
INTERGRAPBIOS '83

•

This Page Intentionally Left Blank

87-3

EXTENDED MEMORY USE IN THE ZGRASS GRAPHICS SYSTEM

Thomas A. DeFanti

University of Illinois at Chicago
Department of EECS

Box 4348 Chicago, IL 60680, U.S.A.

Computing has always been faced with the choice of optimizing
for time (computer power) or space (memory). Real-time com
puter graphics is most likely the subset of computing that
must choose between space and time most effectively. This pa
per describes in detail the evolved techniques of software
memory management used by the Zgrass system to allow a slow
(1.7mhz) Z-80 to be the processor for a useful computer anima
tion workstation with at least 300K and up to 1472K bytes of
memory. Conclusions will be drawn as to the applicability of
these techniques to the new 16-bit microprocessors with memory
management.

Background

The system being described here is formally called the Datamax
UV-l. Since its software is called Zgrass, an earlier version
of which is described in [1], we will refer to it as the
Zgrass system. It actually started as a home computer graph
ics system in 1977 and later, after having been rebuilt for
the cable television industry, became an artist's workstation
for video production. The Zgrass system was developed to make
people want to program by providing rich animated feedback
with few initial barriers, yet give the user the ability to
unravel layers upon layers of built-in sophistication when and
if the desire arose. Rather extensive testing of the software
has occurred at the University of Illinois at Chicago and the
School of the Art Institute of Chicago where hundreds of art
and engineering students have used it for the past several
years and about 100 systems exist at this point. It is a sys
tem that encourages the writing of software tools as e~ten
sions to the command language and it makes possible the per
formance of real-time interactive visuals. Most of the sys
tems are used by artists most of whom have become programmers
over the years.

Difficulties of the Z-80

In 1977, the Z-80 was a rather advanced chip compared to the
8080, but in 1983, it is considered slow and primitive. In
1977, 64K bytes of memory was the limit, for a personal comput
er; today we talk of megabyte ones. In 1977, one was lucky to
have a macro assembler and a l'inking loader that worked. Now,
assembler coding may be largely abandoned for programming in
C.

-1-

81-3

The Zgrass Custom Chips

A research effort at Dave Nutting Associates, a division of
Bally Corporation, produced in 1976 several custom integrated
circuits to assist the Z-80 in making real-time color video at
320x201x2 bits per pixel resolution. A 1.7mhz Z-80, of course,
can barely do more by itself than drive the terminal this pa
per is being written on if it has to generate video. These
custom chips which have been used in several coin-operated
video games are still in production and were the basis for the
home syst~m called the Bally Arcade. The chips have the dis
tinct advantage that they form a true bit-mapped frame-buffer
and generate rather good NTSC video, a rarity in personal
graphics systems then and now. These chips were very closely
tied into the Z-80 so the development of Zgrass was locked in
to both the chips and the Z-80 as well. Some 20,000 lines of
assembler code had been written, so going to a faster proces
sor was not possible; faster Z-80's would not work with the
custom chips. Thus, the only reasonable way to improve per
formance was to expand memory.

At the time of the BYTE article (1980), the Zgrass system had
16K of ROM, 16K of screen RAM, and 32K of user RAM. The ROM,
later expanded to 32K, holds system code so the machine can
run without booting anything from disk. The screen RAM uses
32 chips so it can be accessed 32 bits at a time in parallel
to generate the video signal. The 32K user RAM is used for
user programs, subpictures (called SNAPs), arrays, and so on.
It is dynamically allocated and reclaimed in 4K or less blocks
according to a highly tuned best fit algorithm. 32K is not
much space for SNAPs, arrays and programs so the disk software
was designed to be more or less an extension of user RAM.

Inexpensive 5" floppy disks are slow, however. The one we
chose takes four seconds to go from track 0 to track 76. The
use of the disk to store software tools and SNAPs works well
but is slow since the disk has to seek quite often. Even
winchester-type disks, although 20 times faster, still do an
unfortunate amount of seeking. Since we were using the disk
as extended RAM, it was an obvious step to load the disk into
RAM and fetch out of it, so we did it. Of course, the Z-80
does not have memory management so the hardware was built
rather straightforwardly and the software provided the flexi
bility needed.

The Current Memory Architecture of Zgrass

The system now supports 32K of ROM, 256K of screen RAM, 32K of
user RAM and up to 576K of EPROM or 1152K of ROM. (An addi
tional 32K of RAM is used to support a 64K CP/M (CP/M is a
trademark of Digital Research, Inc.) system but it is not ac
cessed by Zgrass so it will not be further discussed.) All the
extra memory added is mapped into the address range 16-32K so
that it can be accessed by the custom chips.

