If a multicast datagram is sent to a group to which the sending host itself belongs, a
copy of the datagram is, by default, looped back by the IP layer for local delivery.
Another socket option gives the sender explicit control over whether subsequent
datagrams are looped back:

u_char loop;

setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop))

where loop is 0 to disable loopback and 1 to enable loopback. This option provides a
performance benefit for applications that have only one instance on a single host by
eliminating the overhead of receiving their own transmissions. Applications that can
have more than one instance on a single host, or for which the sender does not belong
to the destination group, should not use this option.

If the sending host belongs to the destination group on another interface, a multicast
datagram sent with an initial TTL greater than 1 can be delivered to the sending host
on the other interface. The loopback control option has no effect on such delivery.
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Receiving IPv4 Multicast Datagrams
Before a host can receive IP multicast datagrams, the host must become a member of
one or more IP multicast groups. A process can ask the host to join a multicast group
by using the following socket option:

struct ip_mreq mreq;

setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq))

where mreq is the structure:

struct ip_mreq {
struct in_addr imr_multiaddr; /* multicast group to join */
struct in_addr imr_interface; /* interface to join on */

}

Each membership is associated with a single interface. You can join the same group on
more than one interface. Specify the imr_interface address as in6addr_any to
choose the default multicast interface. You can also specify one of the host’s local
addresses to choose a particular multicast-capable interface.

To drop a membership, use:

struct ip_mreq mreq;

setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof(mreq))

where mreq contains the same values used to add the membership. Closing a socket
or killing the process that holds the socket drops the memberships associated with
that socket. More than one socket can claim a membership in a particular group, and
the host remains a member of that group until the last claim is dropped.

If any socket claims membership in the destination group of the datagram, the kernel
IP layer accepts incoming multicast packets. A given socket’s receipt of a multicast
datagram depends on the socket’s associated destination port and memberships, or
the protocol type for raw sockets. To receive multicast datagrams sent to a particular
port, bind to the local port, leaving the local address unspecified, such as
INADDR_ANY.

More than one process can bind to the same SOCK_DGRAM UDP port if the
bind(3SOCKET) is preceded by:

int one = 1;

setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))

In this case, every incoming multicast or broadcast UDP datagram destined for the
shared port is delivered to all sockets bound to the port. For backwards compatibility
reasons, this delivery does not apply to incoming unicast datagrams. Unicast
datagrams are never delivered to more than one socket, regardless of how many
sockets are bound to the datagram’s destination port. SOCK_RAW sockets do not
require the SO_REUSEADDR option to share a single IP protocol type.
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The definitions required for the new, multicast-related socket options are found in
<netinet/in.h>. All IP addresses are passed in network byte-order.

Sending IPv6 Multicast Datagrams
To send an IPv6 multicast datagram, specify an IP multicast address in the range
ff00::0/8 as the destination address in a sendto(3SOCKET) call.

By default, IP multicast datagrams are sent with a hop limit of one, which prevents the
datagrams from being forwarded beyond a single subnetwork. The socket option
IPV6_MULTICAST_HOPS allows the hop limit for subsequent multicast datagrams to
be set to any value from 0 to 255. This ability is used to control the scope of the
multicasts:

uint_l;
setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops,sizeof(hops))

You cannot transmit multicast datagrams with a hop limit of zero on any subnet, but
you can deliver the dtagrams locally if:

� The sending host belongs to the destination group
� Multicast loopback on the sending socket is enabled

You can deliver multicast datagrams with a hop limit that is greater than one to more
than one subnet if the first-hop subnet attaches to one or more multicast routers. The
IPv6 multicast addresses, unlike their IPv4 counterparts, contain explicit scope
information that is encoded in the first part of the address. The defined scopes are,
where X is unspecified:

ffX1::0/16 Node−local scope — restricted to the same node

ffX2::0/16 Link−local scope

ffX5::0/16 Site−local scope

ffX8::0/16 Organization−local scope

ffXe::0/16 Global scope

An application can, separately from the scope of the multicast address, use different
hop limit values. For example, an application might perform an expanding-ring search
for a network resource by sending a multicast query, first with a hop limit of 0, and
then with larger and larger hop limits, until a reply is received.

Each multicast transmission is sent from a single network interface, even if the host
has more than one multicast-capable interface. If the host is also a multicast router,
and the hop limit is greater than 1, a multicast can be forwarded to interfaces other than
the originating interface. A socket option is available to override the default for
subsequent transmissions from a given socket:
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uint_t ifindex;

ifindex = if_nametoindex )"hme3");
setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_IF, &ifindex,

sizeof(ifindex))

where ifindex is the interface index for the desired outgoing interface. Revert to the
default interface by specifying the value 0.

If a multicast datagram is sent to a group to which the sending host itself belongs, a
copy of the datagram is, by default, looped back by the IP layer for local delivery.
Another socket option gives the sender explicit control over whether to loop back
subsequent datagrams:

uint_t loop;
setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loop,

sizeof(loop))

where loop is zero to disable loopback and one to enable loopback. This option
provides a performance benefit for applications that have only one instance on a single
host (such as a router or a mail demon), by eliminating the overhead of receiving their
own transmissions. Applications that can have more than one instance on a single host
(such as a conferencing program) or for which the sender does not belong to the
destination group (such as a time querying program) should not use this option.

If the sending host belongs to the destination group on another interface, a multicast
datagram sent with an initial hop limit greater than 1 can be delivered to the sending
host on the other interface. The loopback control option has no effect on such delivery.

Receiving IPv6 Multicast Datagrams
Before a host can receive IP multicast datagrams, the host must become a member of
one, or more IP multicast groups. A process can ask the host to join a multicast group
by using the following socket option:

struct ipv6_mreq mreq;

setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq))

where mreq is the structure:

struct ipv6_mreq {
struct in6_addr ipv6mr_multiaddr; /* IPv6 multicast addr */
unsigned int ipv6mr_interface; /* interface index */

}

Each membership is associated with a single interface. You can join the same group on
more than one interface. Specify ipv6_interface to be 0 to choose the default
multicast interface. Specify an interface index for one of the host’s interfaces to choose
that multicast-capable interface.
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To leave a group, use:

struct ipv6_mreq mreq;

setsockopt(sock, IPPROTO_IPV6, IP_LEAVE_GROUP, &mreq, sizeof(mreq))

where mreq contains the same values used to add the membership. The socket drops
associated memberships when the socket is closed, or when the process that holds the
socket is killed. More than one socket can claim a membership in a particular group.
The host remains a member of that group until the last claim is dropped.

The kernel IP layer accepts incoming multicast packets if any socket has claimed a
membership in the destination group of the datagram. Delivery of a multicast
datagram to a particular socket is determined by the destination port and the
memberships associated with the socket, or by the protocol type for raw sockets. To
receive multicast datagrams sent to a particular port, bind to the local port, leaving the
local address unspecified, such as INADDR_ANY.

More than one process can bind to the same SOCK_DGRAM UDP port if the
bind(3SOCKET) is preceded by:

int one = 1;

setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))

In this case, all sockets that are bound to the port receive every incoming multicast
UDP datagram destined to the shared port. For backward compatibility reasons, this
delivery does not apply to incoming unicast datagrams. Unicast datagrams are never
delivered to more than one socket, regardless of how many sockets are bound to the
datagram’s destination port. SOCK_RAW sockets do not require the SO_REUSEADDR
option to share a single IP protocol type.

The definitions required for the new, multicast-related socket options are found in
<netinet/in.h>. All IP addresses are passed in network byte-order.
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CHAPTER 8

Programming With XTI and TLI

This chapter describes the Transport Layer Interface (TLI) and the X/Open Transport
Interface (XTI). Advanced topics such as asynchronous execution mode are discussed
in “Advanced XTI/TLI Topics” on page 176.

Some recent additions to XTI, such as scatter/gather data transfer, are discussed in
“Additions to the XTI Interface” on page 196.

The transport layer of the OSI model (layer 4) is the lowest layer of the model that
provides applications and higher layers with end-to-end service. This layer hides the
topology and characteristics of the underlying network from users. The transport layer
also defines a set of services common to many contemporary protocol suites including
the OSI protocols, Transmission Control Protocol and TCP/IP Internet Protocol Suite,
Xerox Network Systems (XNS), and Systems Network Architecture (SNA).

TLI s modeled on the industry standard Transport Service Definition (ISO 8072). It also
can be used to access both TCP and UDP. XTI and TLI are a set of interfaces that
constitute a network programming interface. XTI is an evolution from the older TLI
interface available on the SunOS 4 platform. The Solaris operating environment
supports both interfaces, although XTI represents the future direction of this set of
interfaces. The Solaris software implements XTI and TLI as a user library using the
STREAMS I/O mechanism.
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What Are XTI and TLI?

Note – The interfaces described in this chapter are multithread safe. This means that
applications containing XTI/TLI interface calls can be used freely in a multithreaded
application. Because these interface calls are not re-entrant, they do not provide linear
scalability.

Caution – The XTI/TLI interface behavior has not been well specified in an
asynchronous environment. Do not use these interfaces from signal handler routines.

TLI was introduced with AT&T System V, Release 3 in 1986. TLI provided a transport
layer interface API. The ISO Transport Service Definition provided the model on
which TLI is based. TLI provides an API between the OSI transport and session layers.
TLI interfaces evolved further in AT&T System V, Release 4 version of UNIX and were
also made available in SunOS 5.6 operating system interfaces.

XTI interfaces are an evolution of TLI interfaces and represent the future direction of
this family of interfaces. Compatibility for applications using TLI interfaces is
available. You do not need to port TLI applications to XTI immediately. New
applications can use the XTI interfaces and you can port older applications to XTI
when necessary.

TLI is implemented as a set of interface calls in a library (libnsl) to which the
applications link. XTI applications are compiled using the c89 front end and must be
linked with the xnet library (libxnet). For additional information on compiling
with XTI, see the standards(5) man page.

Note – An application using the XTI interface uses the xti.h header file, whereas an
application using the TLI interface includes the tiuser.h header file.

XTI/TLI code can be independent of current transport providers when used in
conjunction with some additional interfaces and mechanisms described in Chapter 4.
The SunOS 5 product includes some transport providers (TCP, for example) as part of
the base operating system. A transport provider performs services, and the transport
user requests the services. The transport user issues service requests to the transport
provider. An example is a request to transfer data over a connection TCP and UDP.
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XTI/TLI can also be used for transport-independent programming by taking
advantage of two components:

� Library routines that perform the transport services, in particular, transport
selection and name-to-address translation. The network services library includes a
set of interfaces that implement XTI/TLI for user processes. See Chapter 9.

Programs using TLI should be linked with the libnsl network services library by
specifying the -l nsl option at compile time.

Programs using XTI should be linked with the xnet library by specifying the -l
xnet option at compile time.

� State transition rules that define the sequence in which the transport routines can
be invoked. For more information on state transition rules, see “State Transitions”
on page 187. The state tables define the legal sequence of library calls based on the
state and the handling of events. These events include user-generated library calls,
as well as provider-generated event indications. XTI/TLI programmers should
understand all state transitions before using the interface.

XTI/TLI Read/Write Interface
A user might want to establish a transport connection using exec(2) on an existing
program (such as /usr/bin/cat) to process the data as it arrives over the
connection. Existing programs use read(2) and write(2). XTI/TLI does not directly
support a read/write interface to a transport provider, but one is available. The
interface enables you to issue read(2) and write(2) calls over a transport connection
in the data transfer phase. This section describes the read/write interface to the
connection mode service of XTI/TLI. This interface is not available with the
connectionless mode service.

EXAMPLE 8–1 Read/Write Interface

#include <stropts.h>
.
./*
Same local management and connection establishment steps.
*/

.
if (ioctl(fd, I_PUSH, "tirdwr") == −1) {

perror(“I_PUSH of tirdwr failed”);
exit(5);
}

close(0);
dup(fd);
execl(“/usr/bin/cat”, “/usr/bin/cat”, (char *) 0);
perror(“exec of /usr/bin/cat failed”);
exit(6);
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EXAMPLE 8–1 Read/Write Interface (Continued)

}

The client invokes the read/write interface by pushing tirdwr onto the stream
associated with the transport endpoint. See the description of I_PUSH in the
streamio(7I) man page. The tirdwr module converts XTI/TLI above the transport
provider into a pure read/write interface. With the module in place, the client calls
close(2) and dup(2) to establish the transport endpoint as its standard input file, and
uses /usr/bin/cat to process the input.

Pushing tirdwr onto the transport provider forces XTI/TLI to use read(2) and
write(2) semantics. XTI/TLI does not preserve message boundaries when using
read and write semantics. Pop tirdwr from the transport provider to restore
XTI/TLI semantics (see the description of I_POP in the streamio(7I) man page.

Caution – Push the tirdwr module onto a stream only when the transport endpoint is
in the data transfer phase. After pushing the module, the user cannot call any XTI/TLI
routines. If the user invokes an XTI/TLI routine, tirdwr generates a fatal protocol
error, EPROTO, on the stream, rendering it unusable. If you then pop the tirdwr
module off the stream, the transport connection aborts. See the description of I_POP
in the streamio(7I) man page.

Write Data
After you send data over the transport connection with write(2), tirdwr passes data
through to the transport provider. If you send a zero-length data packet, which the
mechanism allows, tirdwr discards the message. If the transport connection is
aborted, a hang-up condition is generated on the stream, further write(2) calls fail,
and errno is set to ENXIO. This problem might occur, for example, because the
remote user aborts the connection using t_snddis(3NSL). You can still retrieve any
available data after a hang-up.

Read Data
Receive data that arrives at the transport connection with read(2). tirdwr passes
data from the transport provider. The tirdwr module processes any other event or
request passed to the user from the provider as follows:

� read(2) cannot identify expedited data to the user. If read(2) receives an
expedited data request, tirdwr generates a fatal protocol error, EPROTO, on the
stream. The error causes further system calls to fail. Do not use read(2) to receive
expedited data.
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� tirdwr discards an abortive disconnect request and generates a hang-up condition
on the stream. Subsequent read(2) calls retrieve any remaining data, then return
zero for all further calls, indicating end of file.

� tirdwr discards an orderly release request and delivers a zero-length message to
the user. As described in the read(2) man page, this notifies the user of end of file
by returning 0.

� If read(2) receives any other XTI/TLI request, tirdwr generates a fatal protocol
error, EPROTO, on the stream. This causes further system calls to fail. If a user
pushes tirdwr onto a stream after establishing the connection, tirdwr generates
no request.

Close Connection
With tirdwr on a stream, you can send and receive data over a transport connection
for the duration of the connection. Either user can terminate the connection by closing
the file descriptor associated with the transport endpoint or by popping the tirdwr
module off the stream. In either case, tirdwr does the following:

� If tirdwr receives an orderly release request, it passes the request to the transport
provider to complete the orderly release of the connection. The remote user who
initiated the orderly release procedure receives the expected request when data
transfer completes.

� If tirdwr receives a disconnect request, it takes no special action.

� If tirdwr receives neither an orderly release nor a disconnect request, it passes a
disconnect request to the transport provider to abort the connection.

� If an error occurs on the stream and tirdwr does not receive a disconnect request,
it passes a disconnect request to the transport provider.

A process cannot initiate an orderly release after pushing tirdwr onto a stream.
tirdwr handles an orderly release if the user on the other side of a transport
connection initiates the release. If the client in this section is communicating with a
server program, the server terminates the transfer of data with an orderly release
request. The server then waits for the corresponding request from the client. At that
point, the client exits and closes the transport endpoint. After closing the file
descriptor, tirdwr initiates the orderly release request from the client’s side of the
connection. This release generates the request on which the server blocks.

Some protocols, like TCP, require this orderly release to ensure intact delivery of the
data.
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Advanced XTI/TLI Topics
This section presents additional XTI/TLI concepts:

� “Asynchronous Execution Mode” on page 176 describes optional nonblocking
(asynchronous) mode for some library calls.

� “Advanced XTI/TLI Programming Example” on page 176 is a program example of
a server supporting multiple outstanding connect requests and operating in an
event-driven manner.

Asynchronous Execution Mode
Many XTI/TLI library routines block to wait for an incoming event. However, some
time-critical applications should not block for any reason. An application can do local
processing while waiting for some asynchronous XTI/TLI event.

Applications can access asynchronous processing of XTI/TLI events through the
combination of asynchronous features and the non-blocking mode of XTI/TLI library
routines. See the ONC+ Developer’s Guide for information on use of the poll(2) system
call and the I_SETSIG ioctl(2) command to process events asynchronously.

You can run each XTI/TLI routine that blocks for an event in a special non-blocking
mode. For example, t_listen(3NSL) normally blocks for a connect request. A server
can periodically poll a transport endpoint for queued connect requests by calling
t_listen(3NSL) in the non-blocking (or asynchronous) mode. You enable the
asynchronous mode by setting O_NDELAY or O_NONBLOCK in the file descriptor. Set
these modes as a flag through t_open(3NSL), or by calling fcntl(2) before calling
the XTI/TLI routine. Use fcntl(2) to enable or disable this mode at any time. All
program examples in this chapter use the default synchronous processing mode.

Use of O_NDELAY or O_NONBLOCK affects each XTI/TLI routine differently. You need
to determine the exact semantics of O_NDELAY or O_NONBLOCK for a particular
routine.

Advanced XTI/TLI Programming Example
Example 8–2 demonstrates two important concepts. The first is a server’s ability to
manage multiple outstanding connect requests. The second is event-driven use of
XTI/TLI and the system call interface.

