
... _1
RESEARCH. INC.

PREUMINARY
REFERENCE
MANUAL

THE CRAY-1 COMPUTER

PRELIMINARY

REFERENCE MANUAL

CoPYRIGHT (C) 1975 BY CRAY RESEARCH, INC. THIS MANUAL, OR PARTS
THEREOF, MAY N0T BE REPRODUCED IN ANY FORM WITHOUT PERMISSION OF
CRAY KESEARCH, NC. I HIS ~UAL CONTAINS PRELIMINARY INFORf'1ATION
WHICH IS SUBJECT TO CORRECTION AND CHANGE WITHOUT FORMAL NOTICE TO
COpy HOLDERS.

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD
REVISION DESCRIPTION

4/75 Ori2inal PrintinQ'

A This revision corrects various typograppical and technical

6/75 errors.

CONTENTS

Introduction

Summary of machine characteristics

Principal operating registers

A registers

B registers

S registers

T registers

V registers

VL register

VM register

P register

Supporting registers

BA register

LA register

XA register

F register

M register

Input/Output

Comparison of scalar and vector processing

Functional units

Instruction formats

Special register values

Instruction buffers.

Data formats

Rev. A iii

1

1

1

1

1

2

2

2

2

2

2

5

5

5

5

5

6

6

6

7

7

9

9

9

CAL language structure

Statement format

Location field

Result field

Operand field

Comments field

Coding conventions

Comments statement

Lower case in comments

Symbols

Special element, *

"P." prefix

"W." prefix

Expressions

CPU register designation

Pseudo-instructions

ABS

BSS

BSSZ

CON

EJECT

END

ENTRY

IDENT

LIST

ORG

CPU instructions

iv

11

. 11

11

11

11

11

12

12

12

12

13

13

13

13

14

14

14

14

15

15

15

15

16

16

16

16

17

18

Appendix A. Summary of CPU instructions · . . . · • 60

Appendix B. Instruction timing · , . 66

Appendix C. Coding examples · • 69

Appendix D. Use of the NOVA CAL assembler . · • 71

Appendix E. Assembly errors · . • 72

Appendix F. Description of binary output , . . · • 73

Rev. A v

FIGURES

Figure 1. Registers block diagram · · · · 3

Figure 2. Exchange package · . . · · · · · . 4

Figure 3. Instruction formats · . . · · · · · 8

Figure 4. Data formats · · · · · . 10

vi

Introduction

The Cray Research CRAY-l computer is a powerful general purpose computer
incorporating vector capabilities and a large, fast bi-polar memory.
Vector processing provides result rates greatly exceeding the result
rates of conventional scalar processing. The benefits of vector
processing are visible even for short vectors. This manual introduces
the characteristics of the CRAY-l and describes the CRAY-l assembly
language (CAL).

Summary of machine characteristics

- 64-bit word
- 2's complement arithmetic
- scalar and vector processing modes
- 12 fully-segmented functional units
- eight 24-bit A registers
- sixty-four 24-bit B registers
- eight 64-bit S registers
- sixty-four 64-bit T registers
- eight 64-element V registers, 64 bits per element
- 4 instruction buffers of 64 parcels each
- 12.5 nanosecond clock period
- 1,048,576 words of bi-polar memory (64 bits and one parity

bit) arranged in 16 banks
- 4 clock period bank cycle time
- 1 word/clock period transfer rate to B, T and V registers
- 1 word/two clock periods transfer rate to A and S registers
- 4 words/clock period transfer rate to instruction parcel buffers
- 12 full-duplex I/O channels

Principal operating registers

A registers

The eight 24-bit A registers are primarily used as address registers for
memory references and as index registers. They are individually desig
nated by the symbols AO, AI, A2, A3, A4, AS, A6 and A7. Data flows
between these registers and the B, Sand VL registers. Data may be
directly transferred between the A registers and memory.

B registers

The sixty-four 24-bit B registers provide rapid-access temporary storage
for the A registers. They are individually designated by the symbols
BO, BI, B2, ••• , B77. Data may be directly transferred between the B
registers and memory.

Rev. A 1

8 registers

The eight 64-bit 8 registers are the principal scalar registers for
the CPU. They are individually designated by the symbols 80, 81, 82,
83, 84, 85, 86 and 87. These registers serve as source and designation
registers in scalar arithmetic and logical instructions. They may also
furnish one operand in vector instructions. Data flows between these
registers and the A, T, V, and VM registers. Data may be directly
transferred between the 8 registers and memory.

T registers

The sixty-four 64-bit T registers provide rapid-access temporary
storage for the 8 registers. They are individually designated by the
symbols TO, Tl, T2, •.• ,T77. Data may be directly transferred
between the T registers and memory.

V registers

The eight 64-element V registers are the operating registers for vector
computations. Each element is 64 bits. The V registers are individually
designated by the symbols VO, VI, V2, V3, V4, V5, V6 and V7. Tpese
registers serve as source and destination registers in vector arithmetic
and logical instructions. Data flows between these registers and the
8 registers. Data may be directly transferred between the V registers
and memory.

VL register

The 7-bit VL register specifies the vector length. Vector computations
are performed on vectors of the length specified by the contents of VL.

VM register

The 64-bit VM register contains a vector mask to control register
selection in the vector merge instructions (146-147). Each bit of the
VM register corresponds to a vector element.

P register

The 24-bit P register specifies the parcel address of the current program
instruction. The high order 22 bits specify a memory address and the low
order 2 bits specify the parcel number.

2

I P

P REGISTER (24 1
)

BRANCH
Buffer 0 1
o r-~3

f ~ __ --4r-- t--
I~ '~~~~~ ________ ~~~~ ________ ~

CONTROL L..-~---lC77=-----;~~1L-~ (4 paths)
&.;....;.....~-..... ~t-- J

I ~
I , t

C I NTR. L

INSTRUCTION BUFFERS (16 1)
BO

VL B1
B2 VECTOR LENGTH (7 1) B3

AO

B77

SH I FT J~_1-!..1~_--I
A2 B76

I. ADD -'"~3

ADDRESS BUFFER REGISTERS (241)
I. MULT ~4

POP CNT jt---... ..,Mn 5
~--~~----------------------------~

6

RTC
I. ADD
SHIFT

LOGICAl

~7

ADDRESS REGISTERS (241)

SO
~1

~ 52
~3
~4

TO
T1
T2
T3

T76
T77

SCALAR BUFFER REGISTERS POP CNT ~5
~6
~7

F. ADD ~ SCALAR REGISTERS (641) F. MULT

R.A. f VMJ.-..VECTOR ~ASK (64')

o v~o~J-JJl
I. ADD
SHIFT ~

LOGICAL

1 ~~1-4 51e: ~
2 ~r-t- t-~~
3 t-r- t-~~r-

~r--r-
4 -- -r-

1------4 -~r-
"'.I ,,;--_-r--

(64 1
)

M

E

M

o

R

Y

12 CH
~-~ I/O

12 CH

1
p~~~

A REG. INTR.

1-01--..... : PARITY I
(1 1 PER 641)

~--'"'"1 111" IfI,r-r-
76 ~- roJ -.-------4 r- r- (~,. J f ~
77 r-_I'-"" -~- (106 64 1 WORDS)

r-r
r-~

VECTOR REGISTERS (64: ELEMENTS)

Figure 1. Registers block diagram

Rev. A 3-

n

n+1

n+2

n+ 3

n+ 4

n+ ~

n + 6

n + 7

n + 8

n-l-9

n + 10

n + II

n + 12

n + 13

n+ 14

n+ 15

I.

2.

3.

4.

~.

6.

7.

16

~ ~
~

o

FLAGS

NORMAL EXIT

ERROR EXIT

I/O INTERRUPT

STORAGE PARITY

PROGRAM RANGE

OPERAND RANGE

FLOATING POINT

24

P

SA II ~
LA II

,M'

XA I VL 71 FLAGS •

SO

51

52

S3

S4

S5

56

57

I.

2.

3.

ERROR
(SET ON SCALAR REFERENCE ONLY)

8. RTC INTERRUPT

9. CONSOLE INTERRUPT

Figure 2. Exchange package

4

24

AO

AI

AI

A3

A4

AS

A6

A7

MODES

MONITOR MODE

INTERRUPT ON STORAGE PARITY

INTERRUPT ON FLOATING POINT

p: PROGRAM ADDRESS

BA a BASE ADDRESS

LA: LIMIT ADDRESS

XA = EXCHANGE ADORES S

VL: VECTOR LENGTH

Supporting registers

The CPU contains a number of registers which support the operating
registers in the execution of programs. These registers are loaded
with new information during the execution of an exchange sequence.
The information is· not altered during the execution interval for an
exchange package. These registers are listed below with a description
of the individual function performed.

BA register

This l8-bit register holds the base address during the execution
interval for each exchange package. The contents of this register is
interpretted as the upper 18 bits of a 22-bit memory address. The
lower 4 bits of the address are assumed zero. Absolute memory addresses
are formed by adding (BA)*16 to the relative address specified by the
CPU instructions.

LA register

This 18-bit register holds the limit address during the execution
interval for each exchange package. The contents of this register is
interpretted as the upper 18 bits of a 22-bit memory address. The
lower 4 bits of the address are assumed zero. The BA and LA registers
together provide memory protection. No memory references may be made
below BA nor at or above LA. Such a reference will cause the program
or operand range flag to be set and the execution interval of the
exchange package will be terminated.

XA register

This 8-bit register holds the upper eight bits of a l2-bit exchange
address during the execution interval for each exchange package. The
low order 4 bits of the exchange address are assumed zero.

When the execution interval terminates, the exchange operation exchanges
the contents of the registers with the contents of the exchange package
at (XA)*16 in memory. The exchange operation saves the contents of the
A, S, P, and VL registers and the supporting registers BA, LA, XA, M and F.

F register

This 9-bit register contains flags which are set to indicqte the conditions
causing an exchange operation. The interrupt conditions are:

- Normal exit
- Error exit
- I/O interrupt
- Storage parity
- Program range

Rev. A 5

- Operand range
Floating point overflow

(scalar only)
External clock interrupt

- Console interrupt

M register

This 3-bit register specifies the modes for generation of interrupts.
All interrupts are inhibited when the monitor mode bit is set. Interrupts
on storage parity errors are enabled when the storage parity mode bit is
set. Interrupts on scalar floating point overflow are enabled when the
floating point mode bit is set.

Input/Output

There are twenty-four I/O channels, of which twelve are input channels
and twelve are output channels. The channels are assigned the numbers
2 through 25. The channels are divided into four groups as follows:

Group 1
Group 2
Group 3
Group 4

Input channels
Output channels
Input channels
Output channels

2, 6,
3, 7,
4, 8,
5, 9,

10,
11,
12,
13,

14,
15,
16,
17,

18, 22
19, 23
20, 24
21, 25

Each input channel consists of a data channel (16 data bits and 3 control
bits), a 64-bit assembly register, a current address (CA) register, and a
channel limit address. (CL) register. Each input channel can cause a CPU
interrupt condition when the current address equals the limit address
register value or when the input device sends a disconnect.

Each output channel consists of a data channel (16 data bits and 3
control bits), a 64-bit cisassembly register, a current address (CA)
register, and a channel limit address (CL) register. Each output channel
can cause a CPU interrupt condition when the current address equals the
limit address register value. A disconnect is sent on the output
channel after the last word of a record is sent and acknowledged.

Comparison of scalar and vector processing

Scalar instructiomapply a function to one or two operands in registers
and enter the result into a register. The addition of two integers in
Sl and S2, entering the sum into S3, is an example of a scalar instruction.
Vector instructions apply a function to sets of operands called vectors.
Suppose one wanted to perform several additions like the one above. One
could execute a small loop which would perform one addition per pass,
saving S3 sums as they are generated. Alternatively, one could enter
the addends into elements of one V register and the augends into elements
of another V register and then execute a single vector addition
instruction. The set of addends, the set of augends, and the set of
sums are vectors. Vector processing provides much higher result rates
than can be obtained by conventional scalar processing.

Rev. A 6

Functional units

There are twelve functional units in the computation section of the
cpu. Each is a specialized unit implementing algorithms for a portion
of the instructions. Each unit is independent of the other units and
a number of functional units may be in operation at the same time. A
functional unit receives operands from registers and delivers the
result to a register when the function has been performed. There is
no information retained in a functional unit for reference in
subsequent instructions. These units operate essentially in three
address mode with very limited source and destination addressing.

Three functional units provide 24-bit results to the A registeIBonly:

- integer add
- integer multiply
- population count

Three functional units provide 64-bit results to the S registers only:

- integer add
- shift
- logical

Three functional units provide 64-bit results to the V registers only:

- integer add
- shift
- logical

Three functional units provide 64-bit results to either the S or V
registers:

- floating add
- floating multiply
- reciprocal approximation

All functional units have one clock period segmentation. This means
that the information arriving at the unit, or moving within the unit,
is captured and held in a new set of registers at the end of every
clock period. It is therefore possible to start a new set of operands
for unrelated computation into a functional unit each clock period even
though the unit may require more than one clock period to complete the
calculation. All functional units perform their algorithms in a fixed
amount of time. No delays are possible once the operands have been
delivered to the unit. Functional units servicing the vector instructions
produce one result per clock period.

