
Unisys e-@ction

ClearPath Enterprise

Servers

Task Attributes
Programming Reference Manual

ClearPath MCP Release 7.0 SSP1

Printed in USA
March 2002 8600 0502–407

.

Unisys e-@ction

ClearPath Enterprise

Servers

Task Attributes
Programming Reference Manual

UNISYS

û 2002 Unisys Corporation.
All rights reserved.

ClearPath MCP Release 7.0 SSP1

Printed in USA
March 2002 8600 0502–407

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys, ClearPath, and e-@ction are registered trademarks of Unisys Corporation in the United States and other
countries.
All other brands and products referenced in this document are acknowledged to be the trademarks or registered
trademarks of their respective holders.

Unisys e-@ction
ClearPath Enterprise
Servers

Task Attributes
Programming
Reference Manual

ClearPath MCP
Release 7.0 SSP1

 Unisys e-@ction
ClearPath
Enterprise
Servers

Task Attributes

Programming
Reference
Manual

ClearPath MCP
Release 7.0
SSP1

8600 0502–407 8600 0502–407

Bend here, peel upwards and apply to spine.

.

8600 0502–407 iii

Contents

Section 1. Accessing Task Attributes

What Are Task Attributes? .. 1–2
Why Use Task Attributes? ... 1–2
Who Can Access Task Attributes? 1–3
Performance Considerations ... 1–3

Operator and End-User Access to Task Attributes 1–3
Using CANDE and MARC Task Equations........................... 1–3
Assigning Task Attributes to a Session 1–4
Using Operator Commands ... 1–4

Programmer Access to Task Attributes .. 1–5
Using Task Variables .. 1–5
Reusing Task Variables .. 1–6
Using WFL Task Equations .. 1–7
Using the WFL Job Attribute List .. 1–7
Assigning Task Attributes to an Object Code File 1–8
Task Attribute Syntax Examples .. 1–9
Using WFLSUPPORT to Access Task Attributes 1–14
Assigning Task Attributes through

HANDLEATTRIBUTES ... 1–14
Decoding Error Values with ATTRIBUTEMESSAGE.......... 1–22
Examples.. 1–24

System Administrator Access to Task Attributes 1–26
Assigning Task Attributes to Usercodes............................ 1–26
Assigning Job Queue Attributes.. 1–27

System Access to Task Attributes .. 1–27
Providing Default Values .. 1–27
Providing Inherited Values ... 1–27
Updating Task Attribute Values.. 1–28
Resolving Conflicting Values.. 1–28
Overwrite Rules for WFL Jobs .. 1–28
Overwrite Rules for Session Tasks.................................... 1–29
Overwrite Rules for Other Processes................................ 1–29
Task Attribute Errors .. 1–30

Section 2. Task Attribute Descriptions

Choosing the Right Task Attribute .. 2–1
Format of the Descriptions.. 2–7

Name.. 2–7
Type ... 2–7
Units... 2–7

Contents

iv 8600 0502–407

Range... 2–8
Default ... 2–10
Read Time.. 2–10
Write Time ... 2–11
Inheritance ... 2–11
Fork() Inheritance... 2–11
Overwrite Rules... 2–12
Host Services... 2–12
Attribute Number... 2–12
Synonym.. 2–13
Restrictions.. 2–14
Explanation .. 2–14
Examples ... 2–14
Run-Time Errors... 2–14

Section 3. Task Attributes A through E

ACCEPTEVENT ... 3–2
ACCESSCODE .. 3–4
ACCUMIOTIME... 3–7
ACCUMPROCTIME .. 3–8
APPLYLIST .. 3–9
AUTORESTORE .. 3–10
AUTOSWITCHTOMARC ... 3–12
AX.. 3–13
BACKUPFAMILY... 3–16
BDNAME... 3–19
BLOCKCREDENTIALS .. 3–21
BOTTIMESTAMP .. 3–23
BRCLASS .. 3–24
CHARGE.. 3–26
CHECKPOINTABLE... 3–29
CLASS ... 3–31
CONVENTION... 3–33
CORE .. 3–35
COUNTRY ... 3–37
CREDENTIALS .. 3–38
CREDENTIALSBASE... 3–40
CURRENTDIRECTORY ... 3–41
DATABASE.. 3–46
DATEOFFSET.. 3–48
DCIINPUTEVENT... 3–49
DCITASKEVENT .. 3–51
DECKGROUPNO... 3–53
DEFAULTFILEGROUP .. 3–54
DEPTASKACCOUNTING... 3–55
DESTNAME... 3–58
DESTSTATION .. 3–61
DISPLAYONLYTOMCS ... 3–63
ELAPSEDLIMIT ... 3–65
ELAPSEDTIME.. 3–66

 Contents

8600 0502–407 v

ERROR .. 3–67
EXCEPTIONEVENT.. 3–75
EXCEPTIONTASK .. 3–77

Section 4. Task Attributes F through K

FAMILY.. 4–2
FETCH ... 4–6
FILEACCESSRULE .. 4–8
FILEACCOUNTING.. 4–10
FILECARDS ... 4–12
FILEGROUP... 4–17
FILEMASK ... 4–19
GROUPCODE.. 4–21
HISTORY ... 4–23
HISTORYCAUSE ... 4–24
HISTORYREASON... 4–27
HISTORYTYPE... 4–49
HOSTNAME .. 4–50
HSPARAMSIZE ... 4–52
INHERITCREDENTIALS... 4–53
INHERITMCSSTATUS ... 4–54
INITPBITCOUNT.. 4–57
INITPBITTIME.. 4–58
ITINERARY .. 4–59
JOBNUMBER.. 4–61
JOBSUMMARY... 4–63
JOBSUMMARYTITLE.. 4–66

Section 5. Task Attributes L through R

LABELFORMAT .. 5–2
LANGUAGE ... 5–4
LIBRARY.. 5–6
LIBRARYSTATE... 5–9
LIBRARYUSERS .. 5–11
LOCKED .. 5–12
MAXCARDS .. 5–13
MAXIOTIME .. 5–14
MAXLINES .. 5–16
MAXPROCTIME .. 5–18
MAXWAIT ... 5–20
MCSNAME.. 5–22
MIXNUMBER .. 5–23
MPID ... 5–24
MYPPB .. 5–25
NAME.. 5–27
NETPATH... 5–30
NOJOBSUMMARYIO.. 5–32
OPTION ... 5–34
OPTIONAL... 5–40

Contents

vi 8600 0502–407

ORGUNIT .. 5–41
OTHERPBITCOUNT .. 5–44
OTHERPBITTIME.. 5–45
PARTNER .. 5–46
PARTNEREXISTS .. 5–48
PDUMPTITLE .. 5–49
PRINTDEFAULTS.. 5–50
PRIORHISTORY .. 5–53
PRIORHISTORYCAUSE .. 5–54
PRIORHISTORYREASON ... 5–55
PRIORHISTORYTYPE ... 5–56
PRIORITY .. 5–57
REALGROUPCODE .. 5–59
REALUSERCODE.. 5–60
REPORTBADINITIATE .. 5–61
RESOURCE... 5–62
RESTART... 5–65
RESTARTED.. 5–66

Section 6. Task Attributes S through Z

SAVEDGROUPCODE.. 6–2
SAVEDUSERCODE ... 6–3
SAVEMEMORYLIMIT ... 6–4
SOURCEKIND ... 6–6
SOURCENAME... 6–8
SOURCESTATION... 6–10
STACKHISTORY.. 6–13
STACKLIMIT.. 6–16
STACKNUMBER ... 6–18
STACKSIZE.. 6–19
STARTTIME... 6–21
STATION ... 6–23
STATIONNAME... 6–25
STATUS... 6–27
STOPPOINT .. 6–30
SUPPLEMENTARYGRPS .. 6–32
SUPPRESSWARNING... 6–33
SW1 through SW8 .. 6–36
TADS ... 6–38
TANKING... 6–40
TARGET... 6–42
TASKERROR ... 6–43
TASKFILE .. 6–47
TASKLIMIT .. 6–49
TASKSTRING... 6–51
TASKVALUE.. 6–53
TASKWARNINGS.. 6–54
TEMPFILELIMIT.. 6–56
TEMPFILEMBYTES... 6–58
TYPE.. 6–59

 Contents

8600 0502–407 vii

USERCODE ... 6–60
VALIDITYBITS ... 6–64
WAITLIMIT .. 6–65

Appendix A. Understanding Railroad Diagrams

Railroad Diagram Concepts ...A–1
Paths ..A–1
Constants and Variables...A–2
Constraints ...A–3

Following the Paths of a Railroad Diagram ...A–6
Railroad Diagram Examples with Sample InputA–7

Appendix B. Related Product Information

Index .. 1

Contents

viii 8600 0502–407

8600 0502–407 ix

Tables

1–1. HANDLEATTRIBUTES Error Numbers ... 1–19

2–1. Task Attribute Functional Groupings .. 2–1
2–2. Task Attribute Synonyms ... 2–13

3–1. USERDATA Errors .. 3–69
3–2. Library Attributes by Number ... 3–69
3–3. Task Attributes by Number .. 3–70

A–1. Elements of a Railroad Diagram...A–2

Tables

x 8600 0502–407

8600 0502–407 1–1

Section 1
Accessing Task Attributes

This section discusses the purpose and audience of this manual, and provides an
overview of some of the notation conventions used within the manual. It also explains
task attributes and describes how to access them. For more information on task
attributes, see the Task Management Programming Guide.

Purpose

Task attributes are used to record or control various aspects of process behavior. All
processes possess all the task attributes described in these pages, though the values of
the individual attributes vary from one process to another. The operating system uses
these attributes in executing a process. Some programming languages also allow you to
write applications that query or modify task attributes.

Audience

The audience for this manual consists of programmers who write tasking applications
and operators who use task equations.

Before reading this manual, you should have a basic familiarity with the MCP
environment. A more detailed introduction to tasking and the use of task attributes is
provided in the Task Management Programming Guide.

Terminology Conventions

Two different ANSI levels of COBOL are supported on the MCP systems: ANSI-74, and
ANSI-85. These implementations are referred to in this guide as COBOL74 and
COBOL85, respectively. Statements in this guide about “COBOL” are true of both
COBOL implementations, unless otherwise specified.

The term library, which was used in previous editions of this guide, has been replaced by
the term server library. The term user process (when used in the context of libraries) has
been replaced by the term client process. The library as it is declared in the client
process is now referred to as the client library.

These changes resulted from the implementation of a new type of libraries, called
connection libraries. The term library is now used as a general term referring to a server
library, a client library, or a connection library. For further information about libraries, refer
to the Task Management Programming Guide.

Accessing Task Attributes

1–2 8600 0502–407

What Are Task Attributes?
Each time you initiate a program, the system creates a process that reflects the
executing program. If several users initiate the same program, several processes are
created for that program.

Each process has attributes associated with it. These are called task attributes, although
they could more accurately be called “process” attributes. Task attributes reflect the
various properties of a process.

Process 1

Value Value

Happened Not Happened

MRICHARDS JBROWN

1000 250

ACCEPTEVENT ACCEPTEVENT

USERCODE USERCODE

WAITLIMIT WAITLIMIT

Task
Attribute

Task
Attribute

Process 2

RUN
Command

RUN
Command

Object
Code
File

Each process has the entire list of task attributes described in this manual from
ACCEPTEVENT through WAITLIMIT. However, the values of the task attributes can
vary. For example, each process has a USERCODE task attribute, but the USERCODE
value for one process may be MRICHARDS and the USERCODE value for another
process may be JBROWN, as shown in the previous figure.

Why Use Task Attributes?

You use task attributes to monitor the status of the process and to assign values for the
attribute to pass on to the process. Therefore, you can access a task attribute either to
read the attribute or to assign a value to the attribute.

 Accessing Task Attributes

8600 0502–407 1–3

Who Can Access Task Attributes?

The end user, programmer, operator, and system administrator can access the task
attributes of a process in various ways. The system software provides default and
inherited values, resolves conflicting assignments, and issues errors for invalid attempts
to access task attributes.

The rest of this section describes the following ways to access task attributes:

• Operator and end-user access

• Programmer access

• System administrator access

• System access

Performance Considerations

Task information is a global resource. Access to task information for either inquiry or
modification must be carefully controlled to ensure data integrity. The MCP provides the
required locking protocol to control access. The locking protocol results in serialization of
processes accessing task information. In general, higher priority tasks will gain access to
task information before lower priority tasks.

Operator and End-User Access to Task Attributes
The operator or end user can affect the task attributes of a process with commands
entered in Command and Edit (CANDE) or Menu-Assisted Resource Control (MARC)
sessions or at the operator display terminal (ODT).

Using CANDE and MARC Task Equations

You can make task attribute assignments in CANDE or MARC by using task equations.
Task equations are task attribute assignments that you can append to a process initiation
statement. The system applies these assignments before initiating the process.

In CANDE, you can include task equations after most process initiation statements,
including RUN and UTILITY. In MARC, you can include task equations after the RUN
command. In addition, if you initiate a process from the RUN screen, you can enter task
equations on the TASKATTR screen and the FILEEQUATE screen.

The following is a CANDE example:

RUN ALGOL/TASK;SW1=TRUE;MAXPROCTIME=20;
 FILE IN=DAILY/DATA;FILE OUT(KIND=DISK,TITLE=OUTPUT);

The preceding example shows assignments to several types of task attributes. SW1 is a
Boolean attribute, and MAXPROCTIME is a real attribute. The FILE IN and FILE OUT
assignments are examples of the syntax for assigning the FILECARDS task attribute.

Accessing Task Attributes

1–4 8600 0502–407

You can also include task equations after a CANDE COMPILE command. Such task
equations can make assignments to the compilation or the resulting object code file. For
details, refer to “Assigning Task Attributes to an Object Code File” in this section.

Note that a process can change the values of many of its own task attributes while it is
running. Thus, a programmer can design a process to override the effects of task
equations submitted by operators.

Assigning Task Attributes to a Session

When you initiate a process from a CANDE or MARC session, the process inherits a
number of task attributes from the session. You can make assignments to some of the
task attributes of the session by using special CANDE and MARC commands such as
FAMILY, LANGUAGE, and so on. Thereafter, all the processes you initiate from the
session inherit these values, unless you override them with task equations. For details,
refer to the discussion of tasking from interactive sources in the Task Management
Programming Guide.

Using Operator Commands

You can use any of several system commands to make assignments to the task
attributes of a running process. You can enter these system commands, or close
equivalents to them, at an ODT or in a MARC or CANDE session. These include
communication commands, which affect such task attributes as EXCEPTIONEVENT,
ACCEPTEVENT, and TASKVALUE. You can use other commands to change the
PRIORITY value or to change the STATUS value of the process. For details, refer to the
discussion of tasking from interactive sources in the Task Management Programming
Guide.

 Accessing Task Attributes

8600 0502–407 1–5

Programmer Access to Task Attributes
You can access task attributes in either of two ways:

• Through language constructs in Work Flow Language (WFL), ALGOL, COBOL74, and
COBOL85

• Through calls on the WFLSUPPORT library

You can access task attributes from programs by any of several means, including task
variables, task equations, the WFL job attribute list, and object code file assignments.

The following subsections discuss the WFL, ALGOL, and COBOL language constructs
for reading and assigning task attributes, as well as the WFLSUPPORT interface.

Using Task Variables

Task variables are the main method of accessing task attributes from programs. A task
variable is an object that is declared in a program and that accesses the task attributes of
a particular process. The task variable becomes associated with a particular process by
being specified in the statement that initiates that process. For example, the following
COBOL statement initiates a process and associates the task variable TASK-VAR-1 with
that process:

PROCESS TASK-VAR-1 WITH PROC-EXTERNAL.

Certain predeclared task variables are available that are automatically associated with a
particular process. The MYSELF task variable allows a process to access its own task
attributes. The MYJOB task variable accesses the task attributes of the job of the
process. The task attribute PARTNER accesses the task attributes of the partner process
and the task attribute EXCEPTIONTASK accesses the task attributes of the exception
task.

Additionally, a process can access any task variable within the extended addressing
environment of the outer block of the process. For example, if the process is an internal
task, it can access task variables declared globally in its parent. The process can access
any task variables declared in its own code. The process can also access any task
variables that are passed as parameters.

Task attributes can be assigned to a task variable before the task variable is used in a
process initiation statement. These task attributes are assigned to the new process
when it is initiated. If the same task attribute is assigned more than once, the most
recent value assigned is used when the process is initiated. If the task attributes of the
task variable are read before initiation, they return their default values or the values they
were previously assigned.

Accessing Task Attributes

1–6 8600 0502–407

If a task variable is associated with a dependent process in the initiation statement, then
the task variable remains associated with the process after initiation. The task variable
can be used to access the task attributes of the running process. Assignments to the
task variable can change the behavior of the process. Interrogations of the task variable
can be used to monitor the status of the process.

If a task variable is associated with an independent process in the initiation statement,
then any task attributes that were previously assigned to the task variable are applied to
the independent process. However, once initiation completes, the task variable ceases to
be associated with the independent process. The task attributes of the task variable can
be read or written to; however, these operations do not access the task attributes of the
independent process.

Once the process has terminated, the task variable can be used to examine the final
values of the task attributes of the process. For example, the history-related attributes of
the task variable can be examined for information about how the process terminated.

Reusing Task Variables

The same task variable can be specified in more than one task initiation statement in a
program. However, the same task variable cannot be associated with two processes at
the same time. For example, the following pair of ALGOL statements causes an error:

PROCESS PROG1 [T];
PROCESS PROG2 [T];

Because the first statement initiates an asynchronous process, task variable T is still in
use when the second statement is executed. An ALGOL process that executes the
statements in the previous example is discontinued with the run-time error “INITIATE
ACTIVE TASK”.

Problems can arise from task attributes being carried over from one use of the task
variable to another. Consider the following ALGOL statements:

CALL PROG1 [T];
CALL PROG2 [T];

No error results from these statements, because PROG1 is initiated as a synchronous
process. The statement that initiates PROG2 is not executed until PROG1 terminates.
However, PROG1 might have used the MYSELF task variable to make an assignment to
its FAMILY task attribute. This new FAMILY value is passed on to PROG2, simply
because it uses the task variable that was previously associated with PROG1. Other task
attribute values can also be passed on in this way.

This problem can be prevented by declaring a different task variable for each process that
is to be initiated. The task variable can also be made safe for reuse by reinitializing it. A
task variable can be reinitialized by setting the STATUS task attribute to NEVERUSED.
This assignment causes all task attributes to be returned to their default values. The
following ALGOL statement reinitializes a task variable:

TVAR.STATUS := VALUE(NEVERUSED);

 Accessing Task Attributes

8600 0502–407 1–7

WFL also provides the INITIALIZE statement for reinitializing task variables. The following
is an example of this statement:

INITIALIZE (TVAR);

These statements reinitialize the task variable only if it is not currently in use. That is, the
current value of the STATUS task attribute must be TERMINATED, BADINITIATE, or
NEVERUSED. Otherwise, the assignment has no effect.

Using WFL Task Equations

You can use task equations in WFL jobs that are similar to the task equations allowed in
CANDE or MARC sessions. You can include task equations after a process initiation
statement, such as RUN or PROCESS. Where task equations conflict with previous
assignments to the task variable, the task equations take precedence. The following is an
example of a WFL job that uses task equations:

100 ?BEGIN JOB WFL/TEST;
200 TASK T (TASKVALUE = 3);
300 RUN OBJECT/ALGOL/TASK [T];
400 TASKVALUE = 1;
500 ?END JOB

In this example, OBJECT/ALGOL/TASK runs with a TASKVALUE of 1 because the task
equation overrides the previous assignment to the task variable.

You can also use task equations with the COMPILE statement to make assignments to
the compilation or the resulting object code file. For details, refer to “Assigning Task
Attributes to an Object Code File” in this section.

Note that a process can change the values of many of its own task attributes while it is
running. Thus, a programmer can design a process to override the effects of task
equations submitted through WFL.

Using the WFL Job Attribute List

A WFL job attribute list consists of task attribute assignments in the WFL source
program, immediately following the job header. The system applies the assignments in
the job attribute list before initiating the job. This feature can be useful because some
task attributes can be assigned to a process only before initiation (an example is the
CLASS task attribute).

Accessing Task Attributes

1–8 8600 0502–407

The following is an example of a WFL job with a job attribute list that assigns the CLASS,
CHARGE, and JOBSUMMARY task attributes:

?BEGIN JOB RUNNER;
 CLASS = 2;
 CHARGE = ORDERS;
 JOBSUMMARY = SUPPRESSED;
 RUN OBJECT/TAU ON PACK;
?END JOB

Assigning Task Attributes to an Object Code File

In some cases, you might want certain task attributes to be assigned the same values
each time a program is run. For many task attributes, you can achieve this effect by
including statements in the source program that assign task attributes to the MYSELF
task variable. However, some task attributes can only be assigned before process
initiation. For a WFL job, you can assign such task attributes in the job attribute list. For
programs written in other languages, you can assign such task attributes to the object
code file. The task attributes stored in the object code file are used whenever the object
code file is initiated, unless they are overridden by later task attribute assignments.

You can assign task attributes to the object code file at compile time through the use of
compiler task equations, which can be included in the WFL or CANDE COMPILE
statements. You must be careful to distinguish between task equations that affect the
compilation itself and task equations that affect the resulting object code file. The
following WFL example uses compiler task equations:

500 COMPILE OBJECT/X WITH ALGOL LIBRARY;
600 COMPILER FILE CARD (TITLE = X, KIND = DISK);
700 ALGOL PRIORITY = 50;
800 TASKVALUE = 3;

In both WFL and CANDE, task equations are applied to the compilation if they are
preceded by the word COMPILER or the name of a compiler. Otherwise, the task
equations are applied to the object code file. In the preceding example, the task
equations at lines 600 and 700 are applied to the compilation. The task equation at line
800 is applied to the object code file.

WFL includes a statement that can be used to make task attribute assignments to an
existing object code file. This is the MODIFY statement. Task attributes that are stored
by a MODIFY statement have the same effect as task attributes assigned at compile
time: they serve as default values for every execution of that object code file. They also
override any conflicting task attribute assignments that were made at compile time. The
following is an example of a MODIFY statement:

MODIFY OBJECT/X;
 CHARGE = ADMIN;
 FILE INPUT = (JAS)DOC/103 ON DOCPK;

 Accessing Task Attributes

8600 0502–407 1–9

Note: Task attributes assigned to an object code file do not affect internal tasks of that
object code file. For example, suppose you assign TASKVALUE = 1 to an object code
file. Someone then initiates the object code file, which in turn uses a CALL or PROCESS
statement to initiate an internal procedure as an internal task. That internal task is not
directly affected by the TASKVALUE = 1 assignment. Therefore, the internal task runs
with the default TASKVALUE of 0 unless a different value is explicitly assigned to the
task variable of the internal task.

Task Attribute Syntax Examples

Different task attributes store different types of values. Most task attributes store values
that are of type Boolean, event, integer, mnemonic, real, string, or task. The following
pages give examples of how these various types of task attributes can be read or
assigned in WFL, ALGOL, COBOL74, and COBOL85. For information about how to
access task attributes that are of irregular types, refer to the task attribute descriptions.

Note that task attributes can also be assigned from other task declarations. For example,
in ALGOL:

TASK PRIORITY := MYSELF.PRIORITY -5;

In COBOL74:

CHANGE ATTRIBUTE task-attr OF task-id TO ATTRIBUTE task-attr OF task-id.

Accessing Boolean Task Attributes

Boolean task attributes have a value of TRUE or FALSE. In WFL, these values can be
read or assigned directly, or the task attribute can be used in other Boolean expressions.
WFL also allows the use of a null assignment, which assigns a value of TRUE. Thus, the
following two statements are equivalent. (In these statements, T is a task variable.)

T (DISPLAYONLYTOMCS = TRUE);
T (DISPLAYONLYTOMCS); % Null assignment; assigns a value of TRUE

The following WFL examples show the use of Boolean task attributes as expressions.
BOOL is a Boolean variable and T is a task variable.

BOOL := T(LOCKED);
IF T(SW1) THEN DISPLAY "NO ERRORS FOUND";

The ALGOL syntax is similar, except that task attributes are preceded by periods instead
of enclosed in parentheses. In the following examples, BOOL is a Boolean variable and T
is a task variable:

T.DISPLAYONLYTOMCS := TRUE;
BOOL := T.LOCKED;
IF T.SW1 THEN BOOL := TRUE;

Accessing Task Attributes

1–10 8600 0502–407

In COBOL74 and COBOL85, Boolean task attributes return a value of 0 if FALSE or 1 if
TRUE. Boolean attributes must be moved into a numeric receiving field. However, the
VALUE function can be used when assigning or reading Boolean values. In the following
examples, BOOLVAL was declared as 77 BOOLVAL BINARY PIC 9(11).

MOVE ATTRIBUTE LOCKED OF MYSELF TO BOOLVAL.
CHANGE ATTRIBUTE LOCKED OF MYSELF TO VALUE FALSE.
IF ATTRIBUTE SW1 OF MYSELF = VALUE FALSE
 DISPLAY "SWITCH ONE IS OFF."

Accessing Event Task Attributes

The event task attributes are accessed by the same types of statements that access
event variables. For a discussion of statements related to events, refer to the Task
Management Programming Guide.

The following are ALGOL examples:

CAUSE (MYSELF.EXCEPTIONTASK.EXCEPTIONEVENT);
WAITANDRESET (MYSELF.EXCEPTIONEVENT);

The following are COBOL74 or COBOL85 examples:

CAUSE ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.

WFL jobs cannot reference event task attributes directly. However, the following
statements cause the job to implicitly wait on the exception event and the accept event:

WAIT; % Causes the job to wait on its own exception event.
STR := ACCEPT("ENTER A COMMAND"); % Waits on its own accept event &
 % stores operator AX command
 % input in string variable STR.

Accessing Integer and Real Task Attributes

In general, integer and real task attributes accept or return a numeric identifier, literal, or
arithmetic expression. The system allows you to mix integer and real types: thus, you
can assign a real value to an integer task attribute or read a real task attribute value into
an integer variable. The system rounds off real numbers to change them into integers
where necessary.

In the following WFL example, INT is an integer variable and T is a task variable:

CLASS = 2;
INT := T(TASKVALUE);

 Accessing Task Attributes

8600 0502–407 1–11

In the following ALGOL example, INT is an integer variable and T is a task variable:

T.TASKVALUE := 3;
INT := T.CORE;

In the following COBOL74 or COBOL85 examples, INTVAL was declared as 77 INTVAL
BINARY PIC 9(11).

CHANGE ATTRIBUTE TASKVALUE OF MYSELF TO 16.
MOVE ATTRIBUTE TASKVALUE OF MYSELF TO INTVAL.

Accessing Mnemonic Task Attributes

In WFL, mnemonic task attributes can be read into string values or compared with string
values. Mnemonics can be assigned as keywords, without quotes around them. In the
following examples, STR is a string variable and T is a task variable:

MYSELF(JOBSUMMARY = SUPPRESSED);
STR := T(HISTORYTYPE);
IF T(HISTORYTYPE) = "NORMALEOTV" THEN DISPLAY "RAN SUCCESSFULLY";

In ALGOL, mnemonic task attributes accept or return a numeric value. The VALUE
function can be used to translate a mnemonic into a numeric value for assignment to, or
comparison with, a mnemonic task attribute. In the following examples, INTVAL is an
integer variable and T is a task variable:

MYJOB.JOBSUMMARY := VALUE(SUPPRESSED);
INTVAL := T.HISTORYTYPE;
IF T.HISTORYTYPE = VALUE(SUPPRESSED) THEN ...

In COBOL74 or COBOL85, mnemonic task attributes also accept or return a numeric
value and the VALUE function is available. In the following examples, MNEMVAL was
declared as 77 MNEMVAL BINARY PIC 9(11):

MOVE ATTRIBUTE JOBSUMMARY OF MYSELF TO MNEMVAL. % Returns a number
CHANGE ATTRIBUTE JOBSUMMARY OF MYSELF TO VALUE UNCONDITIONAL.
IF ATTRIBUTE JOBSUMMARY OF MYSELF = VALUE UNCONDITIONAL
 DISPLAY "JOBSUMMARY IS UNCONDITIONAL".

Accessing String Task Attributes

In WFL, string task attributes can be read into string variables and assigned string literals,
variables, or expressions. WFL also allows some string task attributes to be assigned a
nonquoted value. If a string task attribute is assigned a nonquoted value, then the
nonquoted value is checked for correct syntax at compile time. If the same task attribute
is assigned a string value, the contents of the string are not checked for syntax until run
time.

Accessing Task Attributes

1–12 8600 0502–407

In the following WFL examples, STR is a string variable and T is a task variable:

T(FAMILY DISK = DPMAST OTHERWISE DISK); % Nonquoted assignment
T(FAMILY = "DISK = DPMAST OTHERWISE DISK"); % String assignment
T(FAMILY = "GIBBERISH"); % Receives run-time error
STR := T(FAMILY); % Reading the value into a string variable

In ALGOL, string task attributes are treated as one-dimensional EBCDIC arrays. You can
use REPLACE statements to assign values or to read string task attribute values into
EBCDIC arrays. You must terminate values assigned to string task attributes with a
period (.). Values returned by string task attributes are also terminated with a period. In
the following examples, T is a task variable and ARR is an EBCDIC array that was
declared as EBCDIC ARRAY ARR[0:79]:

REPLACE T.NAME BY "(JASMITH)OBJECT/THETA ON PACK.";
REPLACE ARR BY T.NAME;

Note: Note that ALGOL syntax does not allow you to use string task attributes in the
same way as string variables. For example, if STR is a string variable, the statement STR
:= T.NAME results in a syntax error.

In COBOL74 or COBOL85, string task attributes accept or return an alphanumeric item.
The value is terminated with a period, as in ALGOL. In the following example, TASK-VAR-
1 is a task variable and STRINGVAL was declared as 77 STRINGVAL PIC X(80):

CHANGE ATTRIBUTE NAME OF TASK-VAR-1 TO "OBJECT/ALGOL/TASK.".
MOVE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO STRINGVAL.

Accessing Task-Valued Task Attributes

Task-valued task attributes can be assigned a task variable or can be used as task
variables to access the task attributes of a particular process. In the following ALGOL
examples, TVAR is a task variable that was previously declared:

MYSELF.PARTNER := TVAR;
MYSELF.EXCEPTIONTASK.TASKVALUE := 33;

In the following COBOL74 or COBOL85 examples, TVAR-1 and TVAR-2 were previously
declared as 77-level items with a USAGE of TASK:

CHANGE ATTRIBUTE EXCEPTIONTASK OF TVAR-1 TO TVAR-2.
CHANGE ATTRIBUTE PRIORITY OF ATTRIBUTE PARTNER OF MYSELF TO 65.

Task-valued task attributes cannot be accessed from WFL.

 Accessing Task Attributes

8600 0502–407 1–13

Accessing Task Attributes at the Bit Level

Some Boolean, integer, and real task attributes return values that are divided into bit
fields with distinct meanings. Examples are the ERROR, HISTORY, LIBRARYSTATE,
ORGUNIT, SOURCESTATION, STOPPOINT, and TASKERROR task attributes.

The following are ALGOL statements that extract the values from various fields of the
ERROR task attribute. In these statements, R is a real variable, ERR is a Boolean variable,
and ERRNUM and UCERRNUM are real variables:

R := TVAR.ERROR; % Put ERROR value in real variable
ERR := BOOLEAN(R.[46:1]); % Translate a bit value into a Boolean
ERRNUM := R.[7:8]; % Record the task attribute number
UCERRNUM := R.[27:20]; % Record the USERDATA error number

The following are COBOL74 or COBOL85 statements that extract the values from the
various fields of the ERROR task attribute. The variables INTVAL, ERR, ERRNUM, and
UCERRNUM were all declared as 77-level variables of type BINARY PIC 9(11).

MOVE ATTRIBUTE ERROR OF TASK-VAR-1 TO INTVAL.
MOVE INTVAL TO ERR [46:00:01].
MOVE INTVAL TO ERRNUM [07:07:08].
MOVE INTVAL TO UCERRNUM [27:19:20].

In WFL, there is no direct way to access task attributes at the bit level. However, the
ERROR task attribute can be accessed by mnemonic values in WFL. Further, a WFL job
can extract values from selected fields of any real or integer value by calling the following
ALGOL program:

PROCEDURE WORDANALYZER(FULLWORD, STARTPOINT, LENGTH, FIELDVAL);
 VALUE FULLWORD, STARTPOINT, LENGTH;
 REAL FULLWORD, FIELDVAL;
 INTEGER LENGTH, STARTPOINT;
BEGIN
 FIELDVAL := FULLWORD.[STARTPOINT:LENGTH];
END.

In the WORDANALYZER program, the FULLWORD parameter receives the real or
integer value to be analyzed. The STARTPOINT parameter receives the left-most bit
position of the field being evaluated. The LENGTH parameter receives the length of the
field being evaluated. The FIELDVAL parameter returns the value of the specified field.
Note that the calling WFL job should pass the FIELDVAL parameter by reference.

WFL does not provide access to the HISTORYREASON task attribute. The following WFL
job determines the HISTORYREASON value indirectly by calling the WORDANALYZER
program. WORDANALYZER extracts field [23:08] from the HISTORY task attribute value.

Accessing Task Attributes

1–14 8600 0502–407

BEGIN JOB TEST/WFL;
REAL HREASON;
TASK T;
RUN OBJECT/DELTA [T];
RUN OBJECT/WORDANALYZER(T(HISTORY),23,8,HREASON REFERENCE);
IF T(HISTORYTYPE) = "DSEDV" AND T(HISTORYCAUSE) = "OPERATORCAUSEV"
 AND HREASON = 2 % Equivalent to HISTORYREASON mnemonic JUSTDSEDV
THEN ABORT "OBJECT/DELTA WAS DSED BY OPERATOR";
END JOB

Note: Some programmers have attempted to use WFL expressions involving DIV and
MOD operators to extract the values of fields in words. This method is not
recommended, because the DIV and MOD operators interpret a number of the bits in
field [46:08] as sign or exponent values. The value of these high-order bits can therefore
affect the results of DIV and MOD operations.

ALGOL, COBOL, and WFL all provide bit-level access to the OPTION task attribute by
way of special mnemonics that specify the bit position. For examples, refer to the
description of the OPTION task attribute.

Using WFLSUPPORT to Access Task Attributes

The WFLSUPPORT system library exports two library procedures that assist in assigning
attributes to a task variable: the HANDLEATTRIBUTES procedure and the
ATTRIBUTEMESSAGE procedure. The HANDLEATTRIBUTES procedure accepts a string
of text containing task attribute assignments, and makes the requested assignments to a
task variable. The ATTRIBUTEMESSAGE procedure accepts an encoded task attribute
assignment error as input and returns a textual error message.

Assigning Task Attributes through HANDLEATTRIBUTES

The HANDLEATTRIBUTES procedure has the following primary uses, which are
illustrated by examples later in this section.

• HANDLEATTRIBUTES passes task attributes to a compiler for insertion into an object
code file. This procedure replaces the old mechanism of attaching attributes to the
compiler SHEET array, which is to be deimplemented on a future release.

• An interactive program using HANDLEATTRIBUTES allows the user to enter task
attribute assignments at run time. Because HANDLEATTRIBUTES includes all the
logic for checking the task attribute syntax, the interactive program need not be
changed as new task attributes are implemented in the future.

The HANDLEATTRIBUTES procedure assumes that the task attribute assignments follow
the syntax of a task equation list in WFL, except that local data specifications cannot be
included. For the syntax of the WFL task equation list, refer to the Work Flow Language
(WFL) Programming Reference Manual.

 Accessing Task Attributes

8600 0502–407 1–15

HANDLEATTRIBUTES can handle assignments to all the task attributes that can be
specified in WFL. These include assignments to the DATABASE, FILECARDS, and
LIBRARY task attributes, which are known in WFL as database equations, file equations,
and library equations, respectively. Like WFL, HANDLEATTRIBUTES does not handle
assignments to task attributes of type event or task.

If any of the task attribute assignments contains an error, HANDLEATTRIBUTES returns
without making the requested assignments. You can specify options to tell
HANDLEATTRIBUTES whether to accept assignments that generate warnings.

You can use the AICOMPILEF field of the HOW1 parameter to specify whether
HANDLEATTRIBUTES is to accept both compiler task equations and noncompiler task
equations. Additionally, you can use the DISPOSITION parameter to specify whether the
equations are to be assigned to the target task variable, assigned to the MYPPB task
attribute for later use, or simply checked for syntactical correctness.

The following is an ALGOL example of the way the WFLSUPPORT library declaration and
the HANDLEATTRIBUTES procedure declaration look in a calling program:

LIBRARY WFLSUPPORT (LIBACCESS=BYFUNCTION);

REAL PROCEDURE HANDLEATTRIBUTES
 (TEXT,TEXTOFFSET,TEXTLENGTH,HOW1,DISPOSITION,TARGET,ERRORLOC);
 REAL TEXTOFFSET,TEXTLENGTH,HOW1,DISPOSITION, ERRORLOC;
 EBCDIC ARRAY TEXT[*];
 TASK TARGET;
 LIBRARY WFLSUPPORT;

Alternatively, you can use the $INCLUDE compiler option in your program to
automatically insert these declarations from the file *SYMBOL/ATTRIBUTE/
INTERPRETER/INTERFACE. It is a good idea to do so because this file also contains
many defines that can be used with the HANDLEATTRIBUTES procedure.

The HANDLEATTRIBUTES parameters are explained as follows:

TEXT

The calling program must place the text of the task attribute assignments in this
parameter. The assignments must follow the syntax of a task equation list in WFL.

TEXTOFFSET

The calling program can use this parameter to specify the offset within the TEXT buffer
at which the attribute assignments begin. The offset is zero-relative and expressed in
units of bytes.

TEXTLENGTH

The calling program can use this parameter to specify the number of bytes to be parsed
starting at the location specified by the TEXTOFFSET parameter. If TEXTLENGTH is 0,
then TEXT is scanned until a null character is encountered.

Accessing Task Attributes

1–16 8600 0502–407

HOW1

The calling program can use this parameter to specify parsing control options. The fields
of this parameter have the following meanings:

[47:23] Reserved. The value of this field must be 0.

[24:01] AIWARNINGSFATALF.

If 1, and a warning or error is detected, HANDLEATTRIBUTES returns without
making the requested assignments. The procedure result and the ERRLOC
parameter store information about the error or warning.

If 0, and a warning is detected, HANDLEATTRIBUTES displays a warning
message and then continues normally. If an error is detected,
HANDLEATTRIBUTES behaves as it would if the value of this field were 1.

[23:23] Reserved. The value of this field must be 0.

[00:01] AICOMPILEF.

If AICOMPILEF is 1, compiler mode is enabled. This mode makes it possible to
assign task attributes to a compilation or to the resulting object code file.
Compiler task equations are those that are prefixed by the word COMPILER or
the name of a compiler, such as ALGOL, PASCAL, and so on.

If AICOMPILEF is 0, then any task attribute assignments preceded by a compiler
prefix result in a syntax error.

For further information, refer to the following discussion of the DISPOSITION
parameter.

 Accessing Task Attributes

8600 0502–407 1–17

DISPOSITION

The calling program can use this parameter to specify whether the task attribute
assignments are to be applied. The effect of the DISPOSITION parameter varies,
depending on whether compiler mode is specified by the AICOMPILEF field of the
HOW1 parameter. The values of this parameter have the following meanings:

0 AIATTACHV

If HANDLEATTRIBUTES is invoked in compiler mode, then compiler task
equations are assigned to TARGET.MYPPB. The compiler task equations in
TARGET.MYPPB are applied to TARGET when TARGET.APPLYLIST is set to
TRUE, or when TARGET is used to initiate a process (whether the process is a
compiler or not).

Noncompiler task equations are assigned as a nested MYPPB value within
TARGET.MYPPB. If TARGET is later used to initiate a compiler process, the
compiler process reads the nested task equations from TARGET.MYPPB and
assigns them to the resulting object code file.

If HANDLEATTRIBUTES is invoked in noncompiler mode, then any compiler task
equations receive an error. Noncompiler task equations are assigned to
TARGET.MYPPB. The equations in TARGET.MYPPB are applied when
TARGET.APPLYLIST is set to TRUE or when TARGET is used in a process
initiation statement.

1 AIAPPLYV

If HANDLEATTRIBUTES is invoked in compiler mode, then compiler task
equations are applied directly to TARGET.

Noncompiler task equations are assigned to TARGET.MYPPB. If TARGET is later
used to initiate a compiler, the compiler applies the equations in TARGET.MYPPB
to the resulting object code file. Note that the system never applies the
TARGET.MYPPB equations to TARGET, not even if TARGET.APPLYLIST is set to
TRUE or TARGET is used in a process initiation statement.

If HANDLEATTRIBUTES is invoked in noncompiler mode, then any compiler task
equations receive an error. Noncompiler task equations are applied directly to
TARGET. Nothing is written to TARGET.MYPPB.

2 AISYNTAXONLYV

If HANDLEATTRIBUTES is invoked in compiler mode, then both compiler and
noncompiler task equations are checked for syntax. None of the equations are
applied and nothing is written to TARGET.MYPPB.

If HANDLEATTRIBUTES is invoked in noncompiler mode, then any compiler task
equations receive an error. Noncompiler task equations are checked for syntax.
None of the equations are applied and nothing is written to TARGET.MYPPB.

TARGET

The calling program can use this parameter to provide the task variable to which the task
attribute assignments are applied. This parameter is ignored if the value of the
DISPOSITION parameter is AISYNTAXONLYV.

Accessing Task Attributes

1–18 8600 0502–407

ERRORLOC

HANDLEATTRIBUTES uses this parameter to return error information to the calling
program. If field AIERRORF of the procedure result is 0, meaning that no error occurred,
then this parameter stores a 0. If field AIERRORF has a value of 1, then ERRORLOC
returns a value divided into the following fields:

[47:20] This field is always 0.

[27:01] AIERROFFSETVALIDF

If 1, then the error is associated with a particular offset in the input TEXT array.
This offset is given in field AIERROFFSETF of the ERRORLOC parameter.

If 0, then the error is not associated with a specific offset. In this case, the
AIERROFFSETF field does not store any offset.

[26:01] This field is always 0.

[25:18] AIERROFFSETF

This field stores the zero-relative offset of the task attribute error in the TEXT
parameter. This field is meaningful only if the AIERROFFSETVALIDF field of the
ERRORLOC parameter stores a 1.

[07:08] This field is always 0.