By using XTI/TLI, a server can manage multiple outstanding connect requests. One
reason to receive several simultaneous connect requests is to prioritize the clients. A
server can receive several connect requests, and accept them in an order based on the
priority of each client.
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The second reason for handling several outstanding connect requests is to overcome
the limits of single-threaded processing. Depending on the transport provider, while a
server is processing one connect request, other clients see the server as busy. If
multiple connect requests are processed simultaneously, the server is busy only if
more than the maximum number of clients try to call the server simultaneously.

The server example is event-driven: the process polls a transport endpoint for
incoming XTI/TLI events and takes the appropriate actions for the event received. The
example following demonstrates the ability to poll multiple transport endpoints for
incoming events.

EXAMPLE 8–2 Endpoint Establishment (Convertible to Multiple Connections)

#include <tiuser.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <stropts.h>
#include <signal.h>

#define NUM_FDS 1
#define MAX_CONN_IND 4
#define SRV_ADDR 1 /* server’s well known address */

int conn_fd; /* server connection here */
extern int t_errno;
/* holds connect requests */
struct t_call *calls[NUM_FDS][MAX_CONN_IND];

main()
{

struct pollfd pollfds[NUM_FDS];
struct t_bind *bind;
int i;

/*
* Only opening and binding one transport endpoint, but more can
* be supported
*/
if ((pollfds[0].fd = t_open(“/dev/tivc”, O_RDWR,

(struct t_info *) NULL)) == −1) {
t_error(“t_open failed”);
exit(1);

}
if ((bind = (struct t_bind *) t_alloc(pollfds[0].fd, T_BIND,

T_ALL)) == (struct t_bind *) NULL) {
t_error(“t_alloc of t_bind structure failed”);
exit(2);

}
bind->qlen = MAX_CONN_IND;
bind->addr.len = sizeof(int);
*(int *) bind->addr.buf = SRV_ADDR;
if (t_bind(pollfds[0].fd, bind, bind) == −1) {

t_error(“t_bind failed”);
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EXAMPLE 8–2 Endpoint Establishment (Convertible to Multiple Connections) (Continued)

exit(3);
}
/* Was the correct address bound? */
if (bind->addr.len != sizeof(int) ||

*(int *)bind->addr.buf != SRV_ADDR) {
fprintf(stderr, “t_bind bound wrong address\n”);
exit(4);

}

}

The file descriptor returned by t_open(3NSL) is stored in a pollfd structure that
controls polling of the transport endpoints for incoming data. See the poll(2) man
page. Only one transport endpoint is established in this example. However, the
remainder of the example is written to manage multiple transport endpoints. Several
endpoints could be supported with minor changes to Example 8–2.

This server sets qlen to a value greater than 1 for t_bind(3NSL). This value specifies
that the server should queue multiple outstanding connect requests. The server
accepts the current connect request before accepting additional connect requests. This
example can queue up to MAX_CONN_IND connect requests. The transport provider
can negotiate the value of qlen to be smaller if the provider cannot support
MAX_CONN_IND outstanding connect requests.

After the server binds its address and is ready to process connect requests, it behaves
as shown in the following example.

EXAMPLE 8–3 Processing Connection Requests

pollfds[0].events = POLLIN;

while (TRUE) {
if (poll(pollfds, NUM_FDS, −1) == −1) {
perror(“poll failed”);
exit(5);
}
for (i = 0; i < NUM_FDS; i++) {
switch (pollfds[i].revents) {

default:
perror(“poll returned error event”);

exit(6);
case 0:

continue;
case POLLIN:

do_event(i, pollfds[i].fd);
service_conn_ind(i, pollfds[i].fd);

}
}

}
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The events field of the pollfd structure is set to POLLIN, which notifies the server
of any incoming XTI/TLI events. The server then enters an infinite loop in which it
polls the transport endpoints for events, and processes events as they occur.

The poll(2) call blocks indefinitely for an incoming event. On return, the server
checks the value of revents for each entry, one per transport endpoint, for new
events. If revents is 0, the endpoint has generated no events and the server
continues to the next endpoint. If revents is POLLIN, there is an event on the
endpoint. The server calls do_event to process the event. Any other value in
revents indicates an error on the endpoint, and the server exits. With multiple
endpoints, the server should close this descriptor and continue.

Each time the server iterates the loop, it calls service_conn_ind to process any
outstanding connect requests. If another connect request is pending,
service_conn_ind saves the new connect request and responds to it later.

The server calls do_event in the following example to process an incoming event.

EXAMPLE 8–4 Event Processing Routine

do_event( slot, fd)
int slot;
int fd;
{

struct t_discon *discon;
int i;

switch (t_look(fd)) {
default:

fprintf(stderr, "t_look: unexpected event\n");
exit(7);

case T_ERROR:
fprintf(stderr, "t_look returned T_ERROR event\n");
exit(8);

case −1:
t_error("t_look failed");
exit(9);

case 0:
/* since POLLIN returned, this should not happen */
fprintf(stderr,"t_look returned no event\n");
exit(10);

case T_LISTEN:
/* find free element in calls array */
for (i = 0; i < MAX_CONN_IND; i++) {

if (calls[slot][i] == (struct t_call *) NULL)
break;

}
if ((calls[slot][i] = (struct t_call *) t_alloc( fd, T_CALL,

T_ALL)) == (struct t_call *) NULL) {
t_error("t_alloc of t_call structure failed");
exit(11);

}
if (t_listen(fd, calls[slot][i] ) == −1) {

Chapter 8 • Programming With XTI and TLI 179



EXAMPLE 8–4 Event Processing Routine (Continued)

t_error("t_listen failed");
exit(12);

}
break;

case T_DISCONNECT:
discon = (struct t_discon *) t_alloc(fd, T_DIS, T_ALL);
if (discon == (struct t_discon *) NULL) {

t_error("t_alloc of t_discon structure failed");
exit(13)

}
if(t_rcvdis( fd, discon) == −1) {

t_error("t_rcvdis failed");
exit(14);

}
/* find call ind in array and delete it */
for (i = 0; i < MAX_CONN_IND; i++) {

if (discon->sequence == calls[slot][i]->sequence) {
t_free(calls[slot][i], T_CALL);
calls[slot][i] = (struct t_call *) NULL;

}
}
t_free(discon, T_DIS);
break;

}

}

The arguments in Example 8–4 are a number (slot) and a file descriptor (fd). A slot is
the index into the global array calls, which has an entry for each transport endpoint.
Each entry is an array of t_call structures that hold incoming connect requests for
the endpoint.

The do_event module calls t_look(3NSL) to identify the XTI/TLI event on the
endpoint specified by fd. If the event is a connect request (T_LISTEN event) or
disconnect request (T_DISCONNECT event), the event is processed. Otherwise, the
server prints an error message and exits.

For connect requests, do_event scans the array of outstanding connect requests for
the first free entry. A t_call structure is allocated for the entry, and the connect
request is received by t_listen(3NSL). The array is large enough to hold the
maximum number of outstanding connect requests. The processing of the connect
request is deferred.

A disconnect request must correspond to an earlier connect request. The do_event
module allocates a t_discon structure to receive the request. This structure has the
following fields:

struct t_discon {
struct netbuf udata;
int reason;
int sequence;
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}

The udata structure contains any user data sent with the disconnect request. The
value of reason contains a protocol-specific disconnect reason code. The value of
sequence identifies the connect request that matches the disconnect request.

The server calls t_rcvdis(3NSL) to receive the disconnect request. The array of
connect requests is scanned for one that contains the sequence number that matches
the sequence number in the disconnect request. When the connect request is found,
its structure is freed and the entry is set to NULL.

When an event is found on a transport endpoint, service_conn_ind is called to
process all queued connect requests on the endpoint, as the following example shows.

EXAMPLE 8–5 Process All Connect Requests

service_conn_ind(slot, fd)
{

int i;

for (i = 0; i < MAX_CONN_IND; i++) {
if (calls[slot][i] == (struct t_call *) NULL)

continue;
if((conn_fd = t_open( “/dev/tivc”, O_RDWR,

(struct t_info *) NULL)) == −1) {
t_error("open failed");
exit(15);

}
if (t_bind(conn_fd, (struct t_bind *) NULL,

(struct t_bind *) NULL) == −1) {
t_error("t_bind failed");
exit(16);

}
if (t_accept(fd, conn_fd, calls[slot][i]) == −1) {

if (t_errno == TLOOK) {
t_close(conn_fd);
return;

}
t_error("t_accept failed");
exit(167);

}
t_free(calls[slot][i], T_CALL);
calls[slot][i] = (struct t_call *) NULL;
run_server(fd);

}

}

For each transport endpoint, the array of outstanding connect requests is scanned. For
each request, the server opens a responding transport endpoint, binds an address to
the endpoint, and accepts the connection on the endpoint. If another connect or
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disconnect request arrives before the current request is accepted, t_accept(3NSL)
fails and sets t_errno to TLOOK. You cannot accept an outstanding connect request if
any pending connect request events or disconnect request events exist on the transport
endpoint.

If this error occurs, the responding transport endpoint is closed and
service_conn_ind returns immediately, saving the current connect request for later
processing. This activity causes the server’s main processing loop to be entered, and
the new event is discovered by the next call to poll(2). In this way, the user can queue
multiple connect requests.

Eventually, all events are processed, and service_conn_ind is able to accept each
connect request in turn.

Asynchronous Networking
This section discusses the techniques of asynchronous network communication using
XTI/TLI for real-time applications. The SunOS platform provides support for
asynchronous network processing of XTI/TLI events using a combination of
STREAMS asynchronous features and the non-blocking mode of the XTI/TLI library
routines.

Networking Programming Models
Like file and device I/O, network transfers can be done synchronously or
asynchronously with process service requests.

Synchronous networking proceeds similar to synchronous file and device I/O. Like
the write(2) interface, the send request returns after buffering the message, but might
suspend the calling process if buffer space is not immediately available. Like the
read(2) interface, a receive request suspends execution of the calling process until
data arrives to satisfy the request. Because there are no guaranteed bounds for
transport services, synchronous networking is inappropriate for processes that must
have real-time behavior with respect to other devices.

Asynchronous networking is provided by non-blocking service requests. Additionally,
applications can request asynchronous notification when a connection might be
established, when data might be sent, or when data might be received.
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Asynchronous Connectionless-Mode Service
Asynchronous connectionless mode networking is conducted by configuring the
endpoint for non-blocking service, and either polling for or receiving asynchronous
notification when data might be transferred. If asynchronous notification is used, the
actual receipt of data typically takes place within a signal handler.

Making the Endpoint Asynchronous
After the endpoint has been established using t_open(3NSL), and its identity
established using t_bind(3NSL), the endpoint can be configured for asynchronous
service. Use the fcntl(2) interface to set the O_NONBLOCK flag on the endpoint.
Thereafter, calls to t_sndudata(3NSL) for which no buffer space is immediately
available return -1 with t_errno set to TFLOW. Likewise, calls to
t_rcvudata(3NSL) for which no data are available return -1 with t_errno set to
TNODATA.

Asynchronous Network Transfers
Although an application can use poll(2) to check periodically for the arrival of data
or to wait for the receipt of data on an endpoint, receiving asynchronous notification
when data arrives might be necessary. Use ioctl(2) with the I_SETSIG command to
request that a SIGPOLL signal be sent to the process upon receipt of data at the
endpoint. Applications should check for the possibility of multiple messages causing a
single signal.

In the following example, protocol is the name of the application-chosen transport
protocol.

#include <sys/types.h>
#include <tiuser.h>
#include <signal.h>
#include <stropts.h>

int fd;
struct t_bind *bind;
void sigpoll(int);

fd = t_open(protocol, O_RDWR, (struct t_info *) NULL);

bind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);
... /* set up binding address */
t_bind(fd, bind, bin

/* make endpoint non-blocking */
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);

/* establish signal handler for SIGPOLL */
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signal(SIGPOLL, sigpoll);

/* request SIGPOLL signal when receive data is available */
ioctl(fd, I_SETSIG, S_INPUT | S_HIPRI);

...

void sigpoll(int sig)
{

int flags;
struct t_unitdata ud;

for (;;) {
... /* initialize ud */
if (t_rcvudata(fd, &ud, &flags) < 0) {

if (t_errno == TNODATA)
break; /* no more messages */

... /* process other error conditions */
}
... /* process message in ud */

}

Asynchronous Connection-Mode Service
For connection-mode service, an application can arrange not only for the data transfer,
but also for the establishment of the connection itself to be done asynchronously. The
sequence of operations depends on whether the process is attempting to connect to
another process or is awaiting connection attempts.

Asynchronously Establishing a Connection
A process can attempt a connection and asynchronously complete the connection. The
process first creates the connecting endpoint and, using fcntl(2), configures the
endpoint for non-blocking operation. As with connectionless data transfers, the
endpoint can also be configured for asynchronous notification upon completion of the
connection and subsequent data transfers. The connecting process then uses
t_connect(3NSL) to initiate setting up the transfer. Then t_rcvconnect(3NSL) is
used to confirm the establishment of the connection.

Asynchronous Use of a Connection
To asynchronously await connections, a process first establishes a non-blocking
endpoint bound to a service address. When either the result of poll(2) or an
asynchronous notification indicates that a connection request has arrived, the process
can get the connection request by using t_listen(3NSL) . To accept the connection,
the process uses t_accept(3NSL) . The responding endpoint must be separately
configured for asynchronous data transfers.
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The following example illustrates how to request a connection asynchronously.

#include <tiuser.h>
int fd;
struct t_call *call;

fd = .../* establish a non-blocking endpoint */

call = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR);
.../* initialize call structure */
t_connect(fd, call, call);

/* connection request is now proceeding asynchronously */

.../* receive indication that connection has been accepted */

t_rcvconnect(fd, &call);

The following example illustrates listening for connections asynchronously.

#include <tiuser.h>
int fd, res_fd;
struct t_call call;

fd = ... /* establish non-blocking endpoint */

.../*receive indication that connection request has arrived
*/

call = (struct t_call *) t_alloc(fd, T_CALL, T_ALL);
t_listen(fd, &call);

.../* determine whether or not to accept connection */
res_fd = ... /* establish non-blocking endpoint for response

*/

t_accept(fd, res_fd, call);

Asynchronous Open
Occasionally, an application might be required to dynamically open a regular file in a
file system mounted from a remote host, or on a device whose initialization might be
prolonged. However, while such a request to open a file is being processed, the
application is unable to achieve real-time response to other events. The SunOS
software solves this problem by having a second process handle the actual opening of
the file, then passes the file descriptor to the real-time process.
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Transferring a File Descriptor
The STREAMS interface provided by the SunOS platform provides a mechanism for
passing an open file descriptor from one process to another. The process with the open
file descriptor uses ioctl(2) with a command argument of I_SENDFD. The second
process obtains the file descriptor by calling ioctl(2) with a command argument of
I_RECVFD.

In the following example, the parent process prints out information about the test file,
and creates a pipe. Next, the parent creates a child process that opens the test file and
passes the open file descriptor back to the parent through the pipe. The parent process
then displays the status information on the new file descriptor.

EXAMPLE 8–6 File Descriptor Transfer

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stropts.h>
#include <stdio.h>

#define TESTFILE "/dev/null"
main(int argc, char *argv[])
{

int fd;
int pipefd[2];
struct stat statbuf;

stat(TESTFILE, &statbuf);
statout(TESTFILE, &statbuf);
pipe(pipefd);
if (fork() == 0) {

close(pipefd[0]);
sendfd(pipefd[1]);

} else {
close(pipefd[1])
recvfd(pipefd[0]);

}
}

sendfd(int p)
{

int tfd;

tfd = open(TESTFILE, O_RDWR);
ioctl(p, I_SENDFD, tfd);

}

recvfd(int p)
{

struct strrecvfd rfdbuf;
struct stat statbuf;
char fdbuf[32];

186 Programming Interfaces Guide • December 2003



EXAMPLE 8–6 File Descriptor Transfer (Continued)

ioctl(p, I_RECVFD, &rfdbuf);
fstat(rfdbuf.fd, &statbuf);
sprintf(fdbuf, "recvfd=%d", rfdbuf.fd);
statout(fdbuf, &statbuf);

}

statout(char *f, struct stat *s)
{

printf("stat: from=%s mode=0%o, ino=%ld, dev=%lx, rdev=%lx\n",
f, s->st_mode, s->st_ino, s->st_dev, s->st_rdev);

fflush(stdout);

}

State Transitions
The tables in the following sections describe all state transitions associated with
XTI/TLI.

XTI/TLI States
The following table defines the states used in XTI/TLI state transitions, along with the
service types.