Instruction formats

Figure 3 illustrates the five instruction formats for the CRAY-I. Each
instruction is either a one-parcel (16-bit) instruction or a two-parcel
(32-bit) instruction. Two-parcel instructions may begin in the fourth
and last parcel position within a word and end in the first parcel posi
tion of the next word. The assembler lists a parcel address as a word
address followed by a one-character alphabetic (a-d) parcel identifier.

Rev. A 7

,
OPERATION

CODE

t
OPERATION

CODE

J

RESULT
REG.

OPERAND
REG.

OPERAND AND
RESULT REG.

OPERAND
REG.

j k

6

16 BITS

ARITHMETIC, LOGICAL

16 BITS

SHIFT, MASK

SHIFT, MASK COUNT

OPERATION

CODE

ADDRESS
INDEX REG.

I
OPERATION

CODE

I
OPERATION

CODE

RESULT
REG.

J

RESULT
REG.

Figure 3. Instruction formats

22

ADDRESS

m

22

CONSTANT

m

ADDRESS

8

32 BITS

A MEMORY

S~MEMORY

32 B!TS
CONSTANT - ... A

CONSTANT ---S

32 BITS
BRANCH

Special register values

so and AO provide special values when they are designated in the j or k
portions of an instruction. In these cases the special value is used
as the operand and the contents of SO or AO is ignored. If an SO or AO
operand is designated in the i portion of an instruction, the actual
contents of SO or AO is used as the operand. The instruction descriptions
enumerate the uses of the special register values where they are meaningful.

Instruction buffers

register
Ai,i=O
Aj ,j=O
Ak,k=O
Si,i=O
Sj ,j=O
Sk,k=O

value
AO
o
1
SO
o

263

There are four instruction buffers each consisting of sixty-four 16-bit
registers. All instructions are executed f~om the instruction buffers.
An instruction buffer supplies instructions to the next instruction
parcel (NIP) and the current instruction parcel (eIP) registers.
Associated with each instruction buffer is a base address register that
specifies the high order 18 bits of the parcel addresses contained in the
instruction buffer. The base address registers are scanned each clock
period. If the high order 18 bits of the P register matches one of the
base addresses, the proper instruction is selected from the instruction
buffer and sent to the NIP register. The instruction is moved to the
eIP register for execution. The second parcel of a 2-parcel instruction
resides in the NIP register when the instruction issues.

When the high order 18 bits of the P register do not match any instruction
buffer base address, an "out of buffer" condition exists and instructions
are read to an instruction buffer from memory. When an "out of buffer"
condition occurs, the instruction buffer that receives the instruction is
determined by a 2-bit counter. Each occurrence of an "out of buffer"
condition causes the counter to be incremented. The first four instruction
parcels in an instruction buffer are always from bank 0, however, the first
parcels read into an instruction buffer always include the parcel specified
by the contents of the P register.

Data formats

Figure 4 Illustrates the data formats for integers and floating point
. t· Th f fl·· ... rlO-5000 102500] quant1 1es. e range or oat1ng p01nt quant1t1es 1S l , .

Normalized floating point quantities are expressed as z = y * 2x where
y = 0 or ~ ~ y < 1 and -400008~ x < 20000

8
. The exponent of x is expressed

in excess-40000B notation. The exponent of a floating point quantity is
obtained by add1ng 40000

8
to the true exponent. Overflow is indicated by

an exponent exceeding 57777
8

•

Rev. A 9

DATA FORMAT

o 63

I I
SIGN

o

I I
SIGN

o
I I
SIGN

2'. COMPLEMENT INTEGER (64 BITS)

BINARY POINT

• 15 16

I
EXPONENT COEFFIC lENT

SIGNED MAGNITUDE FLOATING POINT (64 BITS)

23

I

2'5 COMPLEMENT INTEGER (24 BIT)

Figure 4. Data formats

10

63

I

I

CAL language structure

Statement format

A CAL language source program consists of a sequence of symbolic machine
instructions,pseudo instructions and comment lines. Except for comment
lines, each statement consists of a location field, a result field, an
operand field, and a cow~ents field. Each field is terminated by one
or more blank characters. Statement format is essentially free field.

Statements are 80 column lines. 1~en punched on
considered a line. Information beyond column 72
by CAL but does appear on the assembly listing.
be used for additional comments or sequencing.

Location field

cards, each card is
is not interpretted
Thus, columns 73-80 can

The location field entry begins in column one or two of a new statement
line and is terminated by a blank. If columns one and two are blank,
the location field has no entry.

Result field

If the location field is blank, the result field can begin in column
three. If the location field is nonblank, the result field begins with
the first nonblank character following the location field and is
terminated by one or more blanks. The result field is blank if there
are no nonblank characters between the location field and column 35.

Operand field

The contents of the result field determine§if any entry is required in
the operand field. The operand field begins with the first nonblank
character following the result field and is terminated by one or more
blanks. It is blank if there are no nonblank characters between the
result field and column 35.

Comments field

Comments are optional and begin with the first nonblank character
following the operand field, or, if the operand field is missing, begin
no earlier than column 35.

11

Coding conventions

The following coding convention should be adopted to assure uniformity of
all CRAY-l systems code:

Column

1
1-8
9
10-18
19
20-34
35

Cow~ents statement

Contents

Asterisk (comments statement only)
Location field entry, left-justified
Blank
Result field entry, left-justified
Blank
Operand field entry, left-justified
Beginning of comments

A comments statement is designated by either an asterisk in column 1 or
by blanks in columns 1-34. Comments statements are listed in assembler
output but have no other effect on assembly.

Lower case in comments

Since the standard keypunch requires multipunching of lower case characters,
an escape character is provided to indicate that succeeding alphabetic
characters (A-Z) are to be converted to lower case. The conversion is
performed only for comments statements and comments fields. Conversion
is terminated by a subsequent occurrence of the escape character, which
may be on a different card, or by the end of the program. ~fuen in lower
case mode, a single alphabetic character may be capitalized by prefixing
the capitalization character. The capitalization character has no effect
if not followed by an alphabetic character.

Escape character
Capitalization character

Symbols

character

SUB
EOT

card code

7-8-9
7-9

ASCII code

032
004

A symbol is a string of 1-8 characters that defines a value and its
associated attributes. The first character must be alphabetic (A-Z),
@ or $. Second and successive characters may also be digits (0-9) or
= A symbol may have a word address or a parcel address attribute, or
neither of these. A symbol is a parcel address if it appears in the
location field of an instruction. A symbol is a word address if it
appears in the location field of a CON, BSS, or BSSZ pseudo instruction.
The ":" statement can be used to define a symbol with either attribute.

Rev. A 12

Special element, *

The use of the special element * in an expression causes the assembler
to replace it with the current value of the location counter.

"P." prefix

A symbol or constant may be prefixed by a "P." to specify the attribute
of parcel address. If a symbol, sym, has the attribute of word address,
the value of P.~ is the value of sym multiplied by four. A "P." prefix
to a symbol with neither word nor parcel address attributes or to a
constant does not cause the value to be multiplied by four, but it can
be used to assign the parcel address attribute to a symbol being defined
by an "=" statement.

"\aJ." prefix

A symbol or constant may be prefixed by "W." to specify the attribute of
word address. If a symbol, ~, has the attribute of parcel address, the
value of W.sym is the value of ~ divided by four. A "W." prefix to a
symbol with neither word nor parcel address attributes or to a constant
does not cause the value to be divided by four, but it can be used to
assign the word address attribute to a symbol being defined by an "="
statement.

Expressions

Expressions are evaluated from left to right without regard for operator
(+, -, * and /) precedence. Expressions in branch instructions (006-017)
must not evaluate to type "word address". Expression elements may be one
of the following forms:

* symbol
octal constant
O'nnnn (nnnn, an octal constant)
D'nnnn (nnnn, a decimal constant)
A'cccc' (cccc, a character string)
'cccc'

A'cccc' or 'cccc' left-justifies the character string in a 64-bit field
with blank fill. A suffix may be used to specify an alternate justifi
cation or fill: H - same as no suffix, L - left-justified, zero fill,
or R - right-justified, zero fill. An apostrophe in a character string
is represented as two apostrophes. A null expression is given the
value zero.

13

CPU register designation

A, S, and V registers are designated by suffixing a single octal digit, n
(An, Sn, Vn). Band T registers are designated by suffixing one or two
octal digits (Bnn, Tnn). A symbol may be used in place of a B or T
register number if the register name and number are separated by a period.
The symbol must have been previously defined. For example,

RTNADDR 14
J B.RTNADDR

accomplishes the same thing as
J B14

Pseudo instructions

Three pseudo instructions are required for an assembly: IDENT, ENTRY,
and END. IDENT must be the first source statement. END signals the
termination of source statements for a program. Statements preceding
the first IDENT or between a succeeding END and subsequent IDENT are
interpretted as comments.

ABS

The ABS pseudo instruction specifies that the program is absolute. This
pseudo must precede any BSS, BSSZ, CON, = or instruction. It has no
real purpose for the NOVA CAL assembler and may be omitted, but it is
implemented to facilitate the eventual relocatable module capability.

Example:

location tresult operand comments
1 10 20 115

~BS I
I

BSS

The BS8 pseudo instruction causes a block of storage to be reserved. The
location counter is first rounded to the next word boundary (force upper),
and then the number of words specified by the operand field expression is
reserved. Unused parcels are padded with pass instructions (81 81&81).
A location field symbol, if present, is assigned the value of the current
word address after the force upper occurs.

Example:

location Iresult operand comments
1 10 20 :35

aSs ~. *-W.I00 I

14

BSSZ

The BSSZ pseudo instruction causes a block of zero storage to be reserved.
The location counter is first rounded to the next word boundary (force
upper), and then the number of zero words specified by the operand field
expression is reserved. A location field symbol, if present, is assigned
the value of the current word address after the force upper occurs.

Example:

Ilocation ~esult operand comments
1 10 20 135

BSSZ 177 I .
CON

The CON pseudo instruction generates a full word of binary data. This
pseudo always forces upper. A location field symbol, if present, is
assigned the value of the current word address after the force upper occurs.

Example:

location ~esult operand comments
1 10 20 135

~ON 7777017 I

EJECT

The EJECT pseudo instruction causes the next listing line to appear on a
new page. The EJECT pseudo itself is not listed. The EJECT pseudo has
no effect when the E global switch is selected.

Example:

Ilocation result pperand comments
1 10 20 135

EJECT I
I

END

The END pseudo instruction indicates the end of the program. Subsequent
cards, if any, are assumed to be part of the next program.

Example:

location !result operand comments
1 10 20 !35

END I

15

ENTRY

The ENTRY pseudo instruction specifies an entry point of the program.
Only one ENTRY pseudo is permitted by the initial CAL assembler. The
entry point name is specified in the operand field and must subsequently
appear in the location field of an instruction or "~, pseudo instruction.

Example:

location result operand comments
11 10 20 ~35

ENTRY EPTNME I .

The ,,~, pseudo instruction defines the symbol in the location field as
having the value and attribute indicated by the expression in the operand
field. Any symbol in the expression must be previously defined. If the
expression is erroneous, CAL does not define the location symbol but flags
an error.

Example:

location result operand comments
1 10 20 135
SYMB = A*B+I00/4 i

IDENT

The name of the program is specified in the operand field of the IDENT
pseudo instructiou. The name must be 1-8 characters, of which the first
must be alphabetic (A-Z), @ or $. Second and successive characters may
also be digits (0-9) or =. The name appears in the listing heading and
in the program descriptor table (PDT) of the absolute module.

Example:

location Ire suIt operand comments
11 10 20 135

IDENT PMJ i

LIST

The LIST pseudo instruction controls the listing. If the operand field
is empty the listing is suppressed until encountering another LIST pseudo
with a non-empty operand field, or until the end of the program.

Example:

Ilocation result operand comments
1 10 20 !35

~IST PN I
I

Rev. A 16

ORG

The ORG pseudo instruction specifies the orlgln of the program. This
pseudo must precede any BSS, BSSZ, CON, = or instruction. The orlgln is
specified in the operand field. If omitted, an origin of zero is assumed.

Example:

location result operand comments
1 10 20 135

-
ORG 01100 I

17

CPU instructions

- 000 ERR Error Exit

This instruction is treated as an error condition and an exchange jump
occurs. The contents of the instruction buffers are voided by the
exchange jump. If not in monitor mode, the error exit flag in the F
register is set. All instructions issued prior to this instruction are
run to completion. When all results have arrived at the operating
registers as a result of previously issued instructions, an exchange
jump occurs to the exchange package designated by the contents of the
XA register. The program address stored in the exchange package on the
terminating exchange jump is advanced one count from the address of the
error exit instruction. The error exit instruction is not intended for
use in user program code. Its purpose is to halt execution of an
incorrectly coded program which jumps into an unused area of memory or
into a data area.