Procedure Result

The HANDLEATTRIBUTES result contains general information about task attribute errors.
The value is divided into the following fields:

[47:08] AITYPEF

The type of attribute for which the error was detected. The possible values are
as follows:

 1 = FILECARDS task attribute

 2 = Miscellaneous task attribute

 4 = PRINTDEFAULTS task attribute

 6 = LIBRARY task attribute

 7 = DATABASE task attribute

[39:16] AIATTNUMF

The number of the attribute for which the error was detected. If field [47:08] of
the procedure result indicates that FILECARDS had an error, then AIATTNUMF
stores the number of the file attribute that caused the error. Otherwise,
AIATTNUMF stores the number of the task attribute that caused the error. For
file attribute numbers, refer to the File Attributes Programming Reference
Manual. For task attribute numbers, refer to the description of the ERROR task
attribute.

[23:16] AIERRNUMF

 The error or exception number. Refer to Table 1–1, “HANDLEATTRIBUTES
Error Numbers,” for a list of these numbers and their meanings. This
information also appears in the file
*SYMBOL/ATTRIBUTE/INTERPRETER/INTERFACE.

 Accessing Task Attributes

8600 0502–407 1–19

[07:05] This field is always 0.

[02:01] AIATTNUMVALIDF

If 1, then the error is associated with a particular attribute in the input TEXT. In
this case, the AIATTNUMF field and the AITYPEF field are valid. If 0, the error
is not associated with a particular attribute and these fields are not valid.

[01:01] AIWARNINGF

If 0, the error is fatal. If 1, it is a warning.

[00:01] AIERRORF

If 1, an error occurred. If 0, no error occurred and none of the other fields in
this result are valid.

Table 1–1 explains the values of the numbers returned in field [23:16] of the
HANDLEATTRIBUTES procedure result.

Table 1–1. HANDLEATTRIBUTES Error Numbers

Error
Number

Meaning

0 No error or warning occurred.

1-1000 If the error number is in this range, the error number is equal to the
HISTORYREASON task attribute value. For information about the
value, refer to the description of the HISTORYREASON task attribute.

1015 A syntax error was detected.

1017 An attribute mnemonic was expected.

1018 A numeric value was expected.

1019 An end-of-text marker was encountered.

1021 The same attribute has been assigned two values. This is a warning in
most cases, but it is an error for the PRINTDEFAULTS attribute. If the
warning is ignored, the more recent value overwrites the previous
value.

1023 A right parenthesis was expected.

1027 A semicolon was expected (;).

1030 A string over 256 characters long was specified.

1031 An ending quotation mark (") is missing.

1032 The maximum number was exceeded.

1033 An illegal character was used.

1034 An illegal file name was used.

1035 An OPTION task attribute mnemonic was expected.

1036 An attribute mnemonic was expected.

1037 An illegal attribute mnemonic was used.

Accessing Task Attributes

1–20 8600 0502–407

Table 1–1. HANDLEATTRIBUTES Error Numbers

Error
Number

Meaning

1038 A left parenthesis was expected.

1039 A real constant was expected.

1040 The user part of a file title must be 12 names or less.

1041 The end of the statement was expected.

1042 A task attribute was expected.

1043 A compiler name was expected.

1044 An equal sign (=) was expected.

1045 A simple volume name was expected.

1046 A keyword was not recognized.

1047 An attempt was made to assign a value to a read-only attribute.

1048 Too many serial numbers were specified.

1049 The serial number was too long.

1050 A serial number was expected.

1051 The serial number contained an illegal character.

1052 This construct can be used only in a job heading.

1053 An illegal resource value was specified.

1054 A number from 0 to 255 was expected.

1055 This attribute is not valid in this context.

1056 A comma (,) was expected.

1057 The word OTHERWISE or ONLY was expected.

1058 A WFLSUPPORT fault occurred.

1059 String constants are not allowed here.

1060 This construct is not implemented.

1061 There was an error in numeric constant evaluation.

1062 The DATABASE attribute was expected.

1063 An illegal name was specified.

1064 A hyphen (-) or underscore (_) cannot be the first character of an
unquoted name.

1065 The family specification was invalid.

1066 A file attribute was expected.

1067 A print attribute or print modifier was expected.

1068 A file equation for this file was previously specified; the previous
equation is ignored.

 Accessing Task Attributes

8600 0502–407 1–21

Table 1–1. HANDLEATTRIBUTES Error Numbers

Error
Number

Meaning

1072 An invalid type was specified.

1073 An invalid INTNAME file attribute value was specified.

1074 The word UP was expected.

1075 The word FILE was expected.

1076 The version number specified in ParseTaskAttributes,
AttributesToTask, or AttributeMessage is too big.

1077 AIERRINFO_AVAILF is not 0.

1078 AIHOW_AVAILF is not 0.

1079 AIHOW1_AVAIL1F or AIHOW1_AVAIL2F is not 0.

1080 AIHOW3_AVAILF is not 0.

1081 AIHOW4_AVAILF is not 0.

1082 HOW5 is not 0.

1083 AIWHATTODO_AVAIL1F or AIWHATTODO_AVAIL2F is not 0.

1084 LIBRARY attribute expected.

1085 Only one node is allowed in a Multi-Vendor Password.

1086 The INTNAME of a file is more than 17 characters.

1087 Language id exceeds 17 characters.

1088 Too many AX values were specified for the task.

Accessing Task Attributes

1–22 8600 0502–407

Decoding Error Values with ATTRIBUTEMESSAGE

The ATTRIBUTEMESSAGE procedure translates the HANDLEATTRIBUTES procedure
result into a textual error message, suitable for display to a user.

ATTRIBUTEMESSAGE also allows you to specify the language in which the error
message should be displayed, an array to hold the error message, and the offset in the
array where the error message should start. ATTRIBUTEMESSAGE places the error
message at the requested location in the array, and updates the offset parameter to
point to the end of the error message.

The following is an ALGOL example of the way the WFLSUPPORT library declaration and
the ATTRIBUTEMESSAGE procedure declaration look in a calling program:

LIBRARY WFLSUPPORT (LIBACCESS=BYFUNCTION);

REAL PROCEDURE ATTRIBUTEMESSAGE
 (ERRINFO,HOW4,LANGUAGE,LANGLENGTH,MSG,MSGOFFSET);
 REAL ERRINFO,HOW4, LANGLENGTH, MSGOFFSET;
 EBCDIC ARRAY LANGUAGE[*], MSG[*];
 LIBRARY WFLSUPPORT;

Alternatively, you can use the $INCLUDE compiler option in your program to
automatically insert these declarations from the file *SYMBOL/ATTRIBUTE/
INTERPRETER/INTERFACE. It is a good idea to do so because this file also contains
many defines that can be used with the ATTRIBUTEMESSAGE procedure.

The ATTRIBUTEMESSAGE parameters are explained as follows:

ERRINFO

The calling program must store the encoded error description in this parameter. The
format of this word must be the same as the procedure result returned by
HANDLEATTRIBUTES.

HOW4

The calling program can use this parameter to specify some aspects of the
ATTRIBUTEMESSAGE interface. This parameter is divided into the following values:

[47:04] AIMESSAGEVERSIONF

This field stores the version number of the ATTRIBUTEMESSAGE interface.
For the version supplied with this release, the value should be 0.

[43:43] Reserved. The value of this field must be 0.

[00:01] AIDISPLAYMESSAGEF

If 1, ATTRIBUTEMESSAGE issues a DISPLAY statement that causes the
resulting error message to appear in the MSG (Display Messages) system
command display. (The DISPLAYONLYTOMCS task attribute can limit the
display of the message.)

If 0, the error message does not appear in the MSG display.

 Accessing Task Attributes

8600 0502–407 1–23

LANGUAGE

The calling program can use this parameter to specify the language in which the error
message is to be reported. Parsing of the language starts at element 0 of the
LANGUAGE value, although leading blanks are ignored. Parsing ceases when a null
character is encountered or when the number of characters specified by the
LANGLENGTH parameter has been parsed.

If the requested language is not supported on the system, a warning of
AILANGNOTAVAILABLEV is reported and the system default language is used.

LANGLENGTH

The calling program can use this parameter to specify the maximum number of
characters in the LANGUAGE parameter to be parsed, starting at element 0 of the
LANGUAGE value. If LANGLENGTH is 0, the LANGUAGE parameter is ignored and the
LANGUAGE task attribute of the calling process is used instead.

MSG

ATTRIBUTEMESSAGE returns the decoded error message in this parameter. You should
take care that the array passed to this parameter is at least as long as the sum of the
initial MSGOFFSET value and the value of the AIMSGLENGTHV define in
*SYMBOL/ATTRIBUTE/INTERPRETER/INTERFACE. (The AIMSGLENGTHV define
specifies the maximum length message that can be returned by the current version of
ATTRIBUTEMESSAGE.)

MSGOFFSET

The calling program can use this parameter to specify the offset within the MSG array at
which the decoded message should begin. ATTRIBUTEMESSAGE updates this
parameter to return the offset of the null character that terminates the decoded
message.

Procedure Result

ATTRIBUTEMESSAGE uses this parameter to report errors. The procedure result has the
same format as the HANDLEATTRIBUTES procedure result, as previously described in
this section.

The format of the message returned in MSG, the message parameter, is as follows
when the error pertains to a specific attribute (that is, when field AIATTNUMVALIDF of
the ERRINFO parameter equals 1):

<attribute type> Attribute "<attribute name>": <error description>

For example:

Task Attribute "DECLAREDPRIORITY":Cannot recognize keyword

If the error does not pertain to a specific attribute (that is, the AIATTNUMVALIDF field of
the ERRINFO parameter equals 0), the message has the following format:

Attribute Error: <error description>

Accessing Task Attributes

1–24 8600 0502–407

Examples

The following are examples of ALGOL programs that use the HANDLEATTRIBUTES and
ATTRIBUTEMESSAGE procedures.

Example 1: Setting Multiple Attributes.

The following interactive program asks a user to supply task attribute assignments. The
program then calls HANDLEATTRIBUTES to check the assignments for correctness and
apply them to a task variable. If there are no errors, the program uses the task variable to
initiate a task. If there are errors, the program uses ATTRIBUTEMESSAGE to display an
error message.

100 BEGIN
110 $INCLUDE ATTINT = "*SYMBOL/ATTRIBUTE/INTERPRETER/INTERFACE"
120 TASK T;
130 FILE TERM(KIND = REMOTE,FILEUSE=IO);
140 EBCDIC ARRAY TEXT[0:419], LANG[0:119], MYPPBVAL[0:599];
150 REAL ERRORLOC, ATTERR, MSGERR, ERROFFSET, HOW1;
160 PROCEDURE UTILRUN;
170 EXTERNAL;
180
190 WRITE(TERM,//,"PLEASE ENTER YOUR TASK EQUATIONS");
200 REPLACE TEXT BY 48"00" FOR 420;
210 READ(TERM,420,TEXT);
220 ATTERR := HANDLEATTRIBUTES(TEXT,0,0,HOW1,AIAPPLYV,T,ERRORLOC);
230 IF ATTERR = 0 THEN
240 CALL UTILRUN [T]
250 ELSE
260 BEGIN
270 DISPLAY(TEXT);
280 IF ERRORLOC.AIERROFFSETVALIDF = 1 THEN
290 BEGIN
300 REPLACE TEXT BY " " FOR ERRORLOC.AIERROFFSETF,
310 "^", 48"00";
320 DISPLAY(TEXT);
330 END;
340 REPLACE TEXT BY "*" FOR 3;
350 ERROFFSET := 3;
360 REPLACE LANG BY T.LANGUAGE;
370 MSGERR := ATTRIBUTEMESSAGE(ATTERR,1,LANG,0,TEXT,ERROFFSET);
380 END;
390 END.

 Accessing Task Attributes

8600 0502–407 1–25

The following is an example of the interaction between a user and this program. The user
runs the program from a CANDE session. Because the user misspells the TASKVALUE
task attribute, the program returns an error message and does not initiate the requested
task.

User: RUN ATTINT/TEST
Response: #RUNNING 9807
Response: #?
Response: PLEASE ENTER YOUR TASK EQUATIONS
User: NAME=OBJECT/ALGOL/TASK;TASKVALUW=R;PRIORITY=60;
Response: #9807 DISPLAY:NAME=OBJECT/ALGOL/TASK;TASKVALUW=R;PRIORITY=60;
Response: .
Response: #9807 DISPLAY: ^.
Response: #9807 DISPLAY:***Attribute error: Task attribute expected.
Response: #ET=27.6 PT=0.1 IO=0.1

Example 2: Inserting Attributes into an Object Code File

Programs that initiate a compiler can cause attributes to be inserted into the resulting
object code file. These attributes are applied at task initiation time whenever the object
code file is executed. The following example shows how this is done using the
HANDLEATTRIBUTES and ATTRIBUTEMESSAGE procedures.

100 BEGIN
110 $INCLUDE ATTINT="*SYMBOL/ATTRIBUTE/INTERPRETER/INTERFACE."
120 TASK CTASK;
130 ARRAY SHEET[0:32];
140 EBCDIC ARRAY TEXT[0:299];
150 REAL ERRLOC, ATTERR, MSGERR, MSGOFFSET;
160
170 PROCEDURE ALGOLCOMPILER(SHEET);
180 ARRAY SHEET[*];
190 EXTERNAL;
200
210 REPLACE TEXT BY
220 "ALGOL NAME=*SYSTEM/ALGOL ON DISK;"
230 "ALGOL FILE CARD (KIND=DISK, TITLE=ALGOL/TASK);"
240 "ALGOL FILE CODE (KIND=DISK, TITLE=OBJECT/ALGOL/TASK);"
250 "MAXPROCTIME=20;TASKVALUE=3;"
260 "FILE IN=DAILY/DATA; FILE OUT(KIND=DISK,TITLE=OUTPUT)" 48"00";
270 ATTERR:=HANDLEATTRIBUTES(TEXT,0,0,1,AIAPPLYV,CTASK,ERRLOC);
280
290 REPLACE SHEET BY 0 FOR 33 WORDS;
300 SHEET[8] := VALUE(LIBRARY); % This statement specifies the
310 % object code file disposition.
320 SHEET[0] := 0 & 1[47:1];
330
340 CALL ALGOLCOMPILER(SHEET) [CTASK];
350
360 END.

Accessing Task Attributes

1–26 8600 0502–407

In this example, the task assignments at lines 220 through 240 are applied to the
compilation, because they are preceded by the keyword ALGOL. The task assignments
at lines 250 through 260 are assigned to the resulting object code file, because they have
no compiler name prefixing them.

System Administrator Access to Task Attributes
The system administrator can establish defaults and limits on the use of various task
attributes by various users. These defaults and limits aid in preserving system security
and managing workload.

Assigning Task Attributes to Usercodes

The system administrator can create usercode definitions in the USERDATAFILE by
running either MAKEUSER or a DCALGOL program that calls the USERDATA function.
By creating a usercode definition, the system administrator makes that usercode a legal
value for the USERCODE task attribute. By suspending or removing the usercode
definition, the system administrator can prevent processes from being initiated with that
USERCODE task attribute value.

The usercode definition can include one or more usercode attributes. Several of these
usercode attributes provide values that can be inherited by task attributes of processes
that run with that usercode. The following task attributes can be affected by the values
of usercode attributes: ACCESSCODE, CHARGE, CLASS, CONVENTION,
DEPTASKACCOUNTING, DESTNAME, FAMILY, FILEACCOUNTING, LANGUAGE,
PRINTDEFAULTS, PRIORITY, SAVEMEMORYLIMIT, and TEMPFILELIMIT. These can be
referred to as the usercode-related task attributes of a process.

These task attributes are not always affected by their corresponding usercode attributes.
The system administrator might not have included all the possible usercode attributes in
the usercode definition. Furthermore, the usercode attributes are inherited only in the
following circumstances:

• Usercode attributes can be inherited by a WFL job that includes a USERCODE
assignment in the job attribute list. Any usercode-related task attributes that are not
assigned values in the job attribute list receive their values from the usercode
attributes.

• Usercode attribute values are inherited by CANDE or MARC session attributes at log-
on time. These session attributes are inherited by any processes initiated from the
session, unless the user takes actions to change the session attributes or uses task
equations to assign different task attributes to a process. (Refer to the discussion of
tasking from interactive sources in the Task Management Programming Guide.)

The usercode-related task attributes are also inherited from a parent by its offspring,
unless specifically overridden. In this way, a usercode attribute can be propagated
through an entire process family.

For further details about the inheritance rules for usercode-related task attributes, refer to
the descriptions of each of these task attributes in this manual.

 Accessing Task Attributes

8600 0502–407 1–27

Assigning Job Queue Attributes

The system administrator can use job queue definitions to affect the task attributes of
WFL jobs and their descendants. The job queue definitions are created by way of the MQ
(Make or Modify Queue) system command. Each job queue definition can include job
queue attributes that specify default or limiting values for task attributes of jobs run from
that queue. The job queue attributes correspond mostly to task attributes that impose
limits on resource usage, such as MAXPROCTIME and MAXIOTIME. For a summary of
the effects of job queue attributes on task attributes, refer to the Task Management
Programming Guide.

System Access to Task Attributes
The system software plays several roles in the assignment of task attribute values. The
system provides values for task attributes in some cases, resolves conflicting
assignments from various sources, and issues errors when an attempt is made to access
an attribute incorrectly.

The system software provides values for task attributes that have not been specifically
assigned values by any of the other methods discussed in this section. The following
subsections discuss the types of assignments that the system software makes.

Providing Default Values

The default value for a task attribute is the value it assumes if no other factors influence
the task attribute value. For Boolean task attributes, the default is typically FALSE; for
integer or real task attributes, 0; for string task attributes, a null string.

The default values for all the task attributes are documented in this manual.

Providing Inherited Values

Inheritance is the transfer of a task attribute value from a process to one of its
descendants. Different inheritance rules are applied to different task attributes; some can
inherit values, but others cannot. The inheritance rules for each task attribute are
included in the task attribute descriptions.

Some of the basic task attributes that can be inherited are USERCODE, ACCESSCODE,
CHARGE, and FAMILY. The inheritance properties save the programmer the trouble of
having to assign these task attributes for each member of the process family. A single
assignment to the job can be propagated to all its descendants.

The term inheritance is also loosely applied to the transfer of values from job queue
attributes, session attributes, or usercode attributes to a process. These types of
inheritance are discussed under “Assigning Job Queue Attributes,” “Assigning Task
Attributes to a Session,” and “Assigning Task Attributes to Usercodes” in this section.

Accessing Task Attributes

1–28 8600 0502–407

Updating Task Attribute Values

During process execution, the system automatically updates the values of certain task
attributes. These task attributes return information about dynamic aspects of process
status and history. One example is the STATUS task attribute, whose value is updated
when the process becomes scheduled, suspended, resumed, or terminated. Other
examples are the task attributes that record resource usage, including
ACCUMPROCTIME and ACCUMIOTIME. These automatic updates make it possible to
use these task attributes to monitor the current state of a process as it executes.

Resolving Conflicting Values

When a process is initiated, the system software evaluates the task attribute values
submitted from the various sources discussed in this section. Where different sources
have assigned conflicting values to the same task attribute, the system chooses the
value submitted from the most dominant source.

The rules used to determine which assignment is most dominant are called overwrite
rules. The system applies different overwrite rules to different task attributes. However,
most task attributes follow either standard overwrite rules or object code file dominant
overwrite rules. The following subsections describe standard and object code file
dominant overwrite rules for various types of processes.

Each task attribute description includes information about the overwrite rules for that
task attribute. The description states whether that task attribute follows standard or
object code file dominant overwrite rules. For task attributes that follow irregular rules,
the exact behavior of the task attributes is explained.

Overwrite Rules for WFL Jobs

The following are the various sources that can contribute to the initial task attribute
values of a WFL job. The sources are listed in order from most dominant to least
dominant according to standard overwrite rules.

1. Assignments in the job attribute list of the WFL job.

2. Usercode attributes, if a USERCODE assignment is included in the job attribute list of
the WFL job.

3. Attributes of the parent process or job, if the WFL job was initiated from a user
process or job.

4. Attributes of the CANDE or MARC session, if the WFL job was initiated from a
session.

5. Job queue defaults. (By contrast, job queue limits do not affect the initial task
attribute values of a WFL job. They simply affect the selection of a queue for the job.)

6. The task attribute default.

 Accessing Task Attributes

8600 0502–407 1–29

Task attributes cannot be assigned to the object code file of a WFL job because a WFL
job has no object code file. Object code file dominant task attributes, when applied to a
WFL job, follow the standard overwrite rules listed previously.

The following is one illustration of the overwrite rules for WFL jobs. Suppose the job
attribute list of a certain WFL job includes a PRINTDEFAULTS assignment, followed by a
USERCODE assignment. Further, suppose that the usercode definition in the
USERDATAFILE has a PRINTDEFAULTS value associated with it. In this case, only the
PRINTDEFAULTS value specified in the job attribute list is used, even though the
USERCODE assignment statement occurred last.

Overwrite Rules for Session Tasks

The following are the various sources that can contribute to the initial task attribute
values of a task initiated from a CANDE or MARC session. The sources are listed in order
from most dominant to least dominant according to standard overwrite rules.

1. Task equations appended to the initiation statement.

2. Inheritance from the attributes of CANDE or MARC sessions.

3. Assignments to the object code file.

4. The task attribute default.

For an object code file dominant task attribute, the order of dominance is the same,
except that item 3, assignments to the object code file, is moved to the head of the list.

Overwrite Rules for Other Processes

The following are the various sources that can contribute to the initial task attribute
values of a process initiated from a WFL, ALGOL, or COBOL process. The sources are
listed in order from the most dominant to the least dominant according to standard
overwrite rules.

1. Task equations appended to the initiation statement.

2. Task attribute assignments to the task variable outside the task variable declaration.

3. Task attribute assignments in the task variable declaration. (This feature is supported
only by WFL.)

4. Assignments to the object code file.

5. Inheritance from the parent.

6. The task attribute default.

For an object code file dominant task attribute, the order of dominance is the same,
except that item 4, assignments to the object code file, is moved to the head of the list.

Accessing Task Attributes

1–30 8600 0502–407

Task Attribute Errors

Task attribute errors result from an attempt to access a task attribute in an improper
manner. The most basic errors are caught at compile time. These include type
mismatches that occur, for example, from assigning a string to an integer-valued task
attribute.

Other task attribute errors are caught only at run time. For example, a run-time error can
result from assigning a task attribute a value that is

• Outside the allowed range. For example, if a particular attribute has a range of 1 to
9999, then an assignment of 10500 might cause an error.

• Assigned at the wrong time. Some attributes can be assigned only before initiation;
after initiation, assignment causes a run-time error.

• Referring to a nonexistent entity. For example, an error results from assigning a
DESTSTATION value that does not correspond to a valid Logical Station Number
(LSN).

• Inconsistent with a related attribute. For example, the USERCODE and CHARGE task
attributes must be compatible.

An attempt to read a task attribute can also result in an error in some cases. For
example, if the private process bit of the OPTION task attribute is set, then other
processes are prevented from reading (or assigning) the task attributes of this process.

Some task attributes can cause a delayed error if assigned an invalid value. For example,
the STATION task attribute can be assigned a value that refers to a nonexistent station.
No error occurs until the process attempts to open a remote file.

The process that attempted to access the task attribute can be referred to as the
accessing process. The process whose task attribute was accessed can be referred to
as the receiving process. The accessing process and the receiving process can be the
same, for example, if the MYSELF task variable is used.

If the attempted access is illegal, the accessing process incurs the error. If the accessing
process is nonprivileged, almost all task attribute errors are fatal. If the accessing
process is privileged or a message control system (MCS), then errors in accessing event-
valued or file-valued task attributes are generally fatal, but most other task attribute
errors are not fatal.

The ERROR task attribute of the receiving process stores the attribute number of the
task attribute that was being accessed when the error occurred. The accessing process
can read the ERROR task attribute of the receiving process to determine whether the
last task attribute access was successful. The system erases the ERROR value each
time it is read. TASKERROR is another task attribute that provides error information.
Unlike ERROR, the TASKERROR value is not erased when it is read.

For further details about these task attributes, refer to the ERROR and TASKERROR task
attribute descriptions.

 Accessing Task Attributes

8600 0502–407 1–31

The operator or the user is notified of task attribute errors by the display of error
messages for the process. Many task attribute error messages are documented in this
manual in the “Run-Time Errors” part of the task attribute descriptions. All the errors
documented in this manual are also included in the index for easy reference.

The error messages that are displayed for a process are somewhat more informative if
the object code file of the process was compiled with the LINEINFO compiler option set.
This option causes the sequence number of each record in the source program to be
stored in the object code file. When an error occurs, the sequence number of the
statement that incurred the error is included at the end of the error message.

If LINEINFO was not set, then error messages display the code address instead of the
sequence number of the statement that incurred the error. You can interpret the code
address by referring to the printout produced by the compiler if the LIST compiler option
was set. For an example of this printout, refer to the discussion of process history in the
Task Management Programming Guide.

Accessing Task Attributes

1–32 8600 0502–407

8600 0502–407 2–1

Section 2
Task Attribute Descriptions

Task attributes provide a wide variety of options for process monitoring and control.
Using task attributes, you can control various aspects of file usage, memory usage,
resource usage, and communication with other processes or with operators. You can
also use task attributes to determine the status of a process or discover how it
terminated.

The following sections include complete descriptions of all the task attributes that are
supported for customer use as of the current ClearPath MCP release. Note that the file
SYMBOL/ATTABLEGEN, which lists all the task attributes, includes several that are not
documented in this manual. These undocumented task attributes are intended only for
internal use. Attempts by customers to use these task attributes result in compile-time
errors, run-time errors, or other undefined results.

Choosing the Right Task Attribute
At this time, about a hundred task attributes have been implemented. Each task attribute
is designed to assume reasonable default or inherited values. Therefore, it is not
necessary for you to learn the functions of all the task attributes. However, by studying
the task attributes related to a particular area of process control, you can learn how to
take advantage of the abilities the system provides in that area.

Table 2–1, “Task Attribute Functional Groupings,” helps you find the task attributes
relevant to each aspect of process control. For details about any of these task attributes,
refer to the individual descriptions in this manual.

Table 2–1. Task Attribute Functional Groupings

Category Attribute

Billing ACCESSCODE

CHARGE

USERCODE

COMS direct window
programs

DCIINPUTEVENT

DCITASKEVENT

Databases DATABASE

MAXWAIT

Task Attribute Descriptions

2–2 8600 0502–407

Table 2–1. Task Attribute Functional Groupings

Category Attribute

Data comm AUTOSWITCHTOMARC

DCIINPUTEVENT

DCITASKEVENT

DESTNAME

DESTSTATION

DISPLAYONLYTOMCS

INHERITMCSSTATUS

LANGUAGE

MCSNAME

ORGUNIT

SOURCEKIND

SOURCENAME

SOURCESTATION

STATION

STATIONNAME

SUPPRESSWARNING

TANKING

Debugging OPTION

PDUMPTITLE

TADS

TASKFILE

Files AUTORESTORE

BACKUPFAMILY

CURRENTDIRECTORY

DEFAULTFILEGROUP

FAMILY

FILEACCESSRULE

FILECARDS

FILEGROUP

FILEMASK

LABELFORMAT

OPTION (the AUTORM, BACKUP,
TODISK and TOPRINTER options)

 Task Attribute Descriptions

8600 0502–407 2–3

Table 2–1. Task Attribute Functional Groupings

Category Attribute

History DEPTASKACCOUNTING

ERROR

FILEACCOUNTING

HISTORY

HISTORYCAUSE

HISTORYREASON

HISTORYTYPE

OPTION

PRIORHISTORY

PRIORHISTORYCAUSE

PRIORHISTORYREASON

PRIORHISTORYTYPE

STACKHISTORY

STATUS

STOPPOINT

TASKERROR

TASKFILE

TASKWARNINGS

Identification BOTTIMESTAMP

JOBNUMBER

MIXNUMBER

MPID

NAME

Task Attribute Descriptions

2–4 8600 0502–407

Table 2–1. Task Attribute Functional Groupings

Category Attribute

Interprocess Communication ACCEPTEVENT

AX

EXCEPTIONEVENT

EXCEPTIONTASK

LOCKED

MAXCARDS

NETPATH

OPTION (the “private process” option)

OPTIONAL

PARTNER

PARTNEREXISTS

REPORTBADINITIATE

STATUS

SW1 through SW8

TARGET

TASKLIMIT

TASKSTRING

TASKVALUE

TYPE

Job Summaries JOBSUMMARY

JOBSUMMARYTITLE

NOJOBSUMMARYIO

OPTION (the NOSUMMARY option)

Libraries LIBRARY

LIBRARYSTATE

LIBRARYUSERS

STATUS

Localization CONVENTION

COUNTRY

LANGUAGE

Logging DEPTASKACCOUNTING

FILEACCOUNTING

 Task Attribute Descriptions

8600 0502–407 2–5

Table 2–1. Task Attribute Functional Groupings

Category Attribute

Memory Management CORE

SAVEMEMORYLIMIT

STACKLIMIT

STACKSIZE

Messages DISPLAYONLYTOMCS

LANGUAGE

SUPPRESSWARNING

TASKWARNINGS

Printer Output BACKUPFAMILY

BDNAME

DESTNAME

DESTSTATION

OPTION (the BACKUP, BDBASE, and
NOSUMMARY options)

PRINTDEFAULTS

TASKFILE

Remote Tasking HOSTNAME

ITINERARY

Resource Usage Data ACCUMIOTIME

ACCUMPROCTIME

ELAPSEDTIME

INITPBITCOUNT

INITPBITTIME

OTHERPBITCOUNT

OTHERPBITTIME

TEMPFILEMBYTES

Task Attribute Descriptions

2–6 8600 0502–407

Table 2–1. Task Attribute Functional Groupings

Category Attribute

Resource Usage Limits ELAPSEDLIMIT

MAXIOTIME

MAXLINES

MAXPROCTIME

MAXWAIT

PRIORITY

RESOURCE

SAVEMEMORYLIMIT

STACKLIMIT

TASKLIMIT

TEMPFILELIMIT

WAITLIMIT

Restarting Processes BRCLASS

CHECKPOINTABLE

RESTART

RESTARTED

Security ACCESSCODE

BLOCKCREDENTIALS

CREDENTIALS

CREDENTIALSBASE

FILEACCESSRULE

FILEMASK

GROUPCODE

INHERITCREDENTIALS

INHERITMCSSTATUS

REALGROUPCODE

REALUSERCODE

SAVEDGROUPCODE

SAVEDUSERCODE

SUPPLEMENTARYGRPS

USERCODE

 Task Attribute Descriptions

8600 0502–407 2–7

Table 2–1. Task Attribute Functional Groupings

Category Attribute

Task Attribute Usage APPLYLIST

MYPPB

ERROR

TASKERROR

Tape Usage LABELFORMAT

RESOURCE

WFL Jobs CLASS

DECKGROUPNO

FETCH

STARTTIME

Format of the Descriptions
Each task attribute description includes information about certain characteristics of task
attributes. The following subsections explain how these characteristics are presented in
the task attribute descriptions.

Name

Each task attribute description begins with a heading that gives the name of the task
attribute. An attribute is generally referred to by the same name from all the sources
accessing it. The only exception to this rule occurs when several task attributes have
synonyms and some sources recognize only the synonym. Refer to the “Synonym”
discussion in this section.

Type

This part of the description indicates the type of data stored in the task attribute. Almost
all task attributes fall into one of the following types: Boolean, event, file, integer,
mnemonic, real, string, or task. A few other attributes, such as OPTION and RESOURCE,
are of irregular types. For details about how to access these types from various
languages, refer to “Programmer Access to Task Attributes” in Section 1, “Accessing
Task Attributes.”

Units

This part of the description specifies, for either a real or an integer task attribute, the
units measured by the attribute value: seconds, microseconds, words, and so on.

Task Attribute Descriptions

2–8 8600 0502–407

Range

This part of the description defines the legal values for the attribute. For example, a
mnemonic attribute’s range consists of all the valid mnemonic values for the attribute.
An integer attribute’s range defines the upper and lower limits of the integers allowed
(for example, 1 through 256).

In some cases, the range is defined by a metatoken, which is a word or phrase enclosed
within angle brackets, as in the following example: <simple name>. For such items, a
railroad diagram is used to describe the exact range of the task attribute values. If a
metatoken is referred to by only one task attribute description, then the railroad diagram
for that metatoken is given in the description of that task attribute. Metatokens that are
referred to by more than one task attribute description are defined in the following syntax
discussion. For information about how to read these diagrams, refer to Appendix A,
“Understanding Railroad Diagrams.”

Syntax

<digit>

Any one of the 10 Arabic numerals 0 through 9

<family name>

ÄÄ<nonquote identifier>ÄÄ´

<hyphen>

The hyphen character (-)

<identifier>

ÄÄÂÄ<nonquote identifier>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄ " ÄÁÄ/17\Ä<nonquote EBCDIC character>ÄÁÄ " ÄÙ

<name>

 ÚêÄÄÄÄÄÄÄÄ / ÄÄÄÄÄÄÄÄ¿
ÄÄÁÄ/12\Ä<simple name>ÄÁÄÄÄ´

<nonquote EBCDIC character>

Any uppercase or lowercase letter, number, or special character that is not a quotation
mark (") and that has a hexadecimal code greater than or equal to 4"40".

<nonquote identifier>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄ/17\ÄÂÄ<uppercase letter>ÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<digit>ÄÄÄÄÄÄÄÄÄÄÄÄÙ

 Task Attribute Descriptions

8600 0502–407 2–9

<password>

ÄÄ<nonquote identifier>ÄÄ´

<simple name>

ÄÄÂÄ<uppercase letter>ÄÂÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<digit>ÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄÁÄ/16\ÄÂÄ<uppercase letter>ÄÂÄÁÄÙ
 ÃÄ<digit>ÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ<hyphen>ÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<underscore>ÄÄÄÄÄÄÄÙ

<title>

 ÚêÄÄÄÄÄÄÄÄ / ÄÄÄÄÄÄÄÄ¿
ÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄ/12\Ä<simple name>ÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë
 ÃÄ (ÄÄ<usercode>ÄÄ) Ä´
 ÀÄ * ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

ëÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄ´
 ÀÄ ON ÄÄ<family name>ÄÙ

<underscore>

The underscore character (_)

<uppercase letter>

Any one of the 26 uppercase characters A through Z.

<usercode>

ÄÄÂÄ<simple name>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄ " ÄÁÄ/17\Ä<nonquote EBCDIC character>ÄÁÄ " ÄÙ

Task Attribute Descriptions

2–10 8600 0502–407

Default

This part of the description lists the value that the task attribute assumes if the attribute
does not inherit its value and is not assigned a value. For a read-only task attribute, this is
the value the task attribute returns if interrogated before initiation.

For many string task attributes, the default listed is null string. If this default value is read
from Work Flow Language (WFL), a string of 0 length ("") is returned. However, if this
default value is read from ALGOL or COBOL, a string that contains a single period (".") is
returned.

Read Time

This part of the description defines whether and when the task attribute value can be
interrogated by a program. The following are the possible read time values:

• Anytime. The task attribute of the task variable can be read before the process is
initiated, while it is running, or after termination.

• Anytime; accurate after initiation. The task attribute can be read at any time, but does
not receive its actual value until the process is initiated.

• Anytime; accurate while in use. The task attribute can be read at any time, but is
reset to its default when the process terminates.

• Never. The task attribute cannot be read. Such an attribute is called write-only.

• Only while in use. The task attribute can be read only for an in-use process. That is,
the task attribute cannot be read before the process is initiated or after it is
terminated.

Note that inheritance, object code file assignments, and run-time assignments can cause
the values of many attributes to change at initiation time. Therefore, any value that is
read before initiation might not reflect the value that the process actually receives.

 Task Attribute Descriptions

8600 0502–407 2–11

Write Time

This part of the description defines whether and when the task attribute can be assigned
a value by a program. The following are the possible write time values:

• Anytime. The task attribute of the task variable can be assigned before the process is
initiated, while it is running, or after termination.

• Anytime, effective before initiation. The task attribute value can be assigned at any
time without incurring an error; however, assignments made after initiation are
ignored.

• Before initiation. The task attribute must be assigned as one of the following:

− An assignment to the task variable before the process is initiated.

− A task equation appended to the statement that initiates the process.

− An assignment in the job attribute list of a WFL job. The job attribute list
immediately follows the job heading at the start of the job. These assignments
are applied before the job begins execution.

− An assignment to the object code file of the process. Such assignments can be
appended to the WFL or CANDE COMPILE statements or can be made to an
existing object code file by way of the WFL MODIFY statement.

• Never. The task attribute cannot be assigned. Such an attribute is called read-only.

Inheritance

This part of the description explains whether the task attribute inherits its value from the
equivalent task attribute of an ancestor process or from a job queue attribute, session
attribute, or usercode attribute.

If a task attribute inherits from the parent, then both dependent processes and
independent processes inherit that attribute, unless otherwise stated.

Although inheritance rules are described definitively, inherited values can be overridden
by several other types of explicit and implicit assignments. Refer to “Resolving
Conflicting Values” in Section 1, “Accessing Task Attributes,” for more information.

Fork() Inheritance

This part of the description explains whether the task attribute inherits a value when the
POSIX fork() statement initiates a process. For information about the fork() statement
and the POSIX tasking model, refer to the POSIX User's Guide.

Task Attribute Descriptions

2–12 8600 0502–407

Overwrite Rules

This part of the description specifies which of the possible sources for task attribute
values takes precedence at initiation time if there is a conflict. For each attribute, the
overwrite rules are listed as standard or as object code file dominant or else described in
detail. The standard overwrite rules and object code file dominant overwrite rules are
discussed under “Resolving Conflicting Values” in Section 1, “Accessing Task
Attributes.”

Host Services

This part of the description states whether the task attribute is supported by Host
Services. If it is supported, then a process running on one host system may access this
attribute of a process running on another host system. If the task attribute is not
supported, then it is not possible to use the task attribute across hosts.

For a centralized list of the task attributes supported by Host Services, refer to the
discussion of tasking across multihost networks in the Task Management Programming
Guide.

Attribute Number

This part of the description specifies the number used to identify the task attribute if an
error occurs when a process accesses that attribute. If such an error occurs, the ERROR
task attribute stores the attribute number of the task attribute that was accessed when
the error occurred. A list of task attributes, in numeric order, is given in the discussion of
the ERROR task attribute.

 Task Attribute Descriptions

8600 0502–407 2–13

Synonym

This part of the description lists an alternate name for the task attribute, if there is one.
Synonyms were implemented primarily because a more concise or more descriptive
name was invented after the task attribute was originally implemented. While the
“Name” part of the task attribute description gives the preferred name for the attribute,
the “Synonym” part lists the nonpreferred name. Most languages allow you to use either
name for the task attribute.

Table 2–2 summarizes the preferred and nonpreferred names for the benefit of these
users.

Table 2–2. Task Attribute Synonyms

Nonpreferred Name Preferred Name

BACKUPDESTINATION DESTNAME

BACKUPPREFIX BDNAME

BLOCKCREDS BLOCKCREDENTIALS

CHARGECODE CHARGE

COREESTIMATE CORE

DECLAREDPRIORITY PRIORITY

FILE FILECARDS

INHERITCREDS INHERITCREDENTIALS

INITIATOR STATION

IOTIME MAXIOTIME

OPTIONS OPTION

ORGHOSTNAME Deimplemented; use the leftmost part of
the ITINERARY attribute value instead.

PRINTLIMIT MAXLINES

PROCESSIOTIME ACCUMIOTIME

PROCESSTIME ACCUMPROCTIME

QUEUE CLASS

STACK STACKSIZE

STACKNO MIXNUMBER

TARGETTIME TARGET

TASKATTERR ERROR

VALUE TASKVALUE

Task Attribute Descriptions

2–14 8600 0502–407

Restrictions

Most task attributes can be accessed by ALGOL, COBOL74, COBOL85, and WFL.
However, a few of the attributes are not available from one or more of these sources.
For example, WFL cannot access event-valued task attributes. ALGOL and the COBOL
languages cannot use the STARTTIME and FETCH task attributes, which are specific to
WFL. These language restrictions are discussed in the “Restrictions” part of the attribute
description.

CANDE or Menu-Assisted Resource Control (MARC) commands can access a limited
subset of the task attributes, although such restrictions are not documented in the
attribute descriptions. For lists of the task attributes accessible from CANDE and MARC
sessions, refer to the discussion of tasking from interactive sources in the Task
Management Programming Guide.

Explanation

This part of the description summarizes the function of the task attribute. In many cases,
relevant background information, helpful hints, or cautions are also provided.

Examples

Some of the task attribute descriptions include an “Examples” part, usually because they
are unusual in some way. For examples of how to access most types of task attributes
from programs, refer to “Programmer Access to Task Attributes” in Section 1,
“Accessing Task Attributes.”

Run-Time Errors

This part of the description discusses task attribute access errors that occur when the
program is executed rather than when it is compiled. In addition, some errors closely
related to the task attribute are discussed. For example, the errors for exceeding
resource limits are documented.

Run-time errors are usually fatal for nonprivileged processes. However, they are not fatal
for privileged processes, message control systems (MCSs), or tasking programs, unless
specifically stated in the text.

The index at the end of this manual includes page references for all the error messages
that are discussed in this manual.

8600 0502–407 3–1

Section 3
Task Attributes A through E

This section contains task attributes starting with the letters A through E.

ACCEPTEVENT

3–2 8600 0502–407

ACCEPTEVENT

Type Event

Units Not applicable

Range HAPPENED, NOT HAPPENED

Default NOT HAPPENED

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance NOT HAPPENED

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 100

Synonym None

Restrictions Not available in WFL

Explanation

The ACCEPTEVENT task attribute accesses a predeclared event called the accept event
that is associated with each process. The accept event is caused by the system
whenever an operator enters an AX (Accept) system command for the process. A
program can conveniently use this attribute in a statement that waits on several events,
one of which is the ACCEPTEVENT task attribute, as in the following ALGOL example:

WAITANDRESET(EVNT1,EVNT2,MYSELF.ACCEPTEVENT);

A process can also attach its ACCEPTEVENT to an interrupt, in which case the interrupt
is executed whenever an operator enters an AX command for the process.

A process can access only its own accept event. For example, a process cannot
interrogate or wait on the value of the accept event of its parent. A process that
attempts to do so receives a run-time error and terminates abnormally.

Note: Assignments to the AX task attribute do not cause the ACCEPTEVENT task
attribute. Only AX system commands cause the ACCEPTEVENT task attribute.

For more information about the AX command and about events, refer to the Task
Management Programming Guide.

 ACCEPTEVENT

8600 0502–407 3–3

Run-Time Errors

NON-LOCAL ACCEPTEVENT

A process attempted to access the ACCEPTEVENT task attribute of another process.
The accessing process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
and HISTORYREASON = 137 (NONLOCALACCEPTEVENTV).

ACCEPTEVENT ATTRIBUTE IS READONLY

A process attempted to assign an event variable to the ACCEPTEVENT task attribute.
The process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 9 (ATTREADONLYV).