TABLE 8–1 XTI/TLI State Transitions and Service Types

State Description Service Type

T_UNINIT Uninitialized–initial and final state of interface T_COTS, T_COTS_ORD,
T_CLTS

T_UNBND Initialized but not bound T_COTS, T_COTS_ORD,
T_CLTS

T_IDLE No connection established T_COTS, T_COTS_ORD,
T_CLTS

T_OUTCON Outgoing connection pending for client T_COTS, T_COTS_ORD

T_INCON Incoming connection pending for server T_COTS, T_COTS_ORD

T_DATAXFER Data transfer T_COTS, T_COTS_ORD
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TABLE 8–1 XTI/TLI State Transitions and Service Types (Continued)
State Description Service Type

T_OUTREL Outgoing orderly release (waiting for orderly
release request)

T_COTS_ORD

T_INREL Incoming orderly release (waiting to send
orderly release request)

T_COTS_ORD

Outgoing Events
The outgoing events described in the following table correspond to the status returned
from the specified transport routines, where these routines send a request or response
to the transport provider. In the table, some events, such as “accept,” are distinguished
by the context in which they occur. The context is based on the values of the following
variables:

� ocnt – Count of outstanding connect requests

� fd – File descriptor of the current transport endpoint

� resfd – File descriptor of the transport endpoint where a connection is accepted

TABLE 8–2 Outgoing Events

Event Description Service Type

opened Successful return of t_open(3NSL) T_COTS, T_COTS_ORD, T_CLTS

bind Successful return of t_bind(3NSL) T_COTS, T_COTS_ORD, T_CLTS

optmgmt Successful return of t_optmgmt(3NSL) T_COTS, T_COTS_ORD, T_CLTS

unbind Successful return of t_unbind(3NSL) T_COTS, T_COTS_ORD, T_CLTS

closed Successful return of t_close(3NSL) T_COTS, T_COTS_ORD, T_CLT

connect1 Successful return of t_connect(3NSL)
in synchronous mode

T_COTS, T_COTS_ORD

connect2 TNODATA error on t_connect(3NSL) in
asynchronous mode, or TLOOK error due
to a disconnect request arriving on the
transport endpoint

T_COTS, T_COTS_ORD

accept1 Successful return of t_accept(3NSL)
with ocnt == 1, fd == resfd

T_COTS, T_COTS_ORD

accept2 Successful return of t_accept(3NSL)
with ocnt== 1, fd!= resfd

T_COTS, T_COTS_ORD
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TABLE 8–2 Outgoing Events (Continued)
Event Description Service Type

accept3 Successful return of t_accept(3NSL)
with ocnt > 1

T_COTS, T_COTS_ORD

snd Successful return of t_snd(3NSL) T_COTS, T_COTS_ORD

snddis1 Successful return of t_snddis(3NSL)
with ocnt <= 1

T_COTS, T_COTS_ORD

snddis2 Successful return of t_snddis(3NSL)
with ocnt > 1

T_COTS, T_COTS_ORD

sndrel Successful return of t_sndrel(3NSL) T_COTS_ORD

sndudata Successful return of t_sndudata(3NSL) T_CLTS

Incoming Events
The incoming events correspond to the successful return of the specified routines.
These routines return data or event information from the transport provider. The only
incoming event not associated directly with the return of a routine is pass_conn,
which occurs when a connection is transferred to another endpoint. The event occurs
on the endpoint that is being passed the connection, although no XTI/TLI routine is
called on the endpoint.

In the following table, the rcvdis events are distinguished by the value of ocnt, the
count of outstanding connect requests on the endpoint.

TABLE 8–3 Incoming Events

Event Description Service Type

listen Successful return of t_listen(3NSL) T_COTS, T_COTS_ORD

rcvconnect Successful return of
t_rcvconnect(3NSL)

T_COTS, T_COTS_ORD

rcv Successful return of t_rcv(3NSL) T_COTS, T_COTS_ORD

rcvdis1 Successful return of t_rcvdis(3NSL)
rcvdis1t_rcvdis(), onct <= 0

T_COTS, T_COTS_ORD

rcvdis2 Successful return of t_rcvdis(3NSL),
ocnt == 1

T_COTS, T_COTS_ORD

rcvdis3 Successful return of t_rcvdis(3NSL)
with ocnt > 1

T_COTS, T_COTS_ORD

rcvrel Successful return of t_rcvrel(3NSL) T_COTS_ORD
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TABLE 8–3 Incoming Events (Continued)
Event Description Service Type

rcvudata Successful return of
t_rcvudata(3NSL)

T_CLTS

rcvuderr Successful return of
t_rcvuderr(3NSL)

T_CLTS

pass_conn Receive a passed connection T_COTS, T_COTS_ORD

State Tables
The state tables describe the XTI/TLI state transitions. Each box contains the next
state, given the current state (column) and the current event (row). An empty box is an
invalid state/event combination. Each box can also have an action list. Actions must
be done in the order specified in the box.

You should understand the following when studying the state tables:

� t_close(3NSL) terminates an established connection for a connection-oriented
transport provider. The connection termination will be either orderly or abortive,
depending on the service type supported by the transport provider. See the
t_getinfo(3NSL) man page.

� If a transport user issues a interface call out of sequence, the interface fails and
t_errno is set to TOUTSTATE. The state does not change.

� The error codes TLOOK or TNODATA after t_connect(3NSL) can result in state
changes. The state tables assume correct use of XTI/TLI.

� Any other transport error does not change the state, unless the man page for the
interface says otherwise.

� The support interfaces t_getinfo(3NSL), t_getstate(3NSL), t_alloc(3NSL),
t_free(3NSL), t_sync(3NSL), t_look(3NSL), and t_error(3NSL) are excluded
from the state tables because they do not affect the state.

Some of the state transitions listed in the tables below offer actions the transport user
must take. Each action is represented by a digit derived from the list below:

� Set the count of outstanding connect requests to zero

� Increment the count of outstanding connect requests

� Decrement the count of outstanding connect requests

� Pass a connection to another transport endpoint, as indicated in
thet_accept(3NSL) man page

The following table shows endpoint establishment states.
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TABLE 8–4 Connection Establishment State

Event/State T_UNINIT T_UNBND T_IDLE

opened T_UNBND

bind T_IDLE[1]

optmgmt (TLI only) T_IDLE

unbind T_UNBND

closed T_UNINIT

The following table shows data transfer in connectionless mode.

TABLE 8–5 Connection Mode State—Part 1

Event/State T_IDLE T_OUTCON T_INCON T_DATAXFER

connect1 T_DATAXFER

connect2 T_OUTCON

rcvconnect T_DATAXFER

listen T_INCON [2] T_INCON [2]

accept1 T_DATAXFER [3]

accept2 T_IDLE [3] [4]

accept3 T_INCON [3]
[4]

snd T_DATAXFER

rcv T_DATAXFER

snddis1 T_IDLE T_IDLE [3] T_IDLE

snddis2 T_INCON [3]

rcvdis1 T_IDLE T_IDLE

rcvdis2 T_IDLE [3]

rcvdis3 T_INCON [3]

sndrel T_OUTREL

rcvrel T_INREL

pass_conn T_DATAXFER

optmgmt T_IDLE T_OUTCON T_INCON T_DATAXFER

Chapter 8 • Programming With XTI and TLI 191



TABLE 8–5 Connection Mode State—Part 1 (Continued)
Event/State T_IDLE T_OUTCON T_INCON T_DATAXFER

closed T_UNINIT T_UNINIT T_UNINIT T_UNINIT

The following table shows connection establishment/connection release/data transfer
in connection mode.

TABLE 8–6 Connection Mode State—Part 2

Event/State T_OUTREL T_INREL T_UNBND

connect1

connect2

rcvconnect

listen

accept1

accept2

accept3

snd T_INREL

rcv T_OUTREL

snddis1 T_IDLE T_IDLE

snddis2

rcvdis1 T_IDLE T_IDLE

rcvdis2

rcvdis3

sndrel T_IDLE

rcvrel T_IDLE

pass_conn T_DATAXFER

optmgmt T_OUTREL T_INREL T_UNBND

closed T_UNINIT T_UNINIT

The following table shows connectionless mode states.
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TABLE 8–7 Connectionless Mode State

Event/State T_IDLE

snudata T_IDLE

rcvdata T_IDLE

rcvuderr T_IDLE

Guidelines to Protocol Independence
The set of XTI/TLI services, common to many transport protocols, offers protocol
independence to applications. Not all transport protocols support all XTI/TLI services.
If software must run in a variety of protocol environments, use only the common
services.

The following is a list of services that might not be common to all transport protocols.

� In connection mode service, a transport service data unit (TSDU) might not be
supported by all transport providers. Make no assumptions about preserving
logical data boundaries across a connection.

� Protocol and implementation-specific service limits are returned by the
t_open(3NSL) and t_getinfo(3NSL) routines. Use these limits to allocate buffers
to store protocol-specific transport addresses and options.

� Do not send user data with connect requests or disconnect requests, such as
t_connect(3NSL) and t_snddis(3NSL). Not all transport protocols can use this
method.

� The buffers in the t_call structure used for t_listen(3NSL) must be large
enough to hold any data sent by the client during connection establishment. Use
the T_ALL argument to t_alloc(3NSL) to set maximum buffer sizes to store the
address, options, and user data for the current transport provider.

� Do not specify a protocol address on t_bind(3NSL) on a client-side endpoint. The
transport provider should assign an appropriate address to the transport endpoint.
A server should retrieve its address for t_bind(3NSL) in a way that does not
require knowledge of the transport provider’s name space.

� Do not make assumptions about formats of transport addresses. Transport
addresses should not be constants in a program. Chapter 9 contains detailed
information about transport selection.

� The reason codes associated with t_rcvdis(3NSL) are protocol-dependent. Do
not interpret these reason codes if protocol independence is important.

� The t_rcvuderr(3NSL) error codes are protocol dependent. Do not interpret
these error codes if protocol independence is a concern.
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� Do not code the names of devices into programs. The device node identifies a
particular transport provider and is not protocol independent. See Chapter 9 for
details regarding transport selection.

� Do not use the optional orderly release facility of the connection mode service,
provided by t_sndrel(3NSL) and t_rcvrel(3NSL), in programs targeted for
multiple protocol environments. This facility is not supported by all
connection-based transport protocols. Using the facility can prevent programs from
successfully communicating with open systems.

XTI/TLI Versus Socket Interfaces
XTI/TLI and sockets are different methods of handling the same tasks. Although they
provide mechanisms and services that are functionally similar, they do not provide
one-to-one compatibility of routines or low-level services. Observe the similarities and
differences between the XTI/TLI and socket-based interfaces before you decide to port
an application.

The following issues are related to transport independence, and can have some
bearing on RPC applications:

� Privileged ports – Privileged ports are an artifact of the Berkeley Software
Distribution (BSD) implementation of the TCP/IP Internet Protocols. These ports
are not portable. The notion of privileged ports is not supported in the
transport-independent environment.

� Opaque addresses – Separating the portion of an address that names a host from
the portion of an address that names the service at that host cannot be done in a
transport-independent fashion. Be sure to change any code that assumes it can
discern the host address of a network service.

� Broadcast – No transport-independent form of broadcast address exists.

Socket-to-XTI/TLI Equivalents
The following table shows approximate equivalents between XTI/TLI interfaces and
socket interfaces. The comment field describes the differences. If the comment column
is blank, either the interfaces are similar or no equivalent interface exists in either
interface.
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TABLE 8–8 TLI and Socket Equivalent Functions

TLI interface Socket interface Comments

t_open(3NSL) socket(3SOCKET)

– socketpair(3SOCKET)

t_bind(3NSL) bind(3SOCKET) t_bind(3NSL) sets the queue depth for
passive sockets, but bind(3SOCKET) does
not. For sockets, the queue length is
specified in the call to listen(3SOCKET).

t_optmgmt(3NSL) getsockopt(3SOCKET)

setsockopt(3SOCKET)

t_optmgmt(3NSL) manages only transport
options. getsockopt(3SOCKET) and
setsockopt(3SOCKET) can manage
options at the transport layer, but also at
the socket layer and at the arbitrary
protocol layer.

t_unbind(3NSL) –

t_close(3NSL) close(2)

t_getinfo(3NSL) getsockopt(3SOCKET)t_getinfo(3NSL) returns information
about the transport.
getsockopt(3SOCKET) can return
information about the transport and the
socket.

t_getstate(3NSL) -

t_sync(3NSL) -

t_alloc(3NSL) -

t_free(3NSL) -

t_look(3NSL) - getsockopt(3SOCKET) with the
SO_ERROR option returns the same kind of
error information as
t_look(3NSL)t_look().

t_error(3NSL) perror(3C)

t_connect(3NSL) connect(3SOCKET) You do not need to bind the local endpoint
before invoking connect(3SOCKET). Bind
the endpoint before calling
t_connect(3NSL). You can use
connect(3SOCKET) on a connectionless
endpoint to set the default destination
address for datagrams. You can send data
using connect(3SOCKET).

t_rcvconnect(3NSL) -
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TABLE 8–8 TLI and Socket Equivalent Functions (Continued)
TLI interface Socket interface Comments

t_listen(3NSL) listen(3SOCKET) t_listen(3NSL) waits for connection
indications. listen(3SOCKET) sets the
queue depth.

t_accept(3NSL) accept(3SOCKET)

t_snd(3NSL) send(3SOCKET)

sendto(3SOCKET)

sendmsg(3SOCKET) sendto(3SOCKET) and
sendmsg(3SOCKET) operate in connection
mode as well as in datagram mode.

t_rcv(3NSL) recv(3SOCKET)

recvfrom(3SOCKET)

recvmsg(3SOCKET) recvfrom(3SOCKET) and
recvmsg(3SOCKET) operate in connection
mode as well as datagram mode.

t_snddis(3NSL) -

t_rcvdis(3NSL) -

t_sndrel(3NSL) shutdown(3SOCKET)

t_rcvrel(3NSL) -

t_sndudata(3NSL) sendto(3SOCKET)

recvmsg(3SOCKET)

t_rcvuderr(3NSL) -

read(2), write(2) read(2), write(2) In XTI/TLI you must push the
tirdwr(7M) module before calling
read(2) or write(2). In sockets, calling
read(2) or write(2) suffices.

Additions to the XTI Interface
The XNS 5 (Unix98) standard introduces some new XTI interfaces. These are briefly
described below. You can find the details in the relevant manual pages. These
interfaces are not available for TLI users. The scatter-gather data transfer interfaces
are:

t_sndvudata(3NSL) Send a data unit from one or more non-contiguous buffers
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t_rcvvudata(3NSL) Receive a data unit into one or more non-contiguous buffers

t_sndv(3NSL) Send data or expedited data from one or more
non-contiguous buffers on a connection

t_rcvv(3NSL) Receive data or expedited data sent over a connection and
put the data into one or more non-contiguous buffers

The XTI utility interface t_sysconf(3NSL) gets configurable XTI variables. The
t_sndreldata(3NSL) interface initiates and responds to an orderly release with user
data. The t_rcvreldata(3NSL) receives an orderly release indication or
confirmation containing user data.

Note – The additional interfaces t_sndreldata(3NSL) and t_rcvreldata(3NSL)
are used only with a specific transport called “minimal OSI,” which is not available on
the Solaris platform. These interfaces are not available for use in conjunction with
Internet Transports (TCP or UDP).
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CHAPTER 9

Transport Selection and
Name-to-Address Mapping

This chapter describes selecting transports and resolving network addresses. This
chapter further describes interfaces that enable you to specify the available
communication protocols for an application. The chapter also explains additional
interfaces that provide direct mapping of names to network addresses.

� “Transport Selection” on page 199
� “Name-to-Address Mapping” on page 200

Note – In this chapter, the terms network and transport are used interchangeably. The
terms refer to the programmatic interface that conforms to the transport layer of the
OSI Reference Mode. The term network is also used to refer to the physical collection of
computers that are connected through some electronic medium.

Transport Selection

Caution – The interfaces that are described in this chapter are multithread safe.
“Multithread safe” means that you can use applications that contain transport
selection interface calls freely in a multithreaded application. These interface calls do
not provide linear scalability because the calls are not re-entrant.

A distributed application must use a standard interface to the transport services to be
portable to different protocols. Transport selection services provide an interface that
allows an application to select which protocols to use. This interface makes an
application independent of protocol and medium.
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Transport selection means that a client application can easily try each available
transport until the client establishes communication with a server. Transport selection
enables request acceptance on multiple transports by server applications. The
applications can then communicate over a number of protocols. Transports can be
tried in either the order specified by the local default sequence or in an order specified
by the user.

Choosing from the available transports is the responsibility of the application. The
transport selection mechanism makes that selection uniform and simple.

Name-to-Address Mapping
Name-to-address mapping enables an application to obtain the address of a service on
a specified host independent of the transport used. Name-to-address mapping consists
of the following interfaces:

netdir_getbyname(3NSL) Maps the host and service name to a set of addresses

netdir_getbyaddr(3NSL) Maps addresses into host and service names

netdir_free(3NSL) Frees structures allocated by the name-to-address translation
routines

taddr2uaddr(3NSL) Translates an address and returns a transport-independent
character representation of the address

uaddr2taddr(3NSL) The universal address is translated into a netbuf structure

netdir_options(3NSL) Interfaces to transport-specific capabilities such as the
broadcast address and reserved port facilities of TCP and
UDP

netdir_perror(3NSL) Displays a message stating why one of the routines that map
name-to-address failed on stderr.

netdir_sperror(3NSL) Returns a string containing the error message stating why one
of the routines that map name-to-address failed.

The first argument of each routine points to a netconfig(4) structure that describes a
transport. The routine uses the array of directory-lookup library paths in the
netconfig(4) structure to call each path until the translation succeeds.

The name-to-address libraries are described in Table 9–1. The routines that are
described in “Using the Name-to-Address Mapping Routines” on page 202 are defined
in the netdir(3NSL) man page.
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Note – The following libraries no longer exist in the Solaris™ environment: tcpip.so,
switch.so, and nis.so. For more information on this change, see the
nsswitch.conf(4) man page and the NOTES section of the gethostbyname(3NSL)
man page.

TABLE 9–1 Name-to-Address Libraries

Library Transport Family Description

- inet The name-to-address mapping for networks of the
protocol family inet is provided by the name service
switch based on the entries for hosts and services in the
file nsswitch.conf(4). For networks of other
families, the dash indicates a nonfunctional
name-to-address mapping.

straddr.so loopback Contains the routines that map name-to-address in any
protocol that accepts strings as addresses, such as the
loopback transports.

straddr.so Library
Name–to–address translation files for the straddr.so library are created by the
system administrator. The system administrator also maintains these translation files.
The straddr.so files are /etc/net/transport-name/hosts and
/etc/net/transport-name/services. transport-name is the local name of the
transport that accepts string addresses, which is specified in the network ID field of the
/etc/netconfig file. For example, the host file for ticlts would be
/etc/net/ticlts/hosts, and the service file for ticlts would be
/etc/net/ticlts/services.