Example:

Code Generated

000000

- 001 CA,Aj Ak

CL,Aj Ak
CI,Aj
XA Aj
RT Sj

location ~esult pperand comments
1 10 20 85

ERR i
t

Set the channel (Aj) current address to (Ak) and
begin the I/O sequence
Set the channel (Aj) limit address to (Ak)
Clear the channel (Aj) interrupt flag and error flag
Enter the XA register with (Aj)
Enter the real time clock register with (Sj)

This instruction performs special~ed functions useful to the operating
system. The instruction is treated as a pass instruction if not in
monitor mode or if the i designator is 5, 6 or 7.

When the i designator is 0, 1 or 2, the instruction controls the oper
ation of the I/O channels. Each channel has two registers that direct
the channel activity. The CA register contains the address of the
current channel word. The LA register specifies the limit address. In
programming the channel, the LA register is initial~ed and setting CA
activates the channel. As the transfer continues CA is incremented
toward LA. When CA=LA the transfer is complete. When the j designator
is 0 or when the contents of Aj is less than 2 or greater than 25,
these functions are executed as pass instructions. When the k designator
is 0, CA or LA is set to 1.

Examples:

Code Generated

001035
001134
001210

Rev. A

location
1

18

result
10
CA,A3
CL,A3
CI,A1

operand comments
20 85

A5 i
A4 I

I ,

When the i designator is 3, the instruction causes the exchange address
(XA) register to be set to the contents of Aj. When the j designator
is zero, the XA register is cleared. A monitor program activates a
user job by initializing the XA register with the address of the user
job's exchange package and then executing a normal exit (004).

Examples:

Code Generated

001350
001420
001400

- 002 VL Ak

Ilocation result
1 10

XA
RT
RT

Transmit Ak to VL

operand comments
20 135
A5 I

S2 I
I

SO 1C1ear RTC .

This instruction enters the vector length (VL) register with a value
determined by the contents of Ak. The low order seven bits of Ak
are entered into the VL register. Vector instructions operate on
vectors whose lengths are determined by subtracting one from the con
tents of VL; one plus the contents of the low order six bits of the
result is the vector length. The maximum vector length of 64 can be
achieved by setting the contents of Ak to zero or 64 before executing
this instruction. When the k designator is zero, the vector length
is set to one.

Examples:

Code Generated

020200000100
002002
022100
002001

- 003 VM Sj

location tresult
1 10

A2
VL
Al
VL

Transmit Sj to VM

operand comments
20 !35
0 1 64 ~L = 64
A2
0 ~L = 64
Al I

I

This instruction enters the vector mask (VM) register with the con
tents of Sj. The VM register is cleared if the j designator is zero.
This instruction is used in conjunction with the vector merge instruc
tions (146 and 147) where an operation is performed depending on the
contents of VM.

Examples:

Code Generated

003040
003000

location
!1

19

result
10
VM
VM

operand comments
20 !35

S4 I

SO ~M = 0

- 004 EX Normal exit

This instruction causes an exchange jump. The contents of the instruction
buffers are voided by the exchange jump. If not in monitor mode, the
normal exit flag in the F register is set. All instructions issued prior
to this instruction are run to completion. When all results have
arrived at the operating registers as a result of previously issued
instructions, an exchange jump occurs to the exchange package designated
by the contents of the XA register. The program address stored in the
exchange package is advanced one count from the address of .the normal
exit instruction. This instruction is used to issue a monitor request
from a user program. The value of an optional operand field expression
is inserted in the lower 9 bits of the instruction. All symbols in
the expression must be previously defined.

Examples:

Code Generated

004000
004027

- 005 J Bjk

location rresult
1 10

EX
EX

Branch to (Bjk)

pperand comments
20 135

I
27 I

I

This instruction sets the P register to the parcel address specified
by the contents of Bjk, and execution continues at that address.

Examples:

Code Generated

005017
005017

- 006 J exp

location
II

Branch to ijkm

rresult pperand comments
10 20 135

J B17 i
J B.RTNADDR ! (RTNADDR= 17)

This instruction sets the P register to the parcel address specified
by the low order 24 bits of the ijkm field, and execution continues at
that address. The high order bit of the ijkm field is ignored.

Examples:

Code Generated

006 00002124b
006 00001752d
006 00004530a

Rev. A

Ilocation !result
1 10

J
J
J

20

operand comments
20 135

TAG1 I

LDY3+1 I
I

*+3 I

- 007 R exp Return jump to ijkm

This instruction sets register BOO to the address of the following
parcel. The P register is then set to the parcel address specified
by the low order 24 bits of the ijkm field, and execution continues
at that address. The high order bit of the ijkm field is ignored.
The purpose of this instruction is to provide a return linkage for
subroutine calls. The subroutine is entered via a return jump. The
subroutine returns to the caller at the instruction following the call
by executing a branch instruction on the contents of BOO (005).

Example:

Code Generated

007 00001142d

- 010 JAZ
- 011 JAN
- 012 JAP
- 013 JAM

exp
exp
exp
exp

location ~esult
1 10

R

Branch to ijkm if AO=O
Branch to ijkm if AO~O

operand
20
HELP

Branch to ijkm if AD positive
Branch to ijkm if AD negative

comments
l35
I

These instructions tests the contents of AD for the condition speci
fied. If the condition is satisfied, the P register is set to the
parcel address specified by the low order 24 bits of the ijkm field,
and execution continues at that address. The high order bit of the
ijkm field is ignored. If the condition is not satisfied, execution
continues with the instruction following the branch instruction. If
AD contains zero, it is considered positive.

Examples:

Code Generated

010 00002245b
all 00004520a
012 00002221c
013 00002124b

location
'1

21

result
10
JAZ
JAN
JAP
JAM

!Operand comments
20 135

TAG3+2 i
P.CON1 I

I AG2 I
IrAG1 I

I

- 014 JSZ
- 015 JSN
- 016 JSP
- 017 JSM

exp
exp
exp
exp

Branch to
Branch to
Branch to
Branch to

ijkm if
ijkm if
ijkm if
ijkm if

SO=O
S010
SO positive
SO negative

These instructions 'tests the contents of SO for the condition speci
fied. If the condition is satisfied, the P register is set to the
parcel address specified by the low order 24 bits of the ijkm field,
and execution continues at that address. The high order bit of the
ijkm field is ignored. If the condition is not satisfied, execution
continues with the instruction following the branch instruction. If
SO contains zero, it is considered positive.

Examples:

Code Generated

014 00002221c
015 00002124d
016 00004540d
017 00002367c

- 020 Ai
Ai

exp
lIexp

location Iresult
1 10

~SZ
~SN
~SP
~SM

Transmit jkm to Ai

pperand comments
20 135

~AG2
I

I

~AG1+2 I
I

fk+3 I
~AG4 I

I

This two-parcel instruction enters the 22-bit quantity of the jkm
field into Ai. The quantity is treated as a 22-bit positive integer;
the upper bits of Ai are cleared. The assembler generates this in
struction when no II symbol precedes the expression and the value of
the expression exceeds 63. If all symbols in the expression have not
been previously defined, this instruction is generated when the ex
pression value is positive even though the value may be less than
64. When the II symbol precedes the expression, the expression is
first evaluated and if the value is negative, it is complemented and
the complemented value is stored in the jkm field. The complement is
formed by changing all 1 bits to zero and all 0 bits to one. When the
expression is positive, an 021 instruction is generated (see beloW).

Examples:

Code Generated

020200000130
020300000021
020401777777
020500051531
020600000000

location
II

22

rresult
10
A2
A3
A4
A5
A6

operand comments
20 135

~30 I

VAL+1 I
I

1777777 I
A'SY'R I

#MINUS1 ~INUS1=-1

- 021 Ai
Ai

exp
lIexp

Transmit jkm to Ai and complement

This two-parcel instruction enters the 22-bit quantity of the jkm
field into Ai and complements the result. The complement is formed
by changing all 1 bits to zero and all 0 bits to one. This instruc
tion is used to enter a negative number into an A register. The
assembler generates this instruction when the value of the expression
is negative and no II symbol precedes the expression; the jkm field
will contain the complement of the expression. When the II symbol
precedes the expression, the expression is first evaluated and if the
value is positive it is stored in the jkm field. ~~en the expression
is negative, an 020 instruction is generated (see above).

Examples:

Code Generated

021200000010
021200000007

- 022 Ai exp

Ilocation result
1 10

A2
A2

Transmit jk to Ai

operand comments
20 135
#10 I

-10 I
I

This one-parcel instruction enters the 6-bit quantity of the jk field
into Ai. All symbols in the expression must be previously defined.
If all symbols are not previously defined, an 020 instruction is
generated even though the value may be less than 64.

Example:

Code Generated location rresult operand comments
il 10 20 T35

A3 10 I
I

022310

- 023 Ai Sj Transmit Sj to Ai

This instruction enters the low order 24 bits of Sj into Ai. Ai is
cleared if the j designator is zero.

Example:

Code Generated location result operand comments
11 10 20 :35

023410 A4 SI I

23

- 024 Ai Bjk Transmit Bjk to Ai

This instruction enters the contents of Bik into Ai. A symbolic
B register number must be previously defined.

Examples:

Code Generated

024517
024517

- 025 Bjk Ai

location result
1 10

A5
AS

Transmit Ai to Bjk

operand comments
20 !35
B17 ,
B.SVNTEEN

,
1

This instruction enters the contents of Ai into Bjk. A symbolic
B register number must be previously defined.

Examples:

Code Generated

025634
025634

- 026 Ai PSj

location result operand comments
1 10 20 135

B34 A6 ,
B.THRTY4 A6 I

1

Population count of Sj to Ai

This instruction counts the number of one bits in Sj and enters
the result into Ai. Ai is cleared if the j designator is zero.

Example:

Code Generated

026720

- 027 Ai ZSj

Ilocation tresult §perand

Leading zero count of Sj to Ai

comments
135
I

This instruction counts the number of leading zeroes in Sj and
enters the result into Ai. Ai is set to 64 if the j designator
is zero.

Example:

Code Generated location Iresult operand comments
1 10 20 135

027130 Al ZS3 i

24

- 030 Ai Aj+Ak Integer sum of Aj and Ak to Ai

This instruction forms the integer sum of Aj and Ak and enters the
result into Ai. No overflow is detected. Ak is transmitted to Ai
when the j designator is zero and the k designator is non-zero.
One is transmitted to Ai when the j and k designators are both zero.
(Aj)+1 is transmitted to Ai when the j designator is non-zero and
the k designator is zero. The assembler allows alternate forms for
this instruction when either j or k designator is zero.

Examples:

Code Generated

030123
030102
030230

- 031 Ai Aj-Ak

location result operand comments
1 10 20 135

Al A2+A3 I
Al A2 I(spec; a 1
A2 A3+1 I(spec; a 1

Integer difference of Aj and Ak to Ai

form
form

This instruction forms the integer difference of Aj and Ak and enters
the result into Ai. No overflow is detected. The negative of Ak is
transmitted to Ai when the j designator is zero and the k designator
is non-zero. -1 is transmitted to Ai when the j and k designators
are both zero. (Aj)-l is transmitted to Ai when the j designator is
non-zero and the k designator is zero. The assembler allows alter
nate forms for this instruction when either j or k designator is
zero.

Examples:

Code Generated

031456
031102
031450

- 032 Ai Aj*Ak

location rt-esult bperand
1 10 20

A4 A5-A6
Al -A2
A4 A5-1

Integer product of Aj and Ak to Ai

comments
135
I

I
:(spec; a 1 form
I(spec; a 1 form

This instruction forms the integer product of Aj and Ak and enters
the low order 24 bits of the result into Ai. No overflow is detected.
Ai is cleared when the j designator is zero. Aj is transmitted to Ai
when the k designator is zero and the j designator is non-zero.

Example:

Code Generated location result operand comments
1 10 20 135

032712 A7 Al*A2 i
I

25

)
)

- 033 Ai

Ai
Ai

CI

CA,Aj
CE,Aj

Channel number of highest priority interrupt
request to Ai
Current address of channel (Aj) to Ai
Error flag of channel (Aj) to Ai

This instruction enters channel status information into Ai.
The j and k designators and the contents of Aj define the desired
information. The channel number of the highest priority interrupt
request is entered into Ai when the j designator is zero. The con
tents of Aj specifies a channel number when the j designator is non
zero. The value of the current address (CA) register for the channel
is entered into Ai when the k designator is zero. The error flag
for the channel is entered into the low order bit of Ai and the error
flag is cleared when the k designator is one. The high order bits of
Ai are cleared.

Examples:

Code Generated

033100
033230
033341

Ilocation
1

result
10
Al
A2
A3

operand comments
20 135
CI I

CA,A3 I
I

CE,A4 I

- 034 B,Ai,exp ,AO Read jk+l words starting at B register (Ai) from
memory starting at (AO)

This instruction is used to read the low order 24 bits of words from
memory directly into the B registers. AO contains the address in
memory of the first word. The B register which is to receive the
first word is specified by the contents of Ai. Subsequent words are
stored in consecutive B registers. Processing of the B registers is
circular. BOO is processed after B77 if the count is not exhausted.
Symbols in the expression must be previou~ly defined. l"ne
expression must have a positive value between 1 and 64 and is a true
count of the number of words to be read. The assembler subtracts
one from the value of the expression and stores the result in the
jk field of the instruction. AO in the operand field is optional.

Examples:

Code Generated

034407
034407
034516

location
1

26

!result
10
B,A4,10
B,A4,10
B,A5,VAL+l

operand connnents
20 !35

,AO I
I , I

,AO I
I

- 035 ,AD B,Ai,exp Store jk+l words starting at B register (Ai) to
memory starting at (AD)

This instruction is used to store the B registers directly into
memory. AD contains the address in memory to receive the first
word. The B register which is stored at the first address is speci
fied in Ai. Subsequent B registers are stored in consecutive words
in memory. Processing of the B registers is circular. BOO is pro
cessed after B77 if the count is not exhausted. Symbols in the ex
pression must be previously defined. The expression must
have a positive value between 1 and 64 and is a true count of the
number of words to be stored. The assembler subtracts one from the
value of the expression and stores the result in the jk field of
the instruction. AD in the result field is optional.

Examples:

Code Generated

035522
035522
035516

location
11

result
10
,AO
,
,AO

operand comments
20 l35
a,A5,23 I

a,A5,23 I
I

~,A5,VAL+1 I

- 036 T,Ai,exp ,AD Read jk+l words starting at T register (Ai) from
memory starting at (AD)

This instruction is used to read 64-bit words from memory directly
into the T registers. AD contains the address in memory of the first
word. The T register which is to receive the first word is specified
by the contents of Ai. Subsequent words are stored in consecutive
T registers. Processing of the T registers is circular. TOO is
processed after T77 if the count is not exhausted. Symbols in the
expression must be previou~ly defin~d. The e~pression must
have a positive value between 1 and 64 and is a true count of the
number of words to be read. The assembler subtracts one from the
value of the expression and stores the result in the jk field of the
instruction. AD in the operand field is optional.

Examples:

Code Generated

036407
036407
036516

location
1

27

result
10
T,A4,10
T,A4,10
T,A5,VAL+l

~perand comments
20 ~5

,AO I

I
I ,
I ,AO I

- 037 ,AO T,Ai,exp Store jk+1 words starting at T register (Ai) to
memory starting at (AO)

This instruction is used to store the T registers directly into
memory. AO contains the address in memory to receive the first
word. The T register which is stored at the first address is speci
fied in Ai. Subsequent T registers are stored in consecutive words
in memory. Processing of the T registers is circular. TOO is pro
cessed after T77 if the count is not exhausted. Symbols in the ex
pression must be previously defined. The expression must
have a positive value between 1 and 64 and is a true count of the
number of words to be stored. The assembler subtracts one from the
value of the expression and stores the result in the jk field of
the instruction. AO in the result field is optional.

Examples:

Code Generated

037522
037522
037516

- 040 Si
Si

exp
lIexp

location result
11 10

,AO
,
,AO

Transmit jkm to Si

operand comments
20 135
J,A5,23 i
rr,A5,23 I

I h',A5,VAL+l !

This two-parcel instruction enters the 22-bit quantity of the jkm
field into Si. The quantity is treated as a 22-bit positive integer;
the upper bits of Si are cleared. The assembler generates this in
struction when no II symbol precedes the expression and the value of
the expression is positive. When the II symbol precedes the expres
sion, the expression is first evaluated and if the value is negative,
it is complemented and the complemented value is stored in the jkm
field. The complement is formed by changing all 1 bits to zero and
all 0 bits to one. When the expression is positive, an 041 instruc
tion is generated (see below).

Examples:

Code Generated

040200000130
040300000021
040401777777
040500051531
040600000000

location
1

28

Iresult
10
S2
S3
S4
S5
S6

operand comments
20 135

130 I
I VAL+l I

1777777 I

A'SY'R I

#MINUSI ~INUSl=-l

- 041 Si
Si

exp
lIexp

Transmit jkm to Si and complement

This two-parcel instruction enters the 22-bit quantity of the jkm
field into Si and complements the result. The complement is formed
by changing all 1 bits to zero and all 0 bits to one. This in
struction is used to enter a negative number into an S register.
The assembler generates this instruction when the value of the
expression is negative and no II symbol precedes the expression; the
jkm field will contain the complement of the expression value.
When the 1/ symbol precedes the expression, the expression is first
evaluated and if the value is positive, it is stored in the jkm field.
When the expression is negative, an 040 instruction is generated
(see above).

Examples:

Code Generated

041200000000
041300000002
041401777776
041400000003

- 042 Si
Si

<exp
I/>exp

location rresult pperand comments
1 10 20 '35

52 -1 i
53 #2 I

I
54 -1777777 I
54 #VAL2 I (VAL2=3)

•

Form ones mask in Si from the right

This instruction is used to generate a mask of ones from the right.
The assembler evaluates the expression to determine the mask length.
If the 1/ symbol precedes the expression the mask length is 64 minus
the expression value. All symbols in the expression must be
previously defined. The assembler stores 64 minus the mask length
in the jk field of the instruction. The mask length must be a posi
tive integer not exceeding 64. If the mask length is zero, an 043
instruction is generated.

Examples:

Code Generated

042273
042273
042366
042400
043500
042677

Rev. A

location
11

29

rresult
10
52
52
53
54
55
56

pperand comments
20 135
<5 I
#>73 I
<0110 I

I
<100 I

I <0 I

1 :(special for m)

- 043 Si
Si

>exp
lI<exp

Form ones mask in Si from the left

This instruction is used to generate a mask of ones from the left.
The assembler evaluates the expression to determine the mask length.
If the II symbol precedes the expression the mask length is 64 minus
the expression value. All symbols in the expression must be
previously defined. The assembler stores the mask length in the
jk field of the instruction. The mask length must be a positive
integer not exceeding 64. If the mask length is 64, an 042 instruc
tion is generated.

Examples:

Code Generated

043205
043205
043312
042400
043500
043600

- 044 Si Sj&Sk

[location result operand comments
1 10 20 135

S2 >5 - I

S2 #<73 I
I

S3 >0 1 10 I

S4 >100 I

S5 >0 I
I

S6 0 I

Logical product of Sj and Sk to Si

This instruction forms the logical product (AND) of Sj and Sk and
enters the result into Si. Bits of Si are set to 1 when the cor
responding bits of Sj and Sk are 1 as in the following example:

(Sj)
(Sk)
(Si) =

1100
1010
1000

Sj is transmitted to Si if the j and k designators have the same non
zero value. Si is cleared if the j designator is zero. The sign bit
of Sj is extracted into Si if the j designator is non-zero and the k
designator is zero.

Examples:

Code Generated

044234
044655
044307
044160

Rev. A

location
1

30

!result
10

S2
S6
S3
Sl

bperand comments
20 135

S3&S5 I
S5&S5 :S5 to S6
SO&S7 Iclear S3
S6&SO Iget sign of S

I
I
I

6

- 045 Si IISk&Sj Logical product of Sj and complement of Sk to Si

This instruction forms the logical product (AND) of Sj and the com
plement of Sk and enters the result into Si. Bits of Si are set to
1 when the corresponding bits of Sj and the complement of Sk are 1
as in the following example:

(Sj) = 1100
(Sk) = 1010
(Si) = 0100

Si is cleared if the j and k designators have the same value or if
the j designator is zero. Sj, with the sign bit cleared, is
transmitted to Si if the j designator is non-zero and the k desig
nator is zero.

Examples:

Code Generated

045271
045433
045506
045670

- 046 Si

location Iresult Ioperand
1 10 20

S2 #Sl&S7
S4 #S3&S3
S5 #S6&SO
S6 #SO&S7

Logical difference of Sj and Sk to Si

comments
135

I
:clear ~
Icl ear S5
Icl ear sign

This instruction forms the logical difference (exclusive OR) of Sj
and Sk and enters the result into Si. Bits of Si are set to 1 when
the corresponding bits of Sj and Sk are different as in the follow
ing example:

(Sj) = 1100
(Sk) = 1010
(Si) = 0110

bi

Si is cleared if the j and k designators have the same non-zero value.
Sk is transmitted to Si if the j designator is zero and the k desig
nator is non-zero. The sign bit of Sj is complemented and the result
is transmitted to Si if the j designator is non-zero and the k desig
nator is zero.

Examples:

Code Generated

046123
046455
046506
046770

Ilocation
1

31

result
10
Sl
S4
S5
c:..7 ,--

operand comments
20 135
S2'-S3 J

S5'-S5 ~cl ear S4
SCl'S6 IS6 to S5
c::;]'~n Itoo e _ n • __ .;191_ S19··

t

- 047 Si Logical difference of Sk and Sj complement to Si

This instruction froms the logical difference (exclusive OR) of Sk
and the complement of Sj and enters the result into Si. Bits of Si
are set to 1 when the corresponding bits of Sj and Sk are the same,
as in the following example:

(Sj)
(Sk) =
(Si)

1100
1010
1001

Si is set to all ones if the j and k designators have the same non
zero value. The complement of Sk is transmitted to Si if the j
designator is zero and the k designator is non-zero. The assembler
allows a special form for this case, as shown in the example below.
All bits except the sign bit of Sj are complemented and the result
is transmitted to Si if the j designator is non-zero and the k
designator is zero.

Examples:

Code Generated location

047345
047607

- 050 Si

1

Sj!Si&Sk Scalar merge

Iresult
10
S3
S6

operand conrrnents
20 !35
#S4'S5 I
#S7 :(spec; a 1 form

This instruction merges the contents of Sj with Si depending on the
ones mask in Sk. The result is defined by (Sj&Sk)!(Si&#Sk) as in
the following example:

(Sk)
(Si) =
(Sj) =
(Si)

11110000
11001100
10101010
iOIOllOO

This instruction is intended for merging portions of 64-bit words
into a composite word. Bits of Si are cleared when the correspond
ing bits of Sk are 1 if the j designator is zero and the k desig
nator is non-zero. The sign bit of Sj replaces the sign bit of
Si if the j designator is non-zero and the k designator is zero.
The sign bit of Si is cleared if the j and k designators are both
zero.

Examples:

Code Generated

050123
050760

Rev. A

location
1

32

Iresult operand comments
10 20 !35
Sl S2!Sl&S3 I
S7 S6!S7&SO I

I

)

- 051 Si Sj! Sk Logical sum of Sj and Sk to Si

This instruction forms the logical sum (inclusive OR) of Sj and Sk
and enters the result into Si. Bits of Si are set when one of the
corresponding bits of Sj and Sk is set, as in the following example:

(Sj) = 1100
(Sk) = 1010
(Si) 1110

Sj is transmitted to Si if the j and k designators have the same
non-zero value. Sk is transmitted to Si if the j designator is zero
and the k designator is non-zero. The assembler allows a special
form for this case, as in the example below. Sj, with the sign bit
set to 1, is transmitted to Si if the j designator is non-zero and
the k designator is zero. A ones mask consisting of only the sign bit
is entered into Si if the j and k designators are both zero.

Examples:

Code Generated

051472
051366
051701
051701

- 052 SO Si<exp

location [result operand
1 10 20'

S4 S7!S2
S3 S6!S6
S7 SO!Sl
S7 Sl

Shift Si left jk places to SO

comments
135
I

I
I
I
I
I(special

This instruction shifts Si left jk places and enters the result
into SO. The assembler evaluates the expression to determine the
shift count. All symbols in the expression must be previously
defined. The shift count must be a positive integer not exceeding
64. If the shift count is 64, an 053 instruction is generated.
The shift is end-off with zero fill. Si is not altered.

Examples:

Code Generated

052305
052012
052760
053200

location
11

33

~esult

10

SO
SO
SO
SO

ioperand comments
20 135
S3<5 I

SO<Ol10 I
I

S7<VAL I
S2<100 I

I

form

- 053 SO Si>exp Shift Si right jk negative places to SO

This instruction shifts Si right (64-jk) places and enters the
result into SO. The assembler evaluates the expression to determine
the shift count. All symbols in the expression must have been
previously defined. The shift count must be a positive integer not
exceeding 64. The assembler stores 64 minus the shift count in the
jk field of the instruction. If the shift count is zero, an 052
instruction is generated. The shift is end-off with zero fill.
Si is not altered.

Examples:

Code Generated

053373
053066
053760
052100

- 054 Si Si<exp

Ilocation result
1 10

SO
SO
SO
SO

Shift Si left jk places

operand comments
20 !35

S3>5 I
I SO>O 11 0 I

S7>VAL I

S1>0 I
I

This instruction shifts Si left jk places and enters the result
into Si. The assembler evaluates the expression to determine the
shift. count. All symbols in the expression must have been previously
defined. The shift count must be a positive integer not exceeding
64. If the shift count is 64, an 055 instruction is generated.
The shift is end-off with zero fill.

Examples:

Code Generated

054703
054656
055300

- 055 Si Si>exp

location result
1 10

S7

1

56
S3

operand
20

S7<3

IS6<VAL+2
S3<100

Shift Si right jk negative places

comments
'35
1
I
I

This instruction shifts Si right (64-jk) places and enters the
result into Si. The assembler evaluates the expression to determine
the shift count. All symbols in the expression must have been
previously defined. The shift count must be a positive integer not
exceeding 64. The assembler stores 64 minus the shift count in the
jk field of the instruction. If the shift count is zero, an 054
instruction is generated. The shift is end-off with zero fill.

Examples:

Code Generated

055775
055656
054300

location
1

34

~esult

10
S7
S6
S3

pperand comments
20 135
S7>3 I

S6>VAL+2 I
I

S3>O I .

- 056 Si Si,Sj<Ak Shift Si Sj left (Ak) places to Si

This instruction left shifts the l28-bit quantity formed by
concatenating Si and Sj by the amount specified in Ak. The shift
is end-off with zero fill. The high order 64 bits of the result
are transmitted to Si. Si is cleared if the shift count exceeds
127. The shift is a left circular shift of Si if the shift count
does not exceed 127 and the i and j designators are equal and
non-zero. The instruction produces the same result as the 054
instruction if the shift count does not exceed 127 and the j
designator is zero. The l28-bit quantity is shifted left one place
if the k designator is zero.

Examples:

Code Generated

056235
056604
056604
056774

[location
1

result operand
10 20

52 52,53<A5
56 56,50<A4
56 56<A4
57 57,57<A4

- 057 Si Sj,St>Ak Shift Sj Si right (Ak) places to Si

comments
135
I
I
I

: (spec; a 1
I

This instruction right shifts the l28-bit quantity formed by
concatenating Sj and Si by the amount specified in Ak. The shift

form

is end-off with zero fill. The high order 64 bits of the result are
transmitted to Si. Si is cleared if the shift count exceeds 127.
The shift is a right circular shift of Si if the shift count does
not exceed 127 and the i and j designators are equal and non-zero.
The instruction produces the same result as the 055 instruction if
the shift count does not exceed 127 and the j designator is zero. The
128-bit quantity is shifted right one place if the k designator is zero.

Examples:

Code Generated

057235
057604
057604
057774

Rev. A

location result
1 10

52
56
56
57

35

~perand comments
20 !35

53,52>A5 I
I 50,56>A4
:(spec; a 1 56>A4 form

57,57>A~ I ..

I

- 060 Si Sj+Sk Integer sum of Sj and Sk to Si

This instruction forms the integer sum of Sj and Sk and enters the
result into Si. No overflow is detected. Sk is transmitted to Si
if the j designator is zero and the k designator is non-zero. The
high order bit of Si is set and all other bits of Si are cleared if
the j and k designators are both zero. The j and k designators will
normally be non-zero.

Examples:

Code Generated

060237
060405

- 061 Si Sj-Sk

location result operand comments
1 10 20 ~35

S2 S3+S7 I
I S4 SO+S5 I

Integer difference of Sj and Sk to Si

This instruction forms the integer difference of Sj and Sk and enters
the result into Si. No overflow is detected. The negative of Sk is
transmitted to Si if the j designator is zero and the k designator
is non-zero. The assembler allows a special form for this case, as
in the example below. The high order bit of Si is set and all other
bits of Si are cleared when the j and k designators are both zero.
The k designator will normally be non-zero.

Examples:

Code Generated

061123
061506

Ilocation
1

36

result
10

S1
S5

operand comments
20 135

~2-S3 I

-S6 k spec; a 1 form
•

- 062 Si Sj+FSk Floating sum of Sj and Sk to Si

This instruction forms the sum of the floating point quantities in
Sj and Sk and enters the normalized result into Si. The result will
be normalized even if the operands are unnormalized. The floating
point quantity in Sk is transmitted to Si as a normalized floating
point number if the j designator is zero and the k designator is
non-zero.

Example:

Code Generated location result joperand comments
'1 10 20 135

062345 S3 S4+FS5 i
I

- 063 Si Sj-FSk Floating difference of Sj and Sk to Si

This instruction forms the difference of the floating point quantities
in Sj and Sk and enters the normalized result into Si. The result
will be normalized even if the operands are unnormalized. The negative
of the floating point quantity in Sk is transmitted to Si as a
normalized floating point number if the j designator is zero and the
k designator is non-zero. The k designator is normally non-zero.

Example:

Code Generated Ilocation rresult operand comments
1 10 20 135

063761 57 56-F51 I
I

- 064 Si Sj*FSk Floating product of Sj and Sk to Si

This instruction forms the product of the floating point quantities
in Sj and Sk and enters the result into Si. The result may not be
normalized if the operands are unnormalized.

Example:

Code Generated location Iresult joperand comments
1 10 20 !35

064234 S2 53*FS4 I
I

37

- 065 Si Sj*HSk Half-precision rounded floating product of Sj and
Sk to Si

This instruction forms the half-precision rounded product of the
floating point quantities in Sj and Sk and enters the result into
Si. The low order 24 bits of the result are cleared.

Example:

Code Generated location ~esult operand comments
1 10 20 !35

065167 51 S6*H57 I
I

- 066 Si Sj*RSk Rounded floating product of Sj and Sk to Si

This instruction forms the rounded product of the floating point
quantities in Sj and Sk and enters the result into Si. The result
may not be normalized if the operands are unnormalized.

Example:

Code Generated location result operand comments
1 10 20 l35

~1 ~4*R57 I . 066147

- 067 Si Sj*ISk Reciprocal iteration

This instruction forms 2 minus the product of the floating point
quantities in Sj and Sk and enters the result into Si. This
instruction occurs in the divide sequence as illustrated in the
example for the 070 instruction.

Example:

Code Generated location ~esult pperand comments
1 10 20' 135

067323 53 52*153
I

!

Rev. A 38

- 070 Si /HSj Floating reciprocal approximation of Sj to Si

This instruction forms an approximation to the reciprocal of the
floating point quantity in Sj and enters the result into Si. This
instruction occurs in the divide sequence to compute the quotient
of two floating point quantities as shown in the example below.

Examples:

Code Generated

070320
064113
067223
064112

- 071 Si
Si
Si

Si
Si
Si
Si
Si

Ak
+Ak
+FAk

0.6
0.4
1.
2.
4.

Ilocation result operand comments
1 10 20 135

* Divide Sl by S2; result Ito Sl
S3 /HS2 I

Sl Sl*FS3 I
I S2 S2*IS3 I

Sl Sl*FS2 I

Transmit Ak to Si with no sign extension
Transmit Ak to Si with sign extension
Transmit Ak to Si as unnormalized floating point
number
Transmit constant .75*2**48 to Si
Transmit constant .5 to Si
Transmit constant 1. to Si
Transmit constant 2. to Si
Transmit constant 4. to Si

This instruction performs one of several functions depending on the
value of the j designator. The functions are concerned with
transmitting information from an A register to an S register and
with generating frequently used floating point constants.

When the j designator is 0, the 24-bit value in Ak is transmitted to Si.
The value is treated as an unsigned integer and the high order bits of
Si are cleared. When the k designator is zero, 1 is transmitted to Si.

When the j designator is 1, the 24-bit value in Ak is transmitted to
Si. The value is treated as a signed integer and the sign bit of Ak
is extended to the high order bits of Si. When the k designator is
zero, 1 is transmitted to Si.

When the j designator is 2, the 24-bit value in Ak is transmitted to
Si as an unnormalized floating point quantity. The result can then
be added to zero to normalize. When the k designator is zero, an
unnormalized floating point 1 is transmitted to Si.

When the j designator is 3, the constant .75*2**48 is entered into Si.
This constant is normally used to extract the integer part of a
floating point quantity ("fix"), as illustrated in the example below.

39

When the j ~esignator is 4, 5, 6, or 7, the normalized floating point
constants .5, 1., 2. and 4., respectively, are transmitted to Si.

Examples:

Code Generated

071705
071213
071122
071130
071240
071350
071460
071570

071230
062312
023130
063332
063113

- 072 Si RT

location Iresult
1 10

57
52
51
51
52
53
54
55

* "fix" a f1
* separate i

52
53
A1
53
51

Transmit RTC to Si

operand comments
20 !35

A5 I

+A3 I
I

+FA2 I
0.6 I

I 0.4 I
1 . I

2. I
I

4. I
oating point ~mber in 51
nteqer and fr~tiona1 parts
0.6 I

51+F52 I
I. 53 11 nteger pa rt

53-F52 If.p. integer
51-F53 lfract i ona 1 pa

This instruction enters the 64-bit value of the real time clock
into Si. The clock is incremented by one each clock period. The
operating system clears the real time clock when the system is
initialized.

Example:

Code Generated perand cornments
'35

072700

- 073 Si VM Transmit vector mask to Si

This instruction enters the 64-bit value of the vector mask (VM)
register into Si. The VM register is normally read after having
been set by the 175 instruction.

Example:

Code Generated location Iresult pperand comments
1 10 20 135

073200 52 VM I

40

part
rt

- 074 Si Tjk Transmit Tjk to Si

This instruction enters the contents of Tik into Si. A symbolic
T register number must be previously defined.

Examples:

Code Generated

074306
074566
074541

- 075 Tjk Si

location result
1 10

S3
S5
S5

Transmit Si to Tjk

operand comments
20 !35

T6 I
I

T66 I

T.TEMP I
I

This instruction enters the contents of Si into Tjk. A symbolic
T register number must be previously defined.

Examples:

Code Generated

075306
075566
075541

- 076 Si Vj,Ak

location result operand comments
1 10 20 ~35

T6 S3 I

T66 S5 I
I

T.TEMP S5 I

Transmit Vj element (Ak) to Si

This instruction enters the element of Vj specified by the contents
of Ak into Si. The low order 6 bits of Ak are used to determine the
vector element. The second element of Vj is selected if the k
designator is zero.

Example:

Code Generated location !result operand comments
1 10 20 l35

076456 S4 V5,A6 I

- 077 Vi ,Ak Sj Transmit Sj to Vi element (Ak)

This instruction enters Sj into the element of Vi specified by the
contents of Ak. The low order 6 bits of Ak are used to determine
the vector element. The second element of Vi receives the contents
of Sj if the k designator is zero.

Example:

Code Generated location result ~perand comments
1 10 20 '35

077167 I Vl,A7 S6 I
I

41

- 10h Ai exp,Ah Read from (Ah)+jkm to Ai

These instructions read words from memory directly into the A
registers. The low order 24 bits of the 64-bit word are entered
into Ai. The contents of Ah is added to the signed integer in the
jkm field of the instruction to determine the memory address if the
h designator is non-zero. Only the jkm field is used as the address
if the h designator is zero.

Examples:

Code Generated

100100004520
100200004520
101300004521
102417777777
103500000001
104600004647
105700004647
106100000001
107200000177

- 11h exp,Ah Ai

location result
1 10

A1
A2
A3
A4
A5
A6
A7
A1
A2

Store Ai to (Ah)+jkm

pperand comments
20 135 ,
CON1 ,AO
CONl,O
CON1+1,A1
-1,A2
1,A3
CON,A4
CON,A5
1,A6
177,A7

These instructions store words from bhe A registers directly into
memory. The high order bits in memory are cleared. The contents
of Ah is added to the signed integer in the jkm field of the
instruction to determine the memory address if the h designator is
non-zero. Only the jkm field is used as the address if the h
designator is zero.

Examples:

Code Generated

110100004520
110200004520
111300004521
112417777777
113500000001
114600004647
115700004647
116100000001
117200000177

Rev. A

location
11

42

result
10
CONl,AO
CONl,O
CONl+l,A1
-1,A2
I,A3
CON,A4
CON,A5
I,A6
177,A7

operand comments
20 135
Al

,

A2
A3
~4
A5
A6
A7
~1
~2

- 12h Si exp,Ah Read from (Ah)+jkm to Si

These instructions read words from memory directly into the S
registers. The contents of Ah is added to the signed integer in
the jkm field of the instruction to determine the memory address
if the h designator is non-zero. Only the jkm field is used as
the address if the h designator is zero.

Examples:

Code Generated

120100004520
120200004520
121300004521
122417777777
123500000001
124600004647
125700004647
126100000001
127200000177

- 13h exp,Ah Si

Ilocation result
1 10

Sl
S2
S3
S4
155
156
157
~1
152

Store Si to (Ah)+jkm

operand comments
20 135
CON1,AO
~ON1,0
~ON1+1,A1
1-1,A2
1,A3
~ON,A4
~ON,A5
1,A6
[77,A7

These instructions store words from the S registers directly into
memory. The contents of Ah is added to the signed integer in the
jkm field of the instruction to determine the memory address if the
h designator is non-zero. Only the jkrn field is used as the
address if the h designator is zero.

Examples:

Code Generated

130100004520
130200004520
131300004521
132417777777
133500000001
134600004647
135700004647
136100000001
137200000177

location
1

43

Iresult
10
~ON1,AO
~ON1,0
~ON1+1,A1
~1 ,A2
1,A3
~ON,A4
~ON,A5
1,A6
177,A7

operand comments
20 !35

51
S2
S3
S4
65
56
67
61
52

- 140 Vi Sj&Vk Logical product of Sj and Vk to Vi

This instruction forms the logical products (AND) of elements of Vk
with Sj and enters the result into Vi. The number of elements
involved is determined by the contents of the VL register. Bits
of an element of Vi are set to 1 when the corresponding bits of Sj
and the element of Vk are 1 as in the following example:

(Sj) = 1100
element of Vk = 1010
element of Vi = 1000

The elements of Vi are cleared if the j designator is zero. The
i and k designators cannot be equal.

Example:

Code Generated location Iresult operand comments
11 10 20 !35

140123 WI 52&V3 I

- 141 Vi Vj&Vk Logical product of Vj and Vk to Vi

This instruction forms the logical products (AND) of elements of Vj
and Vk and enters the result into Vi. The number of elements
involved is determined by the contents of the VL register. Bits
of an element of Vi are set to 1 when the corresponding bits of the
elements of Vj and Vk are 1 as in the following example:

element of
element of
element of

Vj = 1100
Vk = 1010
Vi = 1000

The i designator must not equal the j or k designator. Elements of
Vj are transmitted to Vi when the j and k designators are equal.

Example:

Code Generated

141257
141033

Ilocation
1

44

tresult
10
V2
VO

Ioperand comments
20' 135
V5&V7 I

I
V3&V3 I

- 142 Vi Sj !Vk Logical sum of Sj and Vk to Vi

This instruction forms the logical sums (inclusive OR) of elements of
Vk with Sj and enters the result into Vi. The number of elements
involved is determined by the contents of the VL register. Bits of
an element of Vi are set to 1 when one of the corresponding bits of
Sj and the element of Vk is 1 as in the following example:

(Sj) = 1100
element of Vk = 1010
element of Vi = 1110

Elements of Vk are transmitted to Vi if the j designator is zero.
The i and k designators cannot be equal.

Examples:

Code Generated location ~esult operand comments
1 10 20 135

142615 IV6 lSI! V5 i

- 143 Vi Vi!Vk Logical sum of Vj and Vk to Vi

This instruction forms the logical sums (inclusive OR) of elements of
Vj and Vk and enters the result into Vi. The number of elements
involved is determined by the contents of the VL register. Bits of
an element of Vi are set to 1 when one of the corresponding bits of
the elements of Vj and Vk are 1 as in the following example:

element of Vj
element of Vk
element of Vi

= 1100
= 1010
= 1110

The i designator must not equal the j or k designator. Elements of
Vj are transmitted to Vi when the j and k designators are equal.

Example:

Code Generated 'location result operand comments
1 10 20 !35

143714 V7 Vl!V4 !

45

- 144 Vi Logical difference of Sj and Vk to Vi

This instruction forms the logical differenceg(exclusive OR) of
elements of Vk and Sj and enters the result into Vi. The number of
elements involved is determined by the contents of the VL register.
Bits of an element are set to 1 when the corresponding bits of Sj
and the element of Vk are different as in the following example:

(Sj) = 1100
element of Vk = 1010
element of Vi = 0110

Elements of Vk are transmitted to Vi if the j designator is zero.
The i and k designators cannot be equal.

Example:

Code Generated location rresult operand comments
1 10 120 !35

144267 rJ2 56'..v7 I

- 145 Vi Vj'Vk Logical difference of Vj and Vk to Vi

This instruction forms the logical differences (exclusive OR) of
elements Vj and Vk and enters the result into Vi. The number of
elements involved is determined by the contents of the VL register.
Bits of an element of Vi are set when the corresponding bits of the
elements of Vj and Vk are different as in the following example:

element of Vj
element of Vk
element of Vi

= 1100
= 1010
= 0110

The i designator must not equal the j or k designator. Elements
of Vi are cleared when the j and k designators are equal.

Example:

Code Generated location result operand comments
1 10 20 l35

145513 W5 V1'-V3 I

46

- 146 Vi Sj!Vk&VM Vector merge

This instruction transmits Sj or elements of Vk to Vi depending
on the contents of the vector mask (VM) register. The number of
elements invloved is determined by the contents of the VL register.
Bit n of VM determines whether Sj or element n of Vk is transmitted
to element n of Vi. Sj is transmitted if bit n is one and element
n of Vk is transmitted if bit n is zero. An element of Vi is
cleared when the corresponding bit of VM is one and the j designator
is zero. The i and k designators cannot be equal.

Example. Assume the following initial register conditions:

(VL) = 4
(VN) a 60000 0000 0000 0000 0000
(S2) = -1

element a of V6 1
element 1 of V6 2
element 2 of V6 3
element 3 of V6 4

After executing the instruction V7 S2!V6&VM the first four
elements of V7 have been modified as follows:

element a of V7 1
element 1 of V7 -1
element 2 of V7 -1
element 3 of V7 4

The remaining elements of V7 are unaltered.

Example:

Code Generated location result operand comments

1 10 20 135

146314 IV3 Sl! V4&VM I

I

47

- 147 Vi Vj!Vk&VM Vector merge

This instruction transmits elements of Vj or Vk to Vi depending
on the contents of the vector mask (VM) register. The number of
elements involved is determined by the contents of the VL register.
Bit n of VM determines whether element n of Vj or Vk is transmitted
to element n of Vi. Element n of Vj is transmitted if bit n is one
and element n of Vk is transmitted if bit n is zero. The i designator
must not equal the j or k designator.

Example. Assume the following initial register conditions:

(VL) 4
(VM) o 60000 0000 0000 0000 0000

element 0 of V2 1
element 1 of V2 2
element 2 of V2 3
element 3 of V2 4
element 0 of V3 -1
element 1 of V3 -2
element 2 of V3 -3
element 3 of V3 = -4

After executing the instruction VI V2!V3&VM the first four
elements of VI have been modified as follows:

element 0 of VI = -1
element 1 of VI 2
element 2 of VI = 3
element 3 of VI = -4

The remaining elements of VI are unaltered.

Example:

Code Generated location !result pperand comments
'I 10 20 135

147567 V5 V6!V7&VM i

48

- 150 Vi Vj<Ak Shift Vj left (Ak) places to Vi

This instruction shifts elements of Vj left by the amount speci
fied in Ak and enters the result into Vi. The number of elements
involved is determined by the contents of the VL register. For
each element the shift is end-off with zero fill. Elements of
Vi are cleared if the shift count exceeds 63. The i and j desig
nators cannot be equal. Elements are shifted left one place if
the k designator is zero.

Example:

Code Generated Ilocation result operand comments
1 10 20 135

150123 V1 V2<A3 !

- 151 Vi Vj>Ak Shift Vj right (Ak) places to Vi

This instruction shifts elements of Vj right by the amount speci
fied in Ak and enters the result into Vi. The number of elements
involved is determined by the contents of the VL register. For
each element the shift is end-off with zero fill. Elements of
Vi are cleared if the shift count exceeds 63. The i and j desig
nators cannot be equal. Elements are shifted right one place if
the k designator is zero.

Example:

Code Generated location ~esult operand comments
1 10 20 135

151341 V3 V4>A1 I

49

- 152 Vi Vj,Vj<Ak Double shift Vj left (Ak) places to Vi

This instruction left shifts l28-bit quantities from Vj by the
amount specified in Ak and enters the result into Vi. Element
n of Vj is concatenated with element (n+l) and the l28-bit
quantity is shifted left by the amount specified in Ak. The shift
is end-off with zero fill. The high order 64 bits are transmitted
to element n of Vi. The number of elements involved is determined
by the contents of the VL register. The last element of Vj, as
determined by VL, is concatenated with 64 bits of zeroes. The i
and j designators cannot be equal. The l28-bit quantities are
shifted left one place if the k designator is zero.

Example. Assume the following initial register conditions:

(VL) =
(AI)

o of V4

4
3
7 element

element
element
element

1 of V4
2 of V4
3 of V4

o 60000 0000 0000 0000 0005
1 00000 0000 0000 0000 0006
1 60000 0000 0000 0000 0007

After executing the instruction V5 V4,V4<Al
elements of V5 have been modified as follows:

element 0 of V5 73
element 1 of V5 54
element 2 of V5 67
element 3 of V5 = 70

The remaining elements of V5 are unaltered.

Example:

Code Generated location t."esult operand
11 10 20

152562 V5 V6, V6<A2

50

the first four

comments
!35
I

- 153 Vi Vj,Vj>Ak Double shift Vj right (Ak) places to Vi

This instruction right shifts 128-bit quantities from Vj by the
amount specified in Ak and enters the result into Vi. Element
(n-l) of Vj is concatenated with element n and the 128-bit quantity
is shifted right by the amount specified in Ak. The shift is end-off
with zero fill. The low order 64 bits are transmitted to element n
of Vi. The number of elements involved is determined by the contents
of the VL register. 64 bits of zeroes are concatenated with the first
element of Vj. The i and j designators cannot be equal. The 128-bit
quantities are shifted right one place if the k designator is zero.

Example. Assume the following initial register conditions:

(VL) 4
(A6) = 3

element a of V2 17
element I of V2 = a 60000 0000 0000 0000 0005
element 2 of V2 1 00000 0000 0000 0000 0006
element 3 of V2 1 60000 0000 0000 0000 0007

After executing the instruction va V2,V2>A6 the first four
elements of va have been modified as follows:

element a of va 1
element I of va 1 66000 0000 0000 0000 0000
element 2 of va 1 30000 0000 0000 0000 0000
element 3 of VO 1 56000 0000 0000 0000 0000

The remaining elements of va are unaltered.

Example:

Code Generated location result operand comments
1 10 20 '35

153714 V7 VI t Vl>A4 i

51

- 154 Vi Sj+Vk Integer sum of Sj and Vk to Vi

This instruction forms the integer sums ofSj and elements of Vk
and enters the result into Vi. The number of elements involved
is determined by the contents of the VL register. No overflow
is detected. Elements of Vk are transmitted to Vi if the j desig
nator is zero. The i and k designators cannot be equal.

Example:

Code Generated location iresult operand comments
II 10 20 135

154213 ~2 ~1+V3 I

- 155 Vi Vj+Vk Integer sum of Vj and Vk to Vi

This instruction forms the integer sumsof elements of Vj and Vk
and enters the result into Vi. The number of elements involved
is determined by the contents of the VL register. No overflow
is detected. The i designator must not equal the j or k desig
nator.

Example:

Code Generated location result operand comments
1 10 20 135

155456 V4 V5+V6 !

- 156 Vi Sj-Vk Integer difference of Sj and Vk to Vi

This instruction forms the integer differencesof Sj and elements
of Vk and enters the result into Vi. The number of elements in
volved is determined by the contents of the VL register. No over
flow is detected. The negativesof elements of Vk are transmitted
to Vi if the j designator is zero. The i and k designators can
not be equal.

Example:

Code Generated location Iresult ~perand comments
1 10 20 135

156712 ~7 Sl-V2 I

52

- 157 Vi Vj-Vk Integer difference of Vj and Vk to Vi

This instruction forms the integer differences of elements of Vj
and Vk and enters the result into Vi. The number of elements in
volved is determined by the contents of the VL register. No over
flow is detected. The i designator must not equal the j or k
designator.

Example:

Code Generated location ~esult ~perand comments
11 10 20 135

V3 ~4-V5 i . 157345

- 160 Vi Sj*FVk Floating product of Sj and Vk to Vi

This instruction forms the products of the floating point quantity
in Sj and the floating point quantities in elements of Vk and
enters the result into Vi. The number of elements involved is
determined by the contents of the VL register. Underflow clears
the vector element. Overflow generates an exponent of 60000.
No interrupt occurs. Elements of Vi are cleared if the j desig
nator is zero. The i and k designators cannot be equal.

Example:

Code Generated location result operand comments
1 10 20 !35

160627 V6 ~2*FV7 !

- 161 Vi Vj*FVk Floating product of Vj and Vk to Vi

This instruction forms the products of the floating point quantities
in elements of Vj and Vk and enters the result into Vi. The number
of elements involved is determined by the contents of the VL reg
ister. Underflow clears the vector element. Overflow generates
an exponent of 60000. No interrupt occurs. The i designator must
not equal the j or k designator.

Example:

Code Generated location Iresult operand comments
1 10 20 !35

161123 VI ~2*FV3 I

53

- 162 Vi Sj*HVk Half-precision rounded floating product of Sj and
Vk to Vi

This instruction forms the half-precision rounded products of the
floating point quantity in Sj and the floating point quantities
in elements of Vk and enters the result into Vi. The low order 24
bits of the result elements are cleared. The number of elements
involved is determined by the contents of the VL register. Under
flow clears the vector element. Overflow generates an exponent of
60000. No interrupt occurs. The i and k designator cannot be equal.

Example:

Code Generated

162456

- 163 Vi Vj*HVk

location Iresult operand comments
1 10 20 l35

rv'4 1S5*HV6 I

Half-precision rounded floating product of Vj and
Vk to Vi

This instruction forms the half-precision rounded products of the
floating point quantities in elements of Vj and Vk and enters the
result into Vi. The low order 24 bits of the result elements are
cleared. The number of elements involved is determined by the con
tents of the VL register. Underflow clears the vector element.
Overflow generates an exponent of 60000. No interrupt occurs. The
i designator must not equal the j or k designator.

Example:

Code Generated location tresult pperand comments
1 10 20 135

rv7 ~1*HV2
,
I 163712

- 164 Vi Sj*RVk Rounded floating product of Sj and Vk to Vi

This instruction forms the rounded products of the floating point
quantity in Sj and the floating point quantities in elements of
Vk and enters the result into Vi. The number of elements involved
is determined by the contents of the VL register. Underflow clears
the vector element. Overflow generates an exponent of 60000. No
interrupt occurs. The i and k designators cannot be equal.

Example:

Code Generated location tresult pperand comments
11 10 20 135

164314 V3 Sl*RV4 i

Rev. A 54

- 165 Vi Vj*RVk Rounded floating product of Vj and Vk to Vi

This instruction forms the rounded products of the floating point
quantities in elements of Vj and Vk and enters the result into Vi.
The number of elements involved is determined by the contents of
the VL register. Underflow clears the vector element. Overflow
generates an exponent of 60000. No interrupt occurs. The i
designator must not equal the j or k designator.

Example:

Code Generated Ilocation result operand comments
1 10 20 135

V5 V6*RV7 I
I

165567

- 166 Vi Sj*IVk Reciprocal iteration

This instruction forms, for each element, 2 minus the product of
the floating point quantity in Sj and the floating point quantity
in the element of Vk and enters the result into Vi. The number of
elements involved is determined by the contents of the VL register.
Underflow clears the vector element. Overflow generates an
exponent of 60000. No interrupt occurs. The i and k designators
cannot be equal.

Example:

Code Generated location tresult operand comments
1 10 20 !35

166123 VI S2*IV3 i
I

- 167 Vi Vj*IVk Reciprocal iteration

This instruction forms, for each element pair, 2 minus the product
of the floating point quantities in the elements of Vj and Vk and
enters the result into Vi. The number of elements involved is
determined by the contents of the VL register. This instruction
occurs in the divide sequence as illustrated in the example for the
174 instruction. The i designator must not equal the j or k desig
nator.

Example:

Code Generated location result operand comments
1 10 20 135

167456 V4 V5*IV6 I

55

- 170 Vi Sj+FVk Floating sum of Sj and Vk to Vi

This instruction forms the sums of the floating point quantity in
Sj and the floating point quantities in elements of Vk and enters
the result into Vi. The number of elements involved is determined
by the contents of the VL register. Underflow clears the vector
element. Overflow generates an exponent of 60000. No interrupt
occurs. Floating point quantities in elements of Vk are transmitted
to Vi as normalized floating point quantities if the j designator
is zero. The i and k designators cannot be equal.

Example:

Code Generated location Iresult operand comments
1 10 20 !35

170712 W7 51+FV2 I

- 171 Vi Vj+FVk Floating sum of Vj and Vk to Vi

This instruction forms the sums of the floating point quantities
in elements of Vj and Vk and enters the result into Vi. The number
of elements involved is determined by the contents of the VL
register. Underflow clears the vector element. Overflow generates
an exponent of 60000. No interrupt occurs. The i designator must
not equal the j or k designator.

Example:

Code Generated location result operand comments
1 10 20 !35

171234 W2 W3+FV4 I
I

- 172 Vi Sj-FVk Floating difference of Sj and Vk to Vi

This instruction forms the differences of the floating point
quantity in Sj and the floating point quantities in elements of
Vk and enters the result into Vi. The number of elements involved
is determined by the contents of the VL register. Underflow clears
the vector element. Overflow generates an exponent of 60000. No
interrupt occurs. The negatives of floating point quantities in
elements of Vk are transmitted to Vi if the j designator is zero.
The i and k designators cannot be equal.

Example:

Code Generated location result operand comments
1 10 20 135

172516 V5 Sl-FV6 i

56

- 173 Vi Vj-FVk Floating difference of Vj and Vk to Vi

This instruction forms the differences of the floating point
quantities in elements of Vj and Vk and enters the result into
Vi. The number of elements involved is determined by the contents
of the VL register. Underflew clears the vector element. Over
flow generates an exponent of 60000. No interrupt occurs. The
i designator must not equal the j or k designator.

Example:

Code Generated location !result pperand comments
1 10 20 135

173712 V7 V1-FV2 I .
- 174 Vi /HVj Floating reciprocal approximation of Vj to Vi

This instruction forms an approximation to the reciprocals of the
floating point quantities in elements of Vj and enters the result
into Vi. The number of elements involved is determined by the
contents of the VL register. This instruction occurs in the
divide sequence to compute the quotients of floating point quan
tities as shown in the example below.

Examples:

Code Generated ocation result operand comments
1 10 20 35

* Divide el ents of V1 bY; elements
* result to 6 I

174320 3 HV2 I
161413 4 1*FV3 I
167532 5 3*IV2 I

I 161645 6 4*FV5 I
* ivide Sl y elements oft V2;
* esult to 6 I 174320 3 HV2 I

160413 4 1*FV3 I

167532 IV5 ~3*IV2
I
I

161645 V6 4*FV5 !

57

of V2;

- 175 VM
VM
VM
VM

Vj ,Z
Vj,N
Vj ,P
Vj ,M

Form mask on Vj as defined by k in VM

This instruction is used to create a mask in the VM register
depending on the elements of Vj. Each bit of VM corresponds to
an element of Vj.

If the k designator is 0, the VM bit is set when the element is
zero.

If the k designator is 1, the VM bit is set when the element is
non-zero.

If the k designator is 2, the VM bit is set when the element is
positive. The element is considered positive when it is zero.

If the k designator is 3, the VM bit is set when the element is
negative.

The number of elements tested is determined by the contents of the
VL register. VM bits which correspond to untested elements of Vj
are cleared.

Examples:

Code Generated

175050
175061
175072
175013

location
1

58

Iresult
10

VM
VM
VM
VM

operand comments
20 '35

V5,Z i
V6,N I

I
V7,P I
Vl,M I

I

- 176 Vi ,AO,Ak Read VL words to Vi from memory starting at (AO)
incremented by (Ak)

This instruction is used to read 64-bit words from memory directly
into elements of the V registers. The number of elements involved
is determined by the contents of the VL register. AO contains the
address of the first word which is entered into the first element
of Vi. Successive words are entered into consecutive elements of
Vi. The signed integer in Ak is added to the address of the current
word to obtain the address of the next word. 1 is added if the k
designator is zero. AO in the second operand subfield is optional.
1 may be used in the third operand subfield if the k designator is
zero.

Examples:

Code Generated

176201
176201
176500

- 177 ,AO,Ak Vj

Ilocation result operand comments
1 10 20 !35

V2 ,AO,A1 I

V2 , ,A1 I
I

V5 ,,1 I

Store VL words from Vj to memory starting at (AO)
incremented by (Ak)

This instruction is used to store the elements of V registers
directly into memory. The number of elements involved is deter
mined by the contents of the VL register. AO contains the address
in memory to receive the first element. The signed integer in Ak
is added to the current address to obtain the next address. 1 is
added if the k designator is zero. AO in the second result sub
field is optional. 1 may be used in the third result subfield
if the k designator is zero.

Examples:

Code Generated

177032
177032
177030

location
1

59

Iresult operand comments
10 20 !35
,AO,A2 V3 I

"A2 V3 I
I , ,1 V3 I

APPENDIX A

Summary of CPU instructions

The general form of a memory reference is base, index, increment. For
scalar references the increment field does not appear. The base field
is defined by an expression. The index and increment fields reference
A registers. For a vector memory reference, the base field must
presently be null. A block copy reference to the B or T registers is
of the form register, index, length. Register is the character B or T.
The index field references an A register and the length field is an
expression. A consistent format for all types of instructions allows
for future expansion to treat certain formats as macro instructions.

000 ERR

0010 CA,Aj Ak

0011 CL,Aj Ak

0012 CI,Aj

0013 XA Aj

0014 RT Sj

002 VL Ak

003 VM Sj

004 EX

005 J Bjk

006 J exp*

007 R exp

010 JAZ exp

011 JAN exp

Error

Set the channel (Aj) current address to (Ak) and
begin the sequence

Set the channel (Aj) limit address to (Ak) and
terminate the sequence

Clear the channel (Aj) interrupt flag

Enter the XA register with (Aj)

Enter the real time clock register w~th (Sj)

Transmit Ak to VL

Transmit Sj to VM

Exit

Branch to (Bjk)

Branch to ijkm

Branch to ijkm; set BOO = P

Branch to ijkm if AO = 0

Branch to ijkm if AO ~ 0

* The symbol "exp" denotes an expression.

60

012 JAP exp Branch to ijkm if AO positive

013 JAM exp Branch to ijkm if AO negative

014 JSZ exp Branch to ijkm if SO 0

015 JSN exp Branch to ijkm if SO =/: 0

016 JSP exp Branch to ijkm if SO positive

017 JSM exp Branch to ijkm if SO negative

020** Ai exp Transmit jkm to Ai
Ai lIexp

021** Transmit jkm (l's) complement to Ai

022*** Transmit jk to Ai

023 Ai Sj Transmit Sj to Ai

024 Ai Bjk Transmit Bjk to Ai

025 Bjk Ai Transmit Ai to Bjk

026 Ai PSj Population count of Sj to Ai

027 Ai ZSj Leading zero count of Sj to Ai

030 Ai Aj+Ak Integer sum of Aj and Ak to Ai

031 Ai Aj-Ak Integer difference of Aj and Ak to Ai

032 Ai Aj*Ak Integer product of Aj and Ak to Ai

033 Ai CI Channel number of highest priority interrupt request
to Ai (Aj = 0)

Ai CA,Aj Current address of channel (Aj) to Ai (Aj =/: 0, k 0)

Ai CE,Aj Error flag of channel (Aj) to Ai (Aj =/: 0, k 1)

034 B,Ai,exp ,AO Read jk+l words starting at B-register (Ai) from
memory starting at (AO)

035 ,AO B,Ai,exp Store jk+l words starting at B-register (Ai) to
memory starting at (AO)

036 T,Ai,exp ,AO Read jk+l words starting at T-register (Ai) from
memory starting at (AO)

** 020 or 021 instruction generated depending on the value of expo
*** 022 instruction generated if (1) all symbols in exp have been previously

defined, (2) exp not preceded by # and (3) the value of exp is less than
64.

61

037 ,AO T,Ai,exp Store jk + 1 words starting at T-register (Ai) to
memory starting at (AO)

040* Si exp Transmit jkm to Si

Si #exp

041* Transmit jkm (l's) complement to Si

042 Si <exp Form ones mask in Si from the right

Si #>exp

043 Si >exp Form ones mask in Si from the left

Si #<exp

044 Si Sj&Sk Logical product of Sj and Sk to S1

045 Si #Sk&Sj Logical product of Sj and complement of Sk to Si

046 Si Sj'Sk Logical difference of Sj and Sk to Si

047 Si #Sj'Sk Logical difference of Sk and Sj complement to Si

050 Si Sj!Si&Sk Logical product of Si and complement of Sk OR'ed
with the logical product of Sj and Sk to Si

051 Si Sj!Sk Logical sum of Sj and Sk to Si

052 SO Si<exp Shift Si left jk places to SO

053 SO Si>exp Shift Si right jknegative places to SO

054 Si Si<exp Shift Si left jk places

055 Si Si>exp Shift Si right jknegative places

056 Si Si,Sj<Ak Shift Si Sj left (Ak) places to Si

057 Si Sj,Si>Ak Shift Sj Si right (Ak) places to Si

060 Si Sj+Sk Integer sum of Sj and Sk to Si

061 Si Sj-Sk Integer difference of Sj and Sk to S1

062 Si Sj+FSk Floating sum of Sj and Sk to Si

063 Si Sj-FSk Floating difference of Sj and Sk to Sf

* 040 or 041 instruction generated depending on the value of expo

Rev. A 62

064 Si Sj*FSk Floating product of Sj and Sk to Si

065 Si Sj*HSk Half-precision rounded floating product of Sj and
Sk to Si

066 Si Sj*RSk Full-precision rounded floating product of Sj and
Sk to Si

067 Si Sj*ISk Two minus the floating product of Sj and Sk to Si

070 Si /HSj Floating reciprocal approximation of Sj to Si
j

071 0 Si Ak Transmit Ak to Si with no sign extension
1 Si +Ak Transmit Ak to Si with sign extension
2 Si +FAk Transmit Ak to Si as unnormalized floating point

number
3 Si 0.6 Transmit constant .75*2**48 to Si
4 Si 0.4 Transmit constant .5 to Si
5 Si 1. Transmit constant 1. to Si
6 Si 2. Transmit constant 2. to Si
7 Si 4. Transmit constant 4. to Si

072 Si RT Transmit RTC to Si

073 Si VM Transmit vector mask to Si

074 Si Tjk Transmit Tjk to Si

075 Tjk Si Transmit Si to Tjk

076 Si Vj,Ak Transmit Vj element (Ak) to Si

077 Vi,Ak Sj Transmit Sj to Vi element (Ak)

10h Ai exp,Ah Read from (Ah)+jkm to Ai (AO=O)

11h exp,Ah Ai Store Ai to (Ah)+jkm (AO=O)

12h Si exp,Ah Read from (Ah)+jkm to Si (AO=O)

13h exp,Ah Si Store Si to (Ah)+jkm (AO=O)

140 Vi Sj&Vk Logical product of Sj and Vk to Vi

141 Vi Vj&Vk Logical product of Vj and Vk to Vi

142 Vi Sj!Vk Logical sum of Sj and Vk to Vi

143 Vi Vj!Vk Logical sum of Vj and Vk to Vi

144 Vi Sj'Vk Logical difference of Sj and Vk to Vi

145 . Vi Vj'Vk Logical difference of Vj and Vk to Vi

63

146

147

Vi Sj!Vk&VM Transmit Sj if VM bit
to Vi

Vi Vj!Vk&VM Transmit Vj if VM bit
to Vi

1, transmit Vk if VM bit

1, transmit Vk if VM bit

150 Vi Vj<Ak Shift Vj left (Ak) places to Vi

151 Vi Vj>Ak Shift Vj right (Ak) places to Vi

152 Vi Vj,Vj<Ak Double shift Vj left (Ak) places to Vi

153 Vi Vj,Vj>Ak Double shift Vj right (Ak) places to Vi

154 Vi Sj+Vk Integer sum of Sj and Vk to Vi

ISS Vi Vj+Vk Integer sum of Vj and Vk to Vi

156 Vi Sj-Vk Integer difference of Sj and Vk to Vi

157 Vi Vj-Vk Integer difference of Vj and Vk to Vi

160 Vi Sj*FVk Floating product of Sj and Vk to Vi

161 Vi Vj*FVk Floating product of Vj and Vk to Vi

o

o

162 Vi Sj*HVk Half-precision rounded floating product of Sj and Vk
to Vi

163 Vi Vj*HVk Half-precision rounded floating product of Vj and Vk
to Vi

164 Vi Sj*RVk Rounded floating product of Sj and Vk to Vi

165 Vi Vj*RVk Rounded floating product of Vj and Vk to Vi

166 Vi Sj*IVk Two minus the floating product of Sj and Vk to Vi

167 Vi Vj*IVk Two minus the floating product of Vj and Vk to Vi

170 Vi Sj+FVk Floating sum of Sj and Vk to Vi

171 Vi Vj+FVk Floating sum of Vj and Vk to Vi

172 Vi Sj-FVk Floating difference of Sj and Vk to Vi

173 Vi Vj-FVk Floating difference of Vj and Vk to Vi

174 Vi /HVj Floating reciprocal approximation of Vj to Vi

64

k
175 0 VM Vj,Z VM 1 where Vj = 0

1 VM Vj,N VM 1 where Vj :; 0
2 VM Vj,P VM 1 where Vj positive
3 VM Vj,M VM= 1 where Vj negative

176 Vi ,AO,Ak Read VL words to Vi from memory starting at (AO)
incremented by (Ak)

177 ,AO,Ak Vj Store VL words from Vj to memory starting at (AO)
incremented by (Ak)

Special forms recognized by the assembler

Ai Ak Transmit Ak to Ai
Ai Aj+1 Transmit Aj+1 to Ai
Ai Aj-1 Transmit Aj-1 to Ai
Ai -Ak Negative of Ak to Ai
B,Ai,exp , B,Ai,exp ,AO
, B,Ai,exp ,AO B,Ai,exp
T,Ai,exp , T,Ai,exp ,AO
, T,Ai,exp ,AO T,Ai,exp
Si <100 Full word of ones to Si
Si >100
Si <0 Transmit zero to Si
Si >0
Si 0
Si 1 Transmit one to Si
Si IISk Complement of Sk to Si
Si Sk Transmit Sk to Si
Si Si<Ak Shift Si left (Ak) places
Si Si>Ak Shift Si right (Ak) places
Si -Sk Negative of Sk to Si
Ai exp,O Ai exp,AO
exp,O Ai exp,AO Ai
Si exp,O Si exp,AO
exp,O Si exp,AO ~ . LoI1

Vi , ,Ak Vi ,AO,Ak
Vi , , 1 Vi ,AO,AO
, ,Ak Vi ,AO,Ak Vi
, ,1 Vi ,AO,AO Vi
SO Si~O SO Si<O
SO Si<-100 SO 5i>100
Si Si>O Si Si<O
Si Si<100 Si Si:>100

65

APPENDIX B

Instruction timing

When issue conditions are satisfied an instruction completes in a fixed
amount of time. Instruction issue may cause reservations to be placed
on a functional unit or registers. Knowledge of the issue conditions,
instruction execution times and reservations permit accurate timing of
code sequences. Memory bank conflicts due to I/O activity are the only
element of unpredictability.

Scalar instructions

Four conditions must be satisfied for issue of a scalar instruction:

1. The functional unit must be free. No conflicts can arise
with other scalar instructions, however vector floating
point instructions reserve the floating point units.
Memory references may be delayed due to conflicts.

2. The result register must be free.

3. The operand registers must be free.

4. The result register group input path must be free at
execution time - 1. One input path exists for each of the
four register groups (A,B,S and T).

Scalar instructions place reservations only on result registers. A
register is reserved for the execution time of the ~"C!~".""'; r"\" l..T"

"&..&.~~.L U\....,. "", .. V.LL. nv

ervations are placed on the functional unit or operand registers.

result
res-

Execution times in clock periods are given below. An asterisk indicates
that issue may be delayed because of a functional unit reservation by a
vector instruction. Memory may be considered a functional unit for timing
considerations.

(A=A register, M=memory, B=B register, S=S register, I=Immediate, C=Channel)

24-bit results:
A := M * 5 10* A := C
M := A 1 A := A+A 2
A := B 1 A := A*A 6
B := A 1 A := pop(S) 3
A := S 1 A := Izc(S) 4
A := I 1 VL := A 1

Rev. A 66

64-bit results:
* S := M 10* S := S+S 3*

M := S 1 S := S(f.add)S 6*
S := T 1 S := S(f.mult)S 7*
T := S 1 S := S(r.a.) 14
S := I 1 S := V 5
S := S(log.)S 1 V := S 1
S := S(shift)I 2 S ':= VM 1
S := S(shift)A 3 S := RTC 1
S := S(mask)I 1 S := A 2

RTC := S I VM := 8 1.

Vector instructions

Four conditions must be satisfied for issue of a vector instruction:

1. The functional unit must be free.

2. The result register must be free.

3. The operand registers must be free or at chain slot time.

4. Memory must be quiet if the instruction references memory.

Vector instructions place reservations on functional units and registers
for the duration of execution.

1. Functional units are reserved for VL+2 clock periods except for
two special cases:
- Memory is reserved for VL+4 clock periods.
- A shared functional unit is reserved for VL+4 clock

periods if a subsequent scalar instruction requires
the unit.

2. The result register is reserved for the functional unit time
+ (VL+2) clock periods. The result register is reserved for the
functional unit time +7 clock periods if the vector length is
less than 5. At functional unit time +2 (called "chain slot
time") a subsequent instruction, which uses the reserved result
register as an operand register and which has met all other issue
conditions, may issue. This process is called "chaining".
Several instructions using different functional units may be
chained in this manner to attain a significant enhancement of
processing speed.

3. Vector operand registers are reserved for VL+l clock periods. Vec
tor operand registers are reserved for 6 clock periods if the vec
tor le~gth is less than 5. The vector register used in a block
store to memory (177 instruction) is reserved for VL+5 clock
periods. Scalar operand registers are not reserved.

Vector instructions produce one result per clock period. The functional
unit times are given below.

Rev. A 67

functional unit

logical
shift
integer add
floating add
floating multiply
reciprocal approx.
memory

time (c.p.)

2
3
3
6
7

14
6

Memory must be quiet before issue of the Band T register block copy
instructions (034-037). Subsequent instructions may not issue for 13+jk
clock periods when reading data to the Band T registers (034,036). They
may not issue for 5+jk clock periods when storing data (035,037).

Branch instructions may not issue until an AO or SO operand register has
been free for one clock period. Fall-through in buffer requires two
clock periods. Branch-in-buffer requires five clock periods. When an
"out of buffer" condition occurs the execution time for a branch instruc
tion is 13 clock periods.

No instruction may issue in the clock period following issue of a 2-parcel
instruction.

Rev. A 68

APPENDIX C

Coding examples

1. Long vectors. When vectors have more than 64 elements it is neces
sary to segment the vector into groups of 64 elements and a residue
before processing. The following example shows an efficient way to do
this.

LOOP

Al
A2
AO
A3
S2
SI
JAP
SI
A3
A3
VL

Al
AO
A3
JAN

FWA
LWA+l
AI-A2
AI-A2
<6
A3
ERROR
#SI&S2
SI
A3+1
A3

Al+A3
AI-A2
0 1 64
LOOP

vector first word address
vector last word address + 1
- vector length

error if vector length ~ 0

first segment length
set vector length
read vector segment
and perform vector computations

store result

increment current position

loop for all segments

2. Loop counter. An efficient way to count the number of passes through
loops when the number of passes does not exceed 64.

LOOP
SO
SO

JSM

<COUNT
SO<1

LOOP

69

(mask with length = loop count)
shift mask
perform computations

loop required number of times

3. Alternate tests on the contents of S registers. Usually SO is used
to test the contents of S registers for zero, non-zero, positivity or
negativity. The population count and leading zero count instructions
may be used to test the contents of S registers for these conditions in
AO. This may be useful when SO cannot be destroyed or when one S register
test needs to be made right after another.

AD PS3
JAZ SZR if S3 = D

AD PS3
JAN SNZ if S3 1 D

AD ZS3
JAN SPL if S3 :) D

AD ZS3
JAZ SMI if S3 < D

4. Circular shifts. The double shift instructions (056 and 057) may be
used to shift an S register circularly.

or:
S7
S7

S7,S7<A2
S7,S7>A2

70

APPENDIX D

Use of the NOVA CAL assembler

Name: CAL

Format: CAL filename

Purpose: To assemble a CAL assembly language source file. Output may be
an absolute binary file, a listing file, or both.

Switches:

Global: By default, output of an assembly is an absolute binary file (no
listing file). Switches other than those specified are ignored.

/E - list only lines with errors on listing file; no effect if L
or P switches not selected

/L - listing file is produced on filename.LS
/N - ~o absolute binary file is produced
/0 - £verride effect of LIST pseudo-instructions; no effect if L

or P switches not selected
/p - listing on £rinter; overridden by L switch
/X - produce cross referencing of symbol table; no effect if L

or P switches not selected

Local: None

Extensions: On input, search for filename.

On output, produce filename.SV for absolute binary and filename.LS
for listing (global L switch selected).

The source file name specified on the call cannot have an extension
and is limited to ten characters.

Examples: CAL Z)

Rev. A

causes assembly of CAL source file Z, producing an absolute binary
file called Z.SV.

CAL/N/L A)

causes assembly of file A, producing as output a listing file A.LS.
No binary file is produced.

CAL/P/X EXAMP)

causes assembly of file EXAMP, producing an assembly listing with
cross-referenced symbol table, output to the line printer, and an
absolute binary file EXAMP.SV.

71

Error
~

o

L

D

U

R

APPENDIX E

Assembly errors

Definition

OPERAND FIELD ERROR

Indicates any of a number of possible errors in the
operand field. For example:

- symbol or name greater than 8 characters
- expression does not have proper attribute
- data error; 8 or 9 encountered in octal data
- syntax error

LOCATION FIELD ERROR

Symbol in location field is erroneous.

DOUBLY DEFINED SYMBOL

Symbol previously defined; the first definition holds.

UNDEFINED SYMBOL

Reference to a symbol that is not defined.

RESULT FIELD ERROR

Indicates any of a number of possible errors in the
result field. For example:

- symbol or name greater than 8 characters
- expression does not have proper attribute
- data error; 8 or 9 encountered in octal data
- syntax error
- ABS or ORG following instructions or =
- location field symbol begins beyond column 2

72

APPENDIX F

Description of binary output

The absolute binary output consists of a program descriptor table (PDT)
followed by a single text table (TXT) containing the absolute code.

PDT Format:

Word 0 Bits 00-03* Table code (17)
04-27 Word count (7)
28-41 Number of external names (0)
42-55 Number of entry names * 2 (2)
56-63 Number of blocks referenced * 2 (2)

(absolute block only)
Word 1 Bits 00-63 Program name

(left-justified, zero fill)
Word 2 Bits 40-63 Program length
Word 3 Bits 00-63 Enter point name

(left-justified, zero fill)
Word 4 Bits 00-63 Entry value
Word 5 Bits 00-63 Date (DD/MM/YY)
Word 6 Bits 00-63 Time (HH:MM:SS)

TXT Format:

Word 0 Bits 00-03 Table code (16)
04-27 Word count (program length + 1)
40-63 Load address

Words 1 through "program length" contain the absolute code.

*Bit positions are numbered in decimal; the high order bit is position O.

Rev. A 73

RESEARCH. INC.
GENERAL OFFICE • P.O. Box 169, Chippewa Falls, WI 54729 • (715) 723-0266

SALES OFFICE . 7650 Metro Parkway, Suite 213, Minneapolis, MN 55420 • (612) 654-7472

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	xBack