ACCESSCODE

3–4 8600 0502–407

ACCESSCODE

Type String

Units Not applicable

Range <accesscode assignment>

Default Null string

Read Time Anytime

Write Time Anytime

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules Object code file dominant

Host Services Supported

Attribute Number 61

Synonym None

Restrictions None

Range

<accesscode assignment>

ÄÄÂÄ <accesscode> ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ / ÄÄ <accesscode password> ÄÙ

<accesscode>
<accesscode password>

These are both identifiers.

Explanation

The ACCESSCODE task attribute affects the ability of a nonprivileged process to access
files that have associated guard files. A guard file can specify that only processes with a
certain accesscode are allowed to access the file. For information about guard files, refer
to the MCP/AS Security Features Operations and Programming Guide.

You must include an accesscode password in your assigned value for ACCESSCODE if
the accesscode in your accesscode list has an associated password. However, you do
not need to include an accesscode password in your assigned value for ACCESSCODE if
the program you are accessing is either a tasking or an MCS program.

The accesscode password is not usually included in the value returned when
ACCESSCODE is read. However, if the ACCESSCODE value is read for a task variable
that has not yet been initiated, then the ACCESSCODE value returned includes the
password in an encoded form.

 ACCESSCODE

8600 0502–407 3–5

The system performs validation to determine whether the ACCESSCODE value for a
process is compatible with the USERCODE task attribute value. When you assign
ACCESSCODE to a task variable that is not in use, the system does not perform this
validation until the task variable is used in a process initiation statement. When you
assign an ACCESSCODE value to an in-use process, the system performs the validation
immediately. The following is an outline of this validation:

1. If the process has a nonnull ACCESSCODE value, the system compares this value
with the ACCESSCODELIST usercode attribute. If the ACCESSCODE value does not
correspond to any of the accesscode/accesscode-password pairs in the
ACCESSCODELIST, the system discontinues the process and displays a “SECURITY
VIOLATION” message.

2. For a WFL job, the WFL compiler checks the usercode of the job to see if the
ACCESSCODENEEDED usercode attribute is set. If it is, the WFL compiler gives a
syntax error if the ACCESSCODE value of the job is null or does not correspond to
any of the values in the ACCESSCODELIST usercode attribute. (A WFL job can
receive an ACCESSCODE value at compile time either through inheritance or through
an assignment in the job attribute list.)

When you change the USERCODE value of an in-use process, the system changes the
ACCESSCODE value to a null string. Therefore, when changing the USERCODE and
ACCESSCODE values of an in-use process, you should make the USERCODE
assignment first and the ACCESSCODE assignment second. Refer to “USERCODE” for
details.

The ACCESSCODE task attribute cannot be transferred using task-to-task transfer if the
source task has been protected from modification, except by a tasking program. A task is
protected from modification when it is passed as a parameter to a library change or
approval procedure. While the change or approval procedure is active, access to the
MYSELF intrinsic generates a protected task.

Examples

The following are examples of ACCESSCODE assignment and interrogation in WFL. The
string variable STRVAR receives the value TDOT/<encoded password>.

TVAR (ACCESSCODE = TDOT / ALTO);
STRVAR := TVAR (ACCESSCODE);

The following is an example of ACCESSCODE assignment in ALGOL:

REPLACE TVAR.ACCESSCODE BY "TDOT/ALTO.";

The following is an example of ACCESSCODE assignment in COBOL74 or COBOL85:

CHANGE ACCESSCODE OF MYSELF TO "TDOT/ALTO.".

ACCESSCODE

3–6 8600 0502–407

Run-Time Errors

ACCESSCODE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign ACCESSCODE a value that did not follow the proper
format of <nonquote identifier> / <nonquote identifier>. The process, if nonprivileged, is
discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON =
131 (INCORRECTSYNTAXV).

SECURITY VIOLATION

An attempt was made to assign an accesscode that does not exist, does not match the
accesscode password, or is not allowed for this usercode. The process, if nonprivileged,
is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON =
29 (SECURITYERRORV). The following entry is made in the system log: “INVALID TASK
ATTRIBUTE: ACCESSCODE”.

 ACCUMIOTIME

8600 0502–407 3–7

ACCUMIOTIME

Type Real

Units See below

Range 0 to about 4.31E+68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance 0

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 14

Synonym PROCESSIOTIME

Restrictions None

Explanation

The ACCUMIOTIME task attribute records the accumulated I/O time for the process.

The process is discontinued if the value of the ACCUMIOTIME task attribute reaches the
same value as the MAXIOTIME task attribute. Refer to the MAXIOTIME description for
details.

If ACCUMIOTIME is accessed through Host Services, bit 47 will always be 0 (zero).

Units

When accessed from WFL, the ACCUMIOTIME value is expressed in units of seconds.
When accessed from other languages, the value is expressed in units of 2.4
microseconds.

ACCUMPROCTIME

3–8 8600 0502–407

ACCUMPROCTIME

Type Real

Units See below

Range 0 to about 4.31E+68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 13

Synonym PROCESSTIME

Restrictions None

Explanation

The ACCUMPROCTIME task attribute records the accumulated processor time for the
task.

The process is discontinued if the value of the ACCUMPROCTIME task attribute reaches
the same value as the MAXPROCTIME task attribute. Refer to the MAXPROCTIME
description for details.

If ACCUMPROCTIME is accessed through Host Services, bit 47 will always be 0 (zero).

Units

When accessed from WFL, the ACCUMPROCTIME value is expressed in units of
seconds. When accessed from other languages, the value is expressed in units of 2.4
microseconds.

 APPLYLIST

8600 0502–407 3–9

APPLYLIST

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default None

Read Time Anytime

Write Time Before initiation

Inheritance None

Fork() Inheritance From parent

Overwrite Rules None

Host Services Not supported

Attribute Number 116

Synonym None

Restrictions None

Explanation

The APPLYLIST task attribute, if set, causes the system to apply task equations that
were previously placed in the MYPPB task attribute of the process for temporary
storage.

The MYPPB value can store task equations applied to a process, or task equations
intended to be applied to an object code file. Setting APPLYLIST to TRUE causes the
system to apply only those equations in MYPPB that are intended for a process. For
further information, refer to the discussion of the MYPPB task attribute.

Run-Time Errors

MYPPB IS EMPTY, NOTHING TO APPLY

An attempt was made to set the APPLYLIST attribute to TRUE while there were no
attribute assignments stored in the MYPPB task attribute. The assignment is ignored,
but the assigning process continues executing normally.

CANNOT APPLY : PPB IS FOR CODEFILE

This warning occurs if the APPLYLIST attribute is set to TRUE when the MYPPB task
attribute of the compiler process stores only attributes intended for the resulting object
code file. The assignment is ignored, but the assigning process continues executing
normally.

AUTORESTORE

3–10 8600 0502–407

AUTORESTORE

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default See below

Read Time Anytime

Write Time Anytime

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 123

Synonym None

Restrictions None

Explanation

The AUTORESTORE task attribute specifies how the system should respond if the
process attempts to open a disk file that is not present on the requested family.

If AUTORESTORE is TRUE when a process encounters a NO FILE condition for a disk
file, then the system might initiate a dependent process called ARCHIVE/AUTORESTORE
to copy the missing file from backup tape to disk. The system starts
ARCHIVE/AUTORESTORE if all of the following conditions are true:

• The AUTORESTORE system option has a value of either YES or DONTCARE. An
operator can use the AUTORESTORE (Archiving Autorestore Option) system
command to assign this option.

• The reference to the file would normally produce a “NO FILE” RSVP message if the
file is not resident. Thus, for example, interrogating the RESIDENT file attribute does
not cause an automatic restore to take place.

• The archive directory references a backup tape that contains a backup copy of the
requested file. The archive directory records the location of files backed up through
the WFL ARCHIVE command.

• The FILENAME file attribute of the requested file specifies the same usercode as the
USERCODE attribute of the requesting process.

• If the file is a cataloged file, then the generation of the file being requested matches
the file listed in the archive directory.

• The process is not attempting to open a logical file that has the file attribute
DUPLICATED = TRUE.

 AUTORESTORE

8600 0502–407 3–11

If the system does initiate an ARCHIVE/AUTORESTORE, the process requesting the file
remains in an active state. On the other hand, ARCHIVE/AUTORESTORE becomes
suspended and appears in the W (Waiting Mix Entries) system command display. The
RSVP message identifies the backup tape that the operator should mount. When the
operator mounts the requested tape, ARCHIVE/AUTORESTORE copies the missing file
back to disk. The process that originally tried to use the file then resumes execution.

If the AUTORESTORE task attribute is FALSE, the system does not initiate
ARCHIVE/AUTORESTORE. Instead, the system suspends the process and displays a
“NO FILE <file name>” or a “NO FILE <file name> FIND ON <backup description>“
RSVP message.

For an overview of the system archiving and AUTORESTORE features, refer to the
System Administration Guide.

Default

If the AUTORESTORE system option is set to NEVER or DONTCARE, then the default
value of the AUTORESTORE task attribute is FALSE. If the AUTORESTORE system
option is set to YES, then the default value of the AUTORESTORE task attribute is TRUE.

If the value of the AUTORESTORE system option is changed while the process is
running, the change has no effect on the value of the task attribute AUTORESTORE.

AUTOSWITCHTOMARC

3–12 8600 0502–407

AUTOSWITCHTOMARC

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Object code file dominant

Host Services Not supported

Attribute Number 102

Synonym None

Restrictions None

Explanation

The AUTOSWITCHTOMARC task attribute affects only processes initiated by a MARC
session and that open a remote file. For these processes, AUTOSWITCHTOMARC
specifies whether the originating screen is automatically displayed when the process
terminates.

If AUTOSWITCHTOMARC is TRUE, the originating screen is displayed immediately upon
termination of the process. If AUTOSWITCHTOMARC is FALSE, the remote file screen
continues to be displayed after process termination, until the user presses the XMIT or
SPCFY key.

If this task attribute is assigned more than once, only the last assignment before process
termination has effect.

For more information about MARC tasking and remote files, refer to the discussion of
tasking from interactive sources in the Task Management Programming Guide.

 AX

8600 0502–407 3–13

AX

Type String

Units Not applicable

Range <ACCEPT string>

Default Null string

Read Time Never

Write Time Anytime

Inheritance None

Fork() Inheritance None

Overwrite Rules See below

Host Services Not supported

Attribute Number 129

Synonym None

Restrictions None

Range

<ACCEPT string>

A string of up to 255 EBCDIC characters.

Explanation and Overwrite Rules

The AX task attribute passes a string of text to a process. The receiving process can
read the AX string by executing an ACCEPT statement. The ACCEPT statement returns
an AX string, which is a string specified for a process by either an AX (Accept) system
command or an AX task attribute assignment.

If more than one AX string is submitted for a process before the process performs its
next ACCEPT statement, then the system must either queue the extra AX strings or
discard them. You can use the QUEUEDAX option of the SYSOPS (System Option)
system command to enable or disable queuing of AX strings. If QUEUEDAX is set, then
the system queues up to 250 AX strings for a process. If QUEUEDAX is reset, then each
AX command overwrites any pending AX string for a process.

QUEUEDAX is set TRUE by default on ClearPath systems.

When multiple AX strings are queued for a process, the system stores the strings in
chronological order. Each ACCEPT statement reads the oldest AX string queued for the
process.

AX

3–14 8600 0502–407

The system passes each AX string to the next ACCEPT statement performed by the
process stack, regardless of whether the process stack is executing library program code
or user program code. Therefore, when you write ACCEPT statements in exported library
procedures, remember that the ACCEPT statement might receive an AX string that was
previously queued for the user process.

Examples

The AX task attribute can assign a string value on a WFL RUN statement:

RUN OBJECT/PROGA;AX="1"

This causes an AX string with a length of one character to be queued for the process.

In WFL, a RUN statement can include multiple AX task equations. If the QUEUEDAX
system option is set, then the system queues all the AX assignments for later use by the
program as in the following example:

RUN OBJECT/PROGA;
 AX = "DELTA";
 AX = "EPSILON";
 AX = "GAMMA";

If QUEUEDAX is not set, then the system passes only the last AX assignment to the
program.

The following statement shows the ALGOL syntax for AX assignments:

REPLACE T.AX BY "DELTA";

In COBOL74 and COBOL85, the equivalent statement has the following form:

CHANGE ATTRIBUTE AX OF T TO "DELTA".

Because AX assignments do not cause the ACCEPTEVENT, a program cannot use an
interrupt to detect the presence of AX strings supplied through task equation. Instead, a
program can include conditional ACCEPT statements to process the AX task equations,
as in the following ALGOL example:

100 BEGIN
110 ARRAY A[0:14];
120 INTERRUPT INT;
130 BEGIN
140 ACCEPT (A);
150 DISPLAY (A);
160 REPLACE POINTER(A) BY 0 FOR 15 WORDS;
170 END;
180 ATTACH INT TO MYSELF.ACCEPTEVENT;
190 WHILE ACCEPT(A) DO DISPLAY(A);
200 ENABLE INT;

 AX

8600 0502–407 3–15

210 WAITANDRESET (MYSELF.EXCEPTIONEVENT);
220 END.

In this example, the statement at line 190 detects AX strings submitted through task
equations. The interrupt attached at line 180 detects AX system commands. Note that
this example does not detect any assignments to the AX task attribute made after the
program is initiated.

Run-Time Errors

AX ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign an AX string value that was more than 255 characters
long or that was not terminated by a null character. The assigning process is
discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON =
131 (INCORRECTSYNTAXV).

AX ATTRIBUTE IS WRITEONLY

A process attempted to read an AX message. AX messages can only be read through
the ACCEPT mechanism. The process is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 129 (ATTWRITEONLYV).

BACKUPFAMILY

3–16 8600 0502–407

BACKUPFAMILY

Type String

Units Not applicable

Range See below

Default See below

Read Time Anytime

Write Time Before initiation

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Object code file dominant

Host Services Not supported

Attribute Number 63

Synonym None

Restrictions None

Explanation

The BACKUPFAMILY task attribute specifies the disk family where the system should
place print and punch backup files created by the process.

The BACKUPFAMILY task attribute affects only backup files with a BACKUPKIND file
attribute value that is equated to DLBACKUP by the SB (Substitute Backup) system
command. For an illustration of this restriction, refer to the examples at the end of this
subsection.

The effect of the BACKUPFAMILY task attribute can be overridden for individual backup
files by the FAMILYNAME print attribute. For an introduction to printing issues, refer to
the discussion of controlling process I/O usage in the Task Management Programming
Guide.

Default

The BACKUPFAMILY value defaults to the current DL BACKUP family defined by the
DL (Disk Location) system command.

Range

The BACKUPFAMILY value typically must conform to the syntax for <simple name> as
defined under “Format of the Descriptions” in this section.

However, when BACKUPFAMILY is assigned by an MCS or tasking program, the value
can optionally be in standard form. For an explanation of standard form, refer to the
description of the DISPLAYTOSTANDARD function in the Unisys e-@ction ClearPath

 BACKUPFAMILY

8600 0502–407 3–17

Enterprise Servers DCALGOL Programming Reference Manual. The system extracts the
first identifier from the standard form value and uses this as the BACKUPFAMILY.

Inheritance

A process inherits its parent's BACKUPFAMILY value if the parent has a non-null value
and the process is running on the same host as its parent.

If you explicitly assign a null string to the BACKUPFAMILY attribute, the attribute
receives the DL BACKUP value in effect at process initiation. The DL BACKUP setting is
specified by the DL (Disk Location) system command.

A process initiated from a MARC session receives the BACKUPFAMILY value associated
with that session.

Examples

Suppose an operator has used the SB (Substitute Backup) system command to create
the following SB settings for the system:

SB
DISK = DLBACKUP
PACK = PACK
TAPE = TAPE

Suppose also that an operator has used the DL (Disk Location) system command to
create the following DL BACKUP setting for the system:

DISK LOCATION:
 BACKUP ON DBFAM

The following WFL job creates a backup file:

100 ?BEGIN JOB;
110 BACKUPFAMILY = SYSPK;
120 FILE F(KIND=PRINTER,BACKUPKIND=DISK);
130 OPEN(F);
140 LOCK(F);
150 ?END JOB

Line 120 of the WFL job specifies a BACKUPKIND value of DISK; but the SB setting
equates DISK to DLBACKUP. The DL BACKUP setting in turn is DBFAM. Thus, by default
the printer backup file would have been created on DBFAM. However, the
BACKUPFAMILY statement at line 110 overrides the DL BACKUP family and causes the
backup file to be created on SYSPK instead.

BACKUPFAMILY

3–18 8600 0502–407

Now suppose that line 120 of the WFL job is changed to specify a BACKUPKIND of
PACK for the backup file. The following is the modified WFL job:

100 ?BEGIN JOB;
110 BACKUPFAMILY = SYSPK;
120 FILE F(KIND=PRINTER,BACKUPKIND=PACK);
130 OPEN(F);
140 LOCK(F);
150 ?END JOB

This version of the job specifies a BACKUPKIND value of PACK. The SB setting equates
PACK to PACK, and the backup file is created on the family called PACK. The system
ignores the BACKUPFAMILY assignment in the WFL job because BACKUPFAMILY
affects only backup files that are redirected to the DL BACKUP family by an SB
substitution.

Run-Time Error

BACKUPFAMILY ATTRIBUTE MAY ONLY BE SET BY AN MCS OR TASKING
PROGRAM

A process that was not an MCS or tasking program attempted to assign a value to
BACKUPFAMILY. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 54
(ONLYMCSTASKINGV).

 BDNAME

8600 0502–407 3–19

BDNAME

Type String

Units Not applicable

Range <backup prefix>

Default Null string

Read Time Anytime

Write Time Anytime

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 29

Synonym BACKUPPREFIX

Restrictions None

Range

<backup prefix>

 ÚêÄÄÄÄÄÄÄÄ / ÄÄÄÄÄÄÄ¿
ÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄ/9\Ä<simple name>ÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ (ÄÄ<usercode>ÄÄ) Ä´
 ÀÄ * ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Explanation

The BDNAME task attribute causes backup files declared by the process to be
permanently saved under the file name prefix specified by the BDNAME value and
prevents the backup files from being automatically queued for printing. The user can print
out the backup files later by using a WFL PRINT statement.

If BDNAME is used by a nonprivileged process, backup files are saved under the
usercode of the process that declares the file. An error results if a nonprivileged process
attempts to assign a BDNAME value that includes a usercode different from the process
usercode, or an asterisk (*) in place of a usercode.

A privileged process can include a different usercode or an asterisk (*) at the start of the
BDNAME value and thus create backup files that do not have the same usercode as the
process.

The titles of the backup files follow the normal backup file titling conventions, except that
a usercode or asterisk (*) and the BDNAME value replaces the usual prefix of *BD or
*BP. For a discussion of backup file titling conventions, refer to the discussion of
controlling process I/O usage in the Task Management Programming Guide.

BDNAME

3–20 8600 0502–407

File names can be a maximum of 12 nodes long, not counting the usercode. However,
the BDNAME value should not be that long because the system adds two or more nodes
to the BDNAME value when constructing the file title. In most cases, the system adds
three nodes to the title.

If the BDNAME value is changed after initiation, only backup files opened after the
change are affected.

Note that the BDNAME task attribute affects only backup files declared by the process.
Any backup files written to by the process, but declared by another process, are not
affected.

When originally implemented, the BDNAME task attribute had effect only if the BDBASE
option of the OPTION task attribute was set. This is no longer the case; whether the
BDBASE option is set or not set has no effect on the BDNAME task attribute.

The BDNAME task attribute has no effect on the job summary. For information about
saving a copy of the job summary on disk, refer to the description of the
JOBSUMMARYTITLE task attribute.

The effects of the BDNAME task attribute can also be achieved using several print
attributes. For information about the interaction of BDNAME and these print attributes,
refer to the discussion of controlling process I/O usage in the Task Management
Programming Guide.

Run-Time Errors

BDNAME ATTRIBUTE IS READONLY ON ACTIVE TASK

A process attempted to change the BDNAME value of another in-use process. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

BDNAME ATTRIBUTE INCORRECT SYNTAX

BDNAME was assigned a value that does not conform to the backup prefix format. The
assigning process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 131 (INCORRECTSYNTAXV).

FILE <internal name> OPEN ERROR: TOO MANY NAMES

This error occurs when the backup file is opened if the BDNAME value caused the
backup file title to have more than the allowed number of nodes. The process is
discontinued with HISTORYCAUSE = 8 (SOFTIOERRCAUSEV) and HISTORYREASON =
18 (GTR14ERR).

 BLOCKCREDENTIALS

8600 0502–407 3–21

BLOCKCREDENTIALS

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time See below

Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 146

Synonym BLOCKCREDS

Restrictions None

Explanation

The BLOCKCREDENTIALS attribute is used by a task to temporarily inhibit use of its
credentials. This is useful, for example, during the execution of external or library
functions. Any procedure called while BLOCKCREDENTIALS is TRUE does not have
access to the stack’s credentials. Such procedure is also unable to set
BLOCKCREDENTIALS to FALSE, because the stack level from which
BLOCKCREDENTIALS was set to TRUE is recorded.

All processes initiated while credentials of the task owner are blocked do not inherit
credentials. All processes initiated with their own BLOCKCREDENTIALS set to TRUE
inherit credentials but cannot use them until the task’s parent sets the value to FALSE.

For information about credential management and Generic Security Service Application
Program Interface (GSS-API), see Appendix G in the Security Administration Guide.

Write Time

BLOCKCREDENTIALS may be updated before initiation by the parent of the task or, after
initiation, by the task itself. If BLOCKCREDENTIALS is updated by the task itself, it may
be set to

• TRUE only if the current value is FALSE.

• FALSE only if it was previously set to TRUE from an equal or higher stack offset
(deeper nested program code location).

BLOCKCREDENTIALS

3–22 8600 0502–407

Example

LIBRARY LIB;

PROCEDURE PROC;
 LIBRARY LIB;

MYSELF.BLOCKCREDENTIALS := TRUE;
PROC; %% Ensure that PROC cannot use my client credentials
MYSELF.BLOCKCREDENTIALS := FALSE;

 BOTTIMESTAMP

8600 0502–407 3–23

BOTTIMESTAMP

Type Real

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None

Host Services Supported

Attribute Number 159

Synonym None

Restrictions None

Explanation

The BOTTIMESTAMP task attribute is a read-only attribute that returns the date and time
the task began execution in the following format:

0 & (JULIANDATE-70000) [47:16] & (TIME(11) DIV 16) [31:32]

For a task that has not been initiated or that has terminated, this attribute returns 0
(zero).

Note: This Julian date is in YYYDDD format where the value changes from 099365 to
100001 at midnight on December 31, 1999.

BRCLASS

3–24 8600 0502–407

BRCLASS

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default NOBR

Read Time Anytime

Write Time Anytime

Inheritance From parent

Fork() Inheritance None

Overwrite Rules Object code file dominant

Host Services Not supported

Attribute Number 83

Synonym None

Restrictions None

Explanation

The BRCLASS task attribute controls how the process responds to a BR (Breakout)
system command. The operator can use the BR command to initiate a checkpoint for an
in-use process. For a general discussion of checkpointing, refer to the discussion of
restarting jobs and tasks in the Task Management Programming Guide.

This attribute is meaningful only if the CHECKPOINTABLE attribute is TRUE. Refer to the
CHECKPOINTABLE description for details.

The following are the possible values and their meanings:

Mnemonic
Value

Integer
Value

Meaning

NOBR 0 The operator is not allowed to initiate a checkpoint
for this process.

ONCEONLY 1 The operator can initiate a checkpoint for this
process. The process is not allowed to continue
after the checkpoint. The recovery files created by
an operator BR (Breakpoint) system command are
removed as soon as the RERUN statement has
completed. This restriction prevents a process from
being restarted more than once from this
checkpoint.

 BRCLASS

8600 0502–407 3–25

Mnemonic
Value

Integer
Value

Meaning

MULTIPLE 2 The operator can initiate a checkpoint for this
process. The process is allowed to continue
execution after the checkpoint.

Note: The MULTIPLE value has effect only if it is
set for the parent WFL job as well as for the
checkpointed process.

The BRCLASS attribute is reset to NOBR when the process terminates.

Example

In the following WFL job, the job attribute list assigns the job a BRCLASS value of
MULTIPLE. This value is inherited by OBJECT/PROGDATA, which becomes eligible for
multiple operator checkpoints.

?BEGIN JOB;
 BRCLASS = MULTIPLE;

 RUN OBJECT/PROGDATA;
?END JOB

Run-Time Error

BRCLASS ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign BRCLASS either an invalid mnemonic or a value less
than 0 or greater than 2. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

CHARGE

3–26 8600 0502–407

CHARGE

Type String

Units Not applicable

Range <charge code>

Default Null string

Read Time Anytime

Write Time See below

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 42

Synonym CHARGECODE

Restrictions None

Range

<charge code>

 ÚêÄÄÄÄÄÄÄÄ / ÄÄÄÄÄÄÄÄ¿
ÄÄÁÄ/12\Ä<simple name>ÄÁÄÄÄ´

Explanation

The CHARGE task attribute contains the charge code of the process. The system logs
the charge code information for each process. This information can be used by a log
analysis program that computes billing charges at a site. For further information about
billing, refer to the System Administration Guide.

When a process is initiated, the system examines the USERCODE task attribute of the
process and examines the usercode definition in the USERDATAFILE to determine
whether the CHARGEREQ usercode attribute is set. If not, any CHARGE task attribute is
accepted. If CHARGEREQ is set, the system performs the following steps to determine
whether the CHARGE task attribute value is legal for the process. Remember when
reading these steps that the system applies any inherited value to the process before
making the following checks:

• If the CHARGE value of the process is null, the system discontinues the process.

• If the CHARGE value of the process is not null, the system compares the value with
the CHARGECODE usercode attribute. If the CHARGE value does not correspond to
any of the values stored in the CHARGECODE usercode attribute, the system
discontinues the process.

 CHARGE

8600 0502–407 3–27

• For a WFL job, the WFL compiler checks the usercode of the job to see if the
CHARGEREQ usercode attribute is set. If it is, the WFL compiler gives a syntax error
if the CHARGE value of the job is null. The WFL compiler also gives a syntax error if
the CHARGE value of the job is not null and does not correspond to any of the values
in the CHARGECODE usercode attribute. (A WFL job can receive a CHARGE value at
compile time either through inheritance or through an assignment in the job attribute
list.)

Write Time

In general, CHARGE can be assigned only before a process is initiated.

However, processes with MCS or tasking privileges can change the CHARGE value at
any time. Note that the system validates the CHARGE value only when a process is
initiated. Therefore, an MCS or tasking process should check the validity of a new
CHARGE value before assigning it to any running process. If an MCS or tasking process
assigns an invalid CHARGE value to a running process, the operating system allows that
process to run with a CHARGE that would not normally be permitted.

Inheritance

A process inherits the CHARGE value of its parent.

For library processes initiated by the library linkage mechanism, the USERCODE attribute
inherits the USERCODE value of the process that is linking to the library.

The system administrator can assign one or more charge codes to the CHARGECODE
attribute of a usercode. If the system administrator also sets the USEDEFAULTCHARGE
attribute of the usercode, then MARC or CANDE sessions receive the first charge code
from the CHARGECODE usercode attribute at log-on time. Otherwise, MARC or CANDE
requests the user to enter a charge code. Processes initiated from a MARC or CANDE
session inherit the CHARGE value of the session.

A WFL job inherits a charge code from the usercode definition if all the following
conditions are true:

• The job attribute list includes a USERCODE assignment or inherits the usercode of
the initiating source (such as an ODT that has a terminal usercode).

• The job attribute list did not include a CHARGE assignment and the job was
submitted from a source that had no CHARGE value associated with it. (An ODT is
an example of such a source.)

• The system administrator has assigned CHARGECODE and USEDEFAULTCHARGE
attributes to the usercode.

CHARGE

3–28 8600 0502–407

Run-Time Errors

CHARGECODE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign CHARGE a value that was not in simple name format. If
the assigning process is nonprivileged, it is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

CHARGECODE READONLY ON ACTIVE TASK, NOT CHANGED

An attempt was made to change the CHARGE value after initiation. This is a warning
message rather than an error message. The process continues normally, but the
requested change is not made.

INVALID CHARGECODE

The charge code assigned at initiation is not allowed for this usercode. The new process
(not the assigning process) is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 14 (INVALIDCHARGECODEV).

 CHECKPOINTABLE

8600 0502–407 3–29

CHECKPOINTABLE

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 82

Synonym None

Restrictions None

Explanation

The CHECKPOINTABLE task attribute specifies whether a checkpoint can be initiated for
this process.

A value of TRUE indicates that a checkpoint can be initiated for this process. This value
does not guarantee that the checkpoint will be executed successfully. The checkpoint
can fail because of factors that are not reflected by the CHECKPOINTABLE value.

A value of FALSE indicates that the task is not allowed to execute a checkpoint.

The value of this attribute is computed at the time it is accessed.

The system evaluates the following conditions once. If any are true, the system sets the
CHECKPOINTABLE attribute to FALSE for the life of the process:

• The process is an MCS or a process initiated by an MCS. This category includes
processes initiated from sessions.

• The process is a frozen library. (For information about libraries, refer to the Task
Management Programming Guide.)

• The process was not initiated by a RUN statement in a WFL job.

• The code was not compiled by one of the following compilers:

− ALGOL, DCALGOL, DMALGOL, or BDMSALGOL

− COBOL74 or BDMSCOBOL

CHECKPOINTABLE

3–30 8600 0502–407

In addition, at every access of the attribute the system checks to see whether the
process has any offspring. If so, CHECKPOINTABLE returns a value of FALSE.

Another task attribute related to checkpointing, called BRCLASS, is discussed elsewhere
in this manual. For more information about checkpointing, refer to the discussion of
restarting jobs and tasks in the Task Management Programming Guide.

 CLASS

8600 0502–407 3–31

CLASS

Type Integer

Units Not applicable

Range 0 through 1023

Default See below

Read Time Anytime

Write Time See below

Inheritance See below

Fork() Inheritance 0

Overwrite Rules See below

Host Services Supported

Attribute Number 34

Synonym QUEUE

Restrictions None

Explanation

For WFL jobs or descendants of WFL jobs, the CLASS task attribute specifies the
number of the job queue from which the WFL job is initiated. For processes not
descended from WFL jobs, CLASS stores a value of 0.

The CLASS task attribute is only one of many factors affecting the job queue chosen for
a WFL job. The system compares any user-specified CLASS value with the job queue
definitions and terminates the WFL job if the specified CLASS is not appropriate. The
system also terminates the WFL job if its CLASS value is not allowed by the CLASSLIST,
ANYOTHERCLASSOK and CLASS attributes of the WFL job's usercode.

If a CLASS value is not explicitly assigned, the system selects a queue for the WFL job.
The job queue selection depends on such factors as the system default queue
specification, the usercode definition, and any resource limits set for the job queue.

For a detailed explanation of job queues, refer to the System Administration Guide.

Write Time

The CLASS task attribute can be assigned only in WFL jobs. Within a WFL job, CLASS
can be assigned only in the job attribute list.

Overwrite Rules

This attribute can be assigned only in the job attribute list of a WFL job. For information
about job attribute lists, refer to the Work Flow Language (WFL) Programming Reference
Manual.

CLASS

3–32 8600 0502–407

Inheritance

A WFL job inherits a CLASS value from the usercode definition if all the following
conditions are true:

• The job attribute list includes a USERCODE assignment or the job has inherited the
usercode of the initiating source (such as an ODT that has a terminal usercode).

• The job attribute list did not include a CLASS assignment, and the job was submitted
from a source that had no CLASS value associated with it. An example of such a
source is an ODT that has no UQ (Unit Queue) assignment and no terminal usercode.

• The system administrator has assigned a CLASS value to the usercode.

Descendants of WFL jobs inherit the CLASS value of the job. However, because only
WFL jobs go through the job queue mechanism, the CLASS value has no effect on the
descendants.

Example

The following is an example of a CLASS assignment in the job attribute list of a WFL job:

?BEGIN JOB;
 CLASS = 2;

 RUN OBJECT/X;

?END JOB

 CONVENTION

8600 0502–407 3–33

 CONVENTION

Type String

Units Not applicable

Range <convention identifier>

Default See below

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 120

Synonym None

Restrictions None

Range

<convention identifier>

ÄÄ<uppercase letter>ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄÁÄ/16\ÄÂÄ<uppercase letter>ÄÂÄÁÄÙ
 ÀÄ<digit>ÄÄÄÄÄÄÄÄÄÄÄÄÙ

Explanation

The CONVENTION task attribute specifies the date, time, and currency conventions used
by a process.

This task attribute affects only processes that use the CENTRALSUPPORT library to
handle conventions for localization. When a process invokes a conventions procedure in
the CENTRALSUPPORT library, the process can optionally use parameters to specify the
convention that is desired. If the process does not request a convention in the procedure
parameters, the CONVENTION task attribute of the user process determines the
convention that is used.

Changes made to the value of this attribute take effect immediately. That is, subsequent
calls to the conventions procedures in CENTRALSUPPORT use the new value of
CONVENTION.

However, if the job attribute list also contains a PRINTDEFAULTS assignment, the
PRINTDEFAULTS attribute of the usercode is ignored.

For further information about the CENTRALSUPPORT library, refer to the Unisys e-@ction
ClearPath Enterprise Servers MultiLingual System Administration, Operations, and
Programming Guide.

CONVENTION

3–34 8600 0502–407

Default and Inheritance

A process inherits the CONVENTION value of its parent.

The default convention is ASERIESNATIVE. If you purchase your system through an
international subsidiary, they may have already altered the CENTRALSUPPORT library to
provide a different default convention. The system administrator can establish a different
default convention value for the whole system by using the SYSOPS (System Options)
system command.

The system administrator can selectively override the system default convention by
including a CONVENTION attribute in usercode definitions in the USERDATAFILE. This
CONVENTION value does not directly affect processes, but it is inherited by MARC and
CANDE sessions with that usercode. The user can also use the MARC or CANDE
CONVENTION command to change the convention of a session. Processes initiated from
the session inherit the current convention of the session.

The CONVENTION attribute of a usercode also is inherited by WFL jobs that are assigned
that usercode in the job attribute list.

Example

Processes that differ only in the conventions they use can benefit from this task
attribute.

For example, a company might have a program that needs to print invoices for
customers in several different countries. The invoices have to be printed using the
conventions of each country. The following ALGOL statements run the program three
times, assigning a different CONVENTION value to each run:

REPLACE T1.CONVENTION BY "UNITEDKINGDOM1.";
CALL DONOTHING [T1];
REPLACE T2.CONVENTION BY "FRANCELISTING.";
CALL DONOTHING [T2];
REPLACE T3.CONVENTION BY "EUROPEANSTANDARD.";
CALL DONOTHING [T3];

Each of these processes calls the appropriate CENTRALSUPPORT library procedures to
format date, time, and currency information while generating invoices appropriate for
each country.

 CORE

8600 0502–407 3–35

CORE

Type Integer

Units Words

Range 0 to 1048575

Default See below

Read Time Anytime (except in WFL)

Write Time See below

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 2

Synonym COREESTIMATE

Restrictions See below

Explanation

The CORE task attribute provides an estimate of the amount of main memory that a
process needs for code and data areas in order to execute efficiently. The system
schedules a new process if the CORE value exceeds the amount of available memory.
You can override the default core estimate by assigning a different value to this task
attribute.

For more information, refer to the discussion of controlling process memory usage in the
Task Management Programming Guide.

Default

The default value of CORE is taken from compiler and operating system core estimates
that are stored in the object code file. For information about these estimates, refer to the
discussion of process memory usage in the Task Management Programming Guide.

Write Time

The CORE task attribute can be written at any time. However, the CORE value is used
only at initiation time. Assignments made to CORE after initiation have no effect on the
process.

CORE

3–36 8600 0502–407

Restrictions

In WFL, CORE can be assigned separate data core and code core values or a single total
core value. Other sources can assign CORE only a single value, which is a data core
estimate.

The CORE task attribute cannot be read in WFL.

Examples

The following WFL statement initiates the program OBJECT/PROG and assigns CORE a
data estimate of 3000 and a code estimate of 1300:

 RUN OBJECT/PROG;
 CORE = (3000,1300);

The following WFL statement initiates the program OBJECT/PROG and assigns CORE a
total memory estimate of 4300:

 RUN OBJECT/PROG;
 CORE = 4300;

Run-Time Error

CORE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign CORE a value outside the allowed range. The assigning
process, if nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
and HISTORYREASON = 131 (INCORRECTSYNTAXV).

 COUNTRY

8600 0502–407 3–37

COUNTRY

Type String

Units Not applicable

Range <identifier>

Default See below

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 157

Synonym None

Restrictions None

Explanation

The COUNTRY task attribute specifies the country identifier associated with the process.

Be careful when you enter a value for the COUNTRY task attribute because no checks
are made against locally defined values. Instead, the system accepts any combination of
letters and numbers that conforms to the <identifier> syntax. For more information
about the syntax, refer to the System Commands Operations Reference Manual.

Default and Inheritance

The COUNTRY task attribute is inherited from the parent. The default value for the
COUNTRY task attribute is UNITEDSTATES. The system administrator can establish a
different default COUNTRY value by using the SYSOPS (System Options) system
command.

CREDENTIALS

3–38 8600 0502–407

CREDENTIALS

Type Integer

Units Not applicable

Range See below

Default 0

Read Time Anytime

Write Time See below

Inheritance See below

Overwrite Rules Not applicable

Host Services Not supported

Attribute Number 147

Synonym None

Restrictions None

Explanation

The CREDENTIALS task attribute identifies the mix number of the entity that
authenticated the task’s identity. This attribute is used for security verification purposes.

For information about credential management and Generic Security Service Application
Program Interface (GSS-API), see Appendix G in the Security Administration Guide.

Range

A valid mix number.

Write Time

Only stacks with PP:TASKING privilege are allowed to assign a value to CREDENTIALS.

Inheritance

If INHERITCREDENTIALS is set to TRUE, a non-zero value is inherited. If
CREDENTIALSBASE is set to FALSE, CREDENTIALS is set to the task parent’s mix
number. If CREDENTIALSBASE is set to TRUE, or the task is an independent task,
CREDENTIALS is set to the mix number of the task and credentials are copied to that
mix number.

 CREDENTIALS

8600 0502–407 3–39

Example

%% Tasking Program Dependent Process Initiation:
REPLACE CLIENT_TASK.USERCODE BY CLIENT_USERDATA;
REPLACE CLIENT_TASK.ACCESSCODE BY CLIENT_ACCESSCODE;
REPLACE CLIENT_TASK.CHARGECODE BY CLIENT_CHARGECODE;
CLIENT_TASK.CREDENTIALS := CLIENT_CREDENTIALS;
PROCESS PROC [CLIENT_TASK];
%% Proc can perform actions on behalf of Client.

%% Tasking Program Worker Process:
%% Assume Client USERCODE (call USERCODE)
%% Assume Client ACCESSCODEASSESSCODE (call USERDATA)
REPLACE MYSELF.CHARGECODE BY CLIENT_CHARGECODE;
MYSELF.CREDENTIALS := CLIENT_CREDENTIALS;
%% Perform actions on behalf of client
%% All client's credentials are usable at this point
MYSELF.CREDENTIALS := 0;
%% Even though USERCODE, ACCESSCODE, and CHARGECODE are still in effect,
%% the client's credentials can no longer be used.

CREDENTIALSBASE

3–40 8600 0502–407

CREDENTIALSBASE

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Before initiation

Inheritance None

Overwrite Rules Standard

Host Services Supported

Attribute Number 148

Synonym None

Restrictions None

Explanation

The CREDENTIALSBASE task attribute controls whether the task is to be regarded as a
new base for acquiring credentials.

CREDENTIALSBASE is evaluated only when a dependent task is initiated with
INHERITCREDENTIALS set to TRUE. In these circumstances, if CREDENTIALSBASE is
set to TRUE, all credentials are copied from the parent task. Otherwise, they are shared
with the parent task. This is required if a task initiated from a session needs to use
server credentials. If the task were to share credentials with the session that initiated it,
any new credentials acquired by the task would also be shared by the parent session.
This is not permitted: a session is explicitly limited to a single set of credentials.

For information about credential management and Generic Security Service Application
Program Interface (GSS-API), see Appendix G in the Security Administration Guide.

Examples

The following examples show the syntax used to run a program that needs to use server
credentials:

• To run a program, from MARC or CANDE, that needs to use server credentials, enter
the following command:

RUN SYSTEM/SPECIAL/SERVICE; CREDENTIALSBASE

• To run a program, from MARC or CANDE, that needs to use server credentials but is
not allowed to use the credentials of a particular user’s session, enter the following
command:

RUN SYSTEM/SPECIAL/SERVICE; CREDENTIALSBASE; INHERITCREDENTIALS = FALSE

 CURRENTDIRECTORY

8600 0502–407 3–41

CURRENTDIRECTORY

Type String

Units Not applicable

Range <absolute pathname> or
<relative pathname>

Default Null string, which is interpreted as "/"

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 137

Synonym None

Restrictions None

Range

<absolute pathname>

ÄÄ / ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄ´
 ÀÄ<relative pathname>ÄÙ

<relative pathname>

 ÚêÄÄÄÄÄÄÄ / ÄÄÄÄÄÄÄ¿
ÄÄÁÄ/13\Ä<path node>ÄÁÄÂÄÄÄÄÄÂÄÄÄ´
 ÀÄ / ÄÙ

<path node>

A sequence of 1 to 17 EBCDIC characters whose values are greater than or equal to
4'40', except for the slash [/], double quote ["], and left parenthesis [(]. This set includes
uppercase and lowercase letters, digits, and most special characters.

Note: Blank spaces are treated as significant when included in the
CURRENTDIRECTORY value. For example, a CURRENTDIRECTORY value of “/A / B”
does not match a directory path named “/A/B”.

Explanation

The CURRENTDIRECTORY task attribute specifies a directory to be used as the prefix for
relative pathnames referenced by this process.