Most string addresses do not distinguish between host and service. However,
separating the string into a host part and a service part is consistent with other
transports. The /etc/net/transport-name/hosts file contains a text string that is
assumed to be the host address, followed by the host name:

joyluckaddr joyluck

carpediemaddr carpediem

thehopaddr thehop

pongoaddr pongo

Because loopback transports cannot go outside the containing host, listing other hosts
makes no sense.
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The /etc/net/transport-name/services file contains service names followed
by strings that identify the service address:

rpcbind rpc

listen serve

The routines create the full-string address by concatenating the host address, a period
(.), and the service address. For example, the address of the listen service on pongo
is pongoaddr.serve.

When an application requests the address of a service on a particular host on a
transport that uses this library, the host name must be in /etc/net/transport/hosts.
The service name must be in /etc/net/transport/services. If either name is
missing, the name-to-address translation fails.

Using the Name-to-Address Mapping Routines
This section is an overview of the mapping routines that are available for use. The
routines return or convert the network names to their respective network addresses.
Note that netdir_getbyname(3NSL), netdir_getbyaddr(3NSL), and
taddr2uaddr(3NSL) return pointers to data that must be freed by calls to
netdir_free(3NSL).

int netdir_getbyname(struct netconfig *nconf,

struct nd_hostserv *service, struct nd_addrlist **addrs);

netdir_getbyname(3NSL) maps the host and service name specified in service to a
set of addresses that are consistent with the transport identified in nconf. The
nd_hostserv and nd_addrlist structures are defined in the netdir(3NSL) man
page. A pointer to the addresses is returned in addrs.

To find all addresses of a host and service on all available transports, call
netdir_getbyname(3NSL) with each netconfig(4) structure returned by either
getnetpath(3NSL) or getnetconfig(3NSL).

int netdir_getbyaddr(struct netconfig *nconf,

struct nd_hostservlist **service, struct netbuf *netaddr);

netdir_getbyaddr(3NSL) maps addresses into host and service names. The
interface is called with an address in netaddr and returns a list of host-name and
service-name pairs in service. The nd_hostservlist structure is defined in
netdir(3NSL).

void netdir_free(void *ptr, int struct_type);

The netdir_free(3NSL) routine frees structures allocated by the name-to-address
translation routines. The parameters can take the values that are shown in the
following table.
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TABLE 9–2 netdir_free(3NSL) Routines

struct_type ptr

ND_HOSTSERV Pointer to an nd_hostserv structure

ND_HOSTSERVLIST Pointer to an nd_hostservlist structure

ND_ADDR Pointer to a netbuf structure

ND_ADDRLIST Pointer to an nd_addrlist structure

char *taddr2uaddr(struct netconfig *nconf, struct netbuf *addr);

taddr2uaddr(3NSL) translates the address pointed to by addr and returns a
transport-independent character representation of the address. This character
representation is called a universal address. The value that is given in nconf specifies
the transport for which the address is valid. The universal address can be freed by
free(3C).

struct netbuf *uaddr2taddr(struct netconfig *nconf, char *uaddr);

The universal address pointed to by uaddr is translated into a netbuf structure. nconf
specifies the transport for which the address is valid.

int netdir_options(const struct netconfig *config,

const int option, const int fildes, char *point_to_args);

netdir_options(3NSL) provides interfaces to transport-specific capabilities, such as
the broadcast address and reserved port facilities of TCP and UDP. The value of nconf
specifies a transport, while option specifies the transport-specific action to take. The
value in option might disable consideration of the value in fd. The fourth argument
points to operation-specific data.

The following table shows the values used for option.

TABLE 9–3 Values for netdir_options

Option Description

ND_SET_BROADCAST Sets the transport for broadcast if the transport supports
broadcast

ND_SET_RESERVEDPORT Enables application binding to reserved ports if allowed
by the transport

ND_CHECK_RESERVEDPORT Verifies that an address corresponds to a reserved port if
the transport supports reserved ports

ND_MERGEADDR Transforms a locally meaningful address into an
address to which client hosts can connect

The netdir_perror(3NSL) routine displays a message stating why one of the
routines that map name-to-address failed on stderr.
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void netdir_perror(char *s);

The netdir_sperror(3NSL) routine returns a string containing the error message
stating why one of the routines that map name-to-address failed.

char *netdir_sperror(void);

The following example shows network selection and name-to-address mapping.

EXAMPLE 9–1 Network Selection and Name-to-Address Mapping

#include <netconfig.h>
#include <netdir.h>
#include <sys/tiuser.h>

struct nd_hostserv nd_hostserv; /* host and service information */
struct nd_addrlist *nd_addrlistp; /* addresses for the service */
struct netbuf *netbufp; /* the address of the service */
struct netconfig *nconf; /* transport information*/
int i; /* the number of addresses */
char *uaddr; /* service universal address */
void *handlep; /* a handle into network selection */
/*
* Set the host structure to reference the "date"
* service on host "gandalf"
*/
nd_hostserv.h_host = "gandalf";
nd_hostserv.h_serv = "date";
/*
* Initialize the network selection mechanism.
*/
if ((handlep = setnetpath()) == (void *)NULL) {

nc_perror(argv[0]);
exit(1);

}
/*
* Loop through the transport providers.
*/
while ((nconf = getnetpath(handlep)) != (struct netconfig *)NULL)
{

/*
* Print out the information associated with the
* transport provider described in the "netconfig"
* structure.
*/
printf("Transport provider name: %s\n", nconf->nc_netid);
printf("Transport protocol family: %s\n", nconf->nc_protofmly);
printf("The transport device file: %s\n", nconf->nc_device);
printf("Transport provider semantics: ");

switch (nconf->nc_semantics) {
case NC_TPI_COTS:

printf("virtual circuit\n");
break;

case NC_TPI_COTS_ORD:
printf("virtual circuit with orderly release\n");
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EXAMPLE 9–1 Network Selection and Name-to-Address Mapping (Continued)

break;

case NC_TPI_CLTS:
printf("datagram\n");
break;

}
/*
* Get the address for service "date" on the host
* named "gandalf" over the transport provider
* specified in the netconfig structure.
*/
if (netdir_getbyname(nconf, &nd_hostserv, &nd_addrlistp) != ND_OK) {

printf("Cannot determine address for service\n");
netdir_perror(argv[0]);
continue;

}
printf("<%d> addresses of date service on gandalf:\n",

nd_addrlistp->n_cnt);
/*
* Print out all addresses for service "date" on
* host "gandalf" on current transport provider.
*/
netbufp = nd_addrlistp->n_addrs;
for (i = 0; i < nd_addrlistp->n_cnt; i++, netbufp++) {

uaddr = taddr2uaddr(nconf,netbufp);
printf("%s\n",uaddr);
free(uaddr);

}
netdir_free( nd_addrlistp, ND_ADDRLIST );

}

endnetconfig(handlep);
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CHAPTER 10

Real-time Programming and
Administration

This chapter describes writing and porting real-time applications to run under SunOS.
This chapter is written for programmers that are experienced in writing real-time
applications and for administrators familiar with real-time processing and the Solaris
system.

This chapter discusses the following topics:

� Scheduling needs of real-time applications, which are covered in “The Real-Time
Scheduler” on page 211.

� “Memory Locking” on page 222.
� “Asynchronous Network Communication” on page 230.

Basic Rules of Real-time Applications
Real-time response is guaranteed when certain conditions are met. This section
identifies these conditions and some of the more significant design errors.

Most of the potential problems described here can degrade the response time of the
system. One of the potential problems can freeze a workstation. Other, more subtle,
mistakes are priority inversion and system overload.

A Solaris real-time process has the following characteristics:

� Runs in the RT scheduling class, as described in “The Real-Time Scheduler”
on page 211

� Locks down all the memory in its process address space, as described in “Memory
Locking” on page 222

� Is from a statically linked program or from a program in which all dynamic
binding is completed early, as described in “Shared Libraries” on page 209
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Real-time operations are described in this chapter in terms of single-threaded
processes, but the description can also apply to multithreaded processes. For detailed
information about multithreaded processes, see the Multithreaded Programming Guide.
To guarantee real-time scheduling of a thread, the thread must be created as a bound
thread. Furthermore, the thread’s LWP must be run in the RT scheduling class. The
locking of memory and early dynamic binding is effective for all threads in a process.

When a process is the highest priority real-time process, the process acquires the
processor within the guaranteed dispatch latency period of becoming runnable. For
more information, see “Dispatch Latency” on page 211. The process continues to run
for as long as it remains the highest priority runnable process.

A real-time process can lose control of the processor because of other system events. A
real-time process can also be unable to gain control of the processor because of other
system events. These events include external events, such as interrupts, resource
starvation, waiting on external events such as synchronous I/O, and pre-emption by a
higher priority process.

Real-time scheduling generally does not apply to system initialization and termination
services such as open(2) and close(2).

Factors that Degrade Response Time
The problems described in this section all increase the response time of the system to
varying extents. The degradation can be serious enough to cause an application to
miss a critical deadline.

Real-time processing can also impair the operation of aspects of other applications that
are active on a system that is running a real-time application. Because real-time
processes have higher priority, time-sharing processes can be prevented from running
for significant amounts of time. This phenomenon can cause interactive activities, such
as displays and keyboard response time, to slow noticeably.

Synchronous I/O Calls
System response under SunOS provides no bounds to the timing of I/O events. This
means that synchronous I/O calls should never be included in any program segment
whose execution is time critical. Even program segments that permit very large time
bounds must not perform synchronous I/O. Mass storage I/O is such a case, where
causing a read or write operation hangs the system while the operation takes place.

A common application mistake is to perform I/O to get error message text from disk.
Performing I/O in this fashion should be done from an independent process or
independent thread. This independent process or independent thread should not run
in real time.
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Interrupt Servicing
Interrupt priorities are independent of process priorities. The priorities that are set for
a group of processes are not inherited by the services of hardware interrupts that
result from those processes’ actions. As a consequence, devices controlled by
high-priority real-time processes do not necessarily have high-priority interrupt
processing.

Shared Libraries
Time-sharing processes can save significant amounts of memory by using dynamically
linked, shared libraries. This type of linking is implemented through a form of file
mapping. Dynamically linked library routines cause implicit reads.

Real-time programs can set the environment variable LD_BIND_NOW to a non-NULL
value when the program is invoked. Setting the value of this environment value
allows the use of shared libraries while avoiding dynamic binding. This procedure
also forces all dynamic linking to be bound before the program begins execution. See
the Linker and Libraries Guide for more information.

Priority Inversion
A time-sharing process can block a real-time process by acquiring a resource that is
required by a real-time process. Priority inversion occurs when a higher priority
process is blocked by a lower priority process. The term blocking describes a situation
in which a process must wait for one or more processes to relinquish control of
resources. Real-time processes might miss their deadlines if this blocking is prolonged.

Consider the case that is depicted in the following figure, where a high-priority
process requires a shared resource. A lower priority process holds the resource and is
pre-empted by an intermediate priority process, blocking the high-priority process.
Any number of intermediate processes can be involved. All intermediate processes
must finish executing, as well as the lower-priority process’ critical section. This series
of executions can take an arbitrarily long time.
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FIGURE 10–1 Unbounded Priority Inversion

This issue and the methods of dealing with this issue are described in “Mutual
Exclusion Lock Attributes” in Multithreaded Programming Guide.

Sticky Locks
A page is permanently locked into memory when its lock count reaches 65535
(0xFFFF). The value 0xFFFF is defined by the implementation and might change in
future releases. Pages that are locked this way cannot be unlocked.

Runaway Real-time Processes
Runaway real-time processes can cause the system to halt. Such runaway processes
can also slow the system response so much that the system appears to halt.

Note – If you have a runaway process on a SPARC system, press Stop-A. You might
have to do press Stop-A more than one time. If pressing Stop-A does not work, turn
the power off, wait a moment, then turn the power back on. If you have a runaway
process on a non-SPARC system, turn the power off, wait a moment, then turn the
power back on.

When a high priority real-time process does not relinquish control of the CPU, you
must break the infinite loop in order to regain control of the system. Such a runaway
process does not respond to Control-C. Attempts to use a shell set at a higher priority
than the priority of the runaway process do not work.
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Asynchronous I/O Behavior
Asynchronous I/O operations do not always execute in the sequence in which the
operations are queued to the kernel. Asynchronous operations do not necessarily
return to the caller in the sequence in which the operations were performed.

If a single buffer is specified for a rapid sequence of calls to aioread(3AIO), the
buffer’s state is uncertain. The uncertainty of the buffer’s state is from the time the first
call is made to the time the last result is signaled to the caller.

An individual aio_result_t structure can be used for only one asynchronous
operation. The operation can be a read or a write operation.

Real-time Files
SunOS provides no facilities to ensure that files are allocated as physically contiguous.

For regular files, the read(2) and write(2) operations are always buffered. An
application can use mmap(2) and msync(3C) to effect direct I/O transfers between
secondary storage and process memory.

The Real-Time Scheduler
Real-time scheduling constraints are necessary to manage data acquisition or process
control hardware. The real-time environment requires that a process be able to react to
external events in a bounded amount of time. Such constraints can exceed the
capabilities of a kernel that is designed to provide a fair distribution of the processing
resources to a set of time-sharing processes.

This section describes the SunOS real-time scheduler, its priority queue, and how to
use system calls and utilities that control scheduling.

Dispatch Latency
The most significant element in scheduling behavior for real-time applications is the
provision of a real-time scheduling class. The standard time-sharing scheduling class
is not suitable for real-time applications because this scheduling class treats every
process equally. The standard time-sharing scheduling class has a limited notion of
priority. Real-time applications require a scheduling class in which process priorities
are taken as absolute. Real-time applications also require a scheduling class in which
process priorities are changed only by explicit application operations.
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The term dispatch latency describes the amount of time a system takes to respond to a
request for a process to begin operation. With a scheduler that is written specifically to
honor application priorities, real-time applications can be developed with a bounded
dispatch latency.

The following figure illustrates the amount of time an application takes to respond to a
request from an external event.
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FIGURE 10–2 Application Response Time

The overall application response time consists of the interrupt response time, the
dispatch latency, and the application’s response time.

The interrupt response time for an application includes both the interrupt latency of
the system and the device driver’s own interrupt processing time. The interrupt
latency is determined by the longest interval that the system must run with interrupts
disabled. This time is minimized in SunOS using synchronization primitives that do
not commonly require a raised processor interrupt level.

During interrupt processing, the driver’s interrupt routine wakes the high-priority
process and returns when finished. The system detects that a process with higher
priority than the interrupted process is now ready to dispatch and dispatches the
process. The time to switch context from a lower-priority process to a higher-priority
process is included in the dispatch latency time.
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Figure 10–3 illustrates the internal dispatch latency and application response time of a
system. The response time is defined in terms of the amount of time a system takes to
respond to an internal event. The dispatch latency of an internal event represents the
amount of time that a process needs to wake up a higher priority process. The dipatch
latency also includes the time that the system takes to dispatch the higher priority
process.

The application response time is the amount of time that a driver takes to: wake up a
higher-priority process, release resources from a low-priority process, reschedule the
higher-priority task, calculate the response, and dispatch the task.

Interrupts can arrive and be processed during the dispatch latency interval. This
processing increases the application response time, but is not attributed to the dispatch
latency measurement. Therefore, this processing is not bounded by the dispatch
latency guarantee.
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FIGURE 10–3 Internal Dispatch Latency

With the new scheduling techniques provided with real-time SunOS, the system
dispatch latency time is within specified bounds. As you can see in the following table,
dispatch latency improves with a bounded number of processes.

TABLE 10–1 Real-time System Dispatch Latency

Workstation Bounded Number of Processes Arbitrary Number of Processes

SPARCstation 2 <0.5 milliseconds in a system
with fewer than 16 active
processes

1.0 milliseconds
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TABLE 10–1 Real-time System Dispatch Latency (Continued)
Workstation Bounded Number of Processes Arbitrary Number of Processes

SPARCstation 5 <0.3 millisecond 0.3 millisecond

Ultra 1-167 <0.15 millisecond <0.15 millisecond

Scheduling Classes
The SunOS kernel dispatches processes by priority. The scheduler or dispatcher
supports the concept of scheduling classes. Classes are defined as real-time (RT),
system (SYS), and time-sharing (TS). Each class has a unique scheduling policy for
dispatching processes within its class.

The kernel dispatches highest priority processes first. By default, real-time processes
have precedence over sys and TS processes. Administrators can configure systems so
that the priorities for TS processes and RT processes overlap.

The following figure illustrates the concept of classes as viewed by the SunOS kernel.

Realtime
(RT)

Kernel Daemons
(sys)

Time-Sharing
(TS)

System
Interrupts

Hardware
Dispatching

Software
Dispatching

FIGURE 10–4 Dispatch Priorities for Scheduling Classes

Hardware interrupts, which cannot be controlled by software, have the highest
priority. The routines that process interrupts are dispatched directly and immediately
from interrupts, without regard to the priority of the current process.

Real-time processes have the highest default software priority. Processes in the RT
class have a priority and time quantum value. RT processes are scheduled strictly on the
basis of these parameters. As long as an RT process is ready to run, no SYS or TS
process can run. Fixed-priority scheduling enables critical processes to run in a
predetermined order until completion. These priorities never change unless they are
changed by an application.
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An RT class process inherits the parent’s time quantum, whether finite or infinite. A
process with a finite time quantum runs until the time quantum expires. A process
with a finite time quantum also stops running if the process blocks while waiting for
an I/O event or is pre-empted by a higher-priority runnable real-time process. A
process with an infinite time quantum ceases execution only when the process
terminates, blocks, or is pre-empted.