-2-

87-3

The custom chips have special features which are enabled by
addressing the screen during writes to memory 0-16K instead of
16-32K. Since there is always ROM at 0-16K, this is not a
waste of addressing space. When a write goes to 0-16K, the
data is manipulated by the chips according to an 8-bit value
held in what the designers call "the magic register." The bits
in the register, which you set by writing to a port, specify
two extremely useful operations between the new data and the
data on the screen: logical or and logical xor. They also al
low the data to be shifted 0, 1, 2, or 3 pixels before writing
to,the screen. The shifter is critical to the implementation
of animations since pixels are packed four to a byte (2
bits/pixel) and laying a pattern down on non-byte boundaries
would otherwise require pitifully slow shifting, masking and
writing of each pixel in Z-80 machine instructions. The
shifter does read-modify-writes and all the masking to make
transfers to memory with shifts as fast as the logical func
tion writes. Straight access to screen memory can be done by
addressing 16-32K. Of course, reads from 0-16K yeild instruc
tions and data from the system ROM.

In the middle of 1981, memory prices dropped on 64K bit RAMs.
Since we had 32 sockets for screen memory anyway, it was sim
ple to modify the system to accept 32 64K bit RAMs to give
256K bytes of screen RAM. The difference in cost is about
$200.00. Changing the amount of memory by 16 times in any
system profoundly affects its performance. The subject of
this paper is describing just how profound the change is.

(Just for completeness, the second 16K of the 32K system ROM
also overlaps the addresses 16-32K. The code in that 16K is
constrained to never read or write screen RAM. All the graph
ics code is in the lower 16K or loaded into the RAM located at
32-64K.)

Keep It Obvious and Friendly

One of Zgrass's main tenets is "keep it obvious." Computer
hardware tends to be devious and clever so keeping it obvious
requires an astonishing amount of creative thought, testing
and reworking. Yet, flexibility is also a primary goal, one
more important to the user with a task at hand than anything
else. Before explaining how the extra memory is used in de
tail, let us state it briefly:

The 256K of screen RAM can be used for:
a. sixteen screens, switchable instantaneously
b. four screens plus 192K disk cache
c. four screens plus panorama screen{s)

"Keeping it obvious" allows one to provide flexibility even if
it is forced to be idiosyncratic by the hardware. Zgrass im
plements special device variables which are always set to de
fault values on startup but may be altered by the user when
the feature the variable specifies is needed. Specific to

-3-

81-3

this discussion, $MW indicates on which screen of 16 the
writes should be (e.g. $MW=5 means write on screen 5). $TV is
set to the screen you wish to view on the television monitor.
Clearly, you can be modifying one screen while viewing anoth
er, easily implementing double or even 16-buffered schemes.
Thus, with a procedure not much different from changing the
channel on a television set, users can have easy access to
256K of screen RAM. $MW and $TV are taken modulo 16 normally.
However, when disk cache or panorama modes (b. and c. above)
are enabled, $MW is taken modulo 4 to prevent accidental des
truction of data.

The Disk Cache

The disk cache is setup by the DLOAD command which reads a
whole floppy disk side into 12 of the 16 screens. Both flop
pies and winchester-type disks are formatted into 192K byte
logical units comprised of 384 512-byte sectors. After
DLOAD'ing, all subsequent reads and writes to that logical
disk actually go to the cached memory. DLOAD.ZAP writes the
disk back out again. The disk cache eliminates all seek time
and transfers programs, arrays, SNAPs, and so on at memory to
memory speeds (80K bytes/second at 1.7mhz clock rates). Of
course, a disk file structure is not the optimal way to use
RAM, but it has the distinct advantage that the modifications
to the system to increase the user's RAM by sixfold only re
quired a small amount of code to be added. More important
though, the user has no problem understanding the disk cache,
can move easily from a 16-screen system to a 4-screen system
with disk cache. Furthermore, user backup is easy to do. If
the 256K memory had been available when the system was
designed in 1977, a different scheme might have been used,
although given that the screen RAM is constrained by hardware
to contain 'only data (the Z-80 cannot execute code out of it),
the 256K memory would need special treatment anyway.

With the disk cache, a rather elaborate paint program was
written in Zgrass by Copper Giloth to enable artists to draw
and animate. The numerous modules are loaded and executed
without perceptible delay based on menu choices of the user.
Animations occupying about 1/4 the screen can be easily an
imated at 20 times a second.

Panoramas

The third option for using the screen memory is by building
panoramas. This option was designed and implemented by
Stephen Joyce, the author of most of the graphics code in
Zgrass. The BUILD command allocates some or all of the last
12 screens as one or more "super screen." One can specify a
single 3x4, 4x3, lxl2, 12xl, 6x2 or 2x6 super screen. A 3x4
super screen, for example, has dimensions 960x804, given that
each screen is 320x201. Or, you can have several smaller
super screens like two 2x3's or six lx2's for example. The

-4-

87-3

DISPLAY command which ordinarily places SNAPs anywhere on any
screen has an option to use a super screen instead of a SNAP
as the source. The data is clipped to either the whole
current screen (as specified by $MW) or a subset of the
current screen set by the WINDOW command. Thus, a large image
like a map may be viewed through a 320x201 or smaller window
and you can roam around quite easily and quickly. SCALE is a
command that works like DISPLAY except that it allows shrink
ing or expanding of the data while writing to the current
screen. The PLACE command stores rectangular areas of the
current screen on a super screen.