A pathname is a file title that is encoded in a way defined by the POSIX standard.
Pathnames are stored in the PATHNAME file attribute. The TITLE file attribute and the
PATHNAME file attribute store the same value, but in a different format. Changes to the

CURRENTDIRECTORY

3–42 8600 0502–407

PATHNAME file attribute are immediately reflected by the TITLE file attribute, and vice
versa. For example, the following two WFL statements are equivalent:

F(TITLE = (JASMITH)DATA/TEST/ONE ON MYFAM);

F(PATHNAME = "/-/MYFAM/USERCODE/JASMITH/DATA/TEST/ONE");

There are two types of pathnames:

• Absolute pathnames, which begin with the root directory, end with the file name,
and include all the subdirectories leading from the root directory to the file name.
Absolute pathnames always begin with a slash, signifying the root directory. For
example, the following is an absolute pathname:

"/-/MYFAM/USERCODE/JASMITH/DATA/TEST/ONE"

• Relative pathnames, which are a short cut method you can use for specifying file
names that are nested under a common directory. Relative pathnames omit the
root directory and one or more of the leftmost subdirectories, which are supplied by
the CURRENTDIRECTORY task attribute instead. The following are relative
pathnames that could refer to the same file as the previous example, if used
together with appropriate CURRENTDIRECTORY values:

"-/MYFAM/USERCODE/JASMITH/DATA/TEST/ONE"

"MYFAM/USERCODE/JASMITH/DATA/TEST/ONE"

"USERCODE/JASMITH/DATA/TEST/ONE"

"DATA/TEST/ONE"

"TEST/ONE"

"ONE"

TITLE file attribute assignments result in an absolute PATHNAME value if the TITLE
assignment contains a usercode or a family name. Otherwise, TITLE assignments result
in a relative PATHNAME value. The following table shows TITLE assignments and the
resulting PATHNAME values:

TITLE Assignment Resulting PATHNAME Absolute or Relative

(JASMITH)A/B /USERCODE/JASMITH/A/B Absolute

A/B ON MYFAM /-/MYFAM/A/B Absolute

A/B A/B Relative

 CURRENTDIRECTORY

8600 0502–407 3–43

When POSIX search rules are used, the system combines relative pathnames with the
CURRENTDIRECTORY value to create resolved pathnames at file open time. If you want
to use POSIX search rules for relative pathnames in your program, you need to do the
following:

• Ensure that a root family has been defined for your system by the DL ROOT form of
the DL (Disk Location) system command.

• Ensure that the CURRENTDIRECTORY task attribute has a value corresponding to
the left part of the pathname.

• Assign the SEARCHRULE file attribute of each file a value of POSIX.

• Assign relative pathnames by way of the PATHNAME or TITLE file attributes.

For example, consider the following WFL statements:

MYSELF (CURRENTDIRECTORY = "/-/MYFAM/USERCODE/JASMITH/DATA");
FILE F1(SEARCHRULE = POSIX, PATHNAME = "TEST/ONE");
FILE F2(SEARCHRULE = POSIX, PATHNAME = "REPORT/BRIEF");

The preceding statements have the same effect as the following statements:

FILE F1(SEARCHRULE = POSIX,
 PATHNAME = "/-/MYFAM/USERCODE/JASMITH/DATA/TEST/ONE");
FILE F2(SEARCHRULE = POSIX,
 PATHNAME = "/-/MYFAM/USERCODE/JASMITH/DATA/REPORT/BRIEF");

The SEARCHRULE = POSIX assignment has two side effects that you should be aware
of:

• The FAMILY task attribute is ignored. The family, if not specified in the resolved
pathname, defaults to the DL ROOT family.

• If the resolved pathname does not include a usercode, the system searches for or
creates the file only as a nonusercoded (*) file. By contrast, when SEARCHRULE =
NATIVE, the system searches for the file under the usercode of the process first.

If the SEARCHRULE value is NATIVE, rather than POSIX, then the system conducts the
file search based on native rules, and the CURRENTDIRECTORY value is ignored.

For further information about the PATHNAME and SEARCHRULE file attributes, refer to
the File Attributes Programming Reference Manual.

CURRENTDIRECTORY

3–44 8600 0502–407

Write Time

The following restrictions vary, depending on the time when CURRENTDIRECTORY is
assigned:

• For an in-use process, the CURRENTDIRECTORY value can be changed only by the
process itself.

• For an in-use process, CURRENTDIRECTORY can be assigned either an absolute or a
relative pathname. If CURRENTDIRECTORY is assigned a relative pathname, the
system adds the relative pathname to the end of the existing CURRENTDIRECTORY
value, and sets CURRENTDIRECTORY to this combined value.

• If the process is not in-use, then only absolute pathnames can be assigned to
CURRENTDIRECTORY.

You can assign the CURRENTDIRECTORY value either through conventional task
attribute assignments or through one of the following methods:

• The C language chdir function. For information about the chdir function, refer to the
MCP/AS C Programming Reference Manual, Volume 2: Headers and Functions.

• The POSIX_CHANGEDIR procedure of the MCPSUPPORT library. For information
about this procedure, refer to the MCP/AS ALGOL and MCP Interfaces to POSIX
Features Programming Reference Manual.

Default and Inheritance

The default value for CURRENTDIRECTORY is the null string. At file open time, this
default is treated as equivalent to a single slash, indicating the root directory.

System administrators can define a default CURRENTDIRECTORY value for each
usercode with the POSIXINITDIR usercode attribute.

A task inherits the CURRENTDIRECTORY value of its parent, unless this value is
overridden by explicit assignments.

Examples

In ALGOL, you must explicitly terminate CURRENTDIRECTORY assignments with a null
character, as shown in the following example:

REPLACE T1.CURRENTDIRECTORY BY
 "/-/DBFAM/USERCODE/JANEDOE/TESTCASE/ONE" 48"00";

In COBOL74 and COBOL85, you must first define a group item that ends with a null
character, as in the following example:

WORKING-STORAGE SECTION.
01 X.
 03 Y PIC X(6) VALUE "aa/bbb".
 03 Z PIC X(1) VALUE @00@.

 CURRENTDIRECTORY

8600 0502–407 3–45

You can use a statement such as the following to assign the group item to
CURRENTDIRECTORY:

CHANGE ATTRIBUTE CURRENTDIRECTORY OF MYSELF TO X.

Run-Time Errors

CURRENTDIRECTORY NOT CHANGED: INVALID SYNTAX

An attempt was made to assign CURRENTDIRECTORY a value that does not conform to
pathname syntax. The assigning process continues to run normally, but the
CURRENTDIRECTORY value remains unchanged.

CURRENTDIRECTORY NOT CHANGED: ACCESS ERROR

An attempt was made to assign CURRENTDIRECTORY a directory that does not exist, or
a directory to which this process does not have access rights. The assigning process
continues running normally, but the CURRENTDIRECTORY value remains unchanged.

CURRENTDIRECTORY WRITABLE ONLY BY OWNER STACK ON ACTIVE
TASK

A process attempted to modify the CURRENTDIRECTORY value of another, in-use
process. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE =
2 (PROGRAMCAUSEV) and HISTORYREASON = 56 (NONOWNERACCESSV).

CURRENTDIRECTORY MUST BE ABSOLUTE ON INACTIVE TASK

An attempt was made to assign a relative pathname to the CURRENTDIRECTORY of a
task variable that is not in-use. The assigning process, if nonprivileged, is discontinued
with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

<partial file name> REQUIRES ROOT FAMILY TO BE SET WITH DL
COMMAND

An attempt was made to assign CURRENTDIRECTORY, and no DL ROOT family has
been defined for this system. The <partial file name> is the value being assigned to
CURRENTDIRECTORY, expressed in TITLE form rather than pathname form. The
assigning process is suspended with the above RSVP message. The operator can
respond in either of the following ways:

• With a DS (Discontinue) command to terminate the suspended process.

• With the DL ROOT ON <family name> form of the DL (Disk Location) system
command. The suspended process resumes execution when the DL ROOT family is
defined.

DATABASE

3–46 8600 0502–407

DATABASE

Type String

Units Not applicable

Range <database equation>

Default Null string

Read Time See below

Write Time See below

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 73

Synonym None

Restrictions None

Range

<database equation>

ÄÄ DATABASE ÄÄ<simple name>ÄÄ (ÄÄ TITLE ÄÄ = ÄÄ<title>ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄ´

Explanation

The DATABASE task attribute causes a process to use a different database than it
otherwise would.

In the DATABASE value, the simple name is the internal name by which the process
refers to the original database. The title is the title of the database that is to be used
instead. Your title should be the title of an Enterprise Database Server control file.

 Read Time

The DATABASE task attribute can be read at any time from an ALGOL program.
However, the value returned is encoded in an internal form that does not resemble the
original DATABASE assignment.

The DATABASE task attribute returns a null value if read from COBOL and cannot be
read from WFL at all.

 DATABASE

8600 0502–407 3–47

Write Time

The DATABASE task attribute can only be assigned by a DATABASE equation statement
in a WFL program. For information about database equation, refer to the Work Flow
Language (WFL) Programming Reference Manual.

Assigning the DATABASE task attribute from an ALGOL or COBOL program causes a
run-time error.

Examples

The following example shows this attribute being used in a WFL job:

 RUN USERPROG;
 DATABASE TESTDB(TITLE=<database name>/CONTROL);

The database internal name or the database title can be replaced by string variables,
which must be prefixed with a pound sign (#). The following example uses the string
variables STRINT and STRTITLE:

 RUN USERPROG;
 DATABASE #STRINT(TITLE=#STRTITLE);

Run-Time Error

DATABASE ATTRIBUTE - RESTRICTED ACCESS

A non-WFL process attempted to assign a value to the DATABASE attribute, or a WFL
process attempted to assign a value to the DATABASE attribute of an in-use task
variable. An attempt was made to assign a value to the DATABASE attribute of an in-use
process. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE =
2 (PROGRAMCAUSEV) and HISTORYREASON = 128 (RESTRICTEDACCESSV).

DATEOFFSET

3–48 8600 0502–407

DATEOFFSET

Type Integer

Units Days

Range 0 to 4095

Default 0

Read Time Anytime

Write Time Anytime

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 154

Synonym None

Restrictions None

Explanation

The DATEOFFSET task attribute provides a means for a task to adjust the date returned
to the task when calling the TIME intrinsic.

All TIME functions that return a date are adjusted by DATEOFFSET days, except for
functions 36 and 136, which return the halt/load time in TIME(6) format.

Notes:

• In a library environment the attribute value for a client program is used if the TIME
intrinsic is invoked in a library entrypoint. If the result from the TIME intrinsic is
stored globally and compared with values obtained from different calls from different
clients, the results are unpredictable. It is recommended that in such an environment
the library and all clients are assigned the same value for the DATEOFFSET attribute.

• If the system option NODATEOFFSET is set, the value of the DATEOFFSET attribute
can only be set to 0 (zero). Attempts to set the attribute to any other value within the
range of 1 to 4095 results in a warning message, and the attribute value is not
changed.

 DCIINPUTEVENT

8600 0502–407 3–49

DCIINPUTEVENT

Type Event

Units Not applicable

Range HAPPENED, NOT HAPPENED

Default None

Read Time See below

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 127

Synonym None

Restrictions Not available in WFL

Explanation

The DCIINPUTEVENT task attribute can be used by the Transaction Server direct window
programs to detect the presence of user input.

Direct window programs should use DCIINPUTEVENT together with the DCITASKEVENT
task attribute. When input is available, the system causes one or the other of these
attributes, but not both. For input that is available to any of the copies of a program, the
system causes the DCIINPUTEVENT of all the program copies. For input that is available
only to a particular copy of the program, the system causes the DCITASKEVENT of that
program copy.

Before attempting to wait on the DCIINPUTEVENT task attribute, the direct window
program must successfully execute an ENABLE statement with the ONLINE option. If
the program attempts to execute the WAIT statement before executing the ENABLE
statement, the system discontinues the program.

A program awakened by the DCIINPUTEVENT might find that no input is available
because one of the other copies of the program executed a RECEIVE statement first.
Therefore, the program should always use the DONTWAIT option of the RECEIVE
statement to prevent the risk of hanging indefinitely.

The system automatically resets DCIINPUTEVENT after a direct program executes the
RECEIVE statement.

DCIINPUTEVENT

3–50 8600 0502–407

The program should use only WAIT statements or IF HAPPENED expressions with
DCIINPUTEVENT. The program should not use statements that cause the event or reset
the event, because such statements overwrite the effects of cause actions and reset
actions issued by the system. Examples of such statements include the ALGOL
language, WAITANDRESET, CAUSE, and CAUSEANDRESET. The system does not issue
any error for the programs that cause or reset DCIINPUTEVENT, but the program is likely
to not work as intended.

Run-Time Errors

Transaction Process is DSED because task is empty or TP is not under
COMS control

An attempt was made to wait on or interrogate the DCIINPUTEVENT or DCITASKEVENT
attribute, and one of the following conditions is true:

• The task variable is not currently in use, because the task has not been initiated or
has already terminated.

• The task variable refers to a process that is not a Transaction Server direct window
program. The system recognizes a process as a Transaction Server direct window
program when the process executes an ENABLE statement with the ONLINE option.

The process that waited on or interrogated the task attribute is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 128
(RESTRICTEDACCESSV).

Note that the same HISTORYCAUSE and HISTORYREASON values are associated with
the following messages.

Transaction Processor is DSED because DS or BADGOTO was
encountered during linking
Transaction Process is DSED because unable to link to the Transaction
Processor
Transaction Process is DSED because during linkage to TP an error was
encountered
Transaction Process is DSED because link error occurred during DCIWAIT
linkage

The preceding four messages each indicate that a system software error occurred when
a process attempted to wait on or interrogate the DCIINPUTEVENT or DCITASKEVENT
task attribute. The process that waited on or interrogated the task attribute is
discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON =
128 (RESTRICTEDACCESSV). These diagnostic messages should not normally occur, but
if they do occur, you should notify system support personnel.

 DCITASKEVENT

8600 0502–407 3–51

DCITASKEVENT

Type Event

Units Not applicable

Range HAPPENED, NOT HAPPENED

Default None

Read Time See below

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 128

Synonym None

Restrictions Not available in WFL

Explanation

The DCITASKEVENT task attribute can be used by Transaction Server direct window
programs to detect the presence of user input.

Direct window programs should use DCITASKEVENT together with the DCIINPUTEVENT
task attribute. When input is available, the system causes one or the other of these
attributes, but not both. For input that is available to any of the copies of a direct window
program, the system causes the DCIINPUTEVENT of all the program copies. For input
that is available only to a particular copy of the program, the system causes the
DCITASKEVENT of that program copy.

Before attempting to wait on the DCITASKEVENT task attribute, the direct window
program must successfully execute an ENABLE statement with the ONLINE option. If
the program attempts to execute the WAIT statement before executing the ENABLE
statement, the system discontinues the program.

If a program is awakened by DCITASKEVENT, then there is no possibility that another
copy of the program might read the input before this copy does. However, it is still a
good idea to use the DONTWAIT option of the RECEIVE statement in case the input
becomes unavailable for some reason.

The system automatically resets DCITASKEVENT after a program executes the RECEIVE
statement.

DCITASKEVENT

3–52 8600 0502–407

The program should use only WAIT statements or IF HAPPENED expressions with
DCITASKEVENT. The program should not use statements that cause the event or reset
the event, because such statements overwrite the effects of cause actions and reset
actions issued by the system. Examples of such statements include the ALGOL
language, WAITANDRESET, CAUSE, and CAUSEANDRESET. Although, the system does
not issue errors for the direct window programs that cause or reset DCITASKEVENT, the
direct window program might not work as intended.

Run-Time Errors

Refer to the discussion of run-time errors for the DCIINPUTEVENT task attribute.

 DECKGROUPNO

8600 0502–407 3–53

DECKGROUPNO

Type Integer

Units Not applicable

Range 0 to 549755813887

Default 0

Read Time Anytime; accurate while in use

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 33

Synonym None

Restrictions None

Explanation

The DECKGROUPNO task attribute stores an index that is assigned by WFL to each task
initiated by a WFL job. The first task that appears in a WFL job is assigned a
DECKGROUPNO of 1, the second task a DECKGROUPNO of 2, and so on. WFL uses
this information internally to determine which local data specifications are associated
with which tasks.

A process initiated from any source but WFL has a DECKGROUPNO of 0.

For information about local data specifications, refer to the Work Flow Language (WFL)
Programming Reference Manual.

Example

The following WFL example includes a number of statements that display the value of
DECKGROUPNO at different points during job execution. The comments at the right of
the example show the values displayed by these statements.

?BEGIN JOB WFL/TEST;
 TASK T1, T2, T3;
 DISPLAY STRING(T1(DECKGROUPNO),*); % Displays 0
 PROCESS RUN OBJECT/ALGOL/ERROR [T1];
 DISPLAY STRING(T1(DECKGROUPNO),*); % Displays 1
 PROCESS RUN OBJECT/ALGOL/ERROR [T2];
 DISPLAY STRING(T2(DECKGROUPNO),*); % Displays 2
 PROCESS RUN OBJECT/ALGOL/ERROR [T3];
 DISPLAY STRING(T3(DECKGROUPNO),*); % Displays 3
?END JOB

DEFAULTFILEGROUP

3–54 8600 0502–407

DEFAULTFILEGROUP

Type String

Units Not applicable

Range <Simple Name>

Default Null String

Read Time Anytime

Write Time Never

Inheritance See below

Overwrite Rules See below

Host Services Not supported

Attribute Number 153

Synonym None

Restrictions None

Explanation

The DEFAULTFILEGROUP task attribute is a read-only attribute that is used to
interrogate the effective FILEGROUP value used by the task when creating disk files.
The value returned by this task attribute specifies the group name that is assigned to any
newly created disk files that are owned by the task.

If the FILEGROUP attribute for the task is set, then the task’s FILEGROUP value is
returned. Otherwise, if the FILEGROUP value associated with the user is set on the task,
the user’s FILEGROUP value is returned. Otherwise, interrogating the
DEFAULTFILEGROUP attribute returns “.”.

Refer to the FILEGROUP task attribute for more information.

 DEPTASKACCOUNTING

8600 0502–407 3–55

 DEPTASKACCOUNTING

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default See below

Read Time Anytime

Write Time Before initiation

Inheritance See below

Fork() Inheritance Set to IDENTIFIED if IDENTIFIED is
specified for the parent, the usercode, or
the system; otherwise, set to
ANONYMOUS

Overwrite Rules Standard

Host Services Not supported

Attribute Number 124

Synonym None

Restrictions None

Explanation

The DEPTASKACCOUNTING task attribute specifies whether the system should
generate log entries and system messages when the process is initiated and when the
process terminates. You can use DEPTASKACCOUNTING to improve overall system
performance by reducing the number of log entries the system generates. The best way
to achieve this effect is by establishing a system-wide DEPTASKACCOUNTING default,
as described later under “Default and Inheritance.”

The DEPTASKACCOUNTING task attribute can be assigned to any process. However,
the system enforces the value of this task attribute only for processes that meet all the
following criteria:

• The process is a task (that is, a dependent process).

• The process has the same usercode as its parent.

• The process is not initiated directly from a CANDE or MARC session or from a WFL
job.

DEPTASKACCOUNTING

3–56 8600 0502–407

The following are the possible values of DEPTASKACCOUNTING:

Mnemonic
Value

Integer
Value

Meaning

UNSPECIFIED 0 This value has no effect on logging or message
displays.

ANONYMOUS 1 The system does not generate Major Type 1, Minor
Type 2 (BOT Entry) or Major Type 1, Minor Type 4
(EOT Entry) log entries for this process. If the
system generates any other log entries for this
process, the system places a Major Type 0, Minor
Type 1 (Establish Identity) log entry before the first
of these other entries and generates a Major Type 0,
Minor Type 1 (Empty Establish Identity) log entry
when the process terminates. These logging effects
apply equally to the system log and the job log.

When the process terminates, the resource usage
statistics of the process are added to those of the
parent and are reflected in the Major Type 1, Minor
Type 2 (EOJ Entry) or Minor Type 4 (EOT Entry) log
entry that the system issues for the parent. For
details about which fields in the parent's log entry
can reflect statistics from an ANONYMOUS
offspring, refer to the Unisys e-@ction ClearPath
Enterprise Servers System Log Programming
Reference Manual.

Further, no BOT or EOT messages are sent to the
originating station, and the process does not appear
in the C (Completed Mix Entries) system command
display.

This value also affects enforcement of the
FILEACCOUNTING task attribute. Refer to the
FILEACCOUNTING task attribute description.

IDENTIFIED 2 The system generates BOT and EOT log entries for
the process. The system sends BOT and EOT
messages to the originating terminal, and the
process termination is recorded in the C (Completed
Mix Entries) display.

Note that an operator can use the LOGGING
(Logging Options) system command to prevent
logging of any BOT and EOT log entries. In this case,
even processes with DEPTASKACCOUNTING =
IDENTIFIED do not receive BOT or EOT log entries.

 DEPTASKACCOUNTING

8600 0502–407 3–57

Default and Inheritance

A process inherits the DEPTASKACCOUNTING value of its parent.

The system administrator can use the ACCOUNTING (Resource Accounting) system
command to specify a system-wide default for DEPTASKACCOUNTING. The system
administrator can also associate a default value with a usercode by including a
DEPTASKACCOUNTING usercode attribute in the usercode definition in the
USERDATAFILE.

When a process is initiated, the system assigns the DEPTASKACCOUNTING task
attribute the maximum of its current value (whether assigned or inherited), the system
default value, and the usercode value. The integer values for each
DEPTASKACCOUNTING mnemonic were previously listed under the “Explanation”
subheading.

For example, suppose that DEPTASKACCOUNTING has a value of ANONYMOUS in the
task variable, a value of IDENTIFIED at the system level, and a value of UNSPECIFIED at
the usercode level. At initiation time, the process is assigned a DEPTASKACCOUNTING
value of IDENTIFIED by the system, because IDENTIFIED has a higher numeric value (2)
than ANONYMOUS or UNSPECIFIED.

On a system running Security Services for ClearPath MCP with a security class of S2, or
with the security option ANONACCOUNTING set to the value NOTOK, the system sets
DEPTASKACCOUNTING to IDENTIFIED for all processes when they are initiated. This
rule overrides all of the other factors affecting the DEPTASKACCOUNTING value.

DESTNAME

3–58 8600 0502–407

DESTNAME

Type String

Units Not applicable

Range <name>

Default SITE

Read Time Anytime

Write Time Before initiation

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 44

Synonym BACKUPDESTINATION

Restrictions None

Explanation

The DESTNAME task attribute specifies a destination station for printer or punch output
created by the process. This attribute is useful at sites where some of the printers are
connected to data comm lines.

This attribute can be set to any of the following values:

• Any station name in the DATACOMINFO file data comm definition for the system.

• SITE. This value specifies that there is no destination station for the process. Other
factors, such as the default destination, determine the routing of printer and punch
files.

Setting this attribute to something other than SITE causes printer files to be built under
the directory *REMLPnn/= , and punch files to be created under the directory
*REMCPnn/= . The nn in the titles is the MCS number defined by the data comm
subsystem for the MCS that controls the destination station. The remainder of the file
name includes the job number, mix number, and so on, as described in the process I/O
usage discussion in the Task Management Programming Guide.

An alternate method of specifying the destination station for a process is the
DESTSTATION task attribute. DESTSTATION specifies the logical station number (LSN)
of the destination station. Assigning a valid station name to DESTNAME causes
DESTSTATION to receive the corresponding LSN. Similarly, assigning a valid LSN to
DESTSTATION causes DESTNAME to be updated with the corresponding station name.

The MCS, which controls the destination station, might print the files automatically,
depending on which MCS is involved. Otherwise, the files remain on disk until removed
or printed by application software supplied by the site.

 DESTNAME

8600 0502–407 3–59

If the Transaction Server controls the destination station, the files will not be printed
automatically. If you want the output to be printed at a Transaction Server station, you
must assign the DESTINATION file attribute to the desired station. You can assign this
file attribute for a particular file, or you can assign a default DESTINATION value as a part
of the PRINTDEFAULTS task attribute.

For information about remote printing, refer to the Print System and Remote Print
System Administration, Operations, and Programming Guide.

Using DESTNAME with JOBSUMMARY and JOBSUMMARYTITLE

The DESTNAME task attribute exists only to support legacy printing applications through
message control systems (MCSs). DESTNAME cannot be used to generate print
requests. However, if DESTNAME is specified to deliver job summaries, the following
rules apply:

• The JOBSUMMARY task attribute determines whether a job summary is printed by
the Print System and whether one is created for an MCS to print.

• A job summary file is created for each service (Print System or MCS) for which
printed output is generated. You can control the name of the job summary file
created for the Print System with the JOBSUMMARYTITLE task attribute.

• If no printed output is created and the JOBSUMMARY task attribute is specified, a
job summary is created for the Print System. If no printed output is created and the
DESTNAME task attribute is specified, a job summary is created for an MCS. If both
the DESTNAME and JOBSUMMARYTITLE attributes are set, two files are created.
Whether the Print System job summary is printed depends on the setting of the
JOBSUMMARY attribute.

For information on the JOBSUMMARY and JOBSUMMARYTITLE task attributes, refer to
Section 4 in this manual.

Inheritance

A process inherits the DESTNAME value of its parent.

A process initiated from a MARC or CANDE session inherits the DESTNAME value of the
session. If the CANDEDESTNAME usercode attribute is set for a usercode, then MARC
and CANDE use this value as the DESTNAME for sessions with that usercode. (For
information about setting CANDEDESTNAME, refer to the Security Administration
Guide.) The DESTNAME value for the current session can be changed using the MARC
or CANDE DESTNAME command.

DESTNAME

3–60 8600 0502–407

Run-Time Errors

BACKUPDESTINATION ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign DESTNAME a value that was not in title format. (Note
that BACKUPDESTINATION is a synonym for DESTNAME.) The current values of
DESTNAME and DESTSTATION remain unchanged. The assigning process, unless
privileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 131 (INCORRECTSYNTAXV).

DESTNAME ATTRIBUTE IS READ ONLY ON ACTIVE TASK

An attempt was made to assign DESTNAME for an in-use process. The assigning
process, if it is nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

INVALID DESTINATION

The process was initiated with a DESTNAME value that does not correspond to any
existing station or pseudostation. Note that no error is given for assigning such a
DESTNAME value to a task variable. When the assignment is first made, DESTNAME is
changed to the requested value and DESTSTATION is changed to zero. When the task
variable is later used to initiate a process, the new process suffers the error. The process
is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON =
46 (BADTASKATTRIBUTEV). The INVALIDDESTINATION error message can also be
displayed for a bad DESTSTATION task attribute assignment; refer to the description of
the DESTSTATION task attribute.

UNABLE TO OBTAIN STATION NAME

An attempt was made to read DESTNAME when DESTNAME was set to the name of a
nonexistent station. This error is not fatal.

 DESTSTATION

8600 0502–407 3–61

DESTSTATION

Type Integer

Units Not applicable

Range Valid LSNs

Default 0

Read Time Anytime

Write Time Before initiation

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 46

Synonym None

Restrictions None

Explanation

The DESTSTATION task attribute specifies a destination station for printer or punch
output created by the process. This attribute is useful at sites where some of the printers
are connected to data comm lines.

DESTSTATION serves the same purpose as the DESTNAME task attribute. The
difference is that DESTSTATION specifies the logical station number (LSN) of the
destination station rather than the station name. Assigning a valid LSN to DESTSTATION
causes DESTNAME to be updated with the corresponding station name. Similarly,
assigning a valid station name to DESTNAME causes DESTSTATION to receive the
corresponding LSN.

DESTSTATION can be set to the LSN of any station on the system or to 0. If
DESTSTATION is 0, there is no destination station for the process. In that case, other
factors, such as the default printer pool definition, determine the routing of printer and
punch files.

Inheritance

A process inherits its parent's DESTSTATION value. A process initiated from a MARC or
CANDE session inherits the DESTNAME value of the session, and this DESTNAME, in
turn, determines the DESTSTATION value.

DESTSTATION

3–62 8600 0502–407

Run-Time Errors

DATACOMM MUST BE ACTIVE TO SET DESTSTATION

An attempt was made to set DESTSTATION to a nonzero value while the number of data
comm users was zero. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 134
(DATACOMMNOTACTIVEV).

DESTSTATION ATTRIBUTE IS READ ONLY ON ACTIVE TASK

An attempt was made to assign DESTSTATION for an in-use process. The assigning
process, if nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
and HISTORYREASON = 33 (READONLYONACTIVEV).

INVALID DESTINATION

An attempt was made to set DESTSTATION to a value that is not a valid LSN. The
DESTSTATION value is set to zero, and the DESTNAME value remains unchanged. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 133 (INVALIDLSNV). The INVALID
DESTINATION error message can also result indirectly from a bad DESTNAME task
attribute assignment; refer to the description of the DESTNAME task attribute.

 DISPLAYONLYTOMCS

8600 0502–407 3–63

DISPLAYONLYTOMCS

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Object code file dominant

Host Services Not supported

Attribute Number 103

Synonym None

Restrictions None

Explanation

The DISPLAYONLYTOMCS task attribute specifies whether any DISPLAY messages
created by the process are included in the system messages. The operator can use the
MSG (Display Messages) system command to list recent system messages.

If a process was not created from an MCS session, DISPLAY messages appear in the
MSG command output, regardless of the setting of DISPLAYONLYTOMCS.

If a process was initiated from an MCS session and DISPLAYONLYTOMCS is FALSE,
then DISPLAY messages appear in the MSG command output, as well as at the session
that initiated the process. If a process was initiated from an MCS session and
DISPLAYONLYTOMCS is TRUE, then DISPLAY messages appear only at the session
that initiated the process. A DISPLAYONLYTOMCS value of TRUE allows a process to
communicate with an end user without distracting the operator.

The ?MSG command in CANDE displays messages regardless of the value of
DISPLAYONLYTOMCS. Further, the MSG ALL and MSG FULL forms of the MSG
(Display Messages) system command display messages regardless of the value of
DISPLAYONLYTOMCS.

The DISPLAYONLYTOMCS task attribute does not affect the logging of DISPLAY
messages in either the job log or the system log. DISPLAY messages will be included in
these logs unless the operator has used selective logging features to suppress the
logging of DISPLAY messages. (For a description of selective logging features, refer to
the Security Administration Guide.)

For information about DISPLAY messages, refer to the discussion of tasking from
interactive sources in the Task Management Programming Guide.

DISPLAYONLYTOMCS

3–64 8600 0502–407

The system also provides methods for suppressing other types of messages. These
methods include

• The SUPPRESSWARNING task attribute (discussed in this manual) and
SUPPRESSWARNING system command (discussed in the System Commands
Operations Reference Manual).

• The MSC SUPPRESS form of the MSC command, which is discussed in the MCP/AS
Menu-Assisted Resource Control (MARC) Operations Guide.

Inheritance

The value of DISPLAYONLYTOMCS is not inherited from the parent process.

CANDE supports several methods of providing default values for the
DISPLAYONLYTOMCS task attribute. The ?OP DISPLAYONLYTOMCS control option
provides a default setting for the DISPLAYONLYTOMCS session option, for example:

To cause DISPLAYONLYTOMCS to default to . . . Enter . . .

TRUE ?OP + DISPLAYONLYTOMCS

FALSE ?OP – DISPLAYONLYTOMCS

The ?SO and ?RO user commands override the previous setting and establish a default
DISPLAYONLYTOMCS value for all processes initiated from the current CANDE session,
for example:

To establish a default of . . . Enter . . .

TRUE ?SO DISPLAYONLYTOMCS

FALSE ?RO DISPLAYONLYTOMCS

 ELAPSEDLIMIT

8600 0502–407 3–65

ELAPSEDLIMIT

Type Real

Units Seconds

Range 0 to about 4.31E+68 = 4.31*10 exp 68

Default 0 (no limit)

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 57

Synonym None

Restrictions None

Explanation

The ELAPSEDLIMIT task attribute specifies the maximum elapsed time for a process. If
the ELAPSEDTIME task attribute value reaches the same value as ELAPSEDLIMIT, the
process is discontinued. Refer to the ELAPSEDTIME task attribute description for details.

Inheritance

Although ELAPSEDLIMIT is not inherited from the parent, the ELAPSEDLIMIT value of a
process indirectly limits the elapsed time for all its descendants. This is true because
when a process terminates, any in-use descendants of that process are discontinued
with a “PARENT PROCESS TERMINATED” error.

If the operator defines a default value for the ELAPSEDLIMIT attribute of a job queue, the
value is inherited by WFL jobs run from that job queue. If the operator defines a limit
value for the ELAPSEDLIMIT attribute of a job queue, then WFL jobs that specify a
greater ELAPSEDLIMIT in the job attribute list are not allowed in that job queue. For an
introduction to job queue defaults and limits, refer to the discussion of tasking from
programming languages in the Task Management Programming Guide.

Run-Time Error

ELAPSED TIME LIMIT EXCEEDED

The process ran for longer than the time specified by ELAPSEDLIMIT. The process is
discontinued with HISTORYCAUSE = 3 (RESOURCECAUSEV) and
HISTORYREASON = 10 (ELAPSEDEXCEEDEDV).

ELAPSEDTIME

3–66 8600 0502–407

ELAPSEDTIME

Type Real

Units See below

Range 0 to about 4.31E+68 = 4.31*10 exp 68

Default None

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 15

Synonym None

Restrictions None

Explanation

The ELAPSEDTIME task attribute records the total amount of time that has passed since
the initiation of the process. The process is discontinued if the value of the
ELAPSEDTIME task attribute reaches the same value as the ELAPSEDLIMIT task
attribute. Refer to the ELAPSEDLIMIT description for details.

The ELAPSEDTIME value is unaffected by any DR (Date Reset) or TR (Time Reset)
system commands entered while the process is in use. However, the ELAPSEDTIME
value of a WFL job is set to zero when the job is restarted after a halt/load.

If ELAPSEDTIME is accessed through Host Services, bit 47 will always be 0 (zero).

Units

When accessed from WFL, the ELAPSEDTIME value is expressed in units of seconds.
When accessed from other languages, the value is expressed in units of 2.4
microseconds.

 ERROR

8600 0502–407 3–67

ERROR

Type Real (string in WFL)

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance From parent

Overwrite Rules None (read only)

Host Services Not supported

Attribute Number 25

Synonym TASKATTERR

Restrictions None

Explanation

The ERROR task attribute indicates whether an error resulted from the most recent
attempt to access a task attribute of this process. If an error did result, the ERROR value
also indicates which task attribute was being accessed.

If read in WFL, the ERROR task attribute returns a string value. If the most recent task
attribute access had an error, then the string is the name of the task attribute that was
being accessed. If the most recent task attribute access did not cause an error, the
ERROR task attribute returns a null string.

If read in other languages, the ERROR task attribute returns a real value. If the most
recent task attribute access caused an error, the ERROR value is the negative of the
attribute number of the attribute in error. (The USERCODE task attribute is an exception,
as discussed in the following table.) If the most recent task attribute access did not
cause an error, the ERROR value is 0 (zero).

ERROR

3–68 8600 0502–407

The ERROR value has the following fields, which can be accessed at the bit level:

Field Meaning

[46:01] If set, the last task attribute access caused an error, and the remaining
fields of the word are used. Otherwise, the last task attribute access did
not cause an error, and the remaining fields of the word are not used.

[27:20] If the last attribute to be assigned was the USERCODE attribute, then
this field contains a USERDATA error code. For a list of the most
common USERDATA errors that can be stored in this field, refer to
Table 3–1, “USERDATA Errors.” For a complete list, and general
information about USERDATA errors, refer to the Security
Administration Guide.

If the last attribute to be assigned was not the USERCODE attribute,
then this field stores an error code in one of the following ranges of
numbers:

1 through 999. Such an error code corresponds to the
HISTORYREASON task attribute value. For an explanation of values in
this range, refer to the HISTORYREASON task attribute description.

1000 or greater. Such an error code corresponds to the
HANDLEATTRIBUTES error number. For an explanation of values in this
range, refer to Table 1–1, “HANDLEATTRIBUTES Error Numbers.”

[07:08] If the task attribute most recently assigned was FILECARDS, then this
field stores the number of the file attribute that was assigned
incorrectly. For a list of file attributes ordered by number, refer to the
relevant appendix of the File Attributes Programming Reference Manual.

If the task attribute most recently assigned was LIBRARY, then this field
stores the number of the library attribute that was assigned incorrectly.
For a list of the possible values and the corresponding LIBRARY
attributes, refer to Table 3–2, “Library Attributes by Number.”

If the task attribute most recently accessed was neither FILECARDS nor
LIBRARY, then this field stores the number of the task attribute that
was most recently accessed. The task attributes are listed by number in
Table 3–3, “Task Attributes by Number.”

For details about how to access these fields, refer to “Accessing Task Attributes at the
Bit Level” in Section 1, “Accessing Task Attributes.”

The value of the ERROR task attribute is automatically erased when the task attribute is
read by any process. Most MCSs read this task attribute for processes initiated from
sessions. Therefore, if you initiate a process from a session, you can expect the ERROR
task attribute to be blank even if a task attribute error has occurred.

 ERROR

8600 0502–407 3–69

In a memory dump or a program dump, you might see an ERROR value even though no
task attribute error occurred. This occurs because the ERROR task attribute contains the
attribute number of the task attribute most recently assigned, even if no error occurred.
In addition, the ERROR value is used by the system software as scratch storage while a
job is being restarted. Both these types of values are visible only in dumps; a program
that reads the task attribute finds a value of 0.

For more information about task attribute errors, refer to “Task Attribute Errors” in
Section 1, “Accessing Task Attributes.”

Table 3–1 lists and defines the USERDATA error numbers that can occur in field [27:20]
of the ERROR task attribute value.

Table 3–1. USERDATA Errors

Error Code Definition

8 No *SYSTEM/USERDATA file present.

9 No entry exists with the requested usercode.

10 The password supplied was invalid, or none was supplied when one
was required.

16 This usercode is not a viable usercode; its entry has no system node.

17 This usercode has been marked SUSPENDED.

35 The usercode/password syntax was incorrect.

36 No usercode was specified.

45 The password has expired.

51 The password associated with the usercode has expired, and
ENFORCEEXPIREDPW is true for the usercode.

Table 3–2 lists the library attribute numbers that can occur in field [07:08] of the ERROR
task attribute value.

Table 3–2. Library Attributes by Number

Number Name

0 INTNAME

1 TITLE

2 LIBPARAMETER

3 FUNCTIONNAME

4 LIBACCESS

13 CONNECTIONS

14 CHANGE

ERROR

3–70 8600 0502–407

Table 3–2. Library Attributes by Number

Number Name

15 APPROVAL

16 SINGLE

17 STATE

18 AUTOLINK

20 DELINKEVENT

21 CLUSAGE

Table 3–3 lists the numbers that can be returned in field [07:08] of the ERROR task
attribute value, and the names of the corresponding task attributes. Note that some
numbers are intentionally omitted because no task attributes correspond to those
numbers.

Table 3–3. Task Attributes by Number

Number Name

 0 NAME

 1 MIXNUMBER

 2 CORE

 3 PRIORITY

 4 MAXPROCTIME

 5 MAXIOTIME

 6 TARGET

 7 STACKSIZE

 8 USERCODE

 9 TASKVALUE

 10 HISTORY

 11 TYPE

 12 STATUS

 13 ACCUMPROCTIME

 14 ACCUMIOTIME

 15 ELAPSEDTIME

 16 EXCEPTIONTASK

 17 LOCKED

 18 STOPPOINT

 ERROR

8600 0502–407 3–71

Table 3–3. Task Attributes by Number

Number Name

 19 PARTNER

 20 STATION

 21 EXCEPTIONEVENT

 22 OPTION

 23 VALIDITYBITS

 24 FILECARDS

 25 ERROR

 27 PARTNEREXISTS

 28 RESTART

 29 BDNAME

 30 STACKHISTORY

 32 TASKFILE

 33 DECKGROUPNO

 34 CLASS

 37 MYPPB

 38 ORGUNIT

 39 MAXCARDS

 40 MAXLINES

 41 JOBNUMBER

 42 CHARGE

 44 DESTNAME

 45 SOURCESTATION

 46 DESTSTATION

 47 SOURCEKIND

 48 RESTARTED

 49 MAXWAIT

 50 STACKLIMIT

 52 FETCH

 53 RESOURCE

 55 FAMILY

 56 WAITLIMIT

 57 ELAPSEDLIMIT

ERROR

3–72 8600 0502–407

Table 3–3. Task Attributes by Number

Number Name

 58 TASKLIMIT

 60 TANKING

 61 ACCESSCODE

 63 BACKUPFAMILY

 64 HOSTNAME

 66 HISTORYTYPE

 67 HISTORYCAUSE

 68 HISTORYREASON

 70 HSPARAMSIZE

 72 ITINERARY

 73 DATABASE

 74 LIBRARY

 78 TIMESTARTED

 79 STARTTIME

 81 JOBSUMMARY

 82 CHECKPOINTABLE

 83 BRCLASS

 84 SW1

 85 SW2

 86 SW3

 87 SW4

 88 SW5

 89 SW6

 90 SW7

 91 SW8

 92 INHERITMCSSTATUS

 94 TADS

 95 LANGUAGE

 97 JOBSUMMARYTITLE

 98 NOJOBSUMMARYIO

 99 PRINTDEFAULTS

100 ACCEPTEVENT

 ERROR

8600 0502–407 3–73

Table 3–3. Task Attributes by Number

Number Name

101 LIBRARYUSERS

102 AUTOSWITCHTOMARC

103 DISPLAYONLYTOMCS

104 INITPBITCOUNT

105 INITPBITTIME

106 OTHERPBITCOUNT

107 OTHERPBITTIME

108 LIBRARYSTATE

109 TASKWARNINGS

110 SUPPRESSWARNING

111 FILEACCESSRULE

112 SAVEMEMORYLIMIT

113 TASKSTRING

116 APPLYLIST

117 TASKERROR

118 TEMPFILELIMIT

119 TEMPFILEMBYTES

120 CONVENTION

121 SOURCENAME

122 MCSNAME

123 AUTORESTORE

124 DEPTASKACCOUNTING

125 FILEACCOUNTING

126 LABELFORMAT

127 DCIINPUTEVENT

128 DCITASKEVENT

129 AX

130 REALUSERCODE

131 SAVEDUSERCODE

132 GROUPCODE

133 REALGROUPCODE

134 SAVEDGROUPCODE

ERROR

3–74 8600 0502–407

Table 3–3. Task Attributes by Number

Number Name

136 NETPATH

137 CURRENTDIRECTORY

138 PRIORHISTORY

139 PRIORHISTORYTYPE

140 PRIORHISTORYCAUSE

141 PRIORHISTORYREASON

142 SUPPLEMENTARYGRPS

143 FILEMASK

144 STATIONNAME

145 PUMPTITLE

146 BLOCKCREDENTIALS

147 CREDENTIALS

148 CREDENTIALSBASE

149 INHERITCREDENTIALS

152 FILEGROUP

153 DEFAULTGROUP

154 DATEOFFSET

155 OPTIONAL

156 REPORTBADINITIATE

157 COUNTRY

158 MPID

159 BOTTIMESTAMP

Run-Time Error

ERROR ATTRIBUTE IS READONLY

An attempt was made to assign a value to the ERROR task attribute. The assigning
process, if nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
and HISTORYREASON = 9 (ATTREADONLYV).

 EXCEPTIONEVENT

8600 0502–407 3–75

EXCEPTIONEVENT

Type Event

Units Not applicable

Range HAPPENED, NOT HAPPENED

Default NOT HAPPENED

Read Time Anytime

Write Time See below

Inheritance None

Fork() Inheritance Indeterminate; software interrupts remain
attached

Overwrite Rules See below

Host Services Not supported

Attribute Number 21

Synonym None

Restrictions Not available in WFL

Explanation

The EXCEPTIONEVENT task attribute accesses a predeclared event called the exception
event that is associated with each process. When the STATUS task attribute of a
process changes value, the system causes the exception event of the exception task of
that process. By default, the parent is the exception task of a dependent process.
Therefore, the exception event of the parent is a convenient means of informing the
parent when one of its offspring has terminated or otherwise changed status.

The system also causes the exception event of a permanent library or control library
whenever the value of the LIBRARYUSERS task attribute changes to zero.

The operator can also cause the exception event of a process by using the HI (Cause
EXCEPTIONEVENT) system command.

The EXCEPTIONEVENT task attribute can be used in any ALGOL or COBOL statement
that operates on an event. For example, a process can wait on the EXCEPTIONEVENT
task attribute or can cause it.

A process can access the exception event of itself or of an ancestor process. The
process cannot access the exception event of a descendant, sibling, or cousin process.

For a discussion of exception tasks, ancestors, siblings, cousins, local-parent/remote-task
logic and descendants, refer to the Task Management Programming Guide.

EXCEPTIONEVENT

3–76 8600 0502–407

Write Time

A process can cause or reset the EXCEPTIONEVENT at any time. However, a process
can never assign an event variable to EXCEPTIONEVENT. For example, the following
ALGOL statement compiles successfully, but produces a run-time error:

T.EXCEPTIONEVENT := EVNT;

Overwrite Rules

The statements that access EXCEPTIONEVENT can be applied only to an in-use process.

Run-Time Errors

EXCEPTIONEVENT ATTRIBUTE IS READONLY

A process attempted to assign an event variable to the EXCEPTIONEVENT task attribute.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 9 (ATTREADONLYV).

NON-ANCESTRAL TASK REFERENCE

A process attempted to access the exception event of a descendant, sibling, or cousin
process. The process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 130 (NONANCESTRALEXCEPTEVENTV).

 EXCEPTIONTASK

8600 0502–407 3–77

EXCEPTIONTASK

Type Task

Units Not applicable

Range See below

Default See below

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance MYSELF

Overwrite Rules Standard

Host Services Not supported

Attribute Number 16

Synonym None

Restrictions Not available in WFL

Explanation

The EXCEPTIONTASK task attribute specifies the exception task for a process. When the
STATUS task attribute of a process changes value, the system causes the exception
event of the exception task for that process. (Note that the “exception task” is not
necessarily a task; it could be a job.) A program can use the EXCEPTIONTASK task
attribute to assign the process that is to be used as the exception task, or to access task
attributes of the exception task.

For further information, refer to the discussion of interprocess relationships in the Task
Management Programming Guide.

Range

A process can assign any ancestral, sibling, or cousin process as the exception task.
Descendant processes cannot be assigned as the exception task. (For a discussion of
ancestral, sibling, cousin, and descendant processes, refer to the discussion of
interprocess relationships in the Task Management Programming Guide.)

An independent process has no exception task. When any process attempts to access
the exception task of an independent process, the attempt is treated as a reference to
the MYSELF task variable of the accessing process.

For remote tasks, the exception task is always the parent process. No other process can
be assigned as the exception task. For information about remote tasks, refer to the
discussion of tasking across multihost networks in the Task Management Programming
Guide.

EXCEPTIONTASK

3–78 8600 0502–407

Default

For a task, the parent is the default exception task. For a job, the job is its own default
exception task. For a task initiated by a session, the controlling MCS is the default
exception task.

Run-Time Errors

UP LEVEL TASK ASSIGNMENT

An attempt was made to assign a descendant process as the exception task. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2 and
HISTORYREASON = 113.

NON-ANCESTRAL TASK REFERENCE

A sibling or cousin process is assigned as the exception task, and an attempt was made
to access the exception event of the exception task using a statement such as
“CAUSE (MYSELF.EXCEPTIONTASK.EXCEPTIONEVENT)”. The accessing process is
discontinued, even if it is privileged, with HISTORYCAUSE= 2 (PROGRAMCAUSEV) and
HISTORYREASON = 130 (NONANCESTRALEXCEPTEVENTV).

8600 0502–407 4–1

Section 4
Task Attributes F through K

This section contains task attributes starting with the letters F through K.

FAMILY

4–2 8600 0502–407

FAMILY

Type String

Units Not applicable

Range <family specification>

Default See below

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Object code file dominant

Host Services Supported

Attribute Number 55

Synonym None

Restrictions None

Range

<family specification>

ÄÄ<target family>ÄÄ = ÄÄ<primary family>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄÂÄ OTHERWISE ÄÄ<alternate family>ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ ONLY ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

<target family>
<primary family>
<alternate family>

These are each nonquote identifiers.

Explanation

The FAMILY task attribute can assign one or two substitute disk families to be used
whenever the process references the target disk family. The substitute families are
called the primary family and the alternate family. The alternate family is optional.

The process searches for and creates files on the substitute families whenever it would
have used the target family. The following rules determine whether both substitute
families, or only the primary family, are searched:

• When an existing file is being opened or executed, if the file cannot be found on the
primary family, the alternate family is searched. If the TITLE file attribute does not
include a usercode, then the file is searched for first under the usercode of the
process and then as a nonusercoded file on each of the substitute families.

 FAMILY

8600 0502–407 4–3

• When a file is being created, or when the file is the subject of a CHANGE, REMOVE,
ARCHIVE, SECURITY, or CATALOG statement, only the primary family is searched.
The alternate family is not used.

• In the ALTER, MOVE, RESTORE, RESTOREADD, COPY and ADD statements, only
the primary family is used for both sources and destinations; the alternate family is
not used.

The most typical use of this task attribute is to establish a default family for files that do
not have a family specified. Such files default to DISK if the FAMILY task attribute is not
used. However, if the FAMILY task attribute is used, and the target family specified is
DISK, then such files default to the substitute family in the FAMILY value. The following
is an example of a FAMILY value that establishes ORDSPACK as the default family for a
process:

DISK = ORDSPACK OTHERWISE DISK

The target family, primary family, and alternate family must be disk families. TAPE cannot
be specified as the name of the target family, primary family, or alternate family.

During process initiation, when the system searches for an object code file to initiate, the
system does not consult the FAMILY attribute of the new process. Instead, the system
consults the NAME attribute of the new process and the FAMILY attribute of the
initiator, and applies family substitution if appropriate. This applies mainly if you are
writing programs that process external code files.

Note: The FAMILY attribute has no effect on files that have the SEARCHRULE file
attribute set to POSIX. For further information, refer to the descriptions of the
SEARCHRULE and PATHNAME file attributes in the File Attributes Programming
Reference Manual. Refer also to the description of the CURRENTDIRECTORY task
attribute later in this section.

Default

The default FAMILY setting is null, which means that no substitution takes place. The
family specified by the TITLE or FAMILYNAME file attribute is used. If no family name is
assigned to either of these file attributes, then DISK is used by default.

Inheritance

A process inherits the FAMILY value of its parent.

A process initiated from a MARC or CANDE session inherits the FAMILY value
associated with the session. At log-on time, the session receives the FAMILY usercode
attribute associated with the usercode in the USERDATAFILE. The session FAMILY can
be changed using a MARC or CANDE FAMILY command.

If the job attribute list of a WFL job includes a USERCODE assignment, but no FAMILY
assignment, then the job inherits any FAMILY usercode attribute that is defined for the
usercode in the USERDATAFILE.

FAMILY

4–4 8600 0502–407

If a FAMILY value is assigned to a job queue, that value is inherited by WFL jobs run from
that queue. A WFL job is not allowed in a job queue if the job attribute list specifies a
FAMILY value different from that of the job queue. However, the job can assign a
different FAMILY value after initiation.

Examples

Consider the following ALGOL program, which declares and opens two different disk
files:

BEGIN
 FILE F(KIND=DISK,DEPENDENTSPECS=TRUE,TITLE="F ON TOOLS.");
 FILE G(KIND=DISK,DEPENDENTSPECS=TRUE);
 OPEN (F);
 OPEN (G);
END.

The following WFL statement would run the program and cause it to search for file F on
ORDSPACK and then on DISK if necessary, and to search for file G on DISK:

RUN OBJECT/FILEOPEN;FAMILY TOOLS = ORDSPACK OTHERWISE DISK;

The following WFL statement would run the program and cause it to search for file F on
TOOLS and for file G on ORDSPACK, and then on DISK if necessary:

RUN OBJECT/FILEOPEN;FAMILY DISK = ORDSPACK OTHERWISE DISK;

WFL supports several different syntax forms for assigning the FAMILY task attribute.
The syntax using unquoted literals is shown in the preceding two examples. In addition,
WFL supports the use of string primaries to specify the family names, and the use of a
single string expression to specify the entire FAMILY value. The following are examples
of these forms of the FAMILY syntax:

STR1 := "DISK";
STR2 := "USERPACK";
STR3 := "SYS41";
RUN OBJECT/PROG;
 FAMILY #STR1 = #STR2 OTHERWISE #STR3;

STR4 := "USERPACK OTHERWISE SYS41";
RUN OBJECT/PROG;
 FAMILY = STR1 & " = " & STR4;

 FAMILY

8600 0502–407 4–5

Run-Time Errors

FAMILY ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign FAMILY a value that does not follow the syntax for
family specification. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

REQUIRES *PK <family name> <file name

This error occurs if the FAMILY value causes the process to search for a nonexistent
family. In this message, <family name> is the name of the family being searched for, and
<file name> is the value of the FILENAME attribute of the requested file. > The process
waits until an operator takes action. Refer to the System Operations Guide for
information on how to respond to waiting processes.

FETCH

4–6 8600 0502–407

FETCH

Type String

Units Not applicable

Range <fetch specification>

Default Null string

Read Time Never

Write Time Before initiation

Inheritance None

Fork() Inheritance None

Overwrite Rules See below

Host Services Not supported

Attribute Number 52

Synonym None

Restrictions Available only in WFL

Range

<fetch specification>

A string of up to 256 EBCDIC characters.

Explanation

The FETCH task attribute stores instructions for the operator. The programmer can
assign a string of text to FETCH. The operator can use the PF (Print Fetch) system
command to display the FETCH value.

If a WFL job contains a FETCH specification, and the system option NOFETCH is reset,
then the job cannot be initiated until the operator enters an OK (Reactivate) system
command. The operator can set or reset the NOFETCH system option with the OP
(Options) system command.

Overwrite Rules

The FETCH task attribute can be assigned only in the job attribute list in a WFL job. For
the syntax of this assignment, refer to the Work Flow Language (WFL) Programming
Reference Manual.

 FETCH

8600 0502–407 4–7

Example

The following is an example of a WFL job that contains a FETCH specification. This
specification asks the operator to mount several tapes before allowing the job to
proceed.

BEGIN JOB FILEIT;
 FETCH = "THIS JOB NEEDS THREE TAPE DRIVES";
 RUN NIGHTLY/UPDATE;
END JOB

FILEACCESSRULE

4–8 8600 0502–407

FILEACCESSRULE

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default DEFAULT

Read Time Anytime

Write Time See below

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 111

Synonym None

Restrictions None

Explanation

The FILEACCESSRULE task attribute specifies whether file access security checking is
based on the identity of the process that declares the file or the process that opens the
file. This task attribute is relevant only in cases where the declaring process and the
opening process are different because a logical file is being shared among processes. For
these cases, the value of the FILEACCESSRULE task attribute of the accessing process
determines which type of security checking is used.

The following are the possible values and their meanings:

Mnemonic
Value

Integer
Value

Meaning

DEFAULT 0 This value is synonymous with DECLARER.

ACTOR 1 File access security checking is based on the identity
of the process that accesses the file. Only an MCS
or a process with privileged status or tasking status
can assign this value to FILEACCESSRULE.

DECLARER 2 File access security checking is based on the identity
of the process that declares the file.

For a further discussion of file access security, refer to the discussion of shared files in
the Task Management Programming Guide.

 FILEACCESSRULE

8600 0502–407 4–9

Write Time

The ACTOR value can be assigned only after the process is initiated. The DEFAULT and
DECLARER values can be assigned at any time.

Inheritance

A process inherits the FILEACCESSRULE value of its parent.

Run-Time Errors

FILEACCESSRULE ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign FILEACCESSRULE a value not in the possible range of
values. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE =
2 (PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

PRIVILEGED REQUIRED TO SET FILEACCESSRULE = ACTOR

A process that was not an MCS and did not have privileged status or tasking status
attempted to assign the FILEACCESSRULE attribute the value ACTOR. The assigning
process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 136 (PRIVILEGEREQUIREDV).

SETTING FILEACCESSRULE TO ACTOR IS RESTRICTED TO ACTIVE TASKS

A process attempted to assign a value of ACTOR to the FILEACCESSRULE task attribute
of a task variable that is not in use. This message can also occur if the ACTOR value is
assigned through run-time task equation or is inherited from a FILEACCESSRULE
assignment in the object code file. This error is nonfatal, but the requested assignment is
ignored.

FILEACCOUNTING

4–10 8600 0502–407

FILEACCOUNTING

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default See below

Read Time Anytime

Write Time Before initiation

Inheritance See below

Fork() Inheritance Set to IDENTIFIED if IDENTIFIED is specified
for the parent, the usercode, or the system;
otherwise, set to ANONYMOUS

Overwrite Rules Standard

Host Services Not supported

Attribute Number 125

Synonym None

Restrictions None

Explanation

The FILEACCOUNTING task attribute specifies whether the system should generate log
entries when the process opens or closes a file. You can use FILEACCOUNTING to
improve overall system performance by reducing the number of log entries the system
generates. The best way to achieve this effect is by establishing a system-wide
FILEACCOUNTING default, as described later under “Default and Inheritance.”

The following are the possible values of FILEACCOUNTING:

Mnemonic
Value

Integer
Value

Meaning

UNSPECIFIED 0 This value has no effect on logging.

ANONYMOUS 1 The system does not generate Major Type 1, Minor
Type 5 (File Open) or Major Type 1, Minor Type 6
(File Close) log entries for this process. The system
keeps general statistics on the file usage of the
process, and issues a summary of these statistics as
the Major Type 1, Minor Type 25 (File Statistics) log
entry when the process terminates. However, if the
system is enforcing a DEPTASKACCOUNTING value
of ANONYMOUS for the process, then at
termination time the system does not generate this
log entry. Instead, the system adds the file usage
statistics of the process to the file usage statistics of
the parent. (Refer to the discussion of the
DEPTASKACCOUNTING task attribute.)

 FILEACCOUNTING

8600 0502–407 4–11

Mnemonic
Value

Integer
Value

Meaning

IDENTIFIED 2 The system generates File Open and File Close log
entries for this process. The system does not create
any File Statistics log entry for the process, nor does
it add file statistics for the process to the parent's
statistics.

Note that an operator can use the LOGGING
(Logging Options) system command to prevent
logging of any File Open and File Close log entries.
In this case, even processes with
FILEACCOUNTING = IDENTIFIED do not receive File
Open or File Close log entries.

Default and Inheritance

A process inherits the FILEACCOUNTING value of its parent.

The system administrator can use the ACCOUNTING (Resource Accounting) system
command to specify a system-wide default for FILEACCOUNTING. The system
administrator can also associate a default value with a usercode by including a
FILEACCOUNTING usercode attribute in the usercode definition in the USERDATAFILE.

When a process is initiated, the system assigns the FILEACCOUNTING task attribute the
maximum of its current value (whether assigned or inherited), the system default value,
and the usercode value. The integer values for each FILEACCOUNTING mnemonic were
previously listed under the “Explanation” subheading.

For example, suppose that FILEACCOUNTING has a value of ANONYMOUS in the task
variable, a value of IDENTIFIED at the system level, and a value of UNSPECIFIED at the
usercode level. At initiation time, the process is assigned a FILEACCOUNTING value of
IDENTIFIED by the system, because IDENTIFIED has a higher numeric value (2) than
ANONYMOUS or UNSPECIFIED.

On a system running InfoGuard software with a security class of S2, or with the security
option ANONACCOUNTING set to the value NOTOK, the system sets
FILEACCOUNTING to IDENTIFIED for all processes when they are initiated. This rule
overrides all of the other factors affecting the FILEACCOUNTING value.

FILECARDS

4–12 8600 0502–407

FILECARDS

Type String

Units Not applicable

Range <file equation list>

Default Null string

Read Time See below

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 24

Synonym FILE

Restrictions None

Range

<file equation list>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ; ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
ÄÄÁÄ FILE ÄÁÄ<file internal name>ÄÄ<file attribute assignment list>ÄÁÄÁÄÄ´

<file internal name>

ÄÄ<simple name>ÄÄ´

<file attribute assignment list>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ (ÄÁÄ<file attribute>ÄÄ = ÄÄ<file attribute value>ÄÁÄ) ÄÄÄÄÄÄÄÄÄÄÄÄ´

<file attribute>
<file attribute value>

For descriptions of all the file attributes and the values they can be assigned, refer to the
File Attributes Programming Reference Manual.

 FILECARDS

8600 0502–407 4–13

Explanation

The FILECARDS task attribute can be used to assign file attributes to one or more of the
files declared by the process. Assignments to the FILECARDS task attribute are
sometimes referred to as file equations. This task attribute is most frequently assigned
by the parent in order to cause a task to use a file different from the one it otherwise
would use.

The <file internal name> variable corresponds to the internal name of the file as it is
declared in the process. The internal name is the value of the INTNAME file attribute. If
INTNAME is not assigned for the file, then it receives the file identifier as its value. The
FILENAME file attribute has no effect on the internal name.

Thus, the following ALGOL file declarations both declare files with an internal name of
CARD:

FILE CARD(FILENAME="INPUT/DATA.");
FILE LINE(INTNAME="CARD.",FILENAME="INPUT/DATA.");

If the FILECARDS value assigns attributes to a file that is not declared in the process, no
error results, but the file attribute assignments are never used.

The file attributes assigned by FILECARDS are assigned to the logical file the first time
the process references the file. A process is said to reference a file whenever it
accesses a file attribute or opens a file. The FILECARDS file attribute assignments are
merged with those in the file declaration. Where there is a conflict, the values assigned
through FILECARDS override those assigned in the declaration. The file attributes
assigned by FILECARDS, in turn, can be overridden by file attribute assignment
statements later in the process.

FILECARDS can be assigned either before or during process execution. A given
FILECARDS assignment has no affect on files that the process has already referenced at
the time the FILECARDS assignment is made.

Note that, for a file declared within a procedure, the system creates a new logical file
each time the process enters that procedure, and deallocates the logical file each time
the process exits the procedure. The system applies the FILECARDS values to the logical
file the first time the process references the file after each time the process enters the
procedure.

Read Time

The FILECARDS task attribute can be read at any time from ALGOL. However, the value
returned is encoded in an internal form that does not resemble the original FILECARDS
assignments. The FILECARDS task attribute returns a null value if read from COBOL and
cannot be read from WFL at all.

Inheritance

Internal processes inherit the FILECARDS value of the parent.

FILECARDS

4–14 8600 0502–407

Overwrite Rules

In ALGOL or COBOL, if the FILECARDS attribute of a task variable is assigned more than
once, each assignment is merged with the previous value of the FILECARDS attribute. A
file attribute assignment in the existing value is overwritten only in the following cases:

• If the new assignment specifies a different value for the same attribute of the same
file.

• If a null string is assigned to FILECARDS. In this case, the FILECARDS value is
restored to null.

In WFL, a FILECARDS assignment is generally merged with the existing FILECARDS
value for the same task. However, if the same file is affected by two FILECARDS
assignments in the same statement, then the file might be affected only by the later
FILECARDS assignment. The two sets of FILECARDS assignments to that file are
merged only if at least one of the following conditions is true:

• The later FILECARDS assignment includes an asterisk (*)

• The <file internal name> construct in the later FILECARDS assignment is a string
primary.

If neither of the preceding conditions is true, then the first of the two FILECARDS
assignments in the statement is discarded. Refer to the WFL examples later under this
heading.

When a process is initiated, the FILECARDS values given through assignments to the
task variable, object code file assignments, and inheritance from the parent are merged
into a single FILECARDS value. If these sources assign conflicting values to the same file
attribute of the same file, then standard overwrite rules determine which file attribute
assignment takes precedence.

Examples

In WFL, the syntax for assigning FILECARDS is distinguished by several special features,
which are illustrated in the following example:

500 RUN OBJECT/DELTA ON PACK;
600 FILE OUT(KIND=DISK,TITLE=(BARNES)ACCUM/DATA ON ORDSPACK);
700 FILE IN=(JACOB)INPUT/DATA ON ORDSPACK;
800 FILECARDS CARD(KIND=READER);

The RUN statement at line 500 initiates a task. The statements at lines 600, 700, and 800
are all assignments to the FILECARDS attribute of that task. Although FILECARDS is a
string-valued task attribute, in WFL the FILECARDS value is not enclosed in quotation
marks ("). The assignment at line 600 shows how multiple file attributes can be assigned
to the same file. The assignment at line 700 shows an abbreviated syntax that can be
used if TITLE is the only attribute being assigned to a file. Line 800 shows the same
syntax as line 600, except that FILECARDS is used instead of its synonym FILE.

 FILECARDS

8600 0502–407 4–15

The following example demonstrates how repeated FILECARDS assignments are
handled in WFL. The comments within the example explain the effects of each
assignment.

TASK T(FILE OUTFILE(KIND=READER,NEWFILE=TRUE,PROTECTION=SAVE));
% File OUTFILE receives all three file attribute assignments because
% they are all part of a single FILECARDS assignment

T(FILE OUTFILE(TITLE=A/B), FILE OUTFILE(KIND=DISK),
 FILE SOURCE(KIND=TAPE), FILE SOURCE(*,TITLE=A/B));
% The second OUTFILE assignment overrides the first one, while the
% second SOURCE assignment is merged with the first one because of
% the asterisk. The resulting task assignment is equivalent to:
% (FILE OUTFILE(KIND=DISK), FILE SOURCE(KIND=TAPE,TITLE=A/B))
% However, this task assignment is merged with the FILECARDS
% assignment in the TASK T declaration, with the following result:
% (FILE OUTFILE(KIND=DISK,NEWFILE=TRUE,PROTECTION=SAVE),
% FILE SOURCE(KIND=TAPE,TITLE=A/B));

RUN OBJECT/TEST [T];
 FILE OUTFILE(TITLE=OTHERDATA);
 FILE OUTFILE(*,SECURITYTYPE=PUBLIC);
% The second OUTFILE assignment is merged with the first, because of
% the *. Then the result is merged with the previous assignments to
% the task variable, for the following combined effect:
% (FILE OUTFILE(KIND=DISK,NEWFILE=TRUE,PROTECTION=SAVE,TITLE=OTHERDATA,
% SECURITYTYPE=PUBLIC), FILE SOURCE(KIND=TAPE,TITLE=A/B);

The CANDE and MARC syntaxes for assigning FILECARDS are the same as the WFL
syntax, except that FILECARDS must be referred to by its synonym, FILE.

The ALGOL syntax for assigning FILECARDS also differs from that used to assign other
string-valued task attributes. The value is terminated by 48"00" instead of by a period (.).
The following is an example:

REPLACE CTASK.FILECARDS BY
 "FILE CARD (KIND=DISK, TITLE=ALGOL/TASK);"
 "FILE CODE (KIND=DISK, TITLE=OBJECT/ALGOL/TASK);" 48"00";

The following ALGOL statement resets the FILECARDS value to a null string:

REPLACE T.FILECARDS BY 48"00" ;

The following COBOL74 or COBOL85 statements assign attributes to two files. The
second assignment does not overwrite the first assignment, but rather is merged with it:

CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO
 "FILE CARD(KIND=DISK,TITLE=JUNK/JUNK);".
CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO
 "FILE LINE(KIND=DISK,TITLE=JUNK/JUNK3);".

FILECARDS

4–16 8600 0502–407

Run-Time Errors

FILECARDS ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign the FILECARDS value of an in-use process. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

FILECARDS ATTRIBUTE INCORRECT SYNTAX

There were one or more syntax errors in the file attribute assignments in the FILECARDS
value. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

 FILEGROUP

8600 0502–407 4–17

FILEGROUP

Type String

Units Not applicable

Range <Simple Name>

Default Null string

Read Time Anytime

Write Time Anytime

Inheritance See below

Overwrite Rules See below

Host Services Supported

Attribute Number 152

Synonym None

Restrictions None

Explanation

The FILEGROUP task attribute specifies the default group name to be assigned to the
GROUP file attribute of any newly created disk files that are owned by the task. The
FILEGROUP attribute can be set on the task or in the USERDATAFILE entry for a user.
The value set on the task always takes precedence over any value set in the
USERDATAFILE for the USERCODE associated with the task. Explicit assignment on the
file always takes precedence over any default value set on the task or assigned from the
USERDATAFILE.

Setting the FILEGROUP attribute to “.” deletes the value set on the task and restores
the default setting from the USERDATAFILE (if set).

Interrogating the FILEGROUP attribute only returns the value set on the task. The
FILEGROUP attribute set for the user is not returned by this task attribute. Use the
DEFAULTGROUP task attribute to determine the “effective” FILEGROUP value
associated with the task. Refer to the DEFAULTFILEGROUP task attribute description for
more information.

Setting the FILEGROUP attribute to 48"00" causes both the FILEGROUP value assigned
to the task and the task’s FILEGROUP value assigned from the USERDATAFILE to be
deleted. This can be used to disable any default group assignment by the task.

Inheritance

The FILEGROUP attribute set on the task is inherited from the parent if not set on the
child task.

The FILEGROUP attribute associated with the USERCODE follows inheritance of the
USERCODE attribute. That is, if the USERCODE attribute of a task is inherited from the

FILEGROUP

4–18 8600 0502–407

parent, then the task also inherits the user’s setting for the FILEGROUP attribute if it is
set in the parent task. If the user’s FILEGROUP value is not set on the parent task, then
any user FILEGROUP value for the child task is deleted.

When the USERCODE attribute of a task is changed, the task’s FILEGROUP value
associated with the user is changed to the value associated with the new usercode. For
task-to-task assignment of the USERCODE attribute, the value is assigned from the
source task variable. For string assignment of the USERCODE attribute, the value is
assigned from the USERDATAFILE. In either case, if the value is not set for the new
USERCODE, the user FILEGROUP value for the task is deleted. If the USERCODE
attribute of the task is set to “.”, then the user FILEGROUP value for the task is deleted.
The FILEGROUP value assigned to the task is unaffected by changes to the USERCODE
attribute.

 FILEMASK

8600 0502–407 4–19

FILEMASK

Type Real

Units Not applicable

Range 0 to (2**9) - 1

Default 0

Read Time Anytime

Write Time Anytime

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 143

Synonym None

Restrictions None

Explanation

The FILEMASK task attribute is used in conjunction with the SECURITYMODE file
attribute to control the security of newly created disk files. FILEMASK and
SECURITYMODE are related as follows:

• Any bits that are set to 1 in the FILEMASK task attribute cause the corresponding
bits to be set to 0 in the SECURITYMODE attribute when a disk file is created by the
process. Note that this effect is stronger than establishing a default. Bits that are
set in the FILEMASK value override even SECURITYMODE bits that were previously
set by file attribute assignments in effect when creating the file.

• Any bits that are set to 0 in the FILEMASK task attribute have no effect on the
corresponding bits of the SECURITYMODE attribute.

FILEMASK

4–20 8600 0502–407

The following are the effects of the individual bits in the FILEMASK value:

Field Meaning if Set to 1

[47:39] Field reserved for future use.

[08:01] Prevents the owner from reading the file.

[07:01] Prevents the owner from writing to the file.

[06:01] Prevents the owner from executing the file.

[05:01] Prevents group members from reading the file.

[04:01] Prevents group members from writing to the file.

[03:01] Prevents group members from executing the file.

[02:01] Prevents other users from reading the file.

[01:01] Prevents other users from writing to the file.

[00:01] Prevents other users from executing the file.

This task attribute has no effect on the security of existing files.

For details about the SECURITYMODE file attribute, refer to the I/O Subsystem
Programming Guide and the File Attributes Programming Reference Manual.

Example

The following ALGOL statement sets all of the bits in the task's FILEMASK attribute.

MYSELF.FILEMASK := REAL (NOT FALSE);

The preceding statement causes all the file permission bits of the SECURITYMODE file
attribute to be set to 0 when the file is created.

 GROUPCODE

8600 0502–407 4–21

GROUPCODE

Type String

Units Not applicable

Range <usercode assignment>

Default Null string

Read Time Anytime

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 132

Synonym None

Restrictions None

Explanation and Inheritance

The GROUPCODE task attribute is a read-only attribute that specifies the group code of
the process. Group codes play the following roles in system security:

• Group codes affect the file access rights accorded to processes. The
SECURITYMODE file attribute specifies file access rights for processes whose
GROUPCODE or SUPPLEMENTARYGRPS values match the GROUP attribute of a
file.

• Group codes help control access rights for signals and semaphores, which are
described in the POSIX User's Guide.

When a process is initiated from a CANDE or MARC session, the GROUPCODE task
attribute inherits the value of the GROUPCODE usercode attribute associated with the
usercode of the process.

Similarly, whenever a WFL job is initiated, the GROUPCODE task attribute inherits the
value of the GROUPCODE usercode attribute associated with the usercode of the job.

For library processes initiated by the library linkage mechanism, GROUPCODE inherits
the GROUPCODE value of the process that is linking to the library.

Any process that inherits the USERCODE attribute from the parent also inherits the
GROUPCODE attribute from the parent.

GROUPCODE

4–22 8600 0502–407

If the SETGROUPCODE subattribute of the SECURITYMODE attribute of the code file
was set, then

• The initial GROUPCODE value is taken from the GROUP attribute of the code file. A
copy of the initial GROUPCODE value is stored in the SAVEDGROUPCODE task
attribute. A copy of the GROUPCODE value the process would have received from
the initiating process is stored in the REALGROUPCODE task attribute. A process
can use various functions to toggle the GROUPCODE attribute value between the
values stored in the REALGROUPCODE and SAVEDGROUPCODE task attributes.
For further information about toggling between the real and saved group codes, refer
to the discussion of process identities in the Task Management Programming Guide.

• The system nulls the GROUPCODE value in the task variable when the process
terminates.

If a process is initiated with a different USERCODE value than the parent, or if the
process is assigned a different USERCODE value after being initiated, then the system
automatically updates the GROUPCODE task attribute value in one of the following
ways:

• If USERCODE is assigned the USERCODE value of another task variable, the system
updates the GROUPCODE value with the GROUPCODE of the other task variable.

For example, suppose the following statement is used:

REPLACE MYSELF.USERCODE BY TVAR.USERCODE;

In this case, the system copies the value from TVAR.GROUPCODE to
MYSELF.GROUPCODE.

• If USERCODE is assigned in any other way, the system updates the GROUPCODE
task attribute with the value of the GROUPCODE usercode attribute for the new
usercode. For example, suppose the following statement is used:

REPLACE MYSELF.USERCODE BY "REXP/MYPASS.";

In this case, the system examines the REXP usercode definition in the
USERDATAFILE, and copies the value of the GROUPCODE usercode attribute to
MYSELF.GROUPCODE.

 HISTORY

8600 0502–407 4–23

HISTORY

Type Real

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 10

Synonym None

Restrictions None

Explanation

The HISTORY task attribute records the type of termination a process had, and if
termination were abnormal, it stores information about why the abnormal termination
occurred. The HISTORY value is divided into the following fields:

Field Meaning

[47:01] The operating system sometimes sets this bit for internal purposes.

[46:01] If this bit is set, and field [07:08] stores a value of 4, then process initiation failed.

[45:01] If this bit is set, the process cannot be discontinued.

[44:01] This bit indicates a DS not trappable by TRY error-handling code unless the
PROTECTED option is set. For more information about the TRY statement, refer to
the Task Management Programming Guide.

[43:20] The operating system sometimes stores information in this field for internal
purposes.

[23:08] If the process was discontinued or is suspended, this field stores the specific
reason. This field corresponds to the value of the HISTORYREASON task attribute.
Refer to the HISTORYREASON description for details.

[15:08] If this process was discontinued or is suspended, this field stores the general
reason. This field corresponds to the value of the HISTORYCAUSE task attribute.
Refer to the HISTORYCAUSE description for details.

[07:08] This field stores information about the process state. If the process has
terminated, this field also records the general type of termination. This field
corresponds to the value of the HISTORYTYPE task attribute. Refer to the
HISTORYTYPE description for details.

For details about how to access these fields, refer to “Accessing Task Attributes at the
Bit Level” in Section 1.

HISTORYCAUSE

4–24 8600 0502–407

HISTORYCAUSE

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 67

Synonym None

Restrictions None

Explanation

The HISTORYCAUSE task attribute specifies what general type of condition caused the
process to terminate abnormally or to suspend. The HISTORYCAUSE value is the same
as field [15:08] of the HISTORY task attribute.

If the process did not terminate abnormally and is not suspended, the HISTORYCAUSE
value is 0. No mnemonic is associated with this value.

If the process terminated abnormally, then the HISTORYTYPE value is DSEDV, and the
following are the possible HISTORYCAUSE values and their meanings:

Mnemonic Value

Integer
Value

Meaning

(none) 0 The process has not been initiated, is still in use, or
terminated normally.

OPERATORCAUSEV 1 The process was discontinued by a system
command such as DS (Discontinue).

PROGRAMCAUSEV 2 The process was deliberately terminated for one of
the following reasons:

• A value of TERMINATED was programmatically
assigned to the STATUS task attribute.

• The process attempted an action that is not
allowed by the operating system.

RESOURCECAUSEV 3 The process was terminated for exceeding a
resource limit, such as MAXPROCTIME or
MAXIOTIME.

 HISTORYCAUSE

8600 0502–407 4–25

Mnemonic Value

Integer
Value

Meaning

FAULTCAUSEV 4 The process was terminated because it requested a
machine operation that could not be executed, such
as dividing by zero or reading past the end of an
array.

SYSTEMCAUSEV 5 The process was terminated because it violated a
system parameter, such as overlay row size or the
amount of memory allowed.

DCERRCAUSEV or DCERRV 6 The process was terminated because of a data
comm error.

IOERRCAUSEV or IOERRV 7 The process was terminated because of a physical
I/O error.

SOFTIOERRCAUSEV or
SOFTIOERRV

8 The process was terminated because of a logical I/O
error.

NEWIOERRCAUSEV or
NEWIOERRV

9 The process was terminated because of an error in
opening a file.

UNIMPLEMENTEDCAUSEV
or UNIMPLEMENTEDV

10 The process was terminated because it attempted
to use a feature that has not been implemented.

UNSPECIFIEDCAUSEV 11 The process was terminated because of an error of
an unknown type.

EBDMSERRCAUSEV or
EBDMSERRV

12 The process was terminated because of a Data
Management System II (DMSII) error.

NETWORKCAUSEV 13 The process was terminated because of a BNA-
related error. For example, the process might have
failed initiation because of a missing host or a
missing object code file on a remote host.

SOFTIOERR2CAUSEV or
SOFTIOERR2V

14 The process was terminated because of a logical I/O
error.

If the process is suspended, then the HISTORYTYPE value is STEDV, and the following
are the possible HISTORYCAUSE values and their meanings:

Mnemonic Value

Integer
Value

Meaning

OPERATORCAUSEV 1 The process was suspended by the ST (Stop)
system command.

PROGRAMCAUSEV 2 The process was suspended for one of the following
reasons:

• A resource needed by the process is missing.

• The STATUS task attribute was
programmatically assigned a value of
SUSPENDED.

HISTORYCAUSE

4–26 8600 0502–407

Mnemonic Value

Integer
Value

Meaning

SYSTEMCAUSEV 5 The process was suspended because of a shortage
of available memory.

NETWORKCAUSEV 13 The process was suspended because of a BNA
condition.

For a list of process termination messages and their relationship to HISTORYCAUSE
values, refer to the discussion of process history in the Task Management Programming
Guide.

 HISTORYREASON

8600 0502–407 4–27

HISTORYREASON

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 68

Synonym None

Restrictions Not available in WFL; however, for a
description of how to extract the same
information from the HISTORY task
attribute, refer to “Accessing Task
Attributes at the Bit Level” in Section 1.

Explanation

The HISTORYREASON task attribute indicates the specific reason why a process
terminated abnormally, failed to initiate or was suspended. The HISTORYREASON value
corresponds to field [23:08] of the HISTORY task attribute.

Most HISTORYREASON integer values have mnemonics associated with them. Each
mnemonic briefly describes one reason this HISTORYREASON integer value could have
occurred. You can determine which mnemonic applies in a particular case by using the
HISTORYREASON integer value with the HISTORYTYPE and HISTORYCAUSE values.

If the process did not terminate abnormally and is not suspended, the HISTORYREASON
value is 0. No mnemonic is associated with this value.

One standard method of reading mnemonic-valued task attributes might yield confusing
results if applied to HISTORYREASON. The following is an ALGOL example of this
method:

IF T.HISTORYREASON = VALUE(DIVIDEBYZEROV) THEN ...

The mnemonic DIVIDEBYZERO is associated with a HISTORYREASON value of 1. The
expression shown in the example evaluates to TRUE whenever HISTORYREASON has a
value of 1. However, a HISTORYREASON value of 1 indicates a DIVIDEBYZERO error
only if HISTORYTYPE = DSEDV and HISTORYCAUSE = FAULTCAUSEV.

HISTORYREASON

4–28 8600 0502–407

The following is a better method of reading HISTORYREASON. This example evaluates
to TRUE only if a DIVIDEBYZERO error occurred:

IF T.HISTORYTYPE = VALUE(DSEDV)
 AND T.HISTORYCAUSE = VALUE(FAULTCAUSEV)
 AND T.HISTORYREASON = VALUE(DIVIDEBYZEROV) THEN ...

The following pages list the possible HISTORYREASON values for each combination of
HISTORYTYPE and HISTORYCAUSE values. For HISTORYREASON values that have
mnemonics, the mnemonics are listed under the column heading “Mnemonic Value.”
For HISTORYREASON values that do not have mnemonics, a short explanatory phrase is
listed under the column heading “History Reason (No Mnemonic).”

HISTORYTYPE = 3 (STEDV), HISTORYCAUSE = 1 (OPERATORCAUSEV)

Integer Value Mnemonic Value

0 (No mnemonic. This value means the ST (Stop) system command
was entered from an ODT.)

1 REMOTELYCAUSEDV

HISTORYTYPE = 3 (STEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value Mnemonic Value

1 RESPONSEREQUIRED

HISTORYTYPE = 3 (STEDV), HISTORYCAUSE = 13 (NETWORKCAUSEV)

Integer Value Mnemonic Value

3 SUSPENDEDV

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 1 (OPERATORCAUSEV)

Integer Value Mnemonic Value

0 RSVPV

1 CLEARUNITV

2 JUSTDSEDV

 HISTORYREASON

8600 0502–407 4–29

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value Mnemonic Value

0 MISSINGCODEFILENAMEV

1 MISSINGCODEFILEV

2 ALREADYRUNNINGV

3 INITACTIVETASKV

4 NOEXTERNALRUNV

5 VISITNONACTIVEV

6 ILLEGALVISITV

7 DYNCODEEOFV

8 BADD1STRETCHV

9 ATTREADONLYV

11 NOTSESSIONNUMBERV

12 NONANCESTRALTASKFILEV

13 NOTIMPLEMENTEDV

14 INVALIDCHARGECODEV

15 INCOMPATIBLEBOXESV

18 DEATHINFAMILYV

19 CRITICALBLOCKV

20 BADGOTOV

23 INVALIDPARAMETERV

25 INCOMPATIBLECODEV

26 NOTEXECUTABLEV

27 UNMATCHEDPARAMSV

28 INVCOMPILERVV

29 SECURITYERRORV

30 LIBMAINTV

31 ILLEGALTASKXFERV

32 BADRESIZEDEALLOCV

33 READONLYONACTIVEV

37 MISSINGINTRINSICV

38 INCOMPATIBLELEVELV

39 INFANTICIDEV

40 NOTBOUNDV

41 ILLEGALOWNARRAYV

HISTORYREASON

4–30 8600 0502–407

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value Mnemonic Value

42 DIMSIZERRORV

43 UPLEVELATTACHV

44 ILLEGALSWAPV

46 BADTASKATTRIBUTEV

47 MISSINGCARDDECKV

48 BADRESTARTV

49 BADEVENTUSAGEV

50 BADGIVELOCKV

51 BADGETLOCKV

52 ONLYMCSMAYSETV

53 DCKEYINSIZEV

54 ONLYMCSTASKINGV

56 NONOWNERACCESSV

57 COMPILERSONLYV

58 TASKLIMITEXCEEDEDV

59 AXBADARRAYV

60 RUNTIMEWFLV

61 COMPILERERRORV

62 XSPARAMSV

63 SORTKILLV

66 LIBMISSINGNAMEV

68 LIBNOTINITIATEDV

69 CYCLICPROVISIONV

70 PREVIOUSLYFROZENLIBV

71 LIBIMPLEMENTATIONERRORV

73 NONUNIQLIBV

74 SAVELIBTASKNEVERCALLEDV

75 LIBNEVERFROZEV

77 BADLIBTASKV

78 LIBFEATURENOTIMPLEMENTEDV

79 BADCOMPILERINDEXV

80 LIBNOTPROCESSEDORRUNV

82 INVALIDPARAMV

 HISTORYREASON

8600 0502–407 4–31

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value Mnemonic Value

83 FORTRANERRV

84 PLIRUNTIMEERRV

85 INTRINSICSERRV

86 MATHERRV

87 FORMATERRV

88 LIBDEIMPLEMENTATIONERRORV

89 LIBLEVELINCOMPATIBLEV

90 BADLIBTITLEV

91 CANTLINKTOASYSTEMLIBV

92 NOTASYSTEMLIBV

93 NOTLIBRARYCAPABLEV

94 LISTSERRORV

95 LIBPARENTNOTALIBV

96 HOLDNOTALLOWEDV

97 INVALIDATTVALUEV

98 UNAUTHORIZEDLIBUSEV

99 FOREIGNTASKINITFAILV

100 PORTSERRORV

101 LIBCANCELERRV

102 INVALIDSAVECORELIMITV

103 NONVISTASKFILEV

104 BADINSCRIBEV

105 BADERASEV

106 CLIENTDIEDINACRV

107 BADPOBOXUSAGEV

108 INVALIDSTKNOV

109 BADTCPREQV

110 BYRESTRICTIONV

111 LIBWRONGMARKLEVELV

112 NOINITIATORV

113 UPLEVELTASKASSIGNV

114 FRAMEEXCEEDEDV

115 CODEFILEINCOMPATIBLEWITHMCPV

HISTORYREASON

4–32 8600 0502–407

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value Mnemonic Value

116 CODEFILENOTACTIVEV

117 BADPPBV

123 STACKHASFAMILYV

124 FASTTASKFAULTEDV

125 DATABASEDIEDV

126 LIBRARYDIEDV

127 STACKHASUNITATTACHEDV

128 RESTRICTEDACCESSV

129 ATTWRITEONLYV

130 NONANCESTRALEXCEPTEVENTV

131 INCORRECTSYNTAXV

132 ATTACCESSFAULTV

133 INVALIDLSNV

134 DATACOMMNOTACTIVEV

135 VALUETOOLARGEV

136 PRIVILEGEREQUIREDV

137 NONLOCALACCEPTEVENTV

138 INVSCHEDACTV

139 INVTIMESTATV

140 INVREACTIVATEV

141 INVSOURCEV

142 INVDUMPPARAMV

143 INVCPMACTIONV

144 INVPREFACTIONV

145 INVDISCONNECTV

146 INVDESTINATIONV

147 BLOCKHASNOSCWV

148 PRPROVIDERGONEV

149 LIBWRONGCODEFILEV

150 STEPPARENTDIEDV

151 CRITICALSBDESTROYDV

152 BADCLINDEXV

153 BADAPPROVALRSLTV

 HISTORYREASON

8600 0502–407 4–33

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 2 (PROGRAMCAUSEV)

Integer Value Mnemonic Value

154 CHANGEFAULTV

155 APPROVALFAULTV

156 LINKFAILEDV

157 LINKNOTALLOWEDV

158 AUTOLINKERRV

159 CIAINCORRECTSTATEV

160 CIABADPARAMETERV

161 CIABADLEVELSV

162 CIADSEDV

163 CIAUNSUPPORTEDV

164 BADFPBV

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 3 (RESOURCECAUSEV)

Integer Value Mnemonic Value

0 PROCESSEXCEEDEDV

1 IOEXCEEDEDV

2 STACKEXCEEDEDV

3 PRINTEXCEEDEDV

6 MEMORYEXCEEDEDV

8 TAPEEXCEEDEDV

9 WAITEXCEEDEDV

10 ELAPSEDEXCEEDEDV

12 STRINGPOOLEXCEEDEDV

13 FAMILYSIZEEXCEEDEDV

14 SAVECORELIMITEXCEEDEDV

15 CAUEXCEEDEDV

16 SEGLIMITEXCEEDEDV

HISTORYREASON

4–34 8600 0502–407

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 4 (FAULTCAUSEV)

Integer Value Mnemonic Value

1 DIVIDEBYZEROV

2 EXPOVERFLOWV

3 EXPUNDERFLOWV

4 INVALIDINDEXV

5 INTEGEROVERFLOWV

6 INACTIVEQV

7 MEMORYPROTECTV

8 INVALIDOPV

9 LOOPV

10 MEMORYPARITYV

11 SCANPARITYV

12 INVALIDADDRESSV

13 STACKOVERFLOWV

14 STRINGPROTECTV

16 FALSEASSERTV

17 SEQUENCEERRORV

18 INVALIDPCWV

19 STACKUNDERFLOWV

21 LIBLINKERRORV

22 INVALIDINTV

23 MEMFAIL1V

26 MEMORYFAIL2V

30 PROCINTERNALV

35 PROCDIEDV

37 BCLPOINTERV

40 DISKPARITYV

41 EMODEVIOLATIONV

42 NOACTIVELINKV

43 PROCLINKPARITYV

45 BOTTOMOFSTACKV

46 RUNLIGHTOUTV

47 STACKSTRUCTUREV

48 BADMSCWV

 HISTORYREASON

8600 0502–407 4–35

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 5 (SYSTEMCAUSEV)

Integer Value Mnemonic Value

1 NOMEMV

2 PARITYONPBITV

3 ARRAYTOOLARGEV

4 INCOMPATIBLEWFLJOBFILEV

8 FORCIBLECLOSEV

The process was using an object code file or a data file on a disk
unit that was closed by the CLOSE PK <unit number> :DS form of
the CLOSE (Close Pack) system command.

9 SOFTINTERRORV

The MCP encountered an error while handling software interrupts.

10 APPLICATIONTIMEOUTV

A registered application failed to check in.

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 6 (DCERRCAUSEV)

Integer Value History Reason (No Mnemonic)

10 Message size error

12 Unknown file or station

13 File subtraction error

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 7 (IOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

0 Either a train printer I/O error occurred and could not be resolved, or
else the MCP procedure PATHRES did not successfully complete.
PATHRES performs functions such as loading disk controller
firmware.

6 Direct I/O attribute error

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

0 No error

1 Label parity error

2 Parity error on position

HISTORYREASON

4–36 8600 0502–407

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

3 Invalid translation

4 Incompatible blocking

5 Illegal output reverse

6 Illegal input reverse

7 Short tape blocking

8 Illegal output file

9 No buffer space

10 No space in header

11 Duplicated file

12 Illegal direct I/O

14 Exceeded resources

15 No unit

16 Illegal optional file

17 Illegal final reel

18 Too many names

19 Failed entry

20 Illegal MYUSE value

21 Illegal NEWFILE value

22 DCOPEN failed

23 No write ring

24 Failed volume entry

25 Illegal unlabeled volume

26 Illegal BLOCKSTRUCTURE or FILETYPE

27 Illegal reel number

28 Find routines failed

29 Illegal backward seek

30 Illegal read reverse

31 Illegal seek

32 Parity error on seek

33 Read on output file

34 Read on unopened file

35 Read reverse on unopened file

36 Seek on unopened file

 HISTORYREASON

8600 0502–407 4–37

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

37 Space forward on output file

38 Write on code file

39 Write on input file

40 Write on unopened file

41 Buffer in use

42 Up-level event

43 Security error

44 No room for buffer

45 Unknown error

46 Logic error

47 Already closed

48 No read before rewrite

49 No read before delete

50 Delete on non-I/O file

51 Illegal update file

52 Incompatible file organization

53 Close not called

54 File information block (FIB) stack transition error

55 Locking error

56 Kind list not allowed

57 Dialog communication failure with other host

59 File not removed on disk

60 File not cataloged

61 Checkpoint file title not changed

62 Write user label error

63 RELEASEHEADER error

64 Tried to write beyond end of file (EOF)

65 Rewrite on non-I/O file

66 Logical/physical file mismatch

67 Seek on output file

68 Tape position error

69 Distributed systems service (DSS) cannot handle this file

70 Access restricted to APL

HISTORYREASON

4–38 8600 0502–407

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

71 Open after close with lock

72 Illegal write random

73 Illegal read random

74 Not closed

75 Unexpected I/O error

76 Exception in IOHANDLER

77 Cannot link to IOHANDLER

78 Data error

79 Deleted/duplicate record

80 Parity error

81 I/O not done

82 Invalid subfile

83 Broadcast read error

84 Subfile is closed

85 No available buffer

86 No available message

87 Port not connected

88 End of file (EOF)

89 Illegal short block read

90 Break on output

91 Unit in rewind

92 Time limit exceeded

93 File not available

94 No file

95 Mismatched genealogy

96 Mismatched serial number

97 File not resident

98 Pack not present

99 Invalid access code

100 Foreign file open error

101 Port offer error

102 Illegal hostname for foreign file

103 Data might have been lost

 HISTORYREASON

8600 0502–407 4–39

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

104 Record count error

105 Block count error

106 Host not reachable

107 Write lockout

108 FRAMESIZE and INTMODE values incompatible

109 Binary I/O not allowed

110 End of page

111 BCL not allowed on this machine

112 No continuation pack for audited file

113 Cannot be audit file

114 I/O error occurred during flushing of buffers

115 Too many backup files

116 Maximum audit length exceeded

117 Unable to position file at end

118 Unsupported function

119 Bad use of use routines

120 Must have usercode to use DSS

121 Invalid port name

122 Requires direct I/O

123 SB must contain a disk/pack unit

124 EIO logic error

125 Invalid array index

126 Incompatible I/O length

127 SIZEVISIBLE/FRAMESIZE/INTMODE value conflict

128 I/O error occurred during closing of file

129 I/O support library error

130 I/O error

131 INQ_LIST allocation failed

132 End file not allowed

133 I/O error changing host control (HC) unit access mask register
(AMR)

134 Unsupported protocol type

135 Protocol error

136 No resource to open port

HISTORYREASON

4–40 8600 0502–407

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

137 YOURHOST is not in YOURHOSTGROUP

138 User is not an authorized user of the application group

139 Support library unavailable

140 Error in one or more port-subfiles open operations

141 Error in one or more port-subfiles close operations

142 Incompatible attribute value or values

143 Function not available

144 Unacceptable character set

145 Networking not supported

146 TRANSLATE=FORCESOFT not allowed with binary I/O

147 I/O error clearing adapter or unit

148 Access restrictions not met

149 Cannot create restricted file

150 Security error on output tape open

151 Cannot write on guard file

152 Logical I/O not supported for this type of unit

153 Attribute already set in physical file

154 FAMILYOWNER conflicts with task usercode

155 Illegal I/O to coactive disk

156 Coactive unit not in output mode

157 Incompatible with this MCP version

158 DSS dialogue number too large for logical I/O

159 I/O error occurred during closing of file

160 Tape drive mode change operation failed

161 BYTES is not supported by this unit

162 Random add not allowed unless delete-capable

163 Not delete-capable

164 Record has not been read

165 Beyond extend area

166 Record not locked

167 Record position occupied

168 Sequential write not permitted to EFS direct file

170 Attempt to exceed family limit

 HISTORYREASON

8600 0502–407 4–41

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

171 Family integral limit exceeded

172 Attempt to exceed temporary file limit

174 Illegal write option specified

175 Invalid specification of ANYSIZEIO

176 Area length exceeds maximum allowed

177 Logical file INTMODE incompatible with permanent file
FRAMESIZE

178 Incompatible FILESTRUCTURE

179 Permanent file FILESTRUCTURE must be STREAM

180 Logical file MAXRECSIZE inconsistent with permanent file
MAXRECSIZE

181 Logical file BLOCKSIZE inconsistent with permanent file
BLOCKSIZE

182 MAXRECSIZE exceeds AREALENGTH

183 Logical file FRAMESIZE incompatible with permanent file area
length

184 Unsupported parameter for this service

185 Local interprocess communication (IPC) not supported for this
service

186 Unsupported translation for this service

187 DIOFILESTRUCTURE value requires FILESTRUCTURE to be set

188 Not in proper state for direct I/O to unit EIO

189 Cannot access a file of this FILEKIND

190 Open rejected by correspondent

191 Close rejected by correspondent

192 Endpoint not registered

193 Invalid respond option

194 Service invalid for provider

195 Provider restricted

196 Connect time limit exceeded

197 Correspondent does not support APPLICATIONCONTEXT value

198 Correspondent rejected DEFAULTPCONTEXT value

199 Invalid value or values for DEFINEDPCONTEXTSET

200 Warning—DEFINEDPCONTEXTSET values have changed

201 Warning—port attribute ignored

HISTORYREASON

4–42 8600 0502–407

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

202 Invalid associated data

203 Associated data too long

204 Invalid attribute values for respond

205 Invalid attribute values for AWAITOPEN

206 DEPENDENTSPECS must be TRUE when
DIOFILESTRUCTURE=SECTORSTREAM

207 Warning—initiator close collision

208 Warning—responder close collision

209 Endpoint incompatible with service

210 Unsupported primitive

211 Open failure in KEYEDIO library

212 Read reverse is not supported by this unit

213 Specified MAXRECSIZE is not supported by this unit

214 MAXRECSIZE must equal BLOCKSIZE for this unit

215 MCP does not support Enterprise Database Server use of this
FILESTRUCTURE

216 Insufficient disk space

217 Operator entered OF (Optional File) system command

218 KEYEDIOII write error occurred

219 Unmatched DIOFILESTRUCTURE value

220 Invalid connect TIMELIMIT value

221 Error encoding data

222 No data available to be read

223 Error on broadcast write

224 No buffer available for write

226 Open data was received

227 Open response data was received

228 Close request data was received

229 Close abort data was received

230 Close response data was received

231 More data to come

232 Fault in use routine

233 Logical file MINRECSIZE inconsistent with permanent file
MINRECSIZE

 HISTORYREASON

8600 0502–407 4–43

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 8 (SOFTIOERRCAUSEV)

Integer Value History Reason (No Mnemonic)

233 Logical file MINRECSIZE inconsistent with permanent file
MINRECSIZE

234 BASICSERVICE violation

235 Action not valid in this FILESTATE

236 Transparent LOCALSYNTAX cannot be supported for this subfile

237 Open aborted by correspondent

238 Open rejected—transient

241 Requested PROVIDERGROUP not defined

244 Write on read-only file

245 During a file open, either the CENTRALSUPPORT library could not
be accessed, or CENTRALSUPPORT reported an error related to
CCSVERSION validation, INTMODE/EXTMODE validation, or
translation tables availability

248 Operation requires ownership of all available tokens

249 Tape was changed while assigned

250 Word oriented access not supported for KIND=CD

251 NETBIOS name in use

252 Warning: switching between read and write might result in program
being discontinued

253 Print System error during backup file open

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 9 (NEWIOERRV)

Integer Value Mnemonic Value (No Mnemonic)

20 Data error—no label

37 Remote backup disk error

38 Unknown station

39 Invalid set of attributes

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 10 (UNIMPLEMENTEDCAUSEV)

Integer Value Mnemonic Value

1 DYNAMICOWNARRAYV

HISTORYREASON

4–44 8600 0502–407

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 12 (EBDMSERRCAUSEV)

There are no mnemonics. The possible numeric values correspond to the category
numbers for major categories of Enterprise Database Server exceptions and errors. For a
list of the major category numbers and their meanings, refer to the MCP/AS DMSII
Application Program Interfaces Programming Guide or the MCP/AS DMSII Interpretive
Interface Programming Reference Manual. (Both manuals include the same list of
exception and error values.)

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 13 (NETWORKCAUSEV)

Integer Value Mnemonic Value

1 DISCONNECTEDV

5 HOSTNOTREACHABLEV

12 TASKPROTOCOLERRORV

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 14 (SOFTIOERR2CAUSEV)

Integer Value History Reason (No Mnemonic)

12 Reopen stopped by TAPEMANAGER

13 Creation stopped by TAPESERVER

14 Library cannot open this file

15 Assignment stopped by TAPEMANAGER

16 X400: All segments of data were not sent

17 Warning: Attempt to purge LOCKEDFILE tape

18 Warning: Attempt to purge write-protected tape

19 Domain name error: Resolver not available

20 Domain name error: Name service not available

21 Domain name error: Name service unreachable

22 TCP: Connection in use

23 KEYEDIOII: Deadlock, deadly embrace

24 KEYEDIOII: Deadlock, timeout

25 Disk address out of range

26 Destination unreachable

27 An open or close error was reported by the IOHANDLER library

28 Invalid specification of BUFFERSHARING

29 File open with exclusive BUFFERSHARING

30 File open without BUFFERSHARING

31 Last I/O before REWRITE or DELETE must be a READ

 HISTORYREASON

8600 0502–407 4–45

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 14 (SOFTIOERR2CAUSEV)

Integer Value History Reason (No Mnemonic)

32 Different length record

33 Port file read failed: Buffer less than a segment

34 Port file read failed: Data length specified exceeds the buffer size

35 Port file read failed: Data length exceeds 63000

36 Port file read failed: All segments were not sent

37 Port file read failed: Segment I/O attribute was not set

38 Open error: UNIQUETOKEN expansion exceeds node size

39 Blocks of both logical and permanent file must be integral number
of sectors

40 My application process title not recognized

41 My application process invocation ID not recognized

42 My application entity invocation ID not recognized

43 My application entity qualifier not recognized

44 Your application process title not recognized

45 Your application process invocation ID not recognized

46 Your application entity invocation ID not recognized

47 Your application entity qualifier not recognized

48 Invalid specification of APPEND

49 Random write with APPEND set

50 Attempt to purge unlabelled tape

51 Illegal SEEK option specified

52 Illegal READ option specified

53 Incompatible attributes on OPEN where FILEKIND=FIFO

54 FIFO currently has no readers

55 FIFO in use from this logical file

56 Write to FIFO which has no readers

59 Invalid control value for laser beam printer file

60 File already exists

63 Invalid use of TRUNCATE option

64 Open type incompatible with retained file

65 Open type incompatible with duplicated file

67 EXTMODEs of logical file and physical file incompatible

68 Cannot use file, ‘AREAS’, ‘AREASIZE’, or file too large

69 Incompatible FILEUSE specified

HISTORYREASON

4–46 8600 0502–407

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 14 (SOFTIOERR2CAUSEV)

Integer Value History Reason (No Mnemonic)

70 Incompatible attributes on OPEN where FILEKIND indicates a
special file

71 The permanent directory already exists

72 The permanent directory is not empty

73 Name contains too many nodes

74 Name contains invalid character

78 Read/write interrupted by signal

79 Read/write interrupted by signal, process group is orphaned

85 Sequential I/O after reaching EOF

86 Sequential I/O after unsuccessful seek

87 Interrupted by signal during OPEN

89 Incompatible attributes on OPEN where FILEKIND indicates a
permanent directory

90 File IDs longer than 17 characters are not allowed for this kind of
file

91 The complex translation failed because the array was too small to
hold the translated data

92 The complex translation failed because it ran out of source data
prematurely

93 The complex input translation (EXTMODE to INTMODE) failed
because it is not supported by the CENTRALSUPPORT library

94 The complex output translation (INTMODE to EXTMODE) failed
because it is not supported by the CENTRALSUPPORT library

95 An error occurred in the CENTRALSUPPORT library

96 A fault occurred in the CENTRALSUPPORT library

97 The SYSTEM/CCSFILE is not accessible or is missing

98 User-supplied translate tables cannot be used when complex
translation is required

99 Complex translation is not allowed or supported for this file

100 Complex characters are not allowed or supported for this file

101 The CENTRALSUPPORT library does not support complex
translation for the INTMODE/EXTMODE values provided

102 The target family for the new permanent directory is not present or
is not a volumed disk

103 Cannot open a new file on a shared disk family with this share level

104 The file must be input only or output only

106 A value of the EXTDELIMITER attribute was specified that is
incompatible with the other attributes of the file

 HISTORYREASON

8600 0502–407 4–47

HISTORYTYPE = 4 (DSEDV), HISTORYCAUSE = 14 (SOFTIOERR2CAUSEV)

Integer Value History Reason (No Mnemonic)

107 An IOHANDLER library did not recognize the version of the INFO
array passed to the open routine, and rejected the open

108 The IOHANDLER detected an error in the IOHSTRING parameter
set in the virtual file and passed to the IOHANDLER library open
procedure

109 The REDIRECTOR IOHANDLER library encountered a protocol error
communicating with the server

110 The REDIRECTOR IOHANDLER library could not establish the
required NETBIOS session with the server. The address or name of
the server is incorrectly specified, the server is offline, or the
underlying network software is not working

111 The server responded to the REDIRECTOR negotiate protocol
request indicating that it did not support any of the protocols the
REDIRECTOR supported

112 The server rejected the credentials supplied during the session
setup phase of file open

113 The server rejected the open for capacity reasons

114 The server rejected the share connection requested

115 The file name supplied during the OPEN of a redirected file was
invalid for REDIRECTOR

116 The file name supplied during the OPEN of a redirected file
indicated that it was formatted as a UNC (Uniform Naming
Convention) file name, but was incorrectly formatted

117 The BLOCKSTRUCTURE value for the logical file is incompatible
with the BLOCKSTRUCTURE value for the permanent file

119 Library cannot close this file

 Examples

Suppose that the following task attributes have the values shown:

HISTORYTYPE = 4 (DSEDV)
HISTORYCAUSE = 4 (FAULTCAUSEV)
HISTORYREASON = 1

In this context, a HISTORYREASON of 1 means DIVIDEBYZEROV. In other words, the
process was discontinued because it attempted to divide by zero.

HISTORYREASON

4–48 8600 0502–407

Now suppose that these task attributes have the following values:

HISTORYTYPE = 4 (DSEDV)
HISTORYCAUSE = 3 (RESOURCECAUSEV)
HISTORYREASON = 1

In this context, a HISTORYREASON of 1 means IOEXCEEDEDV. In other words, the
process was discontinued because it used more I/O time than was allowed by its
MAXIOTIME task attribute value.

 HISTORYTYPE

8600 0502–407 4–49

HISTORYTYPE

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default NORMALV

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 66

Synonym None

Restrictions None

Explanation

The HISTORYTYPE indicates the type of termination that occurred for a process. The
HISTORYTYPE value is identical to field [07:08] of the HISTORY task attribute. Possible
values are as follows:

Mnemonic Value

Integer
Value

Meaning

NORMALV 0 The process is still in-use or has not yet been
initiated.

DUMPINGV 1 The process is performing a program dump.

QTEDV 2 The QT system command was used against the
process.

STEDV 3 The process is suspended.

DSEDV 4 The process was discontinued (terminated
abnormally).

NORMALEOTV 5 The process terminated normally.

SYNTAXERRORV 6 The process was a compilation that failed because
of syntax errors in the source program.

UNKNOWNEOTV 7 The process was terminated by an unknown cause
or by a cause related to job queues.

DSEDINEPILOGV 8 The process was a WFL job whose initiation failed
because the job attribute list included an invalid task
attribute assignment; or, the process is executing an
EPILOG procedure after having been discontinued.

HOSTNAME

4–50 8600 0502–407

HOSTNAME

Type String

Units Not applicable

Range <hostname>

Default None

Read Time Anytime

Write Time Before initiation

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 64

Synonym None

Restrictions None

Range

<hostname>

A valid HOSTNAME contains from 1 to 17 alphanumeric characters that include the
uppercase letters A through Z and the numerals 0 through 9 only.

Explanation

The HOSTNAME task attribute specifies the host system on which the process runs.

If HOSTNAME is specified before initiation, the object code file is searched for and
initiated on the requested host. If HOSTNAME is read after initiation, it returns the name
of the host where the process is running.

For general information about initiating and controlling tasks on remote host systems,
refer to the discussion of tasking across multihost networks in the Task Management
Programming Guide.

Overwrite Rules

Standard overwrite rules apply, except that HOSTNAME task attribute assignments
should not be made to an object code file. If HOSTNAME is assigned to an object code
file, the process is immediately discontinued as soon as it is initiated.

 HOSTNAME

8600 0502–407 4–51

Run-Time Errors

HOSTNAME ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign HOSTNAME a value that did not follow the simple name
syntax. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

HOSTNAME ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign a HOSTNAME value to an in-use process. The assigning
process, if nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
and HISTORYREASON = 33 (READONLYONACTIVEV).

ILLEGAL HOST-TO-HOST TRANSFER OF TASK

An attempt was made to initiate a process with a compiled-in HOSTNAME task attribute
value. The initiating process is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 31 (ILLEGALTASKXFERV).

HSPARAMSIZE

4–52 8600 0502–407

HSPARAMSIZE

Type Integer

Units See below

Range –65535 to +65535

Default 0

Read Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 70

Synonym None

Restrictions None

Explanation

The HSPARAMSIZE task attribute records the total length of the parameters passed to
this process. This attribute is mainly intended for use by the system software, but can
also be read by application programs.

Units

If the value of HSPARAMSIZE is less than 0, the length is expressed in words. If the
value of HSPARAMSIZE is greater than 0, the length is expressed in bytes.

 INHERITCREDENTIALS

8600 0502–407 4–53

INHERITCREDENTIALS

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default TRUE

Read Time Anytime

Write Time Before initiation

Inheritance None

Overwrite Rules Standard

Host Services Not supported

Attribute Number 149

Synonym INHERITCREDS

Restrictions None

Explanation

The INHERITCREDENTIALS attribute controls the inheritance of credentials.

By default, credentials are inherited unless the parent task’s credentials are blocked.
Credentials are copied if the initiation is for an independent task or if CREDENTIALSBASE
is set to TRUE. In all other cases, credentials are shared with the parent task.

For information about credential management and Generic Security Service Application
Program Interface (GSS-API), see Appendix G in the Security Administration Guide.

Examples

The following examples show the syntax used to run a program that needs to use server
credentials:

• To run a program, from MARC or CANDE, that needs to use server credentials, enter
the following command:

RUN SYSTEM/SPECIAL/SERVICE; CREDENTIALSBASE

• To run a program, from MARC or CANDE, that needs to use server credentials but is
not allowed to use the credentials of a particular user’s session, enter the following
command:

RUN SYSTEM/SPECIAL/SERVICE; CREDENTIALSBASE; INHERITCREDENTIALS = FALSE

INHERITMCSSTATUS

4–54 8600 0502–407

INHERITMCSSTATUS

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default See below

Read Time See below

Write Time See below

Inheritance None

Fork() Inheritance FALSE

Overwrite Rules See below

Host Services Not supported

Attribute Number 92

Synonym None

Restrictions Not available in WFL

Explanation

The INHERITMCSSTATUS task attribute controls whether a process inherits MCS status,
TASKING status and/or locked program status.

MCS status confers special privileges and priority, which are discussed in the Task
Management Programming Guide.

The INHERITMCSSTATUS task attribute, if TRUE, enables a process to inherit the
privileges and priority category of an MCS. If the initiating process is not an MCS, then
the INHERITMCSSTATUS task attribute can only be used to remove TASKING and/or
locked program status from the process.

Use INHERITMCSSTATUS to control TASKING status and locked program status of an
internal offspring. If set to FALSE, TASKING status and locked program status are not
inherited. Refer to the Task Management Programming Guide for more information about
tasking status. For information about locked program status, refer to the LOCKED option
of the MP command in the System Commands Operations Reference Manual.

Note: Although tasking programs have many of the same privileges as an MCS, the
INHERITMCSSTATUS task attribute cannot be used to cause tasking status to be
inherited.

 INHERITMCSSTATUS

8600 0502–407 4–55

Range

When the INHERITMCSSTATUS attribute is written, the value range is TRUE or FALSE.
Other bits in the value are ignored. When the INHERITMCSSTATUS attribute is read, the
value returned contains the following additional information:

Field Name Value Meaning

[47:01] MCS Status 0 Task does not have MCS status.

 1 Task has MCS status.

[46:07] MCS Number The MCS number of the task if the task has
MCS status.

[39:39] Not used

[00:01] InheritMCSStatus 0 Task does not inherit MCS status, Tasking
Status, or Locked Program status from
parent process.

 1 Task inherits MCS status from parent
process.

Default

INHERITMCSSTATUS defaults to FALSE for most processes. However, the
INHERITMCSSTATUS task attribute defaults to TRUE for internal processes initiated by
an MCS.

Read Time, Write Time, and Overwrite Rules

The INHERITMCSSTATUS of a task variable can be read or written at any time, but only
by the following types of programs:

• Host Services system software

• Libraries with a nonzero linkage class

• Programs marked with one or more of the following types of security status:
compiler status, MCS status, privileged status, or tasking status. (Note that it is the
object code file, rather than the process usercode, that must have the special
security status.)

For information about linkage classes and about the various types of security status,
refer to the Task Management Programming Guide.

Although you can assign INHERITMCSSTATUS to object code files, such assignments
are ignored when the program is initiated.

Similarly, although you can assign INHERITMCSSTATUS through task equations in
CANDE and MARC, such assignments have no effect. INHERITMCSSTATUS task
equations in WFL result in the run-time error or warning “INHERITMCSSTATUS
ATTRIBUTE –RESTRICTED ACCESS”, which is described later under this heading.

INHERITMCSSTATUS

4–56 8600 0502–407

Run-Time Error

INHERITMCSSTATUS ATTRIBUTE – RESTRICTED ACCESS

A program lacking the necessary code file privileges attempted to access the
INHERITMCSSTATUS task attribute. The accessing process, if nonprivileged, is
discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 128 (RESTRICTEDACCESSV).

 INITPBITCOUNT

8600 0502–407 4–57

INITPBITCOUNT

Type Real

Units Presence-bit operations

Range 0 to about 4.31E+68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 104

Synonym None

Restrictions None

Explanation

The INITPBITCOUNT task attribute returns the number of initial presence-bit interrupts
that have been performed for the process since its initiation.

For information about initial presence-bit operations, refer to the discussion of controlling
process memory usage in the Task Management Programming Guide.

INITPBITTIME

4–58 8600 0502–407

INITPBITTIME

Type Real

Units See below

Range 0 to about 4.31E+68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 105

Synonym None

Restrictions None

Explanation

The INITPBITTIME task attribute returns the total time spent processing initial presence-
bit interrupts for this process.

For information about initial presence-bit operations, refer to the discussion of controlling
process memory usage in the Task Management Programming Guide.

Units

In WFL, this value is returned in units of seconds. In all other languages, this value is
returned in units of 2.4 microseconds.

 ITINERARY

8600 0502–407 4–59

ITINERARY

Type String

Units Not applicable

Range <hostname list>

Default Null string

Read Time Anytime

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 72

Synonym None

Restrictions None

Range

<hostname list>

 ÚêÄÄÄÄÄÄ , ÄÄÄÄÄ¿
ÄÄÁÄ<simple name>ÄÁÄÄ´

Explanation

The ITINERARY task attribute contains a record of the remote hosts where ancestors of
this process were initiated. The leftmost entry in the string is the hostname of the most
recent remote ancestor of the process. The next entry in the string is the hostname of
the host where the next most recent remote ancestor was initiated, and so forth.

The default value of null indicates that the process has no remote ancestors.

Inheritance

This attribute is inherited verbatim from parent to offspring when the parent and
offspring are running on the same host. When the parent and offspring are on different
hosts, the offspring inherits the parent's ITINERARY value with an added entry at the left
that records the host where the parent is running.

ITINERARY

4–60 8600 0502–407

Examples

The contents of the ITINERARY attribute for four related processes are shown in the
following table:

Process ITINERARY Value of Process

A “.”

B “BLUE.”

C “BLUE.”

D “YELLOW, BLUE.”

The relationship of the processes is as follows:

• Job A starts on host BLUE.

• Job A initiates task B on host YELLOW.

• Task B initiates task C on host YELLOW.

• Task C initiates task D on host RED. Note that RED does not appear in the
ITINERARY value for D because the ITINERARY reflects only the ancestors of D.

 JOBNUMBER

8600 0502–407 4–61

JOBNUMBER

Type Integer

Units Not applicable

Range 100 to 65,535

Default See below

Read Time Anytime

Write Time See below

Inheritance See below

Fork() Inheritance Value of MIXNUMBER

Overwrite rules See “Write Time” below

Host Services Supported

Attribute Number 41

Synonym None

Restrictions None

Explanation

For a task, the JOBNUMBER task attribute records the mix number of the job that owns
the task. For a job, the JOBNUMBER task attribute value records the job's own mix
number. The mix number is a number that uniquely identifies a process and which the
system assigns to the process at initiation. A process can read the mix number by using
the MIXNUMBER task attribute.

For further information about mix numbers and relationships between jobs and tasks,
refer to the Task Management Programming Guide.

Default and Inheritance

The JOBNUMBER value is 0 before initiation. At initiation, a job is automatically assigned
a JOBNUMBER value by the system. When you initiate a task from a MARC or CANDE
session, the task receives a JOBNUMBER value equal to the session number. All other
tasks inherit the JOBNUMBER value of their parents, unless the BDBASE bit is set in the
process's OPTION task attribute. In this case, the JOBNUMBER of the process is set to
the process's mix number.

Range

For tasks initiated from a MARC or CANDE session, the JOBNUMBER value equals the
session number and can range from 100 up to 65,535.

Tasks not initiated from MARC or CANDE inherit the JOBNUMBER value of their
parents, unless the BDBASE bit is set in the OPTION task attribute of the process. In
this case, the JOBNUMBER of the process is set to the mix number of the process. For

JOBNUMBER

4–62 8600 0502–407

these processes, the JOBNUMBER value equals the MIXNUMBER value of MYJOB and
is in the range from 100 up to 65,535.

Write Time

Only a tasking program, MCS, or other system software can effectively assign the
JOBNUMBER value.

WFL MODIFY statements can assign a JOBNUMBER value to an object code file, but
the JOBNUMBER is overridden by the system at initiation time. Similarly, CANDE
permits you to specify JOBNUMBER in task equations, but the system overrides the
JOBNUMBER value at task initiation time.

Run-Time Errors

The following errors are fatal unless the accessing process is privileged.

JOBNUMBER ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign JOBNUMBER a value less than 0 or greater than 65,535.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

JOBNUMBER ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign a JOBNUMBER value to an in-use process. The
accessing process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

JOBNUMBER ATTRIBUTE MAY ONLY BE SET BY AN MCS OR TASKING
PROGRAM

A process that was not an MCS or tasking program attempted to assign a value to
JOBNUMBER. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 54
(ONLYMCSTASKINGV).

JOBNUMBER ATTRIBUTE – RESTRICTED ACCESS

A WFL job attempted to task-equate the JOBNUMBER attribute of a task. The WFL job,
if nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 128 (RESTRICTEDACCESSV).

JOBNUMBER IS NOT A SESSIONNUMBER

An attempt was made to assign JOBNUMBER a value that was not a session number.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 11 (NOTSESSIONNUMBERV).

 JOBSUMMARY

8600 0502–407 4–63

JOBSUMMARY

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default DEFAULT

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance Inherited from parent if
DEPTASKACCOUNTING = IDENTIFIED;
otherwise, no job file is created.

Overwrite Rules Standard

Host Services Supported

Attribute Number 81

Synonym None

Restrictions None

Explanation

The JOBSUMMARY task attribute of a job determines whether the job produces a job
summary printout. The following are the possible values and their meanings:

Mnemonic Value

Integer
Value

Meaning

DEFAULT 0 If the NOSUMMARY option of the OPTION task attribute
is set, then the effects are the same as if JOBSUMMARY
had a value of CONDITIONAL. If NOSUMMARY is not
set, job summary printing is controlled by the
JOBSUMMARY option of the PS DEFAULT system
command. This PS DEFAULT JOBSUMMARY option can
specify a value of CONDITIONAL, SUPPRESSED,
UNCONDITIONAL, or ABORTONLY. These values have
the same effects as the corresponding JOBSUMMARY
task attribute values.

CONDITIONAL 1 The job summary is printed only if one of the following
conditions occurs: backup files are produced, the job
terminates abnormally, or a descendant compilation
encounters a syntax error.

JOBSUMMARY

4–64 8600 0502–407

Mnemonic Value

Integer
Value

Meaning

SUPPRESSED 2 The job summary is suppressed, except in the following
circumstances:

• The job is submitted from an ODT and has WFL
syntax errors.

• The job is discontinued because of a job queue
conflict, such as requesting a nonexistent job queue,
or specifying job attributes that conflict with job
queue attributes.

Any backup files associated with the job are printed,
regardless of whether the job summary prints or not.

UNCONDITIONAL 3 The job summary is printed, regardless of how the job
terminates or whether there are backup files.

ABORTONLY 4 The job summary is printed only if the job or one of its
descendants terminates abnormally.

The JOBSUMMARY value is not used until the job terminates. If JOBSUMMARY is
assigned more than once for an in-use job, only the last assignment before job
termination has effect.

When a task initiated through a CANDE or MARC RUN command attempts to access its
own JOBSUMMARY value, the system actually accesses the JOBSUMMARY value for
the session. In other words, for a task initiated by the RUN command from a session,
MYSELF.JOBSUMMARY is interpreted as MYJOB.JOBSUMMARY. Any assignments
made by the offspring actually affect the job summary for the session.

Similarly, for WFL statements submitted through a CANDE or MARC WFL command,
MYJOB(JOBSUMMARY) affects the job summary of the session. However, in such WFL
statements, MYSELF(JOBSUMMARY) has no effect on the job summary of the session.

In MARC, you can also assign the JOBSUMMARY value for a session by using the
MARC JOBSUMMARY command.

A task initiated from a job can read or modify its own JOBSUMMARY value. However,
for a task, the JOBSUMMARY value has no effect, because a task has no job summary.
The JOBSUMMARY value of the task's job determines whether a job summary is
produced.

 JOBSUMMARY

8600 0502–407 4–65

Using DESTNAME with JOBSUMMARY

The DESTNAME task attribute exists only to support legacy printing applications through
message control systems (MCSs). DESTNAME cannot be used to generate print
requests. However, if DESTNAME is specified to deliver job summaries, the following
rules apply:

• The JOBSUMMARY task attribute determines whether a job summary is printed by
the Print System and whether one is created for an MCS to print.

• A job summary file is created for each service (Print System or MCS) for which
printed output is generated. You can control the name of the job summary file
created for the Print System with the JOBSUMMARYTITLE task attribute.

• If no printed output is created and the JOBSUMMARY task attribute is specified, a
job summary is created for the Print System. If no printed output is created and the
DESTNAME task attribute is specified, a job summary is created for an MCS. If both
the DESTNAME and JOBSUMMARYTITLE attributes are set, two files are created.
Whether the Print System job summary is printed depends on the setting of the
JOBSUMMARY task attribute.

For information on the DESTNAME task attribute, refer to Section 3 in this manual.

Run-Time Error

JOBSUMMARY ATTRIBUTE INCORRECT SYNTAX

An attempt was made to set JOBSUMMARY to a value less than 0 or greater than 3.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

JOBSUMMARYTITLE

4–66 8600 0502–407

JOBSUMMARYTITLE

Type String

Units Not applicable

Range <title>

Default Null string

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance Inherited from parent if
DEPTASKACCOUNTING = IDENTIFIED;
otherwise, set to null string

Overwrite Rules Standard

Host Services Not supported

Attribute Number 97

Synonym None

Restrictions None

Explanation

The JOBSUMMARYTITLE task attribute specifies a title under which the job summary
file should be saved.

If JOBSUMMARYTITLE is null when the job terminates, then a job summary file is
created only if a job summary is to be printed. The job summary file is titled according to
default conventions and is removed immediately after printing.

If the JOBSUMMARYTITLE value has a nonnull value when the job terminates, then the
system creates a permanent job summary file with the value of JOBSUMMARYTITLE as
its title. The job summary file is created even if no job summary is to be printed.
However, even if a job summary is printed, the job summary file is preserved for possible
later use.

If the JOBSUMMARYTITLE value includes an ON <family name> part, then the file is
created on the specified family. Otherwise, the location of the job summary file is
determined by the rules discussed for printer backup file media in the Task Management
Programming Guide.

If a statement assigns JOBSUMMARYTITLE a value that does not include a usercode,
then the system automatically prefixes the new JOBSUMMARYTITLE value with the
usercode under which the job was initiated.

 JOBSUMMARYTITLE

8600 0502–407 4–67

Note: If the usercode of the job changes after initiation, and the job then assigns
JOBSUMMARYTITLE a value that does not include a usercode, the system prefixes
JOBSUMMARYTITLE with the original usercode of the job. If you want the job summary
file to be created under the new usercode of the job, you must explicitly specify the
desired usercode in the JOBSUMMARYTITLE assignment.

Only a privileged process can assign JOBSUMMARYTITLE a usercode different from the
usercode of the process. If a nonprivileged process assigns a usercode to
JOBSUMMARYTITLE, the usercode must match the usercode of the process and the
usercode of the job of the process. A nonprivileged process running without a usercode
cannot assign a usercode to JOBSUMMARYTITLE.

The JOBSUMMARYTITLE attribute has meaning only for jobs and BDBASE tasks.
Whenever a task reads its own JOBSUMMARYTITLE value, a null value is returned. If a
task assigns a value to its JOBSUMMARYTITLE value, then no error results but the value
remains null. The JOBSUMMARYTITLE for a job is accessed with the MYJOB task
variable. The JOBSUMMARYTITLE attribute for a BDBASE task is accessed with the
MYSELF task variable.

When a task initiated from a CANDE or MARC session attempts to access its own
JOBSUMMARYTITLE value, the system actually accesses the JOBSUMMARYTITLE
value for the session. In other words, for a task initiated from a session,
MYSELF.JOBSUMMARYTITLE is interpreted as MYJOB.JOBSUMMARYTITLE. Any
assignments made by the offspring actually affect the job summary for the session. In
MARC, you can also assign the JOBSUMMARYTITLE for a session by using the MARC
JOBSUMMARYTITLE command.

The JOBSUMMARYTITLE value has no effect on the printing of the job summary. For
information about controlling job summary printing, and general information about job
summaries, refer to the Task Management Programming Guide.

Using DESTNAME with JOBSUMMARYTITLE

The DESTNAME task attribute exists only to support legacy printing applications through
message control systems (MCSs). DESTNAME cannot be used to generate print
requests. However, if DESTNAME is specified to deliver job summaries, the following
rules apply:

• The JOBSUMMARY task attribute determines whether a job summary is printed by
the Print System and whether one is created for an MCS to print.

• A job summary file is created for each service (Print System or MCS) for which
printed output is generated. You can control the name of the job summary file
created for the Print System with the JOBSUMMARYTITLE task attribute.

• If no printed output is created and the JOBSUMMARY task attribute is specified, a
job summary is created for the Print System. If no printed output is created and the
DESTNAME task attribute is specified, a job summary is created for an MCS. If both
the DESTNAME and JOBSUMMARYTITLE attributes are set, two files are created.
Whether the Print System job summary is printed depends on the setting of the
JOBSUMMARY task attribute.

For information on the DESTNAME task attribute, refer to Section 3 in this manual.

JOBSUMMARYTITLE

4–68 8600 0502–407

Run-Time Errors

JOBSUMMARYTITLE TASK ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign JOBSUMMARYTITLE a value that does not conform to
the syntax of a title. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

SECURITY VIOLATION

A nonprivileged process attempted to assign JOBSUMMARYTITLE a usercode that is not
allowed for that process. The assigning process is discontinued with HISTORYCAUSE =
2 (PROGRAMCAUSEV) and HISTORYREASON = 29 (SECURITYERRORV). The message
“INVALID TASK ATTRIBUTE: JOBSUMMARYTITLE” is written in the log.

TASK ATTRIBUTE ACCESS FAULT

A disk error resulted from an attempt to read or assign the JOBSUMMARYTITLE of a
process. The reading or assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 132
(ATTACCESSFAULTV).

8600 0502–407 5–1

Section 5
Task Attributes L through R

This section contains task attributes starting with the letters L through R.

LABELFORMAT

5–2 8600 0502–407

LABELFORMAT

Type Mnemonic

Units Not applicable

Range UNSPECIFIED, ANSI69, ANSI87

Default UNSPECIFIED

Read Time Anytime

Write Time Anytime

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules Code file dominant

Host Services Supported

Attribute Number 126

Synonym None

Restrictions None

Explanation

The LABELFORMAT task attribute defines the format of the tape label for the first file
created on a tape

Once the first file on a multifile tape is created, the label format for that tape never
changes. The same label format is used for all later files added to a multifile tape, even if
the LABELFORMAT value changes before the later files are opened. If a reel switch is
performed, all subsequent reels use the same label format as the first file on the first
reel.

 LABELFORMAT

8600 0502–407 5–3

The LABELFORMAT task attribute has three possible values, as follows:

Mnemonic
Value

Integer
Value

Meaning

UNSPECIFIED 0 Generally defaults to the value of the LABELFORMAT system
option. The LABELFORMAT system option is controlled through
the SYSOPS (System Options) system command; the default
value is ANSI69DEFAULT.

The system ignores the LABELFORMAT system option and
automatically enforces ANSI87 format if the tape drive is
compression-capable and either of the following conditions is
true:

• The COMPRESSIONCONTROL file attribute has a value of
SYSTEM and the tape has been purged with the
COMPRESSION option.

• The COMPRESSIONCONTROL file attribute has a value of
USER and the COMPRESSIONREQUESTED file attribute is
TRUE.

ANSI69 1 Complies with ANSI X3.27 1969 standard. This value overrides
the LABELFORMAT system option.

ANSI87 2 Complies with ANSI X3.27 1987 standard. This value overrides
the LABELFORMAT system option.

Note: The system ignores the LABELFORMAT task attribute and automatically
enforces the ANSI87 format for the first file on the tape if all the following conditions are
true:

• The Secure Accountability Facility is activated.

• The TAPECHECK security option is set to AUTOMATIC. This option is controlled by
the SECOPT (Security Options) system command.

• The SECURITYLABELS volume attribute for the tape has a value of TRUE. If the
LABELFORMAT value is ANSI69 and the system enforces a value of ANSI87, the
system issues the warning message “SECURITYLABELS REQUIRE ANSI87 LABELS
BUT OPTION ISN'T SET”.

For illustrations of the standard tape label formats supplied by the system software, refer
to the I/O Subsystem Programming Guide.

LANGUAGE

5–4 8600 0502–407

LANGUAGE

Type String

Units Not applicable

Range <language identifier>

Default See below

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 95

Synonym None

Restrictions None

Range

<language identifier>

ÄÄ<uppercase letter>ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄÁÄ/16\ÄÂÄ<uppercase letter>ÄÂÄÁÄÙ
 ÀÄ<digit>ÄÄÄÄÄÄÄÄÄÄÄÄÙ

Explanation

The LANGUAGE task attribute is used by the MultiLingual System (MLS) to determine
the language of output messages displayed by a process. The LANGUAGE value affects
all messages displayed for the process by the system, including BOT, EOT, and RSVP
messages. The LANGUAGE value also establishes a default language to be applied to
any MESSAGESEARCHER statements executed by ALGOL programs.

You should be especially careful not to misspell the LANGUAGE value, because the
system does not notify you of any spelling errors. The system accepts any combination
of letters and digits that conforms to the language identifier syntax. If the LANGUAGE
value does not correspond to any language that is available on the system, the process
messages are displayed in the system default language.

Refer to the Unisys e-@ction ClearPath Enterprise Servers MultiLingual System
Administration, Operations, and Programming Guide for information about MLS.

 LANGUAGE

8600 0502–407 5–5

Default and Inheritance

A process inherits the LANGUAGE value of its parent.

The default value of LANGUAGE is ENGLISH. A different default can be established for
the whole system by using the LANGUAGE option of the SYSOPS (System Options)
system command.

The system administrator can associate a language with a usercode by including a
LANGUAGE usercode attribute in the usercode definition in the USERDATAFILE. This
language value does not directly affect processes, but it is inherited by MARC or CANDE
sessions with that usercode. You can also change the language of a session after log-on
by using the MARC or CANDE LANGUAGE command. Processes initiated from the
session inherit the current language of the session.

The LANGUAGE attribute of a usercode is also inherited by WFL jobs that are assigned
that usercode in the job attribute list. However, if the job attribute list also contains a
PRINTDEFAULTS assignment, the PRINTDEFAULTS attribute of the usercode is ignored.

Run-Time Errors

LANGUAGE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign a LANGUAGE value that did not conform to the
language identifier syntax. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

TOO MANY LANGUAGES IN USE BY SYSTEM

An attempt was made to assign a language value that would bring the total number of
languages in use on the system to greater than 256. The assigning process, if
nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 99 (FOREIGNTASKINITFAILV).

LIBRARY

5–6 8600 0502–407

LIBRARY

Type String

Units Not applicable

Range <library equation>

Default Null string

Read Time See below

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Not supported

Attribute Number 74

Synonym None

Restrictions None

Range

<library equation>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ; ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
ÄÄÁÄ LIBRARY ÄÁÄ<internal name>ÄÄ<library attribute assignment>ÄÁÄÁÄÄÄÄ´

<internal name>

<simple name>

<library attribute assignment>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ (ÄÁÄ<library attribute>ÄÄ = ÄÄ<library attribute value>ÄÁÄ) ÄÄÄÄÄÄ´

<library attribute>
<library attribute value>

For a list of possible library attributes and their values, refer to the Task Management
Programming Guide

Explanation

The LIBRARY task attribute assigns library attributes to a client library or connection
library declared by the process. The LIBRARY task attribute overrides any conflicting
assignments in the library declaration.

One typical use of this attribute is to cause a client library to link to a different server
library than it otherwise would. The server library to be used can be specified through
assignments to the client library attributes LIBACCESS, FUNCTIONNAME, and TITLE.

 LIBRARY

8600 0502–407 5–7

Another use of the LIBRARY task attribute is to pass a parameter to a library through the
LIBPARAMETER library attribute.

You can also use the LIBRARY task attribute to cause a connection library to link to a
different matching connection library than it otherwise would.

The internal name specified in the LIBRARY value should equal the value of the
INTNAME library attribute. If the INTNAME attribute was not explicitly assigned a value,
then the INTNAME value defaults to the name of the identifier used in the library
declaration.

LIBRARY can be assigned either before or during process execution. A given LIBRARY
assignment has no affect on libraries that the process has already referenced at the time
the LIBRARY assignment is made.

Read Time

The LIBRARY task attribute can be read at any time from ALGOL. However, the value
returned is encoded in an internal form that does not resemble the original LIBRARY
assignments. The LIBRARY task attribute returns a null value if read from COBOL and
cannot be read from WFL at all.

Inheritance

Internal processes inherit the LIBRARY value of the parent.

Overwrite Rules

In ALGOL or COBOL, if the LIBRARY attribute of a task variable is assigned more than
once, each assignment is merged with the previous value of the LIBRARY attribute. A
library attribute assignment in the existing value is overwritten only in the following
cases:

• If the new assignment specifies a different value for the same attribute of the same
library.

• If a null string is assigned to LIBRARY. In this case, the LIBRARY value is restored to
null.

In WFL, a LIBRARY assignment is merged with the existing LIBRARY value if the
assignment includes an asterisk or if the library internal name is a string primary. If no
asterisk is included, and the library internal name is a name constant, then the previous
LIBRARY value is discarded.

When a process is initiated, the LIBRARY values assigned through assignments to the
task variable, object code file assignments, and inheritance from the parent are merged
into a single LIBRARY value. If these sources assign conflicting values to the same
library attribute of the same library, then standard overwrite rules determine which library
attribute assignment takes precedence.

LIBRARY

5–8 8600 0502–407

Examples

The following is an example of a LIBRARY assignment in CANDE and in WFL:

RUN OBJECT/DAILY/UPDATE;
 LIBRARY UPDATER (LIBACCESS=BYTITLE, TITLE=OBJECT/UPDATE/MODS);
 LIBRARY GENROUTINES (TITLE=OBJECT/GENROUTINES/TESTVERSION);

The following is an example of a LIBRARY assignment in ALGOL:

REPLACE T.LIBRARY BY
 "LIBRARY L (LIBACCESS = BYFUNCTION,FUNCTIONNAME=MYSUPPORT);"
 "LIBRARY GENROUTINES (TITLE=OBJECT/GENROUTINES/TEST);" 48"00";

The following ALGOL statement resets the LIBRARY value to a null string:

REPLACE T.LIBRARY BY 48"00";

The following COBOL74 or COBOL85 statements assign attributes to two libraries. Both
assignments are made to the same task variable, TASK-VAR-1. The second assignment
does not overwrite the first assignment, but rather is merged with it:

CHANGE ATTRIBUTE LIBRARY OF TASK-VAR-1 TO
 "LIBRARY L (LIBACCESS=BYFUNCTION,FUNCTIONNAME=""MYSUPPORT"");".
CHANGE ATTRIBUTE LIBRARY OF TASK-VAR-1 TO
 "LIBRARY UPDATER (LIBACCESS = BYFUNCTION);".

Run-Time Error

LIBRARY ATTRIBUTE INCORRECT SYNTAX

There were one or more syntax errors in the library attribute assignments in the
LIBRARY value. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

 LIBRARYSTATE

8600 0502–407 5–9

LIBRARYSTATE

Type Real

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 108

Synonym None

Restrictions None

Explanation

The LIBRARYSTATE task attribute records several types of information about the
properties of a library process. The LIBRARYSTATE value is divided into the following
fields:

Field Name Value

[35:01] CL Call 0 Not initiated by connection library linkage

1 Initiated by connection library linkage

[30:03] Sharing 0 Private

1 Shared by run unit

4 Shared by all

[27:01] Permanent 0 Temporary (The library goes away after the last
 client delinks.)

1 Permanent (The library remains until thawed and the
 last client is delinked or the library is DSed.)

Note: If a permanent or freeze control library is being
thawed or DSed, the exception event for the task will be
caused on a transition from permanent to temporary with no
users.

[26:01] Trusted 0 LINKCLASS is applied to all exported objects

1 Exported objects can each have a LINKCLASS
 different from the overall process LINKCLASS

LIBRARYSTATE

5–10 8600 0502–407

Field Name Value

[25:02] Access 0 Initiated by title

1 Initiated by function

Note: Values for this field can be monitored by a parent
task or used while in a freeze control procedure. (For
example, this could be done to determine the method used
by the initiator of the library where initiation by title is not
acceptable and the library could then be discontinued.) In
addition, the value can change from 0 to 1 if a library was
originally initiated by title, but is later accessed by function.

[19:04] Security Contains the value of LINKCLASS. See the description of
security considerations for libraries in the Task Management
Programming Guide for a description of these values.

[02:01] Nonresumable 1 Library is not resumable

[01:01] Frozen 1 Frozen library

[00:01] Library Call 0 Not initiated as a library (for example, a program that was
 run)

1 Frozen server library process or initiated by the library
 linkage mechanism. The library linkage mechanism
 initiates a library program if a process attempts to import
 an object from a server library or connection library and
 an instance of the library does not already exist.

Note: This field is useful for programs designed to run in
either of two ways, as an ordinary process or a frozen server
library process. The process reads this field value to
determine if it was initiated by the library mechanism; if so,
the process executes a FREEZE statement and becomes a
frozen server library process. If the process was not initiated
by the library linkage mechanism, it can skip the FREEZE
statement and take other actions.

Example

An ALGOL program can use a statement such as the following to determine if it was
invoked as a library and take appropriate action:

IF BOOLEAN(MYSELF.LIBRARYSTATE)
 THEN FREEZE(TEMPORARY)
 ELSE NONLIBACTOR;

This IF statement freezes the process as a server library if the process was invoked as a
library. Otherwise, it calls a procedure named NONLIBACTOR, which is declared
elsewhere in the program.

 LIBRARYUSERS

8600 0502–407 5–11

LIBRARYUSERS

Type Integer

Units Linked processes

Range See below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 101

Synonym None

Restrictions None

Explanation

For server library processes, the LIBRARYUSERS task attribute returns the number of
client processes or connection libraries that are currently linked to this server library.

If the same process links to the server library through two or more library declarations,
the LIBRARYUSERS value counts each declaration as a separate client.

If the process is a server library with a permanent or control freeze, then when the
LIBRARYUSERS value changes to zero, the system causes the exception event of the
process.

If LIBRARYUSERS is read for a process that is not a server library, it returns a zero.

The LIBRARYUSERS value does not reflect the users of any connection libraries declared
by the process.

Range

The value of LIBRARYUSERS is roughly limited to the number of stacks that a given
system is capable of running. This number is anywhere from about 1000 to more than
32000, depending on the model you are using.

LOCKED

5–12 8600 0502–407

LOCKED

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance None

Host Services Not supported

Attribute Number 17

Synonym None

Explanation

The LOCKED task attribute provides a means to regulate the timing of two or more
processes that access a shared object.

If LOCKED has a value of FALSE, then any process can change the value to TRUE and
continue normally. However, if LOCKED has a value of TRUE, then any process that
attempts to set LOCKED to TRUE stops executing until some other process sets the
value of LOCKED to FALSE. If more than one process is waiting to set LOCKED to
TRUE, then when another process sets LOCKED to FALSE, one of the waiting
processes sets LOCKED back to TRUE and resumes execution. The programmer cannot
predict which of the waiting processes resumes execution first. However, the highest
priority process has the best chance. The other waiting processes continue to wait until
the next time a process sets LOCKED to FALSE.

Implicitly, the LOCKED attribute functions by accessing the available state of a
predeclared event. This attribute is used mainly in WFL jobs because they cannot access
events directly. For a detailed discussion of events, refer to the Task Management
Programming Guide.

 MAXCARDS

8600 0502–407 5–13

MAXCARDS

Type Integer

Units Punch cards

Range 0 to 549755813887

Default 0 (unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 39

Synonym None

Restrictions None

Explanation

The MAXCARDS task attribute was previously used to limit the number of cards
punched by a process. This task attribute is no longer used for that purpose.

MAXCARDS stores any integer value assigned to it by a user. The value of this attribute
has no effect on the process nor does it report any information. Rather, the value is
used for communicating information between processes. Any value stored into a
program is inherited in the program’s offspring.

Range

If a value less than 0 is assigned, the value is changed to 0. If a value greater than the
maximum value is assigned, the value is changed to the maximum value,
549755813887.

Inheritance

A process inherits the MAXCARDS value of its parent.

MAXIOTIME

5–14 8600 0502–407

MAXIOTIME

Type Real

Units Seconds

Range 0 through about 1319400 (15 days,
6 hours, 30 minutes)

Default See below

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 5

Synonym IOTIME

Restrictions None

Explanation

The MAXIOTIME task attribute specifies the maximum amount of I/O time that a
process can use. When the ACCUMIOTIME task attribute reaches the same value as the
MAXIOTIME task attribute, the process is discontinued.

When a task terminates, the system decrements the MAXIOTIME value of the task's
parent by the amount of I/O time recorded by the ACCUMIOTIME attribute of the task.
Refer to the ACCUMIOTIME description for details.

Default

If the MAXIOTIME task attribute is not inherited and the value is not explicitly set, then
its value is 0 (zero) and it is treated as unlimited. However, if the value is explicitly set to
0 (zero), it is treated as a limit.

If an attempt is made to assign a negative value to the MAXIOTIME attribute, the default
value of 0 (zero) is assigned.

If MAXIOTIME is accessed through Host Services, bit 47 will always be 0 (zero).

 MAXIOTIME

8600 0502–407 5–15

Inheritance

A process inherits the MAXIOTIME value of its parent.

If a job queue has a default value for the IOTIME queue attribute, then that value is
inherited by the MAXIOTIME task attribute of WFL jobs run from that queue.

If a job queue has a limit value for the IOTIME queue attribute, then WFL jobs that
specify a higher MAXIOTIME value in the job attribute list cannot be accepted into that
job queue.

Overwrite Rules

Standard overwrite rules apply, with the following exceptions:

• When a task is initiated, the MAXIOTIME value is the minimum of the value inherited
from the parent and any value resulting from standard overwrite rules.

• For MAXIOTIME assignments to an in-use process, the maximum value that can
result is the job's current MAXIOTIME value, minus the amount of I/O time the
process has already used. Attempts to assign a higher value result in this maximum
value being assigned. No error or warning is issued.

Run-Time Errors

EXC I/O TIME

The process used more I/O time than is allowed by the MAXIOTIME task attribute. The
process is discontinued with HISTORYCAUSE = 3 (RESOURCECAUSEV) and
HISTORYREASON = 1 (IOEXCEEDEDV).

MAXIOTIME ILLEGAL ATTRIBUTE VALUE - TOO LARGE

A process attempted to assign MAXIOTIME a value greater than the maximum. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 135 (VALUETOOLARGEV).

MAXLINES

5–16 8600 0502–407

MAXLINES

Type Integer

Units Lines printed

Range 0 to 274877906943

Default 0 (unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 40

Synonym PRINTLIMIT

Restrictions None

Explanation

The MAXLINES task attribute specifies the maximum number of lines that can be printed
by a process and its descendants. If a process and its descendants attempt to print more
lines than are allowed by this attribute, the process is discontinued.

The PRINTCOPIES and DESTINATION file attributes are not considered when
determining the number of print lines a process has created. The system uses two
different, complementary methods to keep track of the number of lines that have been
printed by a parent process and its descendants.

1. For each process, the system maintains a print count that records the total number
of lines that have been printed for all the printer files declared by that process. (This
print count is stored internally and is not visible to the user.) The system updates
this print count whenever the process or any of its descendants writes to a print file
declared by the process. The system discontinues the process if the print count
reaches a value greater than MAXLINES.

2. If a task declares a print file and then writes to it, the system does not update the
print count for the parent of the task. However, when the task terminates, the
system subtracts the task's print count from the parent's MAXLINES value and
updates the parent's MAXLINES value accordingly. The system discontinues the
parent if the new MAXLINES value is lower than the parent's print count.

Range

If a value less than 0 is assigned, the value is changed to 0. If a value greater than
274877906943 is assigned, the value is changed to 274877906943.

 MAXLINES

8600 0502–407 5–17

Inheritance

A process inherits its parent's MAXLINES value if the parent's MAXLINES value is not
unlimited.

If a job queue has a default value for the LINES queue attribute, then that value is
inherited by the MAXLINES task attribute of WFL jobs run from that queue.

If a job queue has a limit value for the LINES queue attribute, then WFL jobs that specify
a higher MAXLINES value in the job attribute list cannot be accepted into that job queue.

Overwrite Rules

Standard overwrite rules apply, with the following exceptions:

• When a task is initiated, the MAXLINES value is the minimum of the value inherited
from the parent and any value resulting from standard overwrite rules.

• For MAXLINES assignments to an in-use process, the maximum value that can
result is the job's current MAXLINES value, minus the number of lines the in-use
process has already written. Attempts to assign a higher value result in this
maximum value being assigned. No error or warning is issued.

Run-Time Error

PRINT LIMIT EXCEEDED

The process attempted to print more lines than were allowed by the MAXLINES value.
The process is discontinued with HISTORYCAUSE = 3 (RESOURCECAUSEV) and
HISTORYREASON = 3 (PRINTEXCEEDEDV).

MAXPROCTIME

5–18 8600 0502–407

MAXPROCTIME

Type Real

Units Seconds

Range 0 through about 1319400 (15 days, 6
hours, 30 minutes)

Default See below

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 4

Synonym None

Restrictions None

Explanation

The MAXPROCTIME task attribute specifies the maximum amount of processor time
that can be used by a process. If the ACCUMPROCTIME task attribute value reaches the
same value as MAXPROCTIME, the process is discontinued.

When a task terminates, the system decrements the MAXPROCTIME value of the task's
parent by the amount of processor time recorded by the ACCUMPROCTIME attribute of
the task. Refer to the ACCUMPROCTIME description for details.

Default

If the MAXPROCTIME attribute is not inherited and the value is not explicitly set, then its
value is zero and it is treated as unlimited. However, if the value is explicitly set to zero,
it is treated as a limit.

If an attempt is made to assign a negative value to the MAXPROCTIME attribute, the
default value of zero is assigned.

If MAXPROCTIME is accessed through Host Services, bit 47 will always be zero.

 MAXPROCTIME

8600 0502–407 5–19

Inheritance

A process inherits its parent's MAXPROCTIME value if the parent's MAXPROCTIME
value is not unlimited.

If a job queue has a default value for the PROCESSTIME queue attribute, then that value
is inherited by the MAXPROCTIME task attribute of WFL jobs run from that queue.

If a job queue has a limit value for the PROCESSTIME queue attribute, then WFL jobs
that specify a higher MAXPROCTIME value in the job attribute list cannot be accepted
into that job queue.

Overwrite Rules

Standard overwrite rules apply, with the following exceptions:

• When a task is initiated, the MAXPROCTIME value is the minimum of the value
inherited from the parent and any value resulting from standard overwrite rules.

• For MAXPROCTIME assignments to an in-use process, the maximum value that can
result is the job's current MAXPROCTIME value, minus the amount of processor
time the process has already used. Attempts to assign a higher value result in this
maximum value being assigned. No error or warning is issued.

Run-Time Errors

EXC PROC TIME

The process used more processor time than is allowed by the MAXPROCTIME task
attribute. The process is discontinued with HISTORYCAUSE = 3 (RESOURCECAUSEV)
and HISTORYREASON = 0 (PROCESSEXCEEDEDV).

MAXPROCTIME ILLEGAL ATTRIBUTE VALUE - TOO LARGE

A process attempted to assign MAXPROCTIME a value greater than the maximum. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 135 (VALUETOOLARGEV).

MAXWAIT

5–20 8600 0502–407

MAXWAIT

Type Real

Units Seconds

Range 0 to about 1319400 (15 days, 6 hours, 30
minutes)

Default 0 (Unlimited)

Read Time Anytime

Write Time Anytime; effective only during Enterprise
Database Server operations

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 49

Synonym None

Restrictions None

Explanation

The MAXWAIT task attribute specifies the maximum number of seconds a process can
wait on a BDMS LOCK or SECURE statement in a program. Each of these BDMS
statements finds and locks a record in an Enterprise Database Server data set or
KEYEDIOII file. These statements cause a process to wait if the requested record is
currently locked by another process.

The MAXWAIT task attribute also specifies the maximum number of seconds a process
can wait on a BDMS BEGIN TRANSACTION or END TRANSACTION statement in a
program. In an Enterprise Database Server database, BEGIN TRANSACTION is used to
enter transaction state and END TRANSACTION is used to leave transaction state. These
statements cause a process to wait if a syncpoint is due and the program in the
transaction state that is holding up the syncpoint is not executing any BDMS verbs.

If an attempt is made to assign a negative value to the MAXWAIT attribute, the default
value of zero is assigned.

Note: By default, there is no MAXWAIT value, and the Enterprise Database Server
performs an unlimited wait. Once an explicit assignment is made to MAXWAIT, the only
means to revert to an unlimited wait is to specify a very large value for the MAXWAIT
attribute. An explicit assignment of 0 (or an assignment of a negative value) to
MAXWAIT specifies that the process is not to wait at all.

If the time limit specified by MAXWAIT is exceeded, the LOCK, BEGIN TRANSACTION,
and END TRANSACTION operations fail and the database status word stores a
DMERROR of DEADLOCK and a DMERRORTYPE of 2.

 MAXWAIT

8600 0502–407 5–21

For information about the BDMS LOCK, SECURE, BEGIN TRANSACTION, and END
TRANSACTION statements, refer to the MCP/AS ALGOL Programming Reference
Manual, Volume 2: Product Interfaces, the MCP/AS COBOL ANSI-85 Programming
Reference Manual, Volume 2: Product Interfaces, and the MCP/AS DMSII Application
Program Interfaces Programming Guide.

If MAXWAIT is accessed through Host Services, bit 47 will always be zero.

This attribute should not be confused with the WAITLIMIT task attribute, which specifies
the number of seconds a process can wait on an event. Refer to the WAITLIMIT
description for details.

Inheritance

A task inherits the MAXWAIT value of its parent if the parent's MAXWAIT value is not
unlimited.

Example

The following is a BDMSALGOL example:

MYSELF.MAXWAIT := 60;
LOCK FIRST STUDENT: RSLT;
IF BOOLEAN(RSLT) THEN
 IF RSLT.DMERROR = DEADLOCK THEN
 IF RSLT.DMERRORTYPE = 2 THEN
 DISPLAY("RECORD NOT UPDATED - LOCKED BY ANOTHER PROCESS");

In this example, STUDENT is the name of a data set and RSLT is a real variable.

Run-Time Error

MAXWAIT ILLEGAL ATTRIBUTE VALUE - TOO LARGE

A process attempted to assign MAXWAIT a value greater than the maximum. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 135 (VALUETOOLARGEV).

MCSNAME

5–22 8600 0502–407

MCSNAME

Type String

Units Not applicable

Range <title>

Default See below

Read Time Anytime

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 122

Synonym None

Restrictions None

Explanation

The MCSNAME task attribute records the name of the message control system (MCS)
that initiated this process family, if it was initiated by an MCS. For example, processes
initiated from a MARC session have an MCSNAME that refers to COMS. Processes
initiated from a CANDE session, even if that session is in a COMS window, have an
MCSNAME that refers to CANDE.

The exact spelling of the MCSNAME corresponds to the file name of the MCS object
code file. No ON <family> part is included. An asterisk (*) might or might not appear at
the start of the MCSNAME. For example, the MCSNAME for COMS might be
*SYSTEM/COMS. The MCSNAME for CANDE might be SYSTEM/CANDE.

Default

Before a process is initiated, the default MCSNAME value is a null string. When an MCS
sets the SOURCESTATION task attribute of a process, the operating system sets the
MCSNAME attribute to the name of the setting MCS.

Inheritance

A process inherits the MCSNAME value of its parent.

If a WFL job is initiated from a CANDE or MARC session or from a task descended from
such a session, the WFL job inherits the MCSNAME of the session.

 MIXNUMBER

8600 0502–407 5–23

MIXNUMBER

Type Integer

Units Not applicable

Range -65535 to 65535

Default See below

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 1

Synonym STACKNO

Restrictions None

Explanation

The MIXNUMBER task attribute returns the mix number of a process. The mix number
uniquely identifies the process in system messages, log entries, and system commands
that affect the process.

A positive MIXNUMBER value indicates an in-use process or a suspended process. A
negative value indicates a terminated process. A zero indicates that the process has not
yet been initiated.

For a further discussion of mix numbers, refer to the Task Management Programming
Guide.

Default

The system assigns the MIXNUMBER task attribute of a new process the next available
mix number that is not in use.

MPID

5–24 8600 0502–407

MPID

Type String

Units Not applicable

Range <identifier>

Default Null string

Read Time Anytime

Write Time Before task initiation

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 158

Synonym None

Restrictions None

 Explanation

The MPID task attribute specifies another identity, in addition to the task name, for a
process. This attribute is useful at sites where multiple copies of the same code file are
used simultaneously because the attribute value is shown in response to mix-related
system commands.

Run-Time Errors

MPID ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign MPID a value that did not conform to the MPID identifier
syntax. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE =
2 (PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

MPID ATTRIBUTE IS READONLY ON ACTIVE TASK

A process attempted to assign a value to the MPID task attribute of an in-use process.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYACTIVEV).

 MYPPB

8600 0502–407 5–25

MYPPB

Type String

Units Not applicable

Range <task equation list>

Default Null

Read Time See below

Write Time Before initiation

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 37

Synonym TASK

Restrictions Not available in WFL

Range

<task equation list>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ; ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄ<task attribute assignment>ÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ<file equation>ÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ<library equation>ÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<database equation>ÄÄÄÄÄÄÄÄÄÙ

<task attribute assignment>
<file equation>
<database equation>
<library equation>

For the syntax of these assignments, refer to the Work Flow Language (WFL)
Programming Reference Manual.

Explanation

The MYPPB task attribute provides temporary storage for task equations that are not
meant to take effect immediately.

The MYPPB task attribute can be assigned only through calls on the
HANDLEATTRIBUTES procedure of the WFLSUPPORT system library. The user program
can control the behavior of HANDLEATTRIBUTES through several parameters, including
one that enables or disables compiler mode and another that specifies a DISPOSITION.

MYPPB

5–26 8600 0502–407

HANDLEATTRIBUTES can assign task equations intended for application to a process,
task equations intended for application to an object code file, or both. The task equations
intended for a process include

• Compiler task equations assigned in compiler mode with a DISPOSITION of
AIATTACHV.

• Noncompiler task equations assigned in noncompiler mode with a DISPOSITION of
AIATTACHV.

The MYPPB task equations intended for a process are applied when one of the following
happens:

• The task variable is used in a process initiation statement.

• The APPLYLIST task attribute of the task variable is assigned a value of TRUE.

The task equations intended for an object code file include all noncompiler task
equations assigned in compiler mode with a DISPOSITION of AIATTACHV or AIAPPLYV.
The system does not apply these task equations, even when APPLYLIST is set to TRUE
or the task variable is used in a process initiation statement. However, if the task variable
is used to initiate a compiler, the compiler applies these task equations to the object
code file it creates.

The HANDLEATTRIBUTES procedure can be invoked repeatedly to make assignments to
the MYPPB attribute of the same task variable. In this case, the system merges the task
equations provided by each HANDLEATTRIBUTES call with the task equations already
stored in MYPPB. If a particular task equation conflicts with an existing task equation,
the new task equation overwrites the old one.

For a description of the HANDLEATTRIBUTES procedure, refer to “Using WFLSUPPORT
to Access Task Attributes” in Section 1, “Accessing Task Attributes.”

Read Time

The MYPPB task attribute can be read at any time from ALGOL or COBOL. However,
the value returned is encoded in an internal form that does not resemble the original
MYPPB assignments.

Run-Time Error

MYPPB ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign the MYPPB attribute of an in-use process. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

 NAME

8600 0502–407 5–27

NAME

Type String

Units Not applicable

Range <title>

Default See below

Read Time Anytime

Write Time See below

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 0

Synonym None

Restrictions None

Explanation

The NAME task attribute specifies the name of the process. The name of the process is
used in the following ways:

• Before initiating an external process, the initiating process typically assigns the
NAME task attribute of the task variable of the external process. The NAME value
specifies the title of the object code file that is to be initiated.

• The NAME value appears in messages and log entries generated for the process.

• Guard files can specify that only processes with a given NAME are allowed to access
a particular file.

Note that the FAMILY attribute used during process initiation is the FAMILY attribute of
the initiator, not the FAMILY attribute of the new process. To determine the family to
search for the object code file of a process, the system consults the NAME attribute of
the new process and the FAMILY attribute of the initiator, and applies family substitution
if appropriate. Refer to the FAMILY description for an explanation of family substitution.

NAME

5–28 8600 0502–407

Default and Inheritance

An internal process inherits the NAME value of its parent. For an external process, the
NAME value defaults to the name of the declared external procedure specified in the
initiation statement. For example, in ALGOL the following statements initiate a process
whose NAME task attribute is DATADC:

TASK T;
PROCEDURE DATADC;
 EXTERNAL;
PROCESS DATADC [T];

For an internal process, the NAME value is automatically prefixed with the USERCODE
task attribute value of the initiating process at initiation time. If an internal process is
initiated with a different USERCODE than the initiator, the NAME value is nevertheless
prefixed with the USERCODE of the initiator rather than the USERCODE of the internal
process. If NAME is explicitly assigned a value that includes a different usercode at the
start, this usercode is overwritten with the usercode of the initiating process.

For an external process, NAME can specify an object code file with a different usercode
than the process or a nonusercoded object code file. If NAME does not explicitly specify
a usercode or asterisk (*), then the system searches for the object code file first under
the USERCODE of the initiating process, and then as a nonusercoded file. Note that the
system uses the USERCODE of the initiating process for this search, not the
USERCODE of the new process.

Write Time

Processes with MCS status or tasking status can modify the NAME task attribute at any
time. Processes that lack MCS and tasking status can modify the NAME task attribute
only before initiation.

 NAME

8600 0502–407 5–29

Overwrite Rules

Standard overwrite rules are applied. However, you should be aware that the WFL RUN
<object code file title> statement implicitly assigns the specified object code file title to
the NAME task attribute. In the same way, a PROCESS <subroutine identifier>
statement implicitly assigns the subroutine identifier to the NAME task attribute. Any
NAME value previously assigned to the task variable is overridden by these implicit
assignments. These implicit assignments can, in turn, be overridden by task equations
included in the RUN or PROCESS statement. For example, the following WFL job
initiates the program (STEVENS)OBJECT/TESTB ON DCOM:

?BEGIN JOB JOBBIT;
 TASK T(NAME=(WALLACE)OBJECT/OUTPUT ON DCOM);
 RUN (THELMA)OBJECT/NEWDATA ON DCOM [T];
 NAME = (STEVENS)OBJECT/TESTB ON DCOM;
?END JOB

The NAME task attribute is also implicitly assigned an object code file title by a MARC or
CANDE RUN statement.

Run-Time Errors

NAME ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign NAME a value that did not conform to the syntax of a
title. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

NAME ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign a value to the NAME attribute of an in-use process. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

NETPATH

5–30 8600 0502–407

NETPATH

Type String

Units Not applicable

Range <netpath string>

Default "."

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 136

Synonym None

Restrictions None

Range

<netpath string>

 ÚêÄÄÄÄÄÄÄÄÄÄÄ : ÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄ . ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<network identifier>ÄÙ

A network identifier is any sequence of characters, except the space, colon, or period.
The maximum length of the netpath string is 253 characters. The string data is not case
sensitive.

Explanation

The NETPATH task attribute is a string value that is an ordered list of network identifiers
separated by colons. By setting NETPATH, you can specify the order in which an
application should try various networks (in the context of ONC+ Remote Procedure Call).

Here are some examples of netpath strings:

Sample Input Explanation

"NET1: NET2: NET3" The application will try these three networks (NET1, NET2, and
NET3) in that order.

"." There are no networks specified.

"NET8." The application will try the network called NET8.

 NETPATH

8600 0502–407 5–31

Inheritance

A process inherits the NETPATH value of its parent.

If the system administrator has assigned a NETPATH attribute to a usercode, then
MARC or CANDE sessions with that usercode receive that NETPATH value at log-on
time. You can use the CANDE NETP command to change the NETPATH value of a
CANDE session. Any processes initiated from a MARC or CANDE session inherit the
NETPATH value of the session.

The NETPATH attribute of a usercode is also inherited by WFL jobs that are assigned
that usercode in the job attribute list. However, if the job attribute list also contains a
NETPATH assignment, the NETPATH attribute of the usercode is ignored.

Examples

The following is an example of a NETPATH assignment in WFL:

BEGIN JOB J;
 USER = X/Y;
 NETPATH = "N : M";
END JOB.

The following is an example of a NETPATH assignment in COBOL74 or COBOL85:

CHANGE ATTRIBUTE NETPATH OF TASK-VAR-1 TO
 "N : M."

The following is an example of a NETPATH assignment in ALGOL:

REPLACE T.NETPATH BY "N : M."

Run-Time Error

NETPATH ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign NETPATH a value that did not conform to the NETPATH
syntax. The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE =
2 (PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

NOJOBSUMMARYIO

5–32 8600 0502–407

NOJOBSUMMARYIO

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance TRUE if DEPTASKACCOUNTING =
ANONYMOUS; otherwise, inherited from
parent.

Overwrite Rules Standard

Host Services Not supported

Attribute Number 98

Synonym None

Restrictions None

Explanation

The NOJOBSUMMARYIO task attribute specifies whether any information is to be
written to the job log. When NOJOBSUMMARYIO is FALSE, log entries recording
activities of the job and its tasks are written to the job log. When NOJOBSUMMARYIO
is TRUE, no log entries are written to the job log. This setting conserves disk space and
I/O time.

A job can change its NOJOBSUMMARYIO value repeatedly during job execution to
prevent job logging of selected areas of the job. Whenever the value of
NOJOBSUMMARYIO changes from TRUE to FALSE, an entry is made in the job log to
indicate that job log information was not written for part of the job.

If NOJOBSUMMARYIO has a value of TRUE at job initiation and is never reset, the job
log contains only the BOJ entry or log-on entry.

The job summary information in the job file is used as the source for job summaries that
are printed or saved on disk. Thus, any job summary information suppressed by the
NOJOBSUMMARYIO attribute does not appear in printouts produced by the
JOBSUMMARY attribute or in job summary files created by the JOBSUMMARYTITLE
attribute.

NOJOBSUMMARYIO does not prevent information from being written to the system
log.

 NOJOBSUMMARYIO

8600 0502–407 5–33

When a task initiated from a CANDE or MARC session attempts to access its own
NOJOBSUMMARYIO value, the system actually accesses the NOJOBSUMMARYIO
value for the session. In other words, for a task initiated from a session,
MYSELF.NOJOBSUMMARYIO is interpreted as MYJOB.NOJOBSUMMARYIO. Any
assignments made by the offspring actually affect the job summary for the session. In
MARC, you can also assign the NOJOBSUMMARYIO value for a session by using the
MARC NOJOBSUMMARYIO command.

A task initiated from a job can read or modify its own NOJOBSUMMARYIO value.
However, for a task the NOJOBSUMMARYIO value has no effect, because a task has no
job summary. The NOJOBSUMMARYIO value of the task's job determines whether
information from that task is written to the job log.

OPTION

5–34 8600 0502–407

OPTION

Type Option list

Units Not applicable

Range See “Explanation” below

Default All options reset

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 22

Synonym OPTIONS

Restrictions None

Explanation

The OPTION task attribute assigns or returns the values of various options for the
process. The options affect program dump contents, job summary printing, handling of
backup files, and other areas.

The option value is a single word in which selected bits are associated with particular
options. Most of the options have associated mnemonics that can be used to assign that
bit. Any combination of options can be set at the same time. The following are the option
mnemonics and the effects they have when set:

Option Meaning

ARRAYS All arrays of the stack are dumped if a program dump occurs. The
ARRAYS option can be abbreviated as ARRAY.

AUTORM If this option and/or the system option AUTORM is set, then any
duplicate library conditions created by the process cause the removal
of the old file. For details, refer to the discussion of shared files in the
Task Management Programming Guide.

 OPTION

8600 0502–407 5–35

Option Meaning

BACKUP For printer files, this option has the following effects:

• If BACKUP is set or the system option LPBDONLY is set, the
PRINTDISPOSITION file attribute defaults to the value of the
PS DEFAULT PRINTDISPOSITION option.

• If neither BACKUP nor LPBDONLY is set, the
PRINTDISPOSITION file attribute defaults to DIRECT.

For punch files, this option has the following effects:

• If BACKUP is set or the system option CPBDONLY is set, the
PRINTDISPOSITION file attribute defaults to DONTPRINT.

• If neither BACKUP nor CPBDONLY is set, the
PRINTDISPOSITION file attribute defaults to DIRECT.

The LPBDONLY and CPBDONLY system options are controlled by the
OP (Options) system command.

The BACKUP option interacts with a number of other factors to
determine the creation of backup files. For further information, refer
to the discussion of printer output in the Task Management
Programming Guide.

BASE The base of the process stack, the process information block (PIB),
and the task attribute block (TAB) are dumped if a program dump
occurs.

BDBASE The process assumes some of the characteristics of a job, including
the default printing of backup files at termination time. For details,
refer to the discussion of interprocess relationships in the Task
Management Programming Guide.

CODE The segment dictionary of the task is dumped if a program dump
occurs.

CRITICALBLOCK If this option is set, the stack that contains the critical block of the
dumping stack is dumped by PROGRAMDUMP (whether TODISK or
TOPRINTER). The dump also includes the appropriate stacks that are
in the PROGRAMDUMPGRAPH of the additionally selected stack
(dependent on the other options such as LIBRARIES and CODE).

JOB stacks are not dumped. Stacks are dumped from the top of the
environment that contains the critical block (or from the base of the
frozen environment of a library or database stack, whichever is higher
in the process).

DBS The database stack is dumped if a program dump occurs.

DEBUG If the process is a COBOL74 process, it executes special compiled-in
debugging code. For details, refer to the COBOL ANSI-74
Programming Reference Manual, Volume 1: Basic Implementation.

DSED A program dump occurs if the process is terminated by an external
cause. For a definition of external cause, refer to the Task
Management Programming Guide.

OPTION

5–36 8600 0502–407

Option Meaning

FAULT A program dump occurs if the process terminates abnormally from an
internal cause. For a definition of internal cause refer to the Task
Management Programming Guide.

FILES Information about the files in the stack is dumped if a program dump
occurs. The contents of disk file headers are included in the hex
information output by this option. The FILES option can be
abbreviated as FILE.

LIBRARIES All libraries associated with the stack are dumped if a program dump
occurs. The output from this option includes an analysis of all library-
related information, including library templates and directories. The
output now also includes connection libraries.

LONG No arrays are segmented. This option affects only programs written in
ALGOL, FORTRAN, or FORTRAN77.

NOSUMMARY If the JOBSUMMARY task attribute has a value of DEFAULT, then the
NOSUMMARY option causes the process to behave as if the
JOBSUMMARY task attribute had a value of CONDITIONAL. Refer to
the description of the JOBSUMMARY task attribute.

PRESENTARRAYS Only those arrays that are present in memory are dumped if a
program dump occurs. This option reduces the size of a program
dump as well as the time the system takes to generate the program
dump. Note that if the ARRAYS option is also set, it overrides
PRESENTARRAYS and causes all arrays to be dumped. The
PRESENTARRAYS option can be abbreviated as PRESENTARRAY.

PRIVATELIBRARIES Any private libraries used by the process are dumped if a program
dump occurs. This option causes an analysis of all library-related
information, including library templates and directories.

(private process) The descendants of the process are prevented from altering the task
attributes of the process. Any descendant that attempts to assign an
attribute of this process is discontinued. This option is typically
assigned to message control systems (MCSs) to prevent tasks
initiated by sessions from accessing the task attributes of the MCS.
There is no mnemonic for this option, which must be assigned by bit
number (see the following discussion of bits and their mnemonics).

SORTLIMITS Setting this option protects a process that has invoked the SORT
facility from being terminated if SORT runs out of memory or disk
space. Before performing the actual sort, the SORT facility will
determine whether adequate memory and disk space has been
allocated to perform the sort. If the allocation is insufficient, the
process is suspended and the system displays an RSVP message
asking the operator to enter an OK (Reactivate) system command to
allow SORT to allocate more memory or disk space. For information
about the SORT facility, refer to the Unisys e-@ction ClearPath
Enterprise Servers System Software Utilities Operations Reference
Manual.

 OPTION

8600 0502–407 5–37

Option Meaning

TODISK Causes any program dumps generated by the process to be directed
to a disk file. This is also the default behavior if the operating system
option PDTODISK is set. When the program dump goes to a disk file,
a brief summary of the program dump is also written to the program's
TASKFILE. This summary describes the name of the disk file and its
location. For details about the effects of this option, refer to the Task
Management Programming Guide.

TOPRINTER Causes any program dumps generated by the process to be directed
to the task file. This is also the default behavior if the operating
system option PDTODISK is not set. For details about the effects of
this option, refer to the Task Management Programming Guide .

The following are the meanings of the various bits in the OPTION value:

Bit Corresponding OPTION Mnemonic

[47:01] This bit is set by an OPTION assignment statement in WFL that uses an
asterisk (*) to retain the previous option values. (See “Examples”
following.)

[25:01] CRITICALBLOCK

[24:01] TOPRINTER

[23:01] TODISK

[22:01] SORTLIMITS

[21:01] DEBUG

[20:01] PRIVATELIBRARIES

[19:01] LIBRARIES

[15:01] DBS

[14:01] private process

[12:01] NOSUMMARY

[11:01] PRESENTARRAYS

[10:01] FILES

[09:01] CODE

[08:01] ARRAYS

[07:01] BASE

[06:01] BDBASE

[05:01] AUTORM

[04:01] BACKUP

[02:01] DSED

[01:01] FAULT

[00:01] LONG

OPTION

5–38 8600 0502–407

The operator can change the value of the OPTION task attribute with the DUMP (Dump
Memory) system command or the DS (Discontinue) system command. Both these
commands can include option lists that set program dump options of the OPTION task
attribute.

On the other hand, program dump statements in programs do not modify the value of
the OPTION task attribute, even if these statements specify dump options. Any dump
options specified in a program dump statement thus do not affect later program dumps
generated by the process. For information about program dump statements, refer to the
Task Management Programming Guide.

Inheritance

An internal process inherits the OPTION value of its parent. External processes do not
inherit OPTION values.

Examples

The following are ALGOL examples of several methods of setting the OPTION value:

200 TVAR.OPTION := 2**VALUE(ARRAYS) + 2**VALUE(FILES);
300 TVAR.OPTION := 1"10100000000";
400 TVAR.OPTION := 1280;
500 TVAR.OPTION := * & 1[VALUE(ARRAYS):1] & 1[VALUE(FILES):1];
600 TVAR.OPTION := * & 0[VALUE(FILES):1];

In this example, the statement at line 100 resets all the options. The statement at line
200 sets the ARRAYS and FILES options and resets all the other options. The
statements at lines 300 and 400 have the same effect. The statement at line 500 has a
similar effect, except that it does not reset any options that were set previously. The
statement at line 600 resets a single option (FILES) while leaving the other options
unchanged. Where the VALUE function is used in these examples, it returns the bit
position of the specified mnemonic.

The following COBOL74 example assigns the FAULT option to the OPTION task
attribute and leaves any other options unchanged. Note that if line 600 were omitted, the
example would reset all options except FAULT:

100 WORKING-STORAGE SECTION.
200 01 OPTION-WORD PIC 9(11) BINARY.
300 01 VALUE-ONE PIC 9(11) BINARY VALUE 1.
400 PROCEDURE DIVISION.
500 P-1.
600 MOVE ATTRIBUTE OPTION OF MYSELF TO OPTION-WORD.
700 MOVE VALUE-ONE TO OPTION-WORD [0:VALUE FAULT:1].
800 CHANGE ATTRIBUTE OPTION OF MYSELF TO OPTION-WORD.

 OPTION

8600 0502–407 5–39

COBOL85 does not permit mnemonics to be used to specify OPTION bits. To make the
preceding example work in COBOL85, you would need to eliminate the FAULT
mnemonic from line 700. The revised example would work in both COBOL85 and
COBOL74. Line 700 would appear as follows:

700 MOVE VALUE-ONE TO OPTION-WORD [0:1:1].

The following is an example of an OPTION task attribute assignment in WFL:

OPTION = (*,ARRAYS,FILES);

This example assigns the ARRAYS and FILES options and leaves unchanged any options
that were already set. If the asterisk (*) is not included, then all options are reset except
the ones specifically assigned by the statement. By default all options are reset unless
the inheritance rules apply.

Run-Time Error

NON-OWNER WRITE ACCESS OF A PRIVATE TASK

A descendant of a private process has attempted to make an assignment to a task
attribute of the private process. (A private process is one whose OPTION task attribute
has the “private process” option set.) The descendant process, if nonprivileged, is
discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON =
56 (NONOWNERACCESSV).

OPTIONAL

5–40 8600 0502–407

OPTIONAL

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Not applicable

Host Services Not supported

Attribute Number 155

Synonym None

Restrictions None

 Explanation

The OPTIONAL task attribute, when set to TRUE for a task before it is initiated,
specifies that the initiating task does not wait on a “NO FILE” RSVP if the code file is not
present or if the task cannot be initiated for security reasons. For the noninitiated task,
HISTORYCAUSE = 2 (PROGRAMCAUSEV), HISTORYREASON = 1
(MISSINGCODEFILEV), and its STATUS attribute = –2 (BADINITIATE).

The value of the OPTIONAL task attribute has no effect if the initiating task is an MCS.

 ORGUNIT

8600 0502–407 5–41

ORGUNIT

Type Integer

Units Not applicable

Range See “Explanation” below

Default See below

Read Time Anytime; accurate after initiation

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 38

Synonym None

Restrictions None

Explanation

The ORGUNIT task attribute records the Logical Station Number (LSN) or physical unit
number of the unit that initiated this process. For example, for a process initiated by a
CANDE RUN command, this task attribute records the LSN of the terminal where the
RUN command was entered. The offspring of a process also inherit the ORGUNIT value
of that process.

The following fields are defined in the ORGUNIT value:

Field Meaning

[15:01] If set, the job was started from a remote terminal. If reset, the job was
started from another source, such as an ODT, a card reader, or the
operating system.

[14:15] If [15:01] is set, this field contains the LSN of the originating terminal. If
[15:01] is reset, this field contains the physical unit number of the
originating device.

The ORGUNIT value is 0 for processes initiated by the ??RUN (Run Code
File) primitive system command, for processes initiated by independent
runners, and for remote processes.

For details about how to access these fields, refer to “Accessing Task Attributes at the
Bit Level” in Section 1, “Accessing Task Attributes.”

ORGUNIT

5–42 8600 0502–407

One typical use of ORGUNIT is to examine bit 15 to determine whether a process was
initiated from a remote terminal. The process can use this information to decide whether
to open a remote file to communicate with the user. A process can more precisely
determine the type of source from which it was initiated by reading the SOURCEKIND
task attribute.

If the process was initiated from a remote terminal, it might be useful for the process to
read ORGUNIT to extract the LSN. By assigning field [14:15] of the ORGUNIT value to
the STATION task attribute, the process can make it possible to open a remote file at the
originating station. (An alternate method of learning the LSN is to read the
SOURCESTATION task attribute.)

Note: The LSN associated with any particular station can change over time. The
ORGUNIT value is not updated to reflect such changes. An alternative to ORGUNIT is
the SOURCENAME task attribute. SOURCENAME stores the originating station name,
which is less volatile than the LSN.

The physical unit returned by ORGUNIT can be a useful aid to assigning an ODT file, as
shown under “Example” in this description.

Default

Before a process is initiated, the default ORGUNIT value is 0. At initiation time,
ORGUNIT is automatically assigned the correct value.

Inheritance

A process inherits the ORGUNIT value of its parent.

If a WFL job is initiated from a CANDE or MARC session or from a task descended from
such a session, the WFL job inherits the ORGUNIT of the session.

 ORGUNIT

8600 0502–407 5–43

Example

The following ALGOL example shows two uses of ORGUNIT:

100 BEGIN
110 FILE TERM (MYUSE=IO,DEPENDENTSPECS=TRUE);
120
130 IF MYSELF.SOURCEKIND = VALUE(REMOTE) THEN
140 BEGIN
150 TERM.KIND := VALUE(REMOTE);
160 MYSELF.STATION :=MYSELF.ORGUNIT.[14:15];
170 END;
180 IF MYSELF.SOURCEKIND = VALUE(ODT) THEN
190 BEGIN
200 TERM.KIND := VALUE(ODT);
210 TERM.UNITNO := MYSELF.ORGUNIT.[14:15];
220 END;
230
240 OPEN (TERM);
250 WRITE (TERM, //, "HI, HOW ARE YOU");
260 END.

This program examines the SOURCEKIND value to determine whether it was initiated
from a remote terminal or an ODT. The statement at line 160 is equivalent to

MYSELF.STATION := MYSELF.SOURCESTATION;

For more information, refer to the description of the STATION task attribute.

If the program was initiated at an ODT, the statement at line 210 assigns the physical
unit number of the ODT to the UNITNO file attribute. This assignment allows the file to
be automatically opened at the ODT, and saves the operator from having to enter a
LABEL (Label ODT) system command. Note that this statement is not necessary if the
MYUSE file attribute value is OUT instead of IO or IN. For further information about ODT
files, refer to the I/O Subsystem Programming Guide.

Note also that use of the UNITNO file attribute is restricted on systems running Security
Services for ClearPath MCP at the S2 level or with the security option NONPRIVUNITNO
set to the value NOTOK. Refer to the Security Administration Guide for details.

OTHERPBITCOUNT

5–44 8600 0502–407

OTHERPBITCOUNT

Type Real

Units Presence-bit operations

Range 0 to about 4.31E+68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 106

Synonym None

Restrictions None

Explanation

The OTHERPBITCOUNT task attribute returns the count of noninitial presence-bit
interrupts for the process since its initiation.

For information about noninitial presence-bit operations, refer to the Task Management
Programming Guide.

 OTHERPBITTIME

8600 0502–407 5–45

OTHERPBITTIME

Type Real

Units See below

Range 0 to about 4.31E+68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 107

Synonym None

Restrictions None

Explanation

The OTHERPBITTIME task attribute returns the total time spent processing noninitial
presence-bit interrupts for this process.

For information about noninitial presence-bit operations, refer to the Task Management
Programming Guide.

Units

In most languages, this value is returned in units of 2.4 microseconds. However, in WFL
this value is returned in units of seconds.

PARTNER

5–46 8600 0502–407

PARTNER

Type Task

Units Not applicable

Range Any task variable

Default See below

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance Reset to default

Overwrite Rules Standard

Host Services Supported

Attribute Number 19

Synonym None

Restrictions Not available in WFL

Explanation

The PARTNER task attribute accesses the task variable of the partner process. The
partner process is the one to which control is passed when an ALGOL process executes
a simple CONTINUE statement or a COBOL process executes an EXIT PROGRAM
statement. Also, the system automatically continues the partner process of a
synchronous task when the synchronous task terminates.

A process can use the PARTNER task attribute as a means to read or write the task
attributes of the partner process. For example, a process can determine the identity of
the partner process by reading the NAME task attribute of the PARTNER task attribute.
The following is an ALGOL example of such a statement:

REPLACE NAMEARR BY MYSELF.PARTNER.NAME;

A process can also use the PARTNER task attribute to assign a particular process to be
the partner process. However, setting the PARTNER task attribute to a process other
than the parent is not recommended. Such a practice causes each CONTINUE statement
to use more processor time and also leads to source code that is difficult to understand
and maintain.

If the PARTNER value is a WFL job, then a simple CONTINUE statement has no effect.
Execution simply continues to the next statement in the same process.

Similarly, if the PARTNER value defaults to MYSELF, then a simple CONTINUE
statement has no effect and execution continues to the next statement. However, if you
explicitly assign MYSELF.PARTNER := MYSELF, then a simple CONTINUE statement
causes an ILLEGAL VISIT error.

 PARTNER

8600 0502–407 5–47

An ILLEGAL VISIT error also occurs if a process performs a simple CONTINUE
statement and the PARTNER attribute points to a process that is not in the stack state
TO BE CONTINUED. Note that stack states are different from STATUS task attribute
values; stack states can be displayed with the Y (Status Interrogate) system command.

To determine whether a partner process exists that can be continued by a simple
CONTINUE statement, a process can interrogate the PARTNEREXISTS task attribute.

For more information about partner processes, refer to the Task Management
Programming Guide. Also, see the description of the PARTNEREXISTS task attribute.

Default

For an independent process or an asynchronous dependent process, the default value of
PARTNER is a reference to MYSELF. However, if the process initiates a synchronous
dependent offspring, PARTNER changes to a reference to that offspring.

For a dependent process with no offspring, the default value of PARTNER is usually a
reference to the initiator of the process. However, PARTNER defaults to MYSELF for
such a process if either of the following conditions is true:

• The process was initiated from a MARC or CANDE session.

• The process is a remote process. That is, it was initiated from one BNA host system
and runs on a different host system.

When a dependent process A initiates a dependent offspring B, the PARTNER task
attribute of dependent process A remains unchanged. It does not become a reference to
dependent offspring B unless explicitly assigned.

Run-Time Errors

ILLEGAL VISIT

A process executed a simple CONTINUE statement and the PARTNER task attribute had
been explicitly assigned a task variable that is not in the TO BE CONTINUED state. The
process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 6 (ILLEGALVISITV).

VISIT NONACTIVE TASK

A process attempted to use a CONTINUE statement to transfer control to a process that
is not in use (that is, a process that has terminated or has not yet been initiated). The
process that executed the CONTINUE statement is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 5
(VISITNONACTIVEV).

PARTNEREXISTS

5–48 8600 0502–407

PARTNEREXISTS

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance None

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 27

Synonym None

Restrictions None

Explanation

The PARTNEREXISTS task attribute indicates whether the partner process is a
continuable coroutine. The partner process is the process indicated by the PARTNER
task attribute. PARTNEREXISTS returns a value of TRUE only if all the following
conditions are true:

• The process is a synchronous process.

• The partner process is a separate process whose state is TO BE CONTINUED.

• The partner process is not a WFL job.

For more information about partner processes, refer to the Task Management
Programming Guide. Also, see the description of the PARTNER task attribute.

 PDUMPTITLE

8600 0502–407 5–49

PDUMPTITLE

Type Name

Units Not applicable

Range <Name>

Default Null string

Read Time Anytime

Write Time Never

Inheritance Never

Overwrite Rules See below

Host Services Supported

Attribute Number 145

Synonym None

Restrictions None

Explanation

The PDUMPTITLE attribute is a read-only attribute that specifies the title of the last
programdump TODISK file generated by the task. This attribute cannot be modified by
the task and is not inherited by dependent tasks.

PDUMPTITLE is initialized to null (".") when the task is initiated. The attribute is set to
the title of the programdump file when the task successfully generates a programdump
TODISK file. Any previous value for this attribute is discarded. The value of the
PDUMPTITLE attribute remains valid after the task terminates.

PDUMPTITLE is not altered when the task generates a programdump TOPRINTER file.

Interrogating PDUMPTITLE for a task variable returns

• A null value "." if no programdump file is generated

• The display form title, terminated with a period, of the last programdump TODISK file
generated by the task

PRINTDEFAULTS

5–50 8600 0502–407

PRINTDEFAULTS

Type String

Units Not applicable

Range <print specification>

Default Null string

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 99

Synonym None

Restrictions Not readable in WFL

Range

<print specification>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÂÄÄÄÄÄÂÄÁÄÂÄ<print modifier phrase>ÄÄÂÄÁÄÂÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ (ÄÙ ÃÄ<file attribute phrase>ÄÄ´ ÀÄ) ÄÙ
 ÀÄ Ä ÄÂÄ<print modifier>Ä´
 ÀÄ<file attribute>ÄÙ

The outer parentheses are required in WFL, but optional in ALGOL and COBOL.

<print modifier phrase>
<file attribute phrase>
<print modifier>
<file attribute>

For a discussion of file attributes and print modifiers, refer to the Print System Guide.

 PRINTDEFAULTS

8600 0502–407 5–51

Explanation

The PRINTDEFAULTS task attribute specifies default values for file attributes and print
modifiers. These default values are applied to any file attributes or print modifiers that
are not explicitly assigned values by the process.

When you assign print modifier phrases or file attribute phrases to PRINTDEFAULTS, the
system merges these assignments with the existing PRINTDEFAULTS value.

You can clear the PRINTDEFAULTS value by assigning "." in ALGOL or COBOL. (There is
no equivalent statement in WFL.)

You can use the – <print modifier> or – <file attribute> constructs to remove a single
modifier or attribute from the PRINTDEFAULTS value. These constructs also prevent
the inheritance of that modifier or attribute from the parent. If you read the
PRINTDEFAULTS value later, the deleted modifier or attribute appears preceded by a
minus sign (-).

For an overview of all task attributes related to printing, refer to the Task Management
Programming Guide.

The PAGECOMP specification in a job PRINTDEFAULTS attribute, or in the
PRINTDEFAULTS value inherited by a job, might be used when the job summary file is
printed. This determination is made by the PS DEFAULT JOBSUMMARY PAGECOMP
system command. For details, refer to the Print System Guide.

Inheritance

A process inherits the PRINTDEFAULTS value of its parent.

If the system administrator has assigned a PRINTDEFAULTS attribute to a usercode,
then MARC or CANDE sessions with that usercode receive that PRINTDEFAULTS value
at log-on time. You can use the MARC PRINTDEFAULTS command to change the
PRINTDEFAULTS value of a MARC session. You can use the CANDE PDEF command to
change the PRINTDEFAULTS value of a CANDE session. Any processes initiated from a
MARC or CANDE session inherit the PRINTDEFAULTS value of the session.

The PRINTDEFAULTS attribute of a usercode is also inherited by WFL jobs that are
assigned that usercode in the job attribute list. However, if the job attribute list also
contains a PRINTDEFAULTS assignment, the PRINTDEFAULTS attribute of the usercode
is ignored.

PRINTDEFAULTS

5–52 8600 0502–407

Examples

The following is an example of a PRINTDEFAULTS assignment in WFL:

TVAR (PRINTDEFAULTS = (DESTINATION = "LP4", USERBACKUPNAME = TRUE,
 SAVEPRINTFILE = TRUE));

The following is an example of a PRINTDEFAULTS assignment in COBOL74 or
COBOL85:

CHANGE ATTRIBUTE PRINTDEFAULTS OF TASK-VAR-1 TO
 "DESTINATION = ""LP4"", USERBACKUPNAME = TRUE.".

The following is an example of a PRINTDEFAULTS assignment in ALGOL:

REPLACE T.PRINTDEFAULTS BY
 "DESTINATION = """LP4""", USERBACKUPNAME = TRUE,"
 " SAVEPRINTFILE = TRUE.";

The following ALGOL example is identical to the previous one, except that outer
parentheses are used around the value. The effect of the assignment is the same.

REPLACE T.PRINTDEFAULTS BY
 "(DESTINATION = """LP4""", USERBACKUPNAME = TRUE,"
 " SAVEPRINTFILE = TRUE).";

Run-Time Errors

PRINTDEFAULTS ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign PRINTDEFAULTS a value that did not conform to the
print specification syntax. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

WAITING FOR PRINTSUPPORT TO INITIALIZE

A process attempted to read or assign PRINTDEFAULTS, and the print support library is
not available. The process is suspended until the print support library initializes. For
information about initializing the print support library, refer to the Print System and
Remote Print System Administration, Operations, and Programming Guide.

 PRIORHISTORY

8600 0502–407 5–53

PRIORHISTORY

Type Real

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 138

Synonym None

Restrictions None

Explanation

The PRIORHISTORY task attribute is valid when a program uses TRY error-handling code
to prevent accidental termination. The PRIORHISTORY attribute returns information that
would be in the HISTORY attribute if the process had terminated. Because the TRY
error-handling code prevented the process from terminating, fields [23:08], [15:08], and
[07:08] of HISTORY are reset to zero, and PRIORHISTORY contains the nature of the
(prevented) termination condition.

The PRIORHISTORY task attribute is identical to the HISTORY task attribute except that
PRIORHISTORY is valid only when the TRY error-handling code has been invoked. The
values in PRIORHISTORY change only when subsequent TRY error-handling code is
invoked.

For more information about the PRIORHISTORY task attribute, see the HISTORY task
attribute description. For more information about TRY error-handling, see the Task
Management Programming Guide or the ALGOL Programming Reference Manual,
Volume 1: Basic Implementation.

PRIORHISTORYCAUSE

5–54 8600 0502–407

PRIORHISTORYCAUSE

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 140

Synonym None

Restrictions None

Explanation

The PRIORHISTORYCAUSE task attribute is valid when a program uses TRY error-
handling code to prevent accidental termination. The PRIORHISTORYCAUSE attribute
returns information that would be in the HISTORYCAUSE attribute if the task had
terminated. Because the TRY error-handling code prevented the task from terminating,
HISTORYCAUSE is reset to zero, and PRIORHISTORYCAUSE contains the nature of the
(prevented) termination condition.

The PRIORHISTORYCAUSE task attribute specifies what general type of condition would
have caused the process to terminate abnormally or be suspended. The
PRIORHISTORYCAUSE value is the same as field [15:08] of the PRIORHISTORY task
attribute.

The PRIORHISTORYCAUSE task attribute is identical to the HISTORYCAUSE task
attribute except in the following respects:

• PRIORHISTORYCAUSE is valid only when the TRY error-handling code has been
invoked. The values in PRIORHISTORYCAUSE change only when subsequent TRY
error-handling code is invoked.

• For TRY statements with the PROTECTED clause, a PRIORHISTORY value of zero
has a special meaning. A zero value indicates that the process attempted to execute
a GO TO statement that exits to outside the TRY statement.

For more information about the PRIORHISTORYCAUSE task attribute, see the
HISTORYCAUSE task attribute description. For more information about TRY error-
handling, see the Task Management Programming Guide or the ALGOL Programming
Reference Manual, Volume 1: Basic Implementation.

 PRIORHISTORYREASON

8600 0502–407 5–55

PRIORHISTORYREASON

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 141

Synonym None

Restrictions Not available in WFL; however, for a
description of how to extract the same
information from the HISTORY task
attribute, refer to “Accessing Task
Attributes at the Bit Level” in Section 1.

Explanation

The PRIORHISTORYREASON task attribute is valid when a program uses TRY error-
handling code to prevent accidental termination. The PRIORHISTORYREASON attribute
returns information that would be in the HISTORYREASON attribute if the task had
terminated. Because the TRY error-handling code prevented the task from terminating,
HISTORYREASON is reset to zero, and PRIORHISTORYREASON contains the nature of
the (prevented) termination condition.

The PRIORHISTORYREASON task attribute indicates the specific reason why a process
would have terminated abnormally or be suspended. The PRIORHISTORYREASON value
corresponds to field [23:08] of the PRIORHISTORY task attribute.

The PRIORHISTORYREASON task attribute is identical to the HISTORYREASON task
attribute except that PRIORHISTORYREASON is valid only when the TRY error-handling
code has been invoked. The values in PRIORHISTORYREASON change only when
subsequent TRY error-handling code is invoked.

For more information about the PRIORHISTORYREASON task attribute, see the
HISTORYREASON task attribute description. For more information about TRY error-
handling, see the Task Management Programming Guide or the ALGOL Programming
Reference Manual, Volume 1: Basic Implementation.

PRIORHISTORYTYPE

5–56 8600 0502–407

PRIORHISTORYTYPE

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default NORMALV

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 139

Synonym None

Restrictions None

Explanation

The PRIORHISTORYTYPE task attribute is valid when a program uses TRY error-handling
code to prevent accidental termination. The PRIORHISTORYTYPE attribute returns
information that would be in the HISTORYTYPE attribute if the task had terminated.
Because the TRY error-handling code prevented the task from terminating,
HISTORYTYPE is reset to zero, and PRIORHISTORYTYPE contains the nature of the
(prevented) termination condition.

The PRIORHISTORYTYPE indicates the type of termination that would have occurred for
a process. The PRIORHISTORYTYPE value is identical to field [07:08] of the
PRIORHISTORY task attribute.

The PRIORHISTORYTYPE task attribute is identical to the HISTORYTYPE task attribute
except that PRIORHISTORYTYPE is valid only when the TRY error-handling code has
been invoked. The values in PRIORHISTORYTYPE change only when subsequent TRY
error-handling code is invoked.

For more information about the PRIORHISTORYTYPE task attribute, see the
HISTORYTYPE task attribute description. For more information about TRY error-
handling, see the Task Management Programming Guide or the ALGOL Programming
Reference Manual, Volume 1: Basic Implementation.

 PRIORITY

8600 0502–407 5–57

PRIORITY

Type Integer

Units Not applicable

Range 0 to 99

Default 50

Read Time Anytime

Write Time See below

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 3

Synonym DECLAREDPRIORITY

Restrictions None

Explanation

The PRIORITY task attribute specifies the degree of precedence this process has when
competing with other processes for system resources. In general, the higher the number
assigned to PRIORITY, the faster the process runs.

The priority of a process is affected by other factors in addition to the PRIORITY task
attribute. For details, refer to the discussion of priority in the Task Management
Programming Guide.

If a limit value is set for the PRIORITY attribute of a job queue, then WFL jobs that
specify a higher PRIORITY value in the job attribute list cannot be accepted into that job
queue.

For PRIORITY assignments made before initiation, for example, in the job attribute list of
a WFL job, only values 1 through 99 are effective. A PRIORITY assignment of zero is
converted to the default of 50 at process initiation, unless inheritance or overwrite rules
result in a different value.

Write Time

The PRIORITY task attribute can be assigned a value at any time. The PRIORITY value
reflects assignments made after initiation; however, such assignments do not change
the actual priority of the process. Only a PR (Priority) system command can effectively
change the PRIORITY task attribute value after initiation.

PRIORITY

5–58 8600 0502–407

Inheritance and Overwrite Rules

A process inherits the PRIORITY value of its parent.

At the start of any CANDE or MARC session, CANDE or MARC reads the
USERDATAFILE to determine if the usercode of the session has a PRIORITY attribute
defined for it. If so, CANDE or MARC stores this PRIORITY value as the priority of the
session. If no PRIORITY attribute is defined for the usercode, the session receives no
session priority.

If the PRIORITY usercode attribute value is changed after the start of the session, the
session priority remains unchanged.

For tasks initiated from CANDE or MARC sessions, the PRIORITY value is determined by
the following factors (listed in order from highest to lowest precedence):

• Any PRIORITY task equation appended to the task initiation statement. However, the
task equation is ignored if it assigns a PRIORITY value higher than the session
PRIORITY.

• The PRIORITY value of the session, if any.

• Any PRIORITY value assigned to the object code file of the task.

• The default PRIORITY value of 50.

For tasks initiated from WFL, the PRIORITY value is determined by the following factors
(listed in order from highest to lowest precedence):

• Any PRIORITY task equation appended to the task initiation statement.

• Any PRIORITY value assigned to the object code file of the task.

• The PRIORITY value of the session, if any.

• The PRIORITY value of the WFL job, if any.

• The default PRIORITY value of 50.

The PRIORITY attribute of a usercode is also inherited by WFL jobs that are assigned
that usercode in the job attribute list, or that inherit the terminal usercode of an ODT.
However, if the job attribute list also contains a PRINTDEFAULTS assignment, the
PRINTDEFAULTS attribute of the usercode is ignored.

If a default value is set for the PRIORITY job queue attribute, then that value is inherited
by the PRIORITY task attribute of WFL jobs run from that queue. A Q-DS occurs if the
value of an inherited PRIORITY attribute of a usercode is greater than the value of the
PRIORITY job queue attribute.

In general, tasks can be assigned a higher priority than their parents. However,
descendants of WFL jobs cannot be assigned a higher PRIORITY value than the
PRIORITY job queue limit (if there is one). When the descendant task is initiated, it
receives a PRIORITY value equal to the lower of the following values: the requested
PRIORITY value and the job queue PRIORITY limit.

 REALGROUPCODE

8600 0502–407 5–59

REALGROUPCODE

Type String

Units Not applicable

Range <usercode assignment>

Default Null string

Read Time Anytime

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 133

Synonym None

Restrictions None

Explanation

The REALGROUPCODE task attribute stores a copy of the GROUPCODE value the
process received from its initiator. This value might have been inherited or assigned
through task equation.

The REALGROUPCODE value can differ from the values of the GROUPCODE and
SAVEDGROUPCODE task attributes. For an explanation of how these group code
values are related, refer to the discussion of process identities in the Task Management
Programming Guide.

REALUSERCODE

5–60 8600 0502–407

REALUSERCODE

Type String

Units Not applicable

Range <usercode assignment>

Default Null string

Read Time Anytime

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 130

Synonym None

Restrictions None

Explanation

The REALUSERCODE task attribute stores a copy of the USERCODE value the process
received from its initiator. This value might have been inherited or assigned through task
equation.

The REALUSERCODE value can differ from the values of the USERCODE and
SAVEDUSERCODE task attributes. For an explanation of how these usercode values are
related, refer to the discussion of process identities in the Task Management
Programming Guide.

 REPORTBADINITIATE

8600 0502–407 5–61

REPORTBADINITIATE

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Not applicable

Host Services Not supported

Attribute Number 156

Synonym None

Restrictions None

 Explanation

The REPORTBADINITIATE task attribute, when set to TRUE for a task before it is
initiated, notifies the initiating task when the new task initiation fails, regardless of the
reason for that failure. The initiating task continues even though a new task cannot be
initiated. For the noninitiated task, HISTORYTYPE = 4 (DSEDV), and HISTORYCAUSE
and HISTORYREASON are set to specify the reason the new task did not begin. Its
STATUS attribute is –2 (BADINITIATE).

RESOURCE

5–62 8600 0502–407

RESOURCE

Type Resource

Units Not applicable

Range <resource list>

Default Unlimited

Read Time Never

Write Time Before initiation

Inheritance See below

Fork() Inheritance 0

Overwrite Rules Standard

Host Services Supported

Attribute Number 53

Synonym None

Restrictions Available only in WFL

Range

<resource list>

ÄÄ (ÄÄ TAPE ÄÄ = ÄÄ<tape count>ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

<tape count>

An integer in the range 0 to 255

Explanation

The RESOURCE task attribute allows the programmer to specify the maximum number
of tape units that a WFL job, and its descendants, will have open at the same time. The
RESOURCE value includes all kinds of magnetic tapes.

If the RESOURCE value of a process requests more tape units than are in the overall
tape pool, then process initiation is interrupted and the process appears in the W
(Waiting Entries) system command display with a “WAITING FOR RESOURCE” RSVP
message. The overall tape pool consists of tape units that have been acquired by the
system and have not been opened by any process.

 RESOURCE

8600 0502–407 5–63

If a RESOURCE value is assigned to a task, then the RESOURCE value is compared with
the local tape pool as well as the overall tape pool. The local tape pool is defined by the
most immediate ancestor process for which RESOURCE was explicitly set. The local
tape pool is the number of tapes that can be opened by that ancestor process and all its
descendants at any given time. The local tape pool is decremented by one when any of
these processes opens a tape file and incremented by one when any of them closes a
tape file. If a task is initiated with a RESOURCE value that specifies more tape units than
are available in the local tape pool, the task appears in the W display with a “WAITING
FOR RESOURCE” RSVP message.

However, RESOURCE does not actually impose a limit on the number of tape files a
process can attempt to open. A process can have a RESOURCE value of (TAPE=0) and
still open a TAPE file. The only effect of RESOURCE is to interrupt initiation of a process
whose RESOURCE value requests more tapes than are available.

A process in this condition is neither scheduled nor suspended. Initiation is halted at a
later stage than it is for a scheduled process, which has only a mix number and a PIB. A
process whose initiation was suspended because of a missing tape resource has a mix
number, a PIB, and also a process stack. However, the code segment dictionary does
not yet exist and execution of the process has not begun.

The RESOURCE task attribute is useful for preventing deadlock conditions. For example,
there could be four tape units and two processes, each of which needs to use three tape
units. If these processes run simultaneously, and RESOURCE is not set for either one,
then the processes might succeed in opening two tape units each. Once this has
happened, neither process can proceed until the other one is terminated by an operator
action, such as a DS (Discontinue) system command.

The RESOURCE task attribute has effect only if the system option RESOURCECHECK is
set. This option can be set using the OP (Options) system command. If
RESOURCECHECK is reset, then processes are initiated normally regardless of their
RESOURCE value.

The RESOURCE task attribute can be accessed only from WFL. It can be assigned to a
WFL job in the job attribute list or to tasks by assignments to the task variable or task
equations. If RESOURCE is assigned in the job attribute list of a WFL job, then the job
cannot be accepted into a job queue with a tape specification that specifies fewer tapes.

Inheritance

A process inherits the RESOURCE value of the closest ancestor that has a RESOURCE
value set (if any).

A task cannot be assigned a RESOURCE value higher than what it would inherit from an
ancestor. An attempt to assign the task a higher value causes task initiation to fail with
the error “TAPE LIMIT EXCEEDED”. However, the initiating process continues normally.

RESOURCE

5–64 8600 0502–407

Example

The following WFL job includes a RESOURCE assignment for the job as a whole, as well
as a RESOURCE assignment for each task. The example is based on the assumption
that the first task needs a maximum of three tapes during its execution, and the second
task needs a maximum of two.

?BEGIN JOB TAPEUSER;
 RESOURCE=(TAPE=5);
PROCESS RUN PROG/ONE;
 RESOURCE=(TAPE=3);
PROCESS RUN PROG/TWO;
 RESOURCE=(TAPE=2);
?END JOB

Run-Time Error

RESOURCE ATTRIBUTE IS WRITE ONLY

An attempt was made to read the RESOURCE attribute of a process. The inquiring
process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 129 (ATTWRITEONLYV).

 RESTART

8600 0502–407 5–65

RESTART

Type Integer

Units Process restarts

Range 0 to 131071; also see “Range” below

Default 0

Read Time Anytime; actual after initiation

Write Time Anytime

Inheritance None

Fork() Inheritance 0

Overwrite Rules Standard

Host Services Not supported

Attribute Number 28

Synonym None

Restrictions None

Range

If an attempt is made to assign a value greater than 131071, RESTART is set to 131071.
If an attempt is made to assign a value less than 0, RESTART is set to 1.

Explanation

The RESTART task attribute causes a process to be automatically reexecuted following
an abnormal termination. The process is reexecuted if RESTART has a nonzero value at
the time of the termination and the termination is due to an internal cause. For a
definition of internal cause, refer to the Task Management Programming Guide.

Reexecution begins with the first statement in the outer block of the process. The value
assigned to RESTART determines how many times the process can be reexecuted. The
value of RESTART is automatically decreased by 1 after each reexecution of the process.
If the task has not executed any user code, the RESTART count is ignored. For example,
this occurs if the codefile is too old to run on the current release.

For related information, refer to the discussion of restarting jobs and tasks in the Task
Management Programming Guide.

RESTARTED

5–66 8600 0502–407

RESTARTED

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance None

Overwrite Rules Standard

Host Services Not supported

Attribute Number 48

Synonym None

Restrictions None

Explanation

The RESTARTED task attribute records whether the process has been restarted.

For a WFL job, RESTARTED is set to TRUE when the job automatically restarts after a
halt/load or when the job is restarted by a RESTART (Restart Jobs) system command.
For a checkpoint process, RESTARTED is set to TRUE when the process is restarted by
way of a WFL RERUN statement.

The value of RESTARTED is not affected by automatic retries that are caused by the
RESTART task attribute. These two task attributes are completely unrelated.

Assigning a value to this attribute has no effect on the process. However, the new value
is returned if the RESTARTED value is read later.

For further information, refer to the discussion of restarting jobs and tasks in the Task
Management Programming Guide.

8600 0502–407 6–1

Section 6
Task Attributes S through Z

This section contains task attributes starting with the letters S through Z.

SAVEDGROUPCODE

6–2 8600 0502–407

SAVEDGROUPCODE

Type String

Units Not applicable

Range <usercode assignment>

Default Null string

Read Time Anytime

Write Time Never

Inheritance See below

Fork() Inheritance Inherited from parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 134

Synonym None

Restrictions None

Explanation

The SAVEDGROUPCODE task attribute stores a copy of the value the GROUPCODE
task attribute had when the process was first initiated. If the SETGROUPCODE
subattribute of the SECURITYMODE attribute of the code file was set, then the initial
GROUPCODE value is taken from the GROUP attribute of the code file. Otherwise, this
value is inherited from the parent or assigned through task equation.

The SAVEDGROUPCODE value can differ from the values of the GROUPCODE and
REALGROUPCODE task attributes. For an explanation of how these group code values
are related, refer to the discussion of process identities in the Task Management
Programming Guide.

 SAVEDUSERCODE

8600 0502–407 6–3

SAVEDUSERCODE

Type String

Units Not applicable

Range <usercode assignment>

Default Null string

Read Time Anytime

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 131

Synonym None

Restrictions None

Explanation

The SAVEDUSERCODE task attribute stores a copy of the value the USERCODE task
attribute had when the process was first initiated. If the SETUSERCODE subattribute of
the SECURITYMODE attribute of the code file was set, then the initial USERCODE value
is taken from the usercode of the code file. Otherwise, this value is inherited from the
parent or assigned through task equation.

The SAVEDUSERCODE value can differ from the values of the USERCODE and
REALUSERCODE task attributes. For an explanation of how these usercode values are
related, refer to the discussion of process identities in the Task Management
Programming Guide.

SAVEMEMORYLIMIT

6–4 8600 0502–407

SAVEMEMORYLIMIT

Type Real

Units Words

Range 0 to 274877906943

Default 0 (Unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 112

Synonym SAVECORELIMIT

Restrictions None

Explanation

The SAVEMEMORYLIMIT task attribute specifies the maximum amount of save memory
that a process can use. When the amount of save memory in use by a process exceeds
the value of the SAVEMEMORYLIMIT task attribute, the process is discontinued.

The reason for setting a limit on save memory usage by a process is that save memory
cannot be overlaid. As the proportion of total memory set aside as save memory
increases, it becomes increasingly more difficult for the system to manage memory
efficiently. A process that uses abnormally large amounts of save memory can therefore
have an adverse effect on the performance of all other processes running on the system.
By setting a SAVEMEMORYLIMIT for a process, you can prevent this from happening.

If SAVEMEMORYLIMIT is accessed through Host Services, bit 47 will always be zero (0).

Inheritance and Overwrite Rules

At initiation, a process receives a SAVEMEMORYLIMIT value that is the minimum value
received from the following sources:

• The parent's SAVEMEMORYLIMIT value

• The SAVEMEMORYLIMIT usercode attribute value, if one is defined for the usercode
of this process

• The limit value for the SAVEMEMORYLIMIT job queue attribute, if the process is a
WFL job submitted through a job queue that has such a limit defined

 SAVEMEMORYLIMIT

8600 0502–407 6–5

• Any SAVEMEMORYLIMIT value that was assigned to the task variable of the
process before initiation

• Any SAVEMEMORYLIMIT value that was assigned to the object code file of the
process before initiation

Note that a SAVEMEMORYLIMIT value of 0 (zero) means there is no limit on save
memory usage. Thus, when determining the minimum, the system ignores any of these
sources that has a zero value.

If none of these sources provides a nonzero value, and the process is a WFL job
submitted through a job queue with a default SAVEMEMORYLIMIT value, then the job
queue default value is inherited by the process.

Once a process is running, any assignment statements that increase the current
SAVEMEMORYLIMIT value are ignored. No error is issued, but the requested change is
not made.

Run-Time Error

USER SAVE MEMORY LIMIT EXCEEDED

The process attempted to use more save memory than was allowed by the
SAVEMEMORYLIMIT value. The process is discontinued with HISTORYCAUSE = 3
(RESOURCECAUSEV) and HISTORYREASON = 14 (SAVECORELIMITEXCEEDEDV).

SOURCEKIND

6–6 8600 0502–407

SOURCEKIND

Type Real

Units Not applicable

Range See “Explanation” below

Default See below

Read Time Anytime; actual after initiation

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 47

Synonym None

Restrictions See below

Explanation and Restrictions

The SOURCEKIND task attribute records the type of device that initiated this process
family.

One typical use of this attribute is to help decide what value to assign the KIND file
attribute of input files used by a process: REMOTE, ODT, READER, and so on. The
SOURCEKIND values, and their associated mnemonics, correspond to several of the
possible values of the KIND file attribute.

The following are the possible values and their meanings:

Mnemonic
Value

Integer
Value

Meaning

(None) 0 There is no device type. For example, the process
might have been initiated by a ??RUN (Run Code
File) primitive system command, an independent
runner, or a device on a remote BNA host system.

ODT 2 Operator display terminal (ODT).

REMOTE 3 Remote terminal.

READER 9 Card reader.

Note: COBOL85 does not support the use of mnemonics for SOURCEKIND. When
assigning SOURCEKIND in COBOL85, you must use integer values instead.

If SOURCEKIND is accessed through Host Services, bit 47 will always be zero (0).

 SOURCEKIND

8600 0502–407 6–7

Default

Before a process is initiated, the default SOURCEKIND value is 0.

At initiation time, the system assigns SOURCEKIND the appropriate value. For example,
processes initiated from CANDE or MARC sessions receive a SOURCEKIND of 3 (remote
terminal).

Inheritance

A process inherits the SOURCEKIND value of its parent.

For libraries initiated by the library linkage mechanism, the SOURCEKIND attribute
inherits the SOURCEKIND of the process that is linking to the library.

Example

The following ALGOL statement uses SOURCEKIND to determine what value to assign
to the KIND attribute of a file:

IF MYSELF.SOURCEKIND = VALUE(REMOTE)
 THEN TERM.KIND := VALUE(REMOTE)
 ELSE TERM.KIND := VALUE(ODT);

SOURCENAME

6–8 8600 0502–407

SOURCENAME

Type String

Units Not applicable

Range <name>

Default See below

Read Time Anytime

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 121

Synonym None

Restrictions None

Explanation

The SOURCENAME task attribute records the name of the unit that initiated this process
family. It corresponds to the name of the unit stored in the SOURCESTATION task
attribute.

A process originating from a unit is assigned a SOURCENAME applicable to that unit. For
example, a process initiated from SC 2 is assigned a SOURCENAME of SC2. A process
originating from a remote station is assigned a SOURCENAME of the station designated
by the SOURCESTATION task attribute. If the SOURCESTATION task attribute
designates an invalid logical station number (LSN), then the system assigns
SOURCENAME the value STATION/LSNnnnn, where nnnn represents the LSN.

If the process family was initiated from a pseudostation, the SOURCENAME returns the
name of the pseudostation rather than the physical station. For example, if the process
family originated from the COMS window CANDE/3 at physical station ST143, the
SOURCENAME is ST143/CANDE/3.

Default

Before a process is initiated, the default SOURCENAME value is a null string. At initiation
time, the system assigns the appropriate SOURCENAME value to the process.
Processes initiated from a MARC or CANDE session receive a SOURCENAME value that
records the name associated with the LSN from which the process originated. This
SOURCENAME is applied when the MCS sets the SOURCESTATION task attribute.

If the process was initiated by a ??RUN (Run Program) system command, the system
assigns a null string to SOURCENAME.

 SOURCENAME

8600 0502–407 6–9

Inheritance

A process inherits the SOURCENAME value of its parent.

If a WFL job is initiated from a CANDE or MARC session or from a task descended from
such a session, the WFL job inherits the SOURCENAME of the session.

Example

The following WFL job runs a program that opens a remote file. The remote file has an
internal name of REM. WFL equates the title of REM to the SOURