
PER BRINCH HANSEN 
ALFRED C. HARTMANN 

Information Science 

California Institute of Technology 

July 1975 

SEQUENTIAL PASCAL REPORT 



Abstract 

SEQUENTIAL PASCAL REPORT 

Per Brinch Hansen 
Alfred C. Hartmann 

Information Science 
California Institute of Technology 

July 1975 

This report defines the sequential programming language Pascal as 

implemented for the PDP-II /45 computer. 

Key Words and Phrases: Pascal, programming languages. 

CR Categories: 4. 2 



CONTENTS 

I. INTRODUCTION 

2. SYNTAX GRAPHS 2 

3. CHARACTER SET 3 

4. BASIC SYMBOLS 5 

5. BLOCKS 7 

6. CONSTANTS 8 

7. TYPES 9 

7. l. Enumeration Types 10 

7.2. Reals 16 

7.3. Array Types 17 

7.4. Record Types 19 

7.5. Set Types 21 

7.6. Pointer Types 23 

8. VARIABLES 24 

9. EXPRESSIONS 26 

10. STATEMENTS 28 

II. ROUTINES 29 

12. SCOPE RULES 34 

13. SEQUENTIAL PROGRAMS 36 

A. PDP 11 /45 SYSTEM 37 

B. ASCII CHARACTER SET 41 

INDEX 42 



1. Introduction 

This report defines the sequential programming language Pascal im-

plemented on the PDP-II /45 computer. Pascal is a general purpose 

language for structured programming invented by Niklaus Wirth. 

This is a brief concise definition of Pascal. A more informal intro-

duction to Pascal is provided by the following reports: 

Wirth, N. Systematic Programming, Prentice-Hall, 1973. 

Jensen, K. and Wirth, N. Pascal-User Manual and Report, 
Lecture Notes in Computer Science 18, Springer-Verlag, 1974. 

The central part of this report is a chapter on data types. It is based 

on the assumption that data and operations on them are inseparable aspects 

of computing that should not be dealt with separately. For each data type 

we define the constants that represent its values and the operators and 

statements that apply to these values. 

Sequential Pascal has been implemented for the PDP-II /45 computer 

at Caltech. An appendix defines the additional restrictions and extensions 

of this implementation. 



2. 

2. SYNTAX GRAPHS 

2. Syntax Graphs 

The language syntax is defined by means of syntax graphs of the form: 

whi I e statement 

---.. WHILE -. expr ----. DO -. statement -. 

A syntax graph defines the name and syntax of a language construct. Ba

sic symbols are represented by capitals and special characters, for exam

ple 

WHILE DO + 

Constructs defined by other graphs are represented by their names written 

in small letters, for example 

expr statement 

Correct sequences of basic symbolS and constructs are represented by 

arrows. 



3. 

3. CHARACTER SET 

3. Character Set 

Pascal programs are written in a subset of the ASCII character set: 

character 

graphic character '----

control character --~~ 

graphic character 

E Pecial Cha~rcter 
letter 
digit 
space 

A graphic character is a printable character. 

The special characters are 

11 # $ % & ... + 

/ < > ? @ 

The letters are 

A B C D E F G H I J K 

L M N 0 P Q R S T U V 

W X y Z 

The digits are 

0 2 3 4 5 6 7 8 9 



4. 

3. CHARAC TER SET 

control character 

-. (: --... digits-. :)~ 

A control character is an unprintable character. It is represented by 

an integer constant called its ordinal value (Appendix B). The ordinal 

value must be in the range O •• 127. 

--.... f--t .... dig i t .. 



4. BASIC SYMBOLS 

4. Basic Symbols 

A program consists of symbols and separators. 

symbol 

~
peCial sym30' 
word sym bol 

identifier 

constant 

The special symbols are 

+ * / & < > < > <= >= 'a) 

(. .) 

5. 

They have fixed meanings (except within string constants and comments). 

The word symbols are 

ARRAY BEGIN CASE CONST DIV 

DO DOWNTO ELSE END FOR 

FORWARD FUNCTION IF IN MOD 

NOT OF OR PROCEDURE PROGRAM 

RECORD REPEAT SET THEN TO 

TYPE UNIV UNTIL VAR WHILE 

WITH 

They have fixed meanings (except within string constants and comments). 

Word symbols cannot be used as identifiers. 



6. 

4. BASIC SYMBOLS 

identifier 

__..1 e tter --.,....--------,---1 ... 

1= ~~:tl:r ... :JI__-.J 

An identifier is introduced by a programmer as the name of a constant, 

type, variable, or routine. 

identifiers 

-......,t,---t ... ~ i dent i f i er ---.--t .... ~ 
- t • 

separator 

... space ... L ~new line :=! 
"-. comment____..II 

Two constants, identifiers, or word symbols must be separated by 

at least one separator or special symbol. There may be an arbitrary num-

ber of separators between two symbols, but separators may not occur with-

in symbols. 

A comment is any sequence of graphic characters (except ") enclosed 

in quotes. It has no effect on the execution of a program. 



7. 

5. BLOCKS 

5. Blocks 

The basic program unit is a block: 

block 

-. declarations -----. compound stat ement-. 

It consists of declarations of computational objects and a compound statement 

that operates on them. 

declarations 

const definitions"'---' 
----r--------------~r_-~~ .. var declarations--~~ 

type definitions ... -----' 

4-L--- routines 

A declaration defines a constant, type, variable, or routine and intro-

duces an identifier as its name. 

compound statement 

-"BEGIN t • statement ----.--t.~ END----

'------ ; "'41---~ 

A compound statement defines a sequence of statements to be executed 

one at a time from left to right. 



8. 

6. CONSTANTS 

6. Constants 

A constant represents a value that can be used as an operand in an 

expression. 

constant definitions 

---'fr--I~~identi fier--" = ----. constant ----

A constant definition introduces an identifier as the naIne of a constant. 

constant 

identifier ~ 
enumeration constant 

1---1" real constant 

~-...... string constant 



7. TYPES 

7. Types 

A data type defines a set of values which a variable or expression 

may assume. 

type definitions 

--'TYPE t • identifier--.= --.type--. 

A type definition introduces an identifier as the name of a data type. 

In general, a data type cannot refer to its own type identifier. A pointer 

type may however refer to a data type before it has been defined. 

type 

--.----t. ide n t i f i er -----..-.... 
~ 

--.enumerat i on type----.. 

1-----1. REAL ----+I 

1----1. orr a y type ---..-.I 

I----I.record type ---+I 

t---..... set type 
'----t~pointer type -----I 

Enumeration types and reals can only be operated upon as a whole. 

They are simple~. 

Arrays, records, sets and pointer types are defined in terms of other 

types. They are structured ~ containing component~. 

A data type that contains a pointer type is a list~. All other types are 

nonlist ~. 

An operation can only be performed on two operands if their data types are 

compatible (Section 9). 



10. 

7.1. ENUMERATION TYPES 

7.1. EnuIneration Types 

An enuIneration type consists of a finite, ordered set of values. 

enumerat ion type 

-..,.------. CHAR -------,--. 
~-------' .. ~BOOLEAN -----~ 
~---~~INTEGER-----~ 

~-...... ( -. identifiers -......) ---I~ 
~ constant-. .. -.constant-

The types char, boolean, and integer are standard enuIneration types. 

A non-standard enUIIleration type is defined by listing the identifiers 

that denote its values in increasing order. 

An enuIneration type can also be defined· as a subrange of another enu-

Ineration type by specifying its Inin and Inax values (separated by a double 

period). The Inin value Inust not exceed the Inax value, and they Inust be 

cOInpatible enUIIleration constants (Section 9). 

enumeration constant 

E identifier ~ 
char constant 

boolean constant 
integer constant 



7.1. ENUMERATION TYPES 

The basic operators for enuITlerations are: 

< 

> 

<= 

<> 

>= 

(assignITlent) 

(les s) 

( equal) 

(greater) 

(less or equal) 

(not equal) 

(greater or equal) 

The result of a relation is a boolean value. 

11. 

An enuITleration value can be used to select one of several stateITlents 

for execution: 

case statement 

~CASE--'expr ~OF--"'Iabeled statements~END----' 

A case stateITlent defines an enuITleration expression and a set of 

stateITlents. Each stateITlent is labeled by one or ITlore constants of the 

saITle type as the expression. A case stateITlent executes the stateITlent 

which is labeled with the current value of the expression. (If no such label 

exists, the effect is unknown). 

labeled statements 

-----r~---t •• enumeratio~ :onstant --.--1 •• : ----.statement --...,--1." 

•• 

The case expression and the labels ITlust be of cOITlpatible enuITleration 

types, and the labels ITlust be unique. 



12. 

7.1. ENUMERATION TYPES 

The following standard functions apply to enumerations: 

succ(x) The result is the successor value of x (if it 

exists). 

pred(x) The result is the predecessor value of x 

(if it exists). 

An enumeration type can be used to execute a statement repeatedly 

for all the enumeration values: 

for statement 

--+FOR ---- identifier ----.:= --.expr .TO~ 
L.DOWNTO 

~ sta tement 4- DO 4- expr 

A for statement consists of an identifier of a control variable, two 

expressions defining a subrange, and a statement to be executed repeat-

edly for successive values in the sub range. 

The control variable can either be incremented from its min value TO 

its max value or decremented from its max value DOWNTO its min value. 

If the min value is greater than the max value, the statement is not executed. 

The value of the control variable is undefined after completion of the for 

statement. 

The control variable and the expressions must be of compatible enu-

me ration types. The control variable may not be a constant parameter, a 

record field, a function identifier, or an array element (Sections 7.3, 7.4, 

11). The repeated statement may not change the value of the control variable. 



13. 

7.1. 1. CHARACTERS 

7. 1. 1. Characters 

The type CHAR is a standard enumeration type. Its values are the 

set of ASCII characters represented by char constants: 

cha r constant 

-... I --. character -.. '-... 

The following standard function applies to characters: 

ord(x) The result (of type integer) is the ordinal value 

of the character x. 

The ordering of characters is defined by their ordinal values (Appendix 

B). 

7. 1.2. Booleans 

The type BOOLEAN is a standard enumeration type. Its values are 

represented by boolean constants: 

boolean constant 

~FALSE ," 
L..TRUE---1 

where FALSE<TRUE. 

The following operators are defined for booleans: 

& (and) 

or 

not 

The result is a boolean value. 



14. 

7. 1. 2. BOOLEANS 

A boolean value can be used to select one of two statements for execu

tion. It can also be used to repeat the execution of a statement while a con

dition is true (or until it becomes true). 

if statement 

---.1 F ~expr ---- THEN ~ statement --.--t ... ELSE -.. statement -,--.... 
L--_____ ---IJ 

An if statement defines a boolean expression and two statements. If 

the expression is true then the first statement is executed, else the second 

statement is executed. The second statement may be omitted in which case 

it has no effect. 

The expression value must be a boolean. 

while statement 

---. WHILE ____ expr ---. DO -.. statement ---. 

A while statement defines a boolean expression and, a statement. If the 

expression is false the statement is not executed; otherwise, it is executed 

repeatedly until the expression becomes false. 

The expression value must be a boolean. 



15. 

7.1.3. INTEGERS 

repeat statement 

--. REPEAT --.f,..---I ... statement ----,r--I ..... UNTI L ____ expr ----. 
L-____ ; .. 

A repeat statement defines a sequence of statements and a boolean 

expression. The statements are executed at least once. If the expression 

is false, they are executed repeatedly until it becomes true. 

The expression value must be a boolean. 

7. 1.3. Integers 

The type INTEGER is a standard enumeration type. Its values are a 

finite set of successive, whole numbers represented by integer constants: 

integer constant 

~digits~ 

The following operators are defined for integers: 

+ (plus sign or add) 

(minus sign or subtract) 

'* 

div 

mod 

(multiply) 

(divide) 

(modulo) 

The result is an integer value. 



16. 

7.2 REALS 

The following standard functions apply to integers: 

abs(x) 

chr{x) 

conv{x) 

7.2. Reals 

The result (of type integer) is the absolute value 

of the integer x. 

The result (of type char) is the character with the 

ordinal value x. 

The result is the real value corresponding to the 

integer x. 

The standard type REAL consists of a finite subset of the real 

num.bers represented by real constants: 

real constant 

-. digits -.l...-i~" . ....... digits 

The letter E represents the scale factor 10. 

The following operators are defined for reals: 

.- (assignm.ent) 

< (less) 

(equal) 

> (greater) 

<= (less or equal) 

<> (not equal) 

>= (greater or equal) 



17. 

7.3. ARRAY TYPES 

+ (plus sign or add) 

(minus sign or subtract) 

* (multiply) 

/ (divide) 

The result of a relation is a boolean value. The result of an arithmetic 

operation is a real value. 

The following standard functions apply to reals: 

abs(x) 

trunc(x) 

7.3. Array Types 

The result (of type real) is the absolute value 

of the real x. 

The result is the (truncated) integer value 

corresponding to the real x. 

An array consists of a fixed number of components of the same type. 

An array component is selected by one or more index expressions. 

array type 

-.ARRAY-'(. ----.+,--I~~ enumeration type 

- . 4 

---,---t.~ .) ----- 0 F ----- type --. 

The index ~ must be enumeration types. The component ~e can 

be any type. The number of index types is called the dimension of the array. 



18. 

7.3. ARRAY TYPES 

array component 

______ variable ~ (. 

A component of an n-dimensional array variable is selected by means 

of its variable identifier followed by n index expressions (enclosed in 

brackets and separated by commas). 

The number of index expressions must equal the number of index types 

in the array type definition, and the expressions must be compatible with the 

corresponding types. 

The basic operators for arrays are: 

:= 

<> 

(assignment) 

(equal) 

(not equal) 

The operands must be compatible arrays. The result of a relation is a 

boolean value. 

A one-dimensional array of m characters is called a string ~ of length 

m. Its values are the string constants of length m: 

string constant 

--~t~-' •• character 

The ordering of characters defines the ordering of strings. 



19. 

7.4. RECORD TYPES 

The following operators are defined for strings (in addition to those 

defined for all array types); 

< (les s) 

> (greater) 

<= (less or equal) 

>= (greater or equal) 

The operands must be strings of the same length. The result of a relation 

is a boolean value. 

7.4. Record Types 

A record consists of a fixed part and a variant part. One of these (but 

not both) can be missing. 
record type 

--. RECORD-.. field list -. END 

field list 

--'-..... fixed port -:~~~t_-_ .. _ .. :_v_a_r_i_a_n_t_p_a_r_t_-..Jt .. 

The fixed part consists of fields of fixed types. 

fixed port 

t .. identifiers -..: -.. type 

; .. 
variant part 

-----CASE --. identifier -..: -.. identifi er ..... OF-""'It--t .. ~ variant 

; .. 



20. 

7.4. RECORD TYPES 

The variant part defines a ~ field and one or more different sets of 

fields (called variants). Each possible variant is labeled by one or more 

constants. A record of this type can represent anyone of the variants. 

The value of the tag field defines the chosen variant. 

variant 

--.Iabels -..: -.. (-. field list --..) ~ 

labels 

-~fr--........ enumeration constant --r-...... ~ 

"--_____ , ....... ----_..1 

The tag field and the labels must be of compatible enuITleration types, 

and the labels m.ust be unique. 

A field of a record variable is selected by m.eans of its variable identifier 

followed by the field identifier (separated by a period). 

record component 

-.. variable -.. . --. identifier ---.. 

A variant field can only be selected if the value of the tag field is equal 

to one of the labels of that variant. 



21. 

7. 5. SET TYPES 

The basic operators for records are: 

:= (assignITlent) 

(equal) 

<> . (not equal) 

The operands ITlust be cOITlpatible records. The result of a relation is a 

boolean value. 

A with stateITlent can be used to operate on the fields of a record 

variable: 

with statement 

-+-WITH ---:tr--... ~ .. va ria b I e --""T"-... ~ .. 0 0 ---. s tat e men t _____ 

- , "4 

A with stateITlent consists of one or ITlore record variables and a 

stateITlent. This stateITlent can refer to the record fields by their identifiers 

only (without qualifying theITl with the identifiers of the record variables). 

The stateITlent 

with vi. v2 ••••• vn do S 

is equivalent to 

with vi do 

with v2. ••• • vn do S 

7.5. Set Types 

The set type of an enuITleration type consists of all the subsets that can 

be forITled of the enuITleration values: 

set type 

----- SET -. OF --. type ---. 



22. 

7.5. SET TYPES 

The component type of a set type is called its base ~ It must be an 

enumeration type. 

Set values can be constructed as follows: 

set constructor 

~(. 

A set constructor consists of one or more expressions enclosed in 

brackets and separated by commas. It computes the set consisting of the 

expression values. The set expressions must be of compatible enurneration 

types. 

The empty set is denoted 

( .. ) 

The basic operators for sets are; 

( assignment) 

(contained in) 

(contains) 

(difference) 

& (intersection) 

or (union) 

The operands must be compatible sets. The result of a relation i" a 

boolean value. The result of the other operators is a set value that is COlU-

patible with the operands. 

in (membership) 

The first operand must be an enumeration type and the second one must 

be its set type. The result is a boolean value. 



7.6. POINTER TYPES 

7.6. Pointer Types 

A pointer type is a reference to another type: 

poi nter type 

--.@ ---. type ---. 

poi nter component 

--. variable --. @--. 

23. 

The type referenced by a pointer is its component !¥£.e. The component 

of a pointer variable is selected by means of its variable identifier followed 

by the symbol @. 

The basic operators for pointers are: 

:= (assignment) 

(equal) 

<> (not equal) 

The operands must be pointers to compatible components. 

An assignment associates the component of one pointer variable with 

another pointer variable as well. 

Two pointers are equal if both are associated with the same component. 

The result of a pointer comparison is a boolean. 

The pointer constant NIL denotes an undefined component. Initially all 

pointer variables have the value NIL. They may get a new value by assignment 

or by the standard procedure: 

new(p) Associates a new component with the pointer 

variable p. 



24. 

8. VARIABLES 

8. Variables 

A variable is a named store location that can assume values of a 

single type. The .basic operations on a variable are assignment of a new 

value to it and a reference to its current value. 

var declarations 

-. VAR ---rf--I~" identifiers -.: -. type -.; -....--1 ... 

A variable declaration defines the identifier and type of a variable. 

The de cla ration 

var vI, v2, ••. , vn: Ti 

is equivalent to 

var vI: T; v2: Ti ••• i vn: Ti 

variable 

E identifier ~ 
array component 

record component 

poi nter component . 

A variable is referenced by means of its identifier. A variable component 

is selected by means of index expressions, field identifiers, or pointer 

references (Sections 7.3, 7.4, 7. 6). 



25. 

8. V ARlAB LES 

assignment 

-... variable --.: = --... expr --. 

An assigmnent defines the assignITlent of an expression value to a 

variable. The variable and the expression ITlust be cOITlpatible. 

The variable ITlay not be a constant paraITleter (Section 11). 



26. 

9. EXP RESSIONS 

9. Expressions 

An expression defines a com.putation of a value by application of 

operators to operands. It is evaluated from. left to right using the follow-

ing priority rules: 

First, factors are evaluated. 

Secondly, ~ are evaluated. 

Thirdly, sim.ple expressions are evaluated. 

Fourthly, com.plete expres sions are evaluated. 

expr 

--.. simple expr .. 
~ + + + + + + t 
= <> < <= > >= IN simple expr 

I t i ~ i i t t 

si mple expr 

E:J ... term .. 
f ~ + + term + - OR 

t t i I 

term 

-+- foctor 

f + + + + + 
... 

foctor * / DIV MOD a 

t t t t t I 



9. EXPRESSIONS 

factor 

Type Compatibility 

constant --------,-~~ 

r----I~ variable---~ 

1---'" routine call 

(--...expr--...) 

NOT .. factor 
set constructor __ ....J 

27. 

An operation can only be performed on two operands if their data types 

are compatible. They are compatible if one of the following conditions is 

satisfied: 

1) Both types are defined by the same ~ definition or variable 

declaration (Sections 7. 8). 

2) Both types are subranges of a single enumeration type (Section 7. 1). 

3) Both types are strings of the same length (Section 7.3). 

4) Both types are sets of compatible base types. The empty set is 

compatible with any set (Section 7. 5). 



28. 

10. STATEMENTS 

10. StateITlents 

StateITlents define operations on constants and variables: 

statement 

~compound statement ____ 

case statement 
for statement 

if statement 

while statement 

-- repeat statement___.. 

with statement .. 
assignment 

routine call 

Section 

5 

7.1 

7.1 

7.1.2 

7.1.2 
7.1.2 

7.4 

8 

II 

EInpty stateITlents, as signITlents , and routine calls cannot be divided 

into sITlaller stateITlents. They are siITlple stateITlents. All other stateITlents 

are structured stateITlents forITled by cOITlbinations of stateITlents. 

An eITlpty stateITlent has no effect. 



29. 

11. ROUTINES 

11. Routines 

A routine defines a set of parameters and a block that operates on them. 

In the case of prefix routines (Section 13) and forward declarations, the block 

is omitted. 

routines 

[; - procedure j .. 
; ---- function 

There are two kinds of routines, procedures and functions. A procedure 

consists of a procedure heading and a block to be executed when the procedure 

is called: 

procedure 

-(
bIOCkJ-

--. procedure heading 

FORWARD 

A function consists of a function heading and a block to be executed when 

the function is called: 

function 

--. function heading -[ block '---

FORWA~D~ 



30. 

11. ROUTINES 

If a routine is referenced before its block is defined, it must be 

introduced first by means of its heading followed by the symbol FORWARD. 

The routine can then be completed later by repeating its heading (without 

the parameter list) following by the block. 

A procedure heading defines the procedure identifier and its parameter 

list. 

procedure heading 

~ PROCEDURE ~ identifier --'--... ~parameter list L ;------
A function heading gives the function identifier, its parameter list, and 

the function type. 

function heading 

--.FUNCTION --. identifier Lparameter list-.:-..identifierL.--. • 

A function computes a value. The value e of a function f is defined by 

an assignment 

f: = e 

within the function blo ck. 

The function and its value must be of compatible enumeration or pointer 

types. 



31. 

11. ROUTINES 

parameter list 

[( ~VARL ;denW;e,,_: ~ ;dent;t;e'T) 1. 
, 

A parameter list defines the type of parameters on which a routine 

can operate. Each parameter is specified by its parameter and type 

identifiers (separated by a colon). 

A variable parameter represents a variable to which the routine may 

assign a value. It is prefixed with the word VAR. The parameter declaration 

var vI, v2, ••• , vn: T 

is equivalent to 

var vI: T; var v2, ••• , vn: T 

A constant paraITleter represents an expression that is evaluated when 

the routine is called. Its value cannot be changed by the routine. A constant 

paraITleter is not p refixed with the word V AR. 

The param.eter declaration 

vI, v2, ••• , vn: T 

is equivalent to 

vI: T; v2, ••• , vn: T 

A param.eter is of universal ~if its type identifier is prefixed with the 

word UNIV. The m.eaning of universal types is explained later. 

The param.eters and variables declared within a routine exist only while it 

is being executed. They are teITlporary variables. 



32. 

11. ROUTINES 

Function parameters must be constant. 

Universal ~s must be nonlist types. 

Universal Parameters , 

The prefix UNIV suppresses compatibility checking of parameter and 

argument types in routine calls (Sections 9, 11). 

An argument of type Tl is compatible with a parameter of universal 

type T2 if both types are nonlist types and represented by the same number 

of store locations. 

The type checking is only suppressed in routine calls. Inside the 

given routine the parameter is considered to be of non-universal type T2, 

and outside the routine call the argument is considered to be of non-universal 

type Tl. 

r 0 uti n e co II 

____ identifier ---.. arguments---. 

A routine call specifies the execution of a routine with a set of arguments. 

It can either be a function call or a procedure call. 

A routine call used as a factor in an expression must be a function call. 

A routine call used as a statement must be a procedure call (Sections 9, 10). 

arguments 

... variable t ... - ........ -t ... 
~-~.expr---------~ 

1 



33. 

11. ROUTINES 

An argument list defines the arguments used in a routine call. The 

number of arguments must equal the number of parameters specified in 

the routine. The arguments are substituted for the parameters before the 

routine is executed. 

Arguments corresponding to variable and constant parameters must 

be variables and expressions, respectively. The selection of variable 

arguments and the evaluation of constant arguments are done once only 

(before the routine is executed). 

The argument types must be compatible with the corresponding para

meter types with the following exceptions: 

An argument corresponding to a constant string parameter may be a 

string of any length. 

An argument corresponding to a universal parameter may be of any 

nonlist type that occupies the same number of store locations as the para

meter type. 



34. 

12. SCOPE RULES 

12. Scope Rules 

A scope is a region of program text in which an identifier is used with 

a single meaning. An identifier must be introduced before it is used. 

(The only exception to this rule is a pointer type: it may refer to a type that 

has not yet been defined). 

A scope is either a program, a routine or a with statement. A program 

or routine introduces identifiers by declaration; a with statement does it by 

selection (Sections 5, 7.4, 7.6, 11). 

When a scope is defined within another scope we have an ~ scope and 

an inner scope that are nested. An identifier can only be introduced with one 

meaning in a scope. It can, however, be introduced with another meaning in 

an inner scope. In that case, the inner meaning applies in the inner scope 

and the outer meaning applies in the outer scope. 

Routines cannot be nested. Within a routine, with statements can be 

nested. This leads to the following hierarchy of scopes: 

(program 

(non-nested routines 

(nested with statements») 

A program can use 

(1) any standard identifier. 

(2) constant, type, and routine identifiers introduced within and 

after the prefix (Section 13). 

A routine can use 

(1). (2) 

(3 ) 

defined above and 

all identifiers introduced within the routine itself. 



35. 

12. SCOPE RULES 

A with stateIIlent can use 

(1), (2), (3) 

(4) 

defined above and 

all identifiers introduced by the with stateIIlent itself 

and by its outer with stateIIlents. 

The phrase "all identifiers introduced in its outer scopes" should be 

qualified with the phrase "unless these identifiers are used with different 

IIleanings in these scopes. In that case, the innerIIlost IIleaning of each 

identifier applies in the given scope. " 



36. 

13. SEQUENTIAL PROGRAMS 

13. Sequential Programs 

A sequential program consists of a prefix followed by a block: 

.program 

--.. prefi X -... block -...--. 

The prefix defines the program's interface to the operating system. This 

interface consists of constant, type, and routine definitions: 

pref i X 

Econst definitions] 

-+-----------+---I.~ prefix routines ~ program heading -.. 

type definitions 

prefi x routines 

[prOCedure heOdlng] • 

function heading 

Prefix routines consist only of procedure or function headings. The prefix 

routine blocks are defined within the operating system. They can be called 

as other routines by the program (Section 11). 

The program heading gives the program identifier and its parameter 

list: 

prog ra m head i ng 

~ PROGRAM ---. identi fier --. parameter I ist ~ ; --. 



37. 

A. PDP 11/45 SYSTEM 

A. PDP 11/45 System 

This appendix defines additional restrictions and extensions of 

Sequential Pascal for the PDP 11/45 computer. 

A. 1. Language Restrictions 

A non-standard enumeration ~ can at most consist of 128 constant 

identifiers. 

The range of integers is -32768 •• 32767. 

Integer ~e labels must be in the range 0 •• 127. 

. 38 38 The range of reals is approxlmately -10 •• 10 • The smallest 

absolute real value that is non-zero is approximately 10-38 • The relative 

-16 preciSion of a real is approximately 10 • 

A string must contain an even number of characters. 

Enumeration types cannot be defined within record~. 

A non-standard enumeration type used as a ~ field ~ can contain 

at most 16 constant identifiers. 

Integer variant labels must be in the range 0 •• 15. 

A set of integers can only include members in the range O •• 127. 

A. 2.Compiler Characteristics 

The compiler consists of 7 passes. It requires a code space of 9 K words 

and a data space of 8 K words. After a basic loading time of 7 sec the compi-

lation speed is 240 char/sec (or about 9 - 10 lines/sec). 

The programmer may prefix a program with compiler options enclosed 

in parantheses and separated by commas: 

(number, check, test) 



38. 

A.2. COMPILER CHARACTERISTICS 

The options have the following effect: 

number 

check 

test 

The generated code will only identify line numbers 

of the program text at the beginning of routines. 

(This reduces the code by about 25 per cent, but 

makes error location more difficult. ) 

The code will not make the following checks: 

a) range checks of constant enumeration arguments; 

b) pointer checks to insure that NIL-valued pointers 

are not used as references; 

c) variant checks to insure that only currently defined 

variant fields are referenced. 

The code will not initialize pointer variables to NIL. 

The compiler will print the intermediate output 

of all passes. (This facility should be used as a 

diagnostic aid to locate compiler errors. ) 



39. 

A.3. PROGRAM CHARACTERISTICS 

A. 3.Program Characteristics 

The following are the execution times of operand references, operators, 

and statements in usec (measured o~ a PDP 11/45 with 850 nsec core store). 

They exceed the figures stated in the computer programming manual by 

25 per cent. 

constant c 

variable v 

field v. f 

(1 levels of variant nesting) 

indexed v(. e. ) 

pointer p'iV 

.-
= <> 
< > <= >= 
in 

succ pred 

& 

or 

not 

+ -

* 
div mod / 

abs 

conv 

trunc 

enumeration 

7 

10 

27 + 17 1 

40 + e 

26 

8 

12 

12 

7 

10 

8 

10 

9 

16 

20 

7 

21 

real set 
(n members) 

39 53 + 32 n 

32 46 

40 + 17 1 54 + 17 1 

53 + e 

40 

o 
32 

32 

38 

45 

46 

17 

22 

67 + e 

54 

0 

67 

74 

31 

82 

58 

58 

structure 
(n words) 

17 

10 

18 + 17 1 

31 +e 

18 

10 + 5 n 

16 + 6 n 

16 + 11 n 



40. 

A. 3. PROGRAM CHARACTERISTICS 

case e of ••. c: S; ••• end 

for v: = 1 to n do S 

if B then S else S 

while B do S 

repeat S until B 

with v do S 

routine call 

prefix routine call 

clock interrupt (every 17 msec) 

new(p) -n words 

(n iterations) 

28 + e + S 

82 + (69 + S) n 

16 + B + S 

(20 + B + S) n 

(13 + B + S) n 

16 + S 

58 

75 

900 

39 + 4 n 

The compiler generates about 5 words of ~ per program line (inclu

ding line numbers and checks). 

The store requirements of data types are: 

enumeration 

real 

set 

string (m characters) 

1 word(s) 

4 

8 

ml2 



41. 

B. ASCII CHARACTER SET 

B. ASCII CHARACTER SET 

0 nul 32 64 @l 96 

1 soh 33 I 65 A 97 a 

2 stx 34 .. 66 B 98 b 

3 etx 35 #: 67 C 99 c 

4 eat 36 $ 68 D 100 d 

5 enq 37 % 69 E 101 e 

6 ack 38 & 70 r 102 f 

7 bel 39 , 71 G 103 9 

8 bs 40 ( 72 H 104 h 

9 ht 41 ) 73 I 105 i 

10 lf 42 * 74 J 106 j 

11 vt 43 + 75 K 107 k 

12 ff 44 • 76 L 108 1 

13 cr 45 - 77 rn 109 m 

14 so 46 • 78 N 110 n 

15 si 47 / 79 0 111 0 

16 dIe 48 0 80 P 112 P 
17 dc1 49 1 81 Q 113 q 

18 dc2 50 2 82 R 114 r 

19 dc3 51 3 83 S 115 s 

20 dc4 52 4 84 T 116 t 

21 nak 53 5 85 U 117 u 

22 syn 54 6 86 V 118 v 

23 etb 55 7 87 W 119 w 

24 can 56 8 88 X 120 x 
25 em 57 9 89 Y 121 Y 
26 sub 58 I 90 Z 122 z 
27 esc 59 , 91 [ 123 { 
28 fs 60 < 92 \ 124 I 
29 9S 61 = 93 ] 125 } 
30 rs 62 > 94 ~ 126 ., 
31 us 63 ? 95 - 127 del 



42. 

INDEX 

abs, 16, 17 
and, 13 
argument, 32-33' 
argument list, 33 
arithmetic, 15-17 
array component, 18 
array types, 17-18 
ascii character set, 41 
assignment, 11, 16, 18, 21, 

22, 23, 24-25, 30 

base type, 22 
basic symbol, 2 
block, 7, 29, 36 
boolean, 13 - 1 5 

case statement, 11 
character, 3, 13 
chr, 16 
comment, 6 
comparison, 11, 13, 16, 18, 

19, 21, 23 
compatible types, 9, 27, 32, 

33 
compiler, 37 
component type, 9, 17, 23 
compound statement, 7 
constant, 4, 8 
constant parameter, 25, 31 
const definition, 7-8 
control character, 4 
control variable, 12 
conv, 16 

declarations, 7 
digit, 3 
dimension, 17 
div, 15 

empty set, 22, 27 
empty statement, 28 
enumeration constant, 10 
enumeration type, 10-16, 

30 
execution time, 39-40 
expression, 26-27 

INDEX 

factor, 26, 27 
false, 13 
field, 19-21, 24 
fixed part, 19 
for statement, 12 
forward declaration, 29 
function, 29 
function call, 32 
function heading, 30, 36 
function type, 30 

graphic character, 3 

identifier, 6 
if statement, 14 
in, 22 
index expression, 17, 24 
index type, 17 
integer, 15-16 
interface, 36 

label, 11, 20 
language restrictions, 37 
letter, 3 
list type, 9 

mod, 15 

nested scopes, 34 
new, 23 
new line, 6, 38 
nil, 23, 38 
nonlist type, 9 
not, 13 

operating system, 36 
operator priority, 26 
options, 37 
or, 13 
ord, 13 
ordinal value, 4, 13 



parameter, 31- 33 
parameter declaration, 31 
parameter list, 30, 31, 36 
pointer, 23, 24 
pointer check, 38 
pointer type, 9, 23, 30 
pred, 12 
prefix, 36 
prefix routine, 29, 36 
priority rule, 26 
procedure, 29 
procedure call, 32 
procedure heading, 30, 36 
program, 36 
program heading, 36 

range check, 38 
real, 16 
record type, 19-21 
repeat statement, 15 
routine, 29-33 
routine call, 28 

scale factor, 16 
scope rules, 34- 35 
selection, 18, 20, 23, 26-29 
separator, 6 
sequential program, 36 
set constructor, 22 
set expression, 22 
set type, 21-22, 27 
simple expression, 26 
simple statement, 28 
simple type, 9 
space, 6 
special character, 3 
special symbol, 5 
standard function, 12-13, 

16-17 
standardprocedure, 23 
standard type, 10 
statement, 28 
string type, 18, 27 
structured statement, 28 
structured type, 9 
subrange type, 10 
succ, 12 
symbol, 5 
syntax graph, 2 

INDEX 

43. 

tag field, 20 
temporary variable, 31 
term, 26 
te st output, 38 
true, 13 
trunc, 17 
type, 9 
type compatibility, 9, 27, 32, 

33 
type conversion, 13, 16-17, 

32 
type definition, 9, 27 

universal parameter, 32- 33 
universal type, 31-32 

var dec laration, 24, 27 
variable, 24-25 
variable component, 24 
variable parameter, 31 
variant, 20 
variant check, 38 
variant field, 20 
variant part, 19 

while statement, 14 
with statement, 21 
word symbol, 5- 6 