Following the next section on EPROM/ROM disks, an attempt will
. be made to justify which of these memory structures make sense

in a system with lots of memory (like 68000's, PDP-II's and
Z-8000's with memory management). Zgrass, of course, is an
experiment in inexpensive graphics technology for personal ac
cess by artists and educators and, in such, provides many les
sons to the designer of a new system.

EPROM/ROM Disks

The Zgrass system is ideal for the cable-tv operator who
desires graphics better than those offered by teletext sys
tems. Zgrass in this mode acts like a remote character gen
erator with animation capability. Several problems had to be
solved for this application, however. First, a suitable way to
send commands and data had to be designed so that human opera
tors would not be needed. This was not very difficult and was
quickly done. Second, rotating memories like disks are simply
not rugged enough for the environment of a cable head end
block house. Cable TV equipment is designed for negligible
downtime so a disk without moving parts had to be designed.
Clearly, mass chip memory was the only answer.

The EPROM/ROM disk is configured as a board with 24 8K byte
EPROMs (one 192K disk image) or 24 16K byte ROMs (two 192K
disk images). For hardware simplicity, the maximum number of
boards is three so a total of 576K EPROM or 1152K ROM may be
installed. Picking 192K as the logical size once again allows
the user to fully debug the package on a floppy, winchester
type or cache disk before committing to EPROM or ROM. Once
the application is ready, it is a simple matter to transfer
the whole disk to EPROM using a conventional EPROM programmer.
ROM's, of course, have a much more involved manufacturing pro
cess. Once again, adding support for the EPROM/ROM disk re
quired only a tiny increment in code given that this memory
also resides in pages at the 16-32K address space.

Thus, it may be observed that this modest Z-80 system may be
configured to have up to 1472K bytes of memory, all but 48K of
it mapped into 16K pages at 16-32K.

Applicability to 16-Bit Systems

-5-

87-3

The Zgrass community eagerly awaits a higher-resolution sys
tem. A 640x480 screen requires 38,400 bytes/bit plane. To
maintain the animation speed, a much faster processor is need
ed. Fortunately, Z-8000's, 68000's and PDP-II chips are fast
enough and also allow development of the software in the C
language. Current work is proceeding on a VAX in simulation
mode for several types of graphic display units. Faced at
this point with a total re-design, what is worth keeping?

Without a doubt, the EPROM/ROM disk is a good idea. Rotating
memories are simply unacceptable in poor environments where
low-cost graphics may be needed. The EPROM disk is also quite
a bit cheaper and much faster than disk drives. Its
maintenance-free, operator-less operation is very desirable.
It also fits right into a card rack using available power.
These benefits, of course, are recognized by home video game
manufacturers who supply software on ROM cartridges.

The disk cache is also a transferable concept. Creative users
of a programmable system have no trouble dealing with disk
files, if only to facilitate creation of libraries of software
tools and images. Having disk images execute out of memory
saves time and considerable wear on the mechanics of the disk
drives.

The panorama idea also has validity in higher-resolution sys
tems. Hardware support for choosing the window would be
desirable so roaming around a large database could be done in
real-time. Hardware scaling would also be quite useful.

User main
be much
should be
tion and
work well

memory, limited to 32K in the current Zgrass, should
larger, in fact, expansion to any affordable size
automatically supported. The current memory alloca-
~eclamation schemes are quite usable, however, and

enough to be modified for much larger memory spaces.

It is also clear that multiple screens are important. Two
screens allow double buffering; more allow animation.
Although 16 have been very effective in Zgrass, a new system
should provide for as many as the user can afford to buy.
Five seconds of full animation at 12 screens per second (the
speed of conventional animation on two's) requires 60 screens.
Of course, at a resolution of 640x480x8 bits/pixel, 60 screens
require 18 megabytes of memory. High resolution has its
price, although, at current costs, 18 megabytes is not out of
the range of studio broadcast television equipment.

Conclusions

This paper has narrowed its focus to memory paging techniques
found useful in extending a Z-80-based graphics system to ful
ly utilize a large memory space in a user-friendly way. Many
of the techniques are directly applicable and desirable in

-6-

87-3

systems having much greater memory addressing capability.
Working on a small, low-resolution animation system with ex
tensive memory has given insight into how to design higher
resolution workstations for artists, and much practice with
delivery systems in situations applicable to videogames, in
teractive movies, education, public information displays and
conventional television.

Reference:

[1] DeFanti, Thomas A., "Language Control Structures for Easy
Electronic Visualization," Byte, Vol. 5, No. 11, November
1980, pp. 90-104.

-7-