The SYS class exists to schedule the execution of special system processes, such as
paging, STREAMS, and the swapper. You cannot change the class of a process to the
SYS class. The SYS class of processes has fixed priorities established by the kernel
when the processes are started.

The time-sharing (TS) processes have the lowest priority. TS class processes are
scheduled dynamically, with a few hundred milliseconds for each time slice. The TS
scheduler switches context in round-robin fashion often enough to give every process
an equal opportunity to run, depending upon:

� The time slice value
� The process history, which records when the process was last put to sleep
� Considerations for CPU utilization

Default time-sharing policy gives larger time slices to processes with lower priority.

A child process inherits the scheduling class and attributes of the parent process
through fork(2). A process’s scheduling class and attributes are unchanged by
exec(2).

Different algorithms dispatch each scheduling class. Class-dependent routines are
called by the kernel to make decisions about CPU process scheduling. The kernel is
class-independent, and takes the highest priority process off its queue. Each class is
responsible for calculating a process’s priority value for its class. This value is placed
into the dispatch priority variable of that process.

As the following figure illustrates, each class algorithm has its own method of
nominating the highest priority process to place on the global run queue.

Chapter 10 • Real-time Programming and Administration 215



Realtime
priorities

59
58
57
56

01
00

...

Global
priorities

159
158
157
156

100
99
98

02
01
00

...

...

Time-share
priorities

+20
+19

+1

-1

-19
-20

...

...

FIGURE 10–5 Kernel Dispatch Queue

Each class has a set of priority levels that apply to processes in that class. A
class-specific mapping maps these priorities into a set of global priorities. A set of
global scheduling priority maps is not required to start with zero or be contiguous.

By default, the global priority values for time-sharing (TS) processes range from -20 to
+20. These global priority values are mapped into the kernel from 0-40, with
temporary assignments as high as 99. The default priorities for real-time (RT)
processes range from 0-59, and are mapped into the kernel from 100 to 159. The
kernel’s class-independent code runs the process with the highest global priority on
the queue.

Dispatch Queue
The dispatch queue is a linear-linked list of processes with the same global priority.
Each process has class-specific information attached to the process upon invocation. A
process is dispatched from the kernel dispatch table in an order that is based on the
process’ global priority.
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Dispatching Processes
When a process is dispatched, the context of the process is mapped into memory along
with its memory management information, its registers, and its stack. Execution
begins after the context mapping is done. Memory management information is in the
form of hardware registers that contain the data that is needed to perform virtual
memory translations for the currently running process.

Process Pre-emption
When a higher priority process becomes dispatchable, the kernel interrupts its
computation and forces the context switch, pre-empting the currently running process.
A process can be pre-empted at any time if the kernel finds that a higher-priority
process is now dispatchable.

For example, suppose that process A performs a read from a peripheral device.
Process A is put into the sleep state by the kernel. The kernel then finds that a
lower-priority process B is runnable. Process B is dispatched and begins execution.
Eventually, the peripheral device sends an interrupt, and the driver of the device is
entered. The device driver makes process A runnable and returns. Rather than
returning to the interrupted process B, the kernel now pre-empts B from processing,
resuming execution of the awakened process A.

Another interesting situation occurs when several processes contend for kernel
resources. A high-priority real-time process might be waiting for a resource held by a
low-priority process. When the low-priority process releases the resource, the kernel
pre-empts that process to resume execution of the higher-priority process.

Kernel Priority Inversion
Priority inversion occurs when a higher-priority process is blocked by one or more
lower-priority processes for a long time. The use of synchronization primitives such as
mutual-exclusion locks in the SunOS kernel can lead to priority inversion.

A process is blocked when the process must wait for one or more processes to
relinquish resources. Prolonged blocking can lead to missed deadlines, even for low
levels of utilization.

The problem of priority inversion has been addressed for mutual-exclusion locks for
the SunOS kernel by implementing a basic priority inheritance policy. The policy
states that a lower-priority process inherits the priority of a higher-priority process
when the lower-priority process blocks the execution of the higher-priority process.
This inheritance places an upper bound on the amount of time a process can remain
blocked. The policy is a property of the kernel’s behavior, not a solution that a
programmer institutes through system calls or interface execution. User-level
processes can still exhibit priority inversion, however.
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User Priority Inversion
The issue of user priority inversion, and the means to deal with priority inversion, are
discussed in “Mutual Exclusion Lock Attributes” in Multithreaded Programming Guide.

Interface Calls That Control Scheduling
The following interface calls control process scheduling.

Using priocntl

Control over scheduling of active classes is done with priocntl(2). Class attributes
are inherited through fork(2) and exec(2), along with scheduling parameters and
permissions required for priority control. This inheritance happens with both the RT
and the TS classes.

priocntl(2) is the interface for specifying a real-time process, a set of processes, or a
class to which the system call applies. priocntlset(2) also provides the more
general interface for specifying an entire set of processes to which the system call
applies.

The command arguments of priocntl(2) can be one of: PC_GETCID,
PC_GETCLINFO, PC_GETPARMS, or PC_SETPARMS. The real or effective ID of the
calling process must match the real or effective ID of the affected processes, or must
have superuser privilege.

PC_GETCID This command takes the name field of a structure that contains a
recognizable class name. The class ID and an array of class
attribute data are returned.

PC_GETCLINFO This command takes the ID field of a structure that contains a
recognizable class identifier. The class name and an array of class
attribute data are returned.

PC_GETPARMS This command returns the scheduling class identifier or the class
specific scheduling parameters of one of the specified processes.
Even though idtype and id might specify a big set,
PC_GETPARMS returns the parameter of only one process. The
class selects the process.

PC_SETPARMS This command sets the scheduling class or the class-specific
scheduling parameters of the specified process or processes.

Other interface calls
sched_get_priority_max Returns the maximum values for the

specified policy.
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sched_get_priority_min Returns the minimum values for the
specified policy. For mor einformation, see
the sched_get_priority_max(3R)
man page.

sched_rr_get_interval Updates the specified timespec structure
to the current execution time limit. For
more information, see the
sched_get_priority_max(3RT) man
page.

sched_setparam, sched_getparam Sets or gets the scheduling parameters of
the specified process.

sched_yield Blocks the calling process until the calling
process returns to the head of the process
list.

Utilities That Control Scheduling
The administrative utilities that control process scheduling are dispadmin(1M) and
priocntl(1). Both of these utilities support the priocntl(2) system call with
compatible options and loadable modules. These utilities provide system
administration functions that control real-time process scheduling during runtime.

priocntl(1)
The priocntl(1) command sets and retrieves scheduler parameters for processes.

dispadmin(1M)
The dispadmin(1M) utility displays all current process scheduling classes by
including the -l command line option during runtime. Process scheduling can also be
changed for the class specified after the -c option, using RT as the argument for the
real-time class.

The class options for dispadmin(1M) are in the following list:

-l Lists scheduler classes currently configured

-c Specifies the class with parameters to be displayed or to be changed

-g Gets the dispatch parameters for the specified class

-r Used with −g, specifies time quantum resolution

-s Specifies a file where values can be located
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A class-specific file that contains the dispatch parameters can also be loaded during
runtime. Use this file to establish a new set of priorities that replace the default values
that were established during boot time. This class-specific file must assert the
arguments in the format used by the -g option. Parameters for the RT class are found
in the rt_dptbl(4), and are listed in Example 10–1.

To add an RT class file to the system, the following modules must be present:

� An rt_init() routine in the class module that loads the rt_dptbl(4).

� An rt_dptbl(4) module that provides the dispatch parameters and a routine to
return pointers to config_rt_dptbl.

� The dispadmin(1M) executable.

The following steps install a RT class dispatch table:

1. Load the class-specific module with the following command, where module_name is
the class-specific module:

# modload /kernel/sched/module_name

2. Invoke the dispadmin command:

# dispadmin -c RT -s file_name

The file must describe a table with the same number of entries as the table that is
being overwritten.

Configuring Scheduling
Associated with both scheduling classes is a parameter table, rt_dptbl(4), and
ts_dptbl(4). These tables are configurable by using a loadable module at boot time,
or with dispadmin(1M) during runtime.

Dispatcher Parameter Table
The in-core table for real-time establishes the properties for RT scheduling. The
rt_dptbl(4) structure consists of an array of parameters, struct rt_dpent_t.
Each of the n priority levels has one parameter. The properties of a given priority level
are specified by the ith parameter structure in the array, rt_dptbl[i].

A parameter structure consists of the following members, which are also described in
the /usr/include/sys/rt.h header file.

rt_globpri The global scheduling priority associated with this priority level.
The rt_globpri values cannot be changed with dispadmin(1M).
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rt_quantum The length of the time quantum allocated to processes at this level in
ticks. For more information, see “Timestamp Interfaces” on page 231.
The time quantum value is only a default or starting value for
processes at a particular level. The time quantum of a real-time
process can be changed by using the priocntl(1) command or the
priocntl(2) system call.

Reconfiguring config_rt_dptbl

A real-time administrator can change the behavior of the real-time portion of the
scheduler by reconfiguring the config_rt_dptbl at any time. One method is
described in the rt_dptbl(4) man page, in the section titled “Replacing the
rt_dptbl Loadable Module.”

A second method for examining or modifying the real-time parameter table on a
running system is through the dispadmin(1M) command. Invoking dispadmin(1M)
for the real-time class enables retrieval of the current rt_quantum values in the
current config_rt_dptbl configuration from the kernel’s in-core table. When
overwriting the current in-core table, the configuration file used for input to
dispadmin(1M) must conform to the specific format described in the rt_dptbl(4)
man page.

Following is an example of prioritized processes rtdpent_t with their associated
time quantum config_rt_dptbl[] value as the processes might appear in
config_rt_dptbl[].

EXAMPLE 10–1 RT Class Dispatch Parameters

rtdpent_t rt_dptbl[] = { 129, 60,
/* prilevel Time quantum */ 130, 40,

100, 100, 131, 40,
101, 100, 132, 40,
102, 100, 133, 40,
103, 100, 134, 40,
104, 100, 135, 40,
105, 100, 136, 40,
106, 100, 137, 40,
107, 100, 138, 40
108, 100, 139, 40,
109, 100, 140, 20,
110, 80, 141, 20,
111, 80, 142, 20,
112, 80, 143, 20,
113, 80, 144, 20,
114, 80, 145, 20,
115, 80, 146, 20,
116, 80, 147, 20,
117, 80, 148, 20,
118, 80, 149, 20,
119, 80, 150, 10,
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EXAMPLE 10–1 RT Class Dispatch Parameters (Continued)

120, 60, 151, 10,
121, 60, 152, 10,
122, 60, 153, 10,
123, 60, 154, 10,
124, 60, 155, 10,
125, 60, 156, 10,
126, 60, 157, 10,
126, 60, 158, 10,
127, 60, 159, 10,

128, 60, }

Memory Locking
Locking memory is one of the most important issues for real-time applications. In a
real-time environment, a process must be able to guarantee continuous memory
residence to reduce latency and to prevent paging and swapping.

This section describes the memory locking mechanisms that are available to real-time
applications in SunOS.

Under SunOS, the memory residency of a process is determined by its current state,
the total available physical memory, the number of active processes, and the processes’
demand for memory. This residency is appropriate in a time-share environment. This
residency is often unacceptable for a real-time process. In a real-time environment, a
process must guarantee a memory residence to reduce the process’ memory access and
dispatch latency.

Real-time memory locking in SunOS is provided by a set of library routines. These
routines allow a process running with superuser privileges to lock specified portions
of its virtual address space into physical memory. Pages locked in this manner are
exempt from paging until the pages are unlocked or the process exits.

The operating system has a system-wide limit on the number of pages that can be
locked at any time. This limit is a tunable parameter whose default value is calculated
at boot time. The default value is based on the number of page frames minus another
percentage, currently set at ten percent.
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Locking a Page
A call to mlock(3C) requests that one segment of memory be locked into the system’s
physical memory. The pages that make up the specified segment are faulted in. The
lock count of each page is incremented. Any page whose lock count value is greater
than zero is exempt from paging activity.

A particular page can be locked multiple times by multiple processes through different
mappings. If two different processes lock the same page, the page remains locked until
both processes remove their locks. However, within a given mapping, page locks do
not nest. Multiple calls of locking interfaces on the same address by the same process
are removed by a single unlock request.

If the mapping through which a lock has been performed is removed, the memory
segment is implicitly unlocked. When a page is deleted through closing or truncating
the file, the page is also implicitly unlocked.

Locks are not inherited by a child process after a fork(2) call. If a process that has
some memory locked forks a child, the child must perform a memory locking
operation on its own behalf to lock its own pages. Otherwise, the child process incurs
copy-on-write page faults, which are the usual penalties that are associated with
forking a process.

Unlocking a Page
To unlock a page of memory, a process requests the release of a segment of locked
virtual pages by a calling munlock(3C). munlock decrements the lock counts of the
specified physical pages. After decrementing a page’s lock count to 0, the page swaps
normally.

Locking All Pages
A superuser process can request that all mappings within its address space be locked
by a call to mlockall(3C). If the flag MCL_CURRENT is set, all the existing memory
mappings are locked. If the flag MCL_FUTURE is set, every mapping that is added to
an existing mapping or that replaces an existing mapping is locked into memory.
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Recovering Sticky Locks
A page is permanently locked into memory when its lock count reaches 65535
(0xFFFF). The value 0xFFFF is defined by implementation. This value might change
in future releases. Pages that are locked in this manner cannot be unlocked. Reboot the
system to recover.

High Performance I/O
This section describes I/O with real−time processes. In SunOS, the libraries supply
two sets of interfaces and calls to perform fast, asynchronous I/O operations. The
POSIX asynchronous I/O interfaces are the most recent standard. The SunOS
environment also provides file and in-memory synchronization operations and modes
to prevent information loss and data inconsistency.

Standard UNIX I/O is synchronous to the application programmer. An application
that calls read(2) or write(2) usually waits until the system call has finished.

Real-time applications need asynchronous, bounded I/O behavior. A process that
issues an asynchronous I/O call proceeds without waiting for the I/O operation to
complete. The caller is notified when the I/O operation has finished.

Asynchronous I/O can be used with any SunOS file. Files are opened synchronously
and no special flagging is required. An asynchronous I/O transfer has three elements:
call, request, and operation. The application calls an asynchronous I/O interface, the
request for the I/O is placed on a queue, and the call returns immediately. At some
point, the system dequeues the request and initiates the I/O operation.

Asynchronous and standard I/O requests can be intermingled on any file descriptor.
The system maintains no particular sequence of read and write requests. The system
arbitrarily resequences all pending read and write requests. If a specific sequence is
required for the application, the application must insure the completion of prior
operations before issuing the dependent requests.

POSIX Asynchronous I/O
POSIX asynchronous I/O is performed using aiocb structures. An aiocb control
block identifies each asynchronous I/O request and contains all of the controlling
information. A control block can be used for only one request at a time. A control block
can be reused after its request has been completed.
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A typical POSIX asynchronous I/O operation is initiated by a call to aio_read(3RT)
or aio_write(3RT). Either polling or signals can be used to determine the completion
of an operation. If signals are used for completing operations, each operation can be
uniquely tagged. The tag is then returned in the si_value component of the
generated signal. See the siginfo(3HEAD) man page.

aio_read aio_read(3RT) is called with an asynchronous I/O
control block to initiate a read operation.

aio_write aio_write(3RT) is called with an asynchronous I/O
control block to initiate a write operation.

aio_return, aio_error aio_return(3RT) and aio_error(3RT) are called to
obtain return and error values, respectively, after an
operation is known to have completed.

aio_cancel aio_cancel(3RT) is called with an asynchronous I/O
control block to cancel pending operations.
aio_cancel can be used to cancel a specific request, if
a request is specified by the control block.
aio_cancel can also cancel all of the requests that are
pending for the specified file descriptor.

aio_fsync aio_fsync(3RT) queues an asynchronous fsync(3C)
or fdatasync(3RT) request for all of the pending I/O
operations on the specified file.

aio_suspend aio_suspend(3RT) suspends the caller as though one
or more of the preceding asynchronous I/O requests
had been made synchronously.

Solaris Asynchronous I/O
This section discusses asynchronous I/O operations in the Solaris operating
environment.

Notification (SIGIO)
When an asynchronous I/O call returns successfully, the I/O operation has only been
queued and waits to be done. The actual operation has a return value and a potential
error identifier. This return value and potential error identifier would have been
returned to the caller if the call had been synchronous. When the I/O is finished, both
the return and error values are stored at a location given by the user at the time of the
request as a pointer to an aio_result_t. The structure of the aio_result_t is
defined in <sys/asynch.h>:
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typedef struct aio_result_t {
ssize_t aio_return; /* return value of read or write */
int aio_errno; /* errno generated by the IO */

} aio_result_t;

When the aio_result_t has been updated, a SIGIO signal is delivered to the
process that made the I/O request.

Note that a process with two or more asynchronous I/O operations pending has no
certain way to determine the cause of the SIGIO signal. A process that receives a
SIGIO should check all its conditions that could be generating the SIGIO signal.

Using aioread

The aioread(3AIO) routine is the asynchronous version of read(2). In addition to the
normal read arguments, aioread(3AIO) takes the arguments that specify a file
position and the address of an aio_result_t structure. The resulting information
about the operation is stored in the aio_result_t structure. The file position
specifies a seek to be performed within the file before the operation. Whether the
aioread(3AIO) call succeeds or fails, the file pointer is updated.

Using aiowrite

The aiowrite(3AIO) routine is the asynchronous version of write(2). In addition to
the normal write arguments, aiowrite(3AIO) takes arguments that specify a file
position and the address of an aio_result_t structure. The resulting information
about the operation is stored in the aio_result_t structure.

The file position specifies that a seek operation is to be performed within the file
before the operation. If the aiowrite(3AIO) call succeeds, the file pointer is updated
to the position that would have resulted in a successful seek and write. The file pointer
is also updated when a write fails to allow for subsequent write requests.

Using aiocancel

The aiocancel(3AIO) routine attempts to cancel the asynchronous request whose
aio_result_t structure is given as an argument. An aiocancel(3AIO) call
succeeds only if the request is still queued. If the operation is in progress,
aiocancel(3AIO) fails.
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Using aiowait

A call to aiowait(3AIO) blocks the calling process until at least one outstanding
asynchronous I/O operation is completed. The timeout parameter points to a
maximum interval to wait for I/O completion. A timeout value of zero specifies that
no wait is wanted. aiowait(3AIO) returns a pointer to the aio_result_t structure
for the completed operation.

Using poll()

To determine the completion of an asynchronous I/O event synchronously rather than
depend on a SIGIO interrupt, use poll(2). You can also poll to determine the origin
of a SIGIO interrupt.

poll(2) is slow when used on very large numbers of files. This problem is resolved by
poll(7D).

Using the poll Driver
Using /dev/poll provides a highly scalable way of polling a large number of file
descriptors. This scalability is provided through a new set of APIs and a new driver,
/dev/poll. The /dev/poll API is an alternative to, not a replacement of, poll(2).
Use poll(7D) to provide details and examples of the /dev/poll API. When used
properly, the /dev/poll API scales much better than poll(2). This API is especially
suited for applications that satisfy the following criteria:

� Applications that repeatedly poll a large number of file descriptors

� Polled file descriptors that are relatively stable, meaning that the descriptors are
not constantly closed and reopened

� The set of file descriptors that actually have polled events pending is small,
comparing to the total number of file descriptors that are being polled

Using close

Files are closed by calling close(2). The call to close(2) cancels any outstanding
asynchronous I/O request that can be closed. close(2) waits for an operation that
cannot be cancelled. For more information, see “Using aiocancel” on page 226.
When close(2) returns, no asynchronous I/O is pending for the file descriptor. Only
asynchronous I/O requests queued to the specified file descriptor are cancelled when
a file is closed. Any I/O pending requests for other file descriptors are not cancelled.
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Synchronized I/O
Applications might need to guarantee that information has been written to stable
storage, or that file updates are performed in a particular order. Synchronized I/O
provides for these needs.

Synchronization Modes
Under SunOS, a write operation succeeds when the system ensures that all written
data is readable after any subsequent open of the file. This check assumes no failure of
the physical storage medium. Data is successfully transferred for a read operation
when an image of the data on the physical storage medium is available to the
requesting process. An I/O operation is complete when the associated data has been
successfully transferred, or when the operation has been diagnosed as unsuccessful.

An I/O operation has reached synchronized I/O data integrity completion when:

� For reads, the operation has been completed, or diagnosed if unsuccessful. The
read is complete only when an image of the data has been successfully transferred
to the requesting process. If the synchronized read operation is requested when
pending write requests affect the data to be read, these write requests are
successfully completed before the data is read.

� For writes, the operation has been completed, or diagnosed if unsuccessful. The
write operation succeeds when the data specified in the write request is
successfully transferred. Furthermore, all file system information required to
retrieve the data must be successfully transferred.

� File attributes that are not necessary for data retrieval are not transferred prior to
returning to the calling process.

� Synchronized I/O file integrity completion requires that all file attributes relative
to the I/O operation be successfully transferred before returning to the calling
process. Synchronized I/O file integrity completion is otherwise identical to
synchronized I/O data integrity compleiton.

Synchronizing a File
fsync(3C) and fdatasync(3RT) explicitly synchronize a file to secondary storage.

The fsync(3C) routine guarantees that the interface is synchronized at the I/O file
integrity completion level. fdatasync(3RT) guarantees that the interface is
synchronized at level of I/O data integrity completion.

Applications can synchronize each I/O operation before the operation completes.
Setting the O_DSYNC flag on the file description by using open(2) or fcntl(2) ensures
that all I/O writes reach I/O data completion before the operation completes. Setting
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the O_SYNC flag on the file description ensures that all I/O writes have reached
completion before the operation is indicated as completed. Setting the O_RSYNC flag
on the file description ensures that all I/O reads read(2) and aio_read(3RT) reach
the same level of completion that is requested by the descriptor setting. The descriptor
setting can be either O_DSYNC or O_SYNC.

Interprocess Communication
This section describes the interprocess communication (IPC) interfaces of SunOS as the
interfaces relate to real-time processing. Signals, pipes, FIFOs, message queues, shared
memory, file mapping, and semaphores are described here. For more information
about the libraries, interfaces, and routines that are useful for interprocess
communication, see Chapter 6.

Processing Signals
The sender can use sigqueue(3RT) to send a signal together with a small amount of
information to a target process.

To queue subsequent occurrences of a pending signal, the target process must have the
SA_SIGINFO bit set for the specified signal. See the sigaction(2) man page.

The target process normally receive signals asynchronously. To receive signals
synchronously, block the signal and call either sigwaitinfo(3RT) or
sigtimedwait(3RT). See the sigprocmask(2) man page. This procedure causes the
signal to be received synchronously. The value sent by the caller of sigqueue(3RT) is
stored in the si_value member of the siginfo_t argument. Leaving the signal
unblocked causes the signal to be delivered to the signal handler specified by
sigaction(2), with the value appearing in the si_value of the siginfo_t
argument to the handler.

A specified number of signals with associated values can be sent by a process and
remain undelivered. Storage for {SIGQUEUE_MAX} signals is allocated at the first call to
sigqueue(3RT). Thereafter, a call to sigqueue(3RT) either successfully enqueues at
the target process or fails within a bounded amount of time.
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Pipes, Named Pipes, and Message Queues
Pipes, named pipes, and message queues behave similarly to character I/O devices.
These interfaces have different methods of connecting. See “Pipes Between Processes”
on page 107 for more information about pipes. See “Named Pipes” on page 109 for
more information about named pipes. See “System V Messages” on page 113 and
“POSIX Messages” on page 110 for more information about message queues.

Using Semaphores
Semaphores are also provided in both System V and POSIX styles. See “System V
Semaphores” on page 115 and “POSIX Semaphores” on page 110 for more
information.

Note that using semaphores can cause priority inversions unless priority inversions
are explicitly avoided by the techniques mentioned earlier in this chapter.

Shared Memory
The fastest way for processes to communicate is directly, through a shared segment of
memory. When more than two processes attempt to read and write shared memory
simultaneously, the memory contents can become inaccurate. This potential inaccuracy
is the major difficulty with using shared memory.

Asynchronous Network Communication
This section introduces asynchronous network communication, using sockets or
Transport-Level Interface (TLI) for real-time applications. Asynchronous networking
with sockets is done by setting an open socket, of type SOCK_STREAM, to
asynchronous and non blocking. For more information on asynchronous sockets, see
“Advanced Socket Topics” on page 150. Asynchronous network processing of TLI
events is supported using a combination of STREAMS asynchronous features and the
non-blocking mode of the TLI library routines.

For more information on the Transport-Level Interface, see Chapter 8.
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Modes of Networking
Both sockets and transport-level interface provide two modes of service:
connection-mode and connectionless-mode.

Connection-mode service is circuit-oriented. This service enables the transmission of
data over an established connection in a reliable, sequenced manner. This service also
provides an identification procedure that avoids the overhead of address resolution
and transmission during the data transfer phase. This service is attractive for
applications that require relatively long-lived, datastream-oriented interactions.

Connectionless-mode service is message-oriented and supports data transfer in
self-contained units with no logical relationship required among multiple units. A
single service request passes all the information required to deliver a unit of data from
the sender to the transport provider. This service request includes the destination
address and the data to be delivered. Connectionless-mode service is attractive for
applications that involve short-term interactions that do not require guaranteed,
in-sequence delivery of data. Connectionless transports are generally unreliable.

Timing Facilities
This section describes the timing facilities that are available for real-time applications
under SunOS. Real-time applications that use these mechanisms require detailed
information from the man pages of the routines that are listed in this section.

The timing interfaces of SunOS fall into two separate areas: timestamps and interval
timers. The timestamp interfaces provide a measure of elapsed time. The timestamp
interfaces also enable the application to measure the duration of a state or the time
between events. Interval timers allow an application to wake up at specified times and
to schedule activities based on the passage of time.

Timestamp Interfaces
Two interfaces provide timestamps. gettimeofday(3C) provides the current time in
a timeval structure, representing the time in seconds and microseconds since midnight,
Greenwich Mean Time, on January 1, 1970. clock_gettime, with a clockid of
CLOCK_REALTIME, provides the current time in a timespec structure, representing in
seconds and nanoseconds the same time interval returned by gettimeofday(3C).
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SunOS uses a hardware periodic timer. For some workstations, the hardware periodic
timer is the sole source of timing information. If the hardware periodic timer is the
sole source of timing information, the accuracy of timestamps is limited to the timer’s
resolution. For other platforms, a timer register with a resolution of one microsecond
means that timestamps are accurate to one microsecond.

Interval Timer Interfaces
Real-time applications often schedule actions by using interval timers. Interval timers
can be either of two types: a one-shot type or a periodic type.

A one-shot is an armed timer that is set to an expiration time relative to either a
current time or an absolute time. The timer expires once and is disarmed. This type of
a timer is useful for clearing buffers after the data has been transferred to storage, or to
time-out an operation.

A periodic timer is armed with an initial expiration time, either absolute or relative,
and a repetition interval. Every time the interval timer expires, the timer is reloaded
with the repetition interval. The timer is then rearmed. This timer is useful for data
logging or for servo-control. In calls to interval timer interfaces, time values that are
smaller than the timer’s resolution are rounded up to the next multiple of the
hardware timer interval. This interval is typically 10ms.

SunOS has two sets of timer interfaces. The setitimer(2) and getitimer(2)
interfaces operate fixed set timers, which are called the BSD timers, using the
timeval structure to specify time intervals. The POSIX timers, which are created with
timer_create(3RT), operate the POSIX clock, CLOCK_REALTIME. POSIX timer
operations are expressed in terms of the timespec structure.

The getitimer(2) and setitimer(2) functions retrieve and establish, respectively,
the value of the specified BSD interval timer. The three BSD interval timers that are
available to a process include a real-time timer designated ITIMER_REAL. If a BSD
timer is armed and allowed to expire, the system sends an appropriate signal to the
process that set the timer.

The timer_create(3RT) routine can create up to TIMER_MAX POSIX timers. The
caller can specify what signal and what associated value are sent to the process when
the timer expires. The timer_settime(3RT) and timer_gettime(3RT) routines
retrieve and establish respectively the value of the specified POSIX interval timer.
POSIX timers can expire while the required signal is pending delivery. The timer
expirations are counted, and timer_getoverrun(3RT) retrieves the count.
timer_delete(3RT) deallocates a POSIX timer.

The following example illustrates how to use setitimer(2) to generate a periodic
interrupt, and how to control the arrival of timer interrupts.
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EXAMPLE 10–2 Controlling Timer Interrupts

#include <unistd.h>
#include <signal.h>
#include <sys/time.h>

#define TIMERCNT 8

void timerhandler();
int timercnt;
struct timeval alarmtimes[TIMERCNT];

main()
{

struct itimerval times;
sigset_t sigset;
int i, ret;
struct sigaction act;
siginfo_t si;

/* block SIGALRM */
sigemptyset (&sigset);
sigaddset (&sigset, SIGALRM);
sigprocmask (SIG_BLOCK, &sigset, NULL);

/* set up handler for SIGALRM */
act.sa_action = timerhandler;
sigemptyset (&act.sa_mask);
act.sa_flags = SA_SIGINFO;
sigaction (SIGALRM, &act, NULL);
/*
* set up interval timer, starting in three seconds,
* then every 1/3 second
*/
times.it_value.tv_sec = 3;
times.it_value.tv_usec = 0;
times.it_interval.tv_sec = 0;
times.it_interval.tv_usec = 333333;
ret = setitimer (ITIMER_REAL, &times, NULL);
printf ("main:setitimer ret = %d\n", ret);

/* now wait for the alarms */
sigemptyset (&sigset);
timerhandler (0, si, NULL);
while (timercnt < TIMERCNT) {

ret = sigsuspend (&sigset);
}
printtimes();

}

void timerhandler (sig, siginfo, context)
int sig;
siginfo_t *siginfo;
void *context;
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EXAMPLE 10–2 Controlling Timer Interrupts (Continued)

{
printf ("timerhandler:start\n");
gettimeofday (&alarmtimes[timercnt], NULL);
timercnt++;
printf ("timerhandler:timercnt = %d\n", timercnt);

}

printtimes ()
{

int i;

for (i = 0; i < TIMERCNT; i++) {
printf("%ld.%0l6d\n", alarmtimes[i].tv_sec,

alarmtimes[i].tv_usec);
}

}
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CHAPTER 11

The Solaris ABI and ABI Tools

The Solaris™ Application Binary Interface (ABI) defines the interfaces that are
available for the use of application developers. Conforming to the ABI enhances an
application’s binary stability. This chapter discusses the Solaris ABI and the tools
provided to verify an application’s compliance with the ABI, including:

� The definition and purpose of the Solaris ABI, discussed in “Defining the Solaris
ABI” on page 236.

� The usage of the two ABI tools, appcert and apptrace, discussed in “Solaris ABI
Tools” on page 238.

What is the Solaris ABI?
The Solaris ABI is the set of supported run-time interfaces that are available for an
application to use with the Solaris operating environment. The most important
components of the ABI are in the following list:

� The interfaces provided by the Solaris system libraries, which are documented in
section 3 of the man pages

� The interfaces provided by the Solaris kernel system calls, which are documented
in section 2 of the man pages

� The locations and formats of various system files and directories, which are
documented in section 4 of the man pages

� The input and output syntax and semantics of Solaris utilities, which are
documented in section 1 of the man pages

The main component of the Solaris ABI is the set of system library interfaces. The term
ABI in this chapter refers only to that component. The ABI contains exclusively C
language interfaces, as C is the only language for which the Solaris operating
environment provides interfaces.
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C source code that is written to the Solaris API (Application Programming Interface) is
transformed by the C compiler into a binary for one of three ABI versions. The three
versions are 32-bit SPARC, 64-bit SPARC, or 32-bit Intel. While the ABI is very similar
to the API, the source compilation process introduces several important differences:

� Compiler directives such as #define can alter or replace source-level constructs.
The resulting binary might lack a symbol present in the source or include a symbol
not present in the source.

� The compiler might generate processor-specific symbols, such as arithmetic
instructions, which augment or replace source constructs.

� The compiler’s binary layout might be specific to that compiler and the versions of
the source language which the compiler accepts. In such cases, identical code
compiled with different compilers might produce incompatible binaries.

For these reasons, source-level (API) compatibility does not provide a sufficient
expectation of binary compatibility across Solaris releases.

The Solaris ABI is made up of the supported interfaces provided by the operating
system. Some of the interfaces that are available in the system are intended for the
exclusive use of the operating system. These exclusive interfaces are not available for
use by an application. Prior to the SunOS 5.6 release, all of the interfaces in Solaris
libraries were available for application developers to use. With the library symbol
scoping technology available in the Solaris link editor, interfaces not intended for use
outside of a library have their scope reduced to be purely local to the library. See the
Linker and Libraries Guide for details. Due to system requirements, not all private
interfaces can have such a reduced scope. These interfaces are labeled private, and are
not included in the Solaris ABI.

Defining the Solaris ABI
The Solaris ABI is defined in the Solaris libraries. These definitions are done by means
of the library versioning technology and policies used in the link editor and run-time
linker.

Symbol Versioning in Solaris Libraries
The Solaris link editor and run-time linker use two kinds of library versioning: file
versioning and symbol versioning. In file versioning, a library is named with an
appended version number, such as libc.so.1. When an incompatible change is
made to one or more public interfaces in that library, the version number is
incremented (for example, to libc.so.2). In a dynamically linked application, a
symbol bound to at build time might not be present in the library at run time. In
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symbol versioning, the Solaris linker associates a set of symbols with a name. The
linker then checks for the presence of the name in the library during run-time linking
to verify the presence of the associated symbols.

Library symbol versioning associates a set of symbols with a symbol version name,
and number if that name has a numbering scheme, by means of a mapfile. The
following is an example mapfile for a hypothetical Sun library, libfoo.so.1.

SUNW_1.2 {
global:

symbolD;
symbolE

} SUNW_1.1;

SUNW_1.1 {
global:

symbolA;
symbolB;
symbolC;

};

SUNWprivate {
global:

__fooimpl;
local: *;

};

This mapfile indicates that symbolA, symbolB, and symbolC are associated with
version SUNW_1.1, symbolD and symbolE are associated with SUNW_1.2, and that
SUNW_1.2 inherits all the symbols associated with SUNW_1.1. The symbol
__fooimpl is associated with a different named set which does not have a numbered
inheritance chain.

During build time, the link editor examines the symbols used by the application. The
link editor records the set names in the application on which those symbols depend. In
the case of chained sets, the link editor records the smallest named set containing all
the symbols used by the application. If an application uses only symbolA and
symbolB, the link editor records a dependency on SUNW_1.1. If an application uses
symbolA, symbolB, and symbolD, the link editor records a dependency on
SUNW_1.2, because SUNW_1.2 includes SUNW_1.1.

At run time, the linker verifies that the version names recorded as dependencies in the
application are present in the libraries that are being linked. This process is a quick
way to verify the presence of required symbols. For more details, see the Linker and
Libraries Guide.
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Note – The local: * directive in the mapfile means that any symbol in the library that is
not explicitly associated with a named set is scoped locally to the library. Such locally
scoped symbols are not visible outside the library. This convention ensures that
symbols are only visible when associated with a symbol versioning name.

Using Symbol Versioning to Label the Solaris ABI
Since all visible symbols in a library belong to some named set, the naming scheme
can be used to label the symbols’ ABI status. This labeling is done by associating all
private interfaces with a set name beginning with SUNWprivate. Public interfaces
begin with other names, specifically:

� SYSVABI, for interfaces defined by the System V ABI definition
� SISCD, for interfaces defined by the SPARC International SPARC Compliance

Definition

� SUNW, for interfaces defined by Sun Microsystems

These public, named sets are numbered with a major.minor numbering scheme. When a
set includes new symbols, the set’s minor version number increases. When an existing
symbol changes in a way that makes the symbol incompatible with its previous
behavior, the major version number of the set that includes that symbol increases.
When an existing symbol changes incompatibly, the version number in the library’s
file name also increases.

The definition of the Solaris library ABI is therefore contained in the libraries, and
consists of the set of symbols that are associated with symbol version names that do
not begin with SUNWprivate. The pvs command lists the symbols in a library.

Solaris ABI Tools
The Solaris operating environment provides two tools to verify that an application’s
use of Solaris interfaces conforms to the Solaris ABI. The appcert utility statically
examines the Solaris library interfaces used by ELF binaries for instances of private
interface usage. The appcert utility produces summary and detailed reports of any
potential binary stability problems it finds. The apptrace tool uses the link-auditing
capability of the run-time linker to dynamically trace Solaris library routine calls as the
application runs. This capability enables developers to examine an application’s use of
the Solaris system interfaces.
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The ABI tools enable easy, rapid identification of binaries that might have binary
compatibility problems with a given Solaris release. To check binary stability, perform
the following steps:

� Use appcert on the current Solaris release for triage. This identifies which binaries
use problematic interfaces and which do not.

� Use apptrace on the target Solaris release for verification. This verifies whether
interface compatibility problems exist by enabling dynamic observation of those
interfaces as they are used.

appcert Utility
The appcert utility is a Perl script that statically examines ELF binaries and
compares the library symbols used against a model of public interfaces and private
interfaces in a given Solaris release. The utility runs on either SPARC or Intel
platforms. The utility can check interface usage for both SPARC and Intel 32-bit
interfaces as well as the 64-bit interfaces on SPARC. Note that appcert only examines
C language interfaces.

As new Solaris releases become available, some library interfaces might change their
behavior or disappear entirely. These changes can affect the performance of
applications that rely on those interfaces. The Solaris ABI defines runtime library
interfaces that are safe and stable for application use. The appcert utility is designed
to help developers verify an application’s compliance with the Solaris ABI.

What appcert Checks
The appcert utility examines your applications for:

� Private symbol usage
� Static linking
� Unbound symbols

Private Symbol Usage
Private symbols are functions or data that is used by Solaris libraries to call each other.
The semantic behavior of private symbols might change, and symbols might
sometimes be removed. Such symbols are called demoted symbols. The mutable nature
of private symbols introduces the potential for instability in applications that depend
on private symbols.
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Static Linking
The semantics of private symbol calls between Solaris libraries might change between
releases. Therefore, the creation of static links to archives degrades an application’s
binary stability. Dynamic links to the archive’s corresponding shared object file avoid
this problem.

Unbound Symbols
The appcert utility uses the dynamic linker to resolve the library symbols that are
used by the application being examined. Symbols that the dynamic linker cannot
resolve are called unbound symbols. Unbound symbols might be caused by
environment problems, such as an incorrectly set LD_LIBRARY_PATH variable.
Unbound symbols might also be caused by build problems, such as omitting the
definitions of the -llib or -z switches at compile time. While these examples are
minor, unbound symbols that are reported by appcert might indicate a more serious
problem, such as a dependency on a private symbol that no longer exists.

What appcert Does Not Check
If the object file appcert is examining depends on libraries, those dependencies must
be recorded in the object. To do so, be sure to use the compiler’s -l switch when
compiling the code. If the object file depends on other shared libraries, those libraries
must be accessible through LD_LIBRARY_PATH or RPATH at the time you run
appcert.

The appcert application cannot check 64–bit applications unless the machine is
running the 64–bit Solaris kernel. Since Solaris provides no 64–bit static libraries,
appcert does not perform static-linking checks on 64–bit applications.

The appcert utility cannot examine:

� Object files that are completely or partially statically linked. A completely statically
linked object is reported as unstable.

� Executable files that do not have the execute permission set. The appcert utility
skips such executables. Shared objects without the execute permission set are
examined normally.

� Object files whose user ID is set to root.
� Non-ELF executables, such as shell scripts.
� Solaris interfaces in languages other than C. The code need not be in C, but the call

to the Solaris library must be.

240 Programming Interfaces Guide • December 2003



Working with appcert
To check your application with appcert, type:

appcert object|directory

replacing object|directory with either:

� The complete list of objects you want appcert to examine
� The complete list of directories that contain such objects

Note – You might run appcert in an environment that is different from the
environment in which the application runs. If these environments are different,
appcert might not be able to correctly resolve references to Solaris library interfaces.

The appcert utility uses the Solaris runtime linker to construct a profile of interface
dependencies for each executable or shared object file. This profile is used to
determine the Solaris system interfaces upon which the application depends. The
dependencies that are outlined in the profile are compared to the Solaris ABI to verify
conformance. No private interfaces should be found.

The appcert utility recursively searches directories for object files, ignoring non-ELF
object files. After appcert has finished checking the application, appcert prints a
rollup report to the standard output, usually the screen. A copy of this report is
written in the working directory, which is usually /tmp/appcert.pid, in a file that is
named Report. In the subdirectory name, pid represents the 1–to–6 digit process ID of
that particular instantiation of appcert. See “appcert Results” on page 243 for more
on the directory structure to which appcert writes output files.

appcert Options
The following options modify the behavior of the appcert utility. You can type any of
these options at the command line, after the appcert command but before the
object|directory operand.

-B Runs appcert in batch mode.

In batch mode, the report produced by appcert contains one line
for each binary checked.

A line that begins with PASS indicates the binary that is named in
that line did not trigger any appcert warnings.

A line that begins with FAIL indicates problems were found in that
binary.
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A line that begins with INC indicates the binary that is named in
that line could not be completely checked.

-f infile The file infile should contain a list of files to check, with one file
name per line. These files are added to any files already specified at
the command line. If you use this switch, you do not need to
specify an object or directory at the command line.

-h Prints usage information for appcert.

-L By default, appcert notes any shared objects in an application,
and appends the directories in which the shared objects reside to
LD_LIBRARY_PATH. The -L switch disables this behavior.

-n By default, appcert follows symbolic links when appcert
searches directories for binaries to check. The -n switch disables
this behavior.

-S Appends the Solaris library directories /usr/openwin/lib and
/usr/dt/lib to LD_LIBRARY_PATH.

-w working_dir Specifies a directory in which to run the library components.
Temporary files are also created in the directory specified by this
switch. If this switch is not specified, appcert uses the /tmp
directory.

Using appcert for Application Triage
The appcert utility can be used to quickly and easily discern which applications in a
given set have potential stability problems. If appcert does not report any stability
problems, the application is not likely to encounter binary stability problems in
subsequent Solaris releases. The following table lists some common binary stability
problems.

TABLE 11–1 Common Binary Stability Problems

Problem Course of Action

Use of a private symbol that is known to
change

Eliminate use of symbol immediately.

Use of a private symbol that has not changed
yet

Application can still be run for now, but
eliminate use of symbol as soon as practical.

Static linking of a library with a shared object
counterpart

Use shared object counterpart instead.
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TABLE 11–1 Common Binary Stability Problems (Continued)
Problem Course of Action

Static linking of a library with no shared object
counterpart

Convert .a file to .so file by using the
command ld -z allextract if possible.
Otherwise, continue to use static library until
shared object is available.

Use of a private symbol for which no public
equivalent is available

Contact Sun and request a public interface.

Use of a symbol that is deprecated, or use of a
symbol that is planned for removal

Application can still be run for now, but
eliminate use of symbol as soon as practical.

Use of a public symbol that has changed Recompile.

Potential stability problems caused by the use of private interfaces might not occur on
a given release. The behavior of private interfaces does not always change between
releases. To verify that a private interface’s behavior has changed in the target release,
use the apptrace tool. Usage of apptrace is discussed in “Using apptrace for
Application Verification” on page 245.

appcert Results
The results of the appcert utility’s analysis of an application’s object files are written
to several files that are located in the appcert utility’s working directory, typically
/tmp. The main subdirectory under the working directory is appcert.pid, where pid
is the process ID for that instantiation of appcert. The appcert utility’s results are
written to the following files:

Index Contains the mapping between checked binaries and the
subdirectory in which appcert output specific to that
binary is located.

Report Contains a copy of the rollup report that is displayed on
stdout when appcert is run.

Skipped Contains a list of binaries that appcert was asked to check
but was forced to skip, along with the reason each binary
was skipped. These reasons are in the following list:

� File is not a binary object
� File cannot be read by the user
� File name contains metacharacters
� File does not have the execute bit set

objects/object_name A separate subdirectory is under the objects subdirectory
for each object examined by appcert. Each of these
subdirectories contains the following files:
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check.demoted.symbols Contains a list of symbols that
appcert suspects are demoted
Solaris symbols.

check.dynamic.private Contains a list of private Solaris
symbols to which the object is
directly bound.

check.dynamic.public Contains a list of public Solaris
symbols to which the object is
directly bound.

check.dynamic.unbound Contains a list of symbols not
bound by the dynamic linker
when running ldd -r. Lines
returned by ldd containing
“file not found” are also
included.

summary.dynamic Contains a printer-formatted
summary of dynamic bindings in
the objects appcert examined,
including tables of public and
private symbols used from each
Solaris library.

Returns one of four exit values.

0 No potential sources of binary instability were found by appcert.

1 The appcert utility did not run successfully.

2 Some of the objects checked by appcert have potential binary stability
problems.

3 The appcert utility did not find any binary objects to check.

Correcting Problems Reported by appcert
� Private Symbol Use – An application that depends on private symbols might not

run on a Solaris release different from the one in which it was developed. This
phenomenon occurs because private symbols that occur in a given Solaris release
might behave differently or not be present in another release. If appcert reports
private symbol usage in your application, rewrite the application to avoid the use
of private symbols.

� Demoted Symbols – Demoted symbols are functions or data variables in a Solaris
library that have been removed or have been scoped locally in a later Solaris
release. An application that directly calls such a symbol fails to run on a release
whose libraries do not export that symbol.
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� Unbound Symbols – Unbound symbols are library symbols that are referenced by
the application that the dynamic linker was unable to resolve when called by
appcert. While unbound symbols are not always an indicator of poor binary
stability, unbound symbols might indicate a more serious problem, such as
dependencies on demoted symbols.

� Obsolete Library – An obsolete library might be removed from the Solaris
operating environment in a future release. The appcert utility flags any use of
such a library. Applications that depend on such a library might not function in a
future release that does not feature the library. To avoid this problem, do not use
interfaces from obsolete libraries.

� Use of sys_errlist or sys_nerr – The use of the sys_errlist and sys_nerr
symbols might degrade binary stability. A reference might be made past the end of
the sys_errlist array. To avoid this risk, use strerror instead.

� Use of strong and weak symbols – The strong symbols that are associated with
weak symbols are reserved as private because their behavior might change in
future Solaris releases. Applications should only directly reference weak symbols.
An example of a strong symbol is _socket, which is associated with the weak
symbol socket.

Using apptrace for Application Verification
The apptrace utility is a C program which dynamically traces calls to Solaris library
routines as an application runs. apptrace works on either SPARC or Intel platforms.
apptrace can trace interface calls for both SPARC and Intel 32-bit interfaces, as well
as the 64-bit interfaces on SPARC. As with appcert, apptrace only examines C
language interfaces.

Application Verification
After using appcert to determine an application is at risk of binary instability,
apptrace helps assess the degree of risk in each case. To determine an application’s
binary compatibility with a given release, verify the successful use of each interface
used by the application with apptrace.

The apptrace utility can verify that an application is using public interfaces correctly.
For example, an application that is using the open() to open the administrative file
/etc/passwd directly should instead use the appropriate programmatic interfaces.
This ability to inspect the usage of the Solaris ABI enables easy and rapid
identification of potential interface problems.
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Running apptrace

The apptrace utility does not require any modification of the application being
traced. To use apptrace, type apptrace, followed by any desired options along
with the command line used to run the application of interest. The apptrace utility
works by using the link-auditing capability of the runtime linker to intercept the
application’s calls to Solaris library interfaces. The apptrace utility then traces the
calls by printing the names and values of the call’s arguments and return value. The
tracing output can be on a single line or arranged across multiple lines for readability.
Public interfaces are printed in human-readable form. Private interfaces are printed in
hexadecimal.

The apptrace utility enables selective tracing of calls, both at the level of individual
interfaces and the level of libraries. For example, apptrace can trace calls to
printf() coming from libnsl, or a range of calls within a specific library. The
apptrace utility can also verbosely trace user-specified calls. The specifications that
dictate apptrace behavior are governed by a syntax that is consistent with the usage
of truss(1). The -f option directs apptrace to follow forked child processes. The -o
option specifies an output file for apptrace results.

The apptrace utility traces only library-level calls and is loaded into the running
application process, gaining a performance increase over truss. With the exception of
printf, apptrace cannot trace calls to functions that accept variable argument lists
or examine the stack or other caller information, for example, setcontext,
getcontext, setjmp, longjmp, and vfork.

Interpreting apptrace Output
The following examples contain sample apptrace output from tracing a simple
one-binary application, ls.

EXAMPLE 11–1 Default Tracing Behavior

% apptrace ls /etc/passwd
ls -> libc.so.1:atexit(func = 0xff3cb8f0) = 0x0
ls -> libc.so.1:atexit(func = 0x129a4) = 0x0
ls -> libc.so.1:getuid() = 0x32c3
ls -> libc.so.1:time(tloc = 0x23918) = 0x3b2fe4ef
ls -> libc.so.1:isatty(fildes = 0x1) = 0x1
ls -> libc.so.1:ioctl(0x1, 0x540d, 0xffbff7ac)
ls -> libc.so.1:ioctl(0x1, 0x5468, 0x23908)
ls -> libc.so.1:setlocale(category = 0x6, locale = "") = "C"
ls -> libc.so.1:calloc(nelem = 0x1, elsize = 0x40) = 0x23cd0
ls -> libc.so.1:lstat64(path = "/etc/passwd", buf = 0xffbff6b0) = 0x0
ls -> libc.so.1:acl(pathp = "/etc/passwd", cmd = 0x3, nentries = 0x0,

aclbufp = 0x0) = 0x4
ls -> libc.so.1:qsort(base = 0x23cd0, nel = 0x1, width = 0x40,

compar = 0x12038)
ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0
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EXAMPLE 11–1 Default Tracing Behavior (Continued)

ls -> libc.so.1:strlen(s = "") = 0x0
ls -> libc.so.1:strlen(s = "/etc/passwd") = 0xb
ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0
ls -> libc.so.1:strlen(s = "") = 0x0
ls -> libc.so.1:printf(format = 0x12ab8, ...) = 11
ls -> libc.so.1:printf(/etc/passwd
format = 0x12abc, ...) = 1

ls -> libc.so.1:exit(status = 0)

The previous example shows the default tracing behavior, tracing every library call on
the command ls /etc/passwd. The apptrace utility prints a line of output for
every system call, indicating:

� The name of the call
� The library the call is in
� The arguments and return values of the call

The output from ls is mixed in with the apptrace output.

EXAMPLE 11–2 Selective Tracing

% apptrace -t \*printf ls /etc/passwd
ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0
ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0
ls -> libc.so.1:printf(format = 0x12ab8, ...) = 11
ls -> libc.so.1:printf(/etc/passwd

format = 0x12abc, ...) = 1

The previous example shows how apptrace can selectively trace calls with
regular-expression syntax. In the example, calls to interfaces ending in printf, which
include sprintf, are traced in the same ls command as before. Consequently,
apptrace only traces the printf and sprintf calls.

EXAMPLE 11–3 Verbose Tracing

% apptrace -v sprintf ls /etc/passwd
ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0
buf = (char *) 0x233d0 ""
format = (char *) 0x12af8 "%s%s%s"

ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0
buf = (char *) 0x233d0 ""
format = (char *) 0x12af8 "%s%s%s"

/etc/passwd

The previous example shows the verbose tracing mode, where the arguments to
sprintf are printed on multiple output lines for readability. At the end, apptrace
displays the output of the ls command.
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APPENDIX A

UNIX Domain Sockets

UNIX domain sockets are named with UNIX paths. For example, a socket might be
named /tmp/foo. UNIX domain sockets communicate only between processes on a
single host. Sockets in the UNIX domain are not considered part of the network
protocols because they can be used to communicate only between processes on a
single host.

Socket types define the communication properties visible to a user. The Internet
domain sockets provide access to the TCP/IP transport protocols. The Internet domain
is identified by the value AF_INET. Sockets exchange data only with sockets in the
same domain.

Creating Sockets
The socket(3SOCKET) call creates a socket in the specified family and of the
specified type.

s = socket(family, type, protocol);

If the protocol is unspecified (a value of 0), the system selects a protocol that supports
the requested socket type. The socket handle (a file descriptor) is returned.

The family is specified by one of the constants defined in sys/socket.h. Constants
named AF_suite specify the address format to use in interpreting names.

The following creates a datagram socket for intramachine use:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

Set the protocol argument to 0, the default protocol, in most situations.
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Local Name Binding
A socket is created with no name. A remote process has no way to refer to a socket
until an address is bound to the socket. Communicating processes are connected
through addresses. In the UNIX family, a connection is composed of (usually) one or
two path names. UNIX family sockets need not always be bound to a name. If they
are, bound, duplicate ordered sets such as local pathname or foreign pathname
can never exist. The path names cannot refer to existing files.

The bind(3SOCKET) call enables a process to specify the local address of the socket.
This creates the local pathname ordered set, while connect(3SOCKET) and
accept(3SOCKET) complete a socket’s association by fixing the remote half of the
address. Use bind(3SOCKET) as follows:

bind (s, name, namelen);

The socket handle is s. The bound name is a byte string that is interpreted by the
supporting protocols. UNIX family names contain a path name and a family. The
example shows binding the name /tmp/foo to a UNIX family socket.

#include <sys/un.h>
...
struct sockaddr_un addr;
...
strcpy(addr.sun_path, "/tmp/foo");
addr.sun_family = AF_UNIX;
bind (s, (struct sockaddr *) &addr,

strlen(addr.sun_path) + sizeof (addr.sun_family));

When determining the size of an AF_UNIX socket address, null bytes are not counted,
which is why you can use strlen(3C).

The file name referred to in addr.sun_path is created as a socket in the system file
name space. The caller must have write permission in the directory where
addr.sun_path is created. The file should be deleted by the caller when it is no
longer needed. Delete AF_UNIX sockets with unlink(1M).

Establishing a Connection
Connection establishment is usually asymmetric. One process acts as the client and the
other as the server. The server binds a socket to a well-known address associated with
the service and blocks on its socket for a connect request. An unrelated process can
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then connect to the server. The client requests services from the server by initiating a
connection to the server’s socket. On the client side, the connect(3SOCKET) call
initiates a connection. In the UNIX family, this might appear as:

struct sockaddr_un server;
server.sun.family = AF_UNIX;
...
connect(s, (struct sockaddr *)&server, strlen(server.sun_path)

+ sizeof (server.sun_family));

See “Connection Errors” on page 129 for information on connection errors. “Data
Transfer” on page 130 tells you how to transfer data. “Closing Sockets” on page 131
tells you how to close a socket.
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ABI, See application binary interface
ABI differences from API, 236
accept, 128, 250
API differences from ABI, 236
appcert

limitations, 240
syntax, 241

application binary interface (ABI), 235
defined, 236
tools, 238

appcert, 238
apptrace, 238

apptrace, 245
asynchronous I/O

behavior, 211
endpoint service, 183
guaranteeing buffer state, 211
listen for network connection, 185
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opening a file, 185
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Asynchronous Safe, 172
asynchronous socket, 153, 154
atomic updates to semaphores, 116

B
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bind, 128, 250

blocking mode
defined, 217
finite time quantum, 215
priority inversion, 217
time-sharing process, 209

brk(2), 21
broadcast, sending message, 161

C
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checksum off-load, 158
child process, 155
chmod(1), 99
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priority queue, 216
scheduling algorithm, 215
scheduling priorities, 214

client/server model, 146
close, 131
connect, 128, 139, 250, 251
connection-mode

asynchronous network service, 184
asynchronously connecting, 184
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using asynchronous connection, 184
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service, 183

connectionless-mode, definition, 231
context switch, pre-empting a process, 217
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253



D
daemon, inetd, 160
datagram

socket, 125, 138, 148
debugging dynamic memory, 18
/dev/zero, mapping, 16
dispatch, priorities, 214
dispatch latency, 212

under realtime, 211
dispatch table

configuring, 220
kernel, 216

dynamic memory
allocation, 18
debugging, 18

access checking, 19
leak checking, 19
memory use checking, 20

E
EWOULDBLOCK, 153
example, RSMAPI, 48
examples, library mapfile, 237

F
F_GETLK, 103
F_SETOWN fcntl, 155
fcntl(2), 101
file and record locking, 98
file descriptor

passing to another process, 186
transferring, 186

file system
contiguous, 211
opening dynamically, 185

file versioning, 236
files, lock, 98
free, 18

G
gethostbyaddr, 144
gethostbyname, 144

getpeername, 160
getservbyname, 145
getservbyport, 145
getservent, 145

H
handle

socket, 128, 250
handles, 39
host name mapping, 143
hostent structure, 143

I
I/O,, See asynchronous I/O, or synchronous

I/O
implicit barrier mode, 39
inet_ntoa, 144
inetd, 146, 159, 160
inetd.conf, 160
init(1M), scheduler properties, 63
interfaces

advanced I/O, 97
basic I/O, 96
IPC, 107
list file system control, 98
terminal I/O, 104

Internet
host name mapping, 143
port numbers, 157
well known address, 144, 146

Interprocess Communication (IPC)
using messages, 230
using named pipes, 230
using pipes, 230
using semaphores, 230
using shared memory, 230

ioctl, SIOCATMARK, 151
IPC (interprocess communication), 107

creation flags, 112
interfaces, 112
messages, 113
permissions, 112
semaphores, 115
shared memory, 120

254 Programming Interfaces Guide • December 2003



IPC_RMID, 114
IPC_SET, 114
IPC_STAT, 114
IPPORT_RESERVED, 157

K
kernel

class independent, 215
context switch, 217
dispatch table, 216
pre-empting current process, 217
queue, 211

L
libnsl, 172
lockf(3C), 103
locking

advisory, 100
F_GETLK, 103
finding locks, 103
mandatory, 100
memory in realtime, 222
opening a file for, 101
record, 102
removing, 102
setting, 102
supported file systems, 100
testing locks, 103
with fcntl(2), 101

ls(1), 99

M
malloc, 18
mapped files, 15, 16
memalign, 18
memory

locking, 222
locking a page, 223
locking all pages, 223
number of locked pages, 222
sticky locks, 224
unlocking a page, 223

memory allocation, dynamic, 18
memory management, 21

brk, 21
interfaces, 15
mlock, 17
mlockall, 17
mmap, 15, 16
mprotect, 20
msync, 17
munmap, 16
sbrk, 21
sysconf, 20

messages, 113
mlock, 17
mlockall, 17
mmap, 15, 16
mprotect, 20
MSG_DONTROUTE, 130
MSG_OOB, 130
MSG_PEEK, 130, 151
msgget(), 113
msqid, 113
msync, 17
multiple connect (TLI), 176
multithread safe, 172, 199
munmap, 16

N
name-to-address translation

inet, 201
nis.so, 201
straddr.so, 201
switch.so, 201
tcpip.so, 201

named pipe, FIFO, 229
netdir_free, 202
netdir_getbyaddr, 202
netdir_getbyname, 202
netdir_options, 203
netdir_perror, 204
netdir_sperror, 204
netent structure, 144
network

asynchronous connection, 182, 230
asynchronous service, 183
asynchronous transfers, 183

Index 255



network (Continued)
asynchronous use, 182
connection-mode service, 231
connectionless-mode service, 231
programming models for real-time, 182
services under realtime, 231
using STREAMS asynchronously, 182, 230
using Transport-Level Interface (TLI), 182

networked applications, 11
nice(1), 63
nice(2), 63
nis.so, 201
non-blocking mode

configuring endpoint connections, 184
defined, 182
endpoint bound to service address, 184
network service, 183
polling for notification, 183
service requests, 182
Transport-Level Interface (TLI), 182
using t_connect(), 184

nonblocking sockets, 152

O
optmgmt, 188, 191
out-of-band data, 151

P
performance, scheduler effect on, 63
permissions, IPC, 112
poll, 176
pollfd structure, 178, 179
polling

for a connection request, 184
notification of data, 183
using poll(2), 183

port numbers for Internet, 157
port to service mapping, 145
porting from TLI to XTI, 172
priocntl(1), 61
priority inversion

defined, 209
synchronization, 217

priority queue, linear linked list, 216

process
defined for realtime, 207
dispatching, 217
highest priority, 208
pre-emption, 217
residence in memory, 222
runaway, 210
scheduling for realtime, 214
setting priorities, 219

process priority
global, 56
setting and retrieving, 61

protoent structure, 144

R
real-time, scheduler class, 58
realloc, 18
recvfrom, 139
remote shared memory API, See RSMAPI
removing record locks, 102
response time

blocking processes, 209
bounds to I/O, 208
degrading, 208
inheriting priority, 209
servicing interrupts, 209
sharing libraries, 209
sticky locks, 210

reversing operations for semaphores, 117
rpcbind, 202
rsm_create_localmemory_handle, 40
rsm_free_interconnect_topology, 28
rsm_free_localmemory_handle, 40
rsm_get_controller, 26
rsm_get_controller_attr, 26
rsm_get_interconnect_topology, 28
rsm_get_segmentid_range, 28
rsm_intr_signal_post, 45
rsm_intr_signal_wait, 45
rsm_memseg_export_create, 30
rsm_memseg_export_destroy, 31
rsm_memseg_export_publish, 32
rsm_memseg_export_rebind, 34
rsm_memseg_export_republish, 33
rsm_memseg_export_unpublish, 34
rsm_memseg_get_pollfd, 45
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rsm_memseg_import_close_barrier, 43
rsm_memseg_import_connect, 35
rsm_memseg_import_destroy_barrier, 44
rsm_memseg_import_disconnect, 36
rsm_memseg_import_get, 38
rsm_memseg_import_get_mode, 44
rsm_memseg_import_get16, 37
rsm_memseg_import_get32, 37
rsm_memseg_import_get64, 37
rsm_memseg_import_get8, 37
rsm_memseg_import_getv, 39
rsm_memseg_import_init_barrier, 38, 43
rsm_memseg_import_map, 41
rsm_memseg_import_open_barrier, 43
rsm_memseg_import_order_barrier, 43
rsm_memseg_import_put, 37
rsm_memseg_import_put16, 37
rsm_memseg_import_put32, 37
rsm_memseg_import_put64, 37
rsm_memseg_import_put8, 37
rsm_memseg_import_putv, 39
rsm_memseg_import_set_mode, 44
rsm_memseg_import_unmap, 42
rsm_memseg_release_pollfd, 46
rsm_release_controller, 26
RSMAPI, 23

administrative operations, 28
application ID, 29
rsm_get_segmentid_range, 28

API framework, 24
barrier mode

implicit, 39
cluster topology operations, 27
data structures, 28
event operations, 45

get pollfd, 45
post signal, 45
release pollfd, 46
rsm_intr_signal_post, 45
rsm_intr_signal_wait, 45
rsm_memseg_get_pollfd, 45
rsm_memseg_release_pollfd, 46
wait for signal, 45

example of use, 48
interconnect controller operations, 26

rsm_free_interconnect_topology, 28
rsm_get_controller, 26
rsm_get_controller_attr, 26

RSMAPI, interconnect controller operations
(Continued)

rsm_get_interconnect_topology, 28
rsm_release_controller, 26

library functions, 25
memory access primitives, 37

rsm_memseg_import_get, 38
rsm_memseg_import_get16, 37
rsm_memseg_import_get32, 37
rsm_memseg_import_get64, 37
rsm_memseg_import_get8, 37
rsm_memseg_import_put, 37
rsm_memseg_import_put16, 37
rsm_memseg_import_put32, 37
rsm_memseg_import_put64, 37
rsm_memseg_import_put8, 37

memory segment creation, 30
memory segment destruction, 31
memory segment operations, 29

barrier operations, 42
close barrier, 43
connect, 35
destroy barrier, 44
disconnect, 36
export-side, 30
free local handle, 40
get barrier mode, 44
get local handle, 40
handles, 39
import-side, 35
imported segment map, 41
initialize barrier, 43
open barrier, 43
order barrier, 43
rebind, 34
rsm_create_localmemory_handle, 40
rsm_free_localmemory_handle, 40
rsm_memseg_export_create, 30
rsm_memseg_export_destroy, 31
rsm_memseg_export_publish, 32
rsm_memseg_export_rebind, 34
rsm_memseg_export_republish, 33
rsm_memseg_export_unpublish, 34
rsm_memseg_import_close_barrier, 43
rsm_memseg_import_connect, 35
rsm_memseg_import_destroy_barrier, 44
rsm_memseg_import_disconnect, 36
rsm_memseg_import_get_mode, 44

Index 257
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rsm_memseg_import_getv, 39
rsm_memseg_import_init_barrier, 43
rsm_memseg_import_map, 41
rsm_memseg_import_open_barrier, 43
rsm_memseg_import_order_barrier, 43
rsm_memseg_import_putv, 39
rsm_memseg_import_set_mode, 44
rsm_memseg_import_unmap, 42
scatter-gather access, 39
segment mapping, 41
segment unmapping, 42
set barrier mode, 44

memory segment publication, 32
memory segment republication, 33
memory segment unpublication, 34
parameters, 47
segment allocation, 46
shared memory model, 23
SUNWinterconnect, 24
SUNWrsm, 24
SUNWrsmdk, 24
SUNWrsmop, 24
usage, 46

example, 48
file descriptor, 46

Run Time Checking (RTC), 18
rwho, 148

S
sbrk, 21
sbrk(2), 21
scheduler, 55, 65

classes, 215
configuring, 220
effect on performance, 63
priority, 214
real-time, 211
real-time policy, 58
scheduling classes, 214
system policy, 58
time-sharing policy, 57
using system calls, 218
using utilities, 219

scheduler, class, 58

select, 136, 151
semaphores, 115

arbitrary simultaneous updates, 116
atomic updates, 116
reversing operations and SEM_UNDO, 117
undo structure, 116

semget(), 116
semop(), 116
send, 139
servent structure, 144
service to port mapping, 144
setting record locks, 102
shared memory, 120
shared memory model, 23
shmget(), 120
shutdown, 131
SIGIO, 154
SIOCATMARK ioctl, 151
SIOCGIFCONF ioctl, 161
SIOCGIFFLAGS ioctl, 163
SOCK_DGRAM, 125, 159
SOCK_RAW, 127
SOCK_STREAM, 125, 156, 160
socket

address binding, 156
AF_INET

bind, 128
create, 127
getservbyname, 145
getservbyport, 145
getservent, 145
inet_ntoa, 144
socket, 249

AF_UNIX
bind, 128, 250
create, 249
delete, 250

asynchronous, 153, 154
close, 131
connect stream, 131
datagram, 125, 138, 148
handle, 128, 250
initiate connection, 128, 251
multiplexed, 135
nonblocking, 152
out-of-band data, 130, 151
select, 136, 151
selecting protocols, 156
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socket (Continued)
SIOCGIFCONF ioctl, 161
SIOCGIFFLAGS ioctl, 163
SOCK_DGRAM

connect, 139
recvfrom, 139, 151
send, 139

SOCK_STREAM, 156
F_GETOWN fcntl, 155
F_SETOWN fcntl, 155
out-of-band, 151
SIGCHLD signal, 155
SIGIO signal, 154, 155
SIGURG signal, 155

TCP port, 146
UDP port, 146

Solaris library symbol versioning, See symbol
versioning

straddr.so, 201
stream

data, 151
socket, 125, 130

Sun™ WorkShop, 18
access checking, 19
leak checking, 19
memory use checking, 20

SUNWinterconnect, 24
SUNWrsm, 24
SUNWrsmdk, 24
SUNWrsmop, 24
switch.so, 201
symbol versioning, 236
synchronous I/O

blocking, 224
critical timing, 208

sysconf, 20

T
t_accept, 196
t_alloc, 193, 195
t_bind, 193, 195
t_close, 190, 195
t_connect, 195
T_DATAXFER, 192
t_error, 195
t_free, 195

t_getinfo, 193, 195
t_getstate, 195
t_listen, 176, 193, 196
t_look, 195
t_open, 176, 193, 195
t_optmgmt, 195
t_rcv, 196
t_rcvconnect, 195
t_rcvdis, 193, 196
t_rcvrel, 194, 196
t_rcvuderr, 193, 196
t_rcvv, 197
t_rcvvudata, 197
t_snd, 196
t_snddis, 174, 196
t_sndrel, 194, 196
t_sndreldata, 197
t_sndudata, 196
t_sndv, 197
t_sndvudata, 196
t_sync, 195
t_sysconf, 197
t_unbind, 195
TCP, port, 146
tcpip.so, 201
time-sharing

scheduler class, 57
scheduler parameter table, 58

timers
f applications, 231
for interval timing, 231
timestamping, 231
using one-shot, 232
using periodic type, 232

tirdwr, 196
tiuser.h, 172
TLI

asynchronous mode, 176
broadcast, 194
incoming events, 189
multiple connection requests, 176
opaque addresses, 194
outgoing events, 188
privileged ports, 194
protocol independence, 193
queue connect requests, 178
queue multiple requests, 178
read/write interface, 173
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TLI (Continued)
socket comparison, 194
state transitions, 190
states, 187

Transport-Level Interface (TLI), asynchronous
endpoint, 183

U
UDP, port, 146
undo structure for semaphores, 116
unlink, 250
updates, atomic for semaphores, 116
usage

apptrace, 245
file descriptor, 46
RSMAPI, 46

user priority, 57

V
valloc, 18
versioning

file, 236
symbol, 236

virtual memory, 21

X
XTI, 172
xti.h, 172
XTI Interface, 196
XTI Utility Interfaces, 197
XTI variables, getting, 197

Z
zero, 16
zero copy, 158
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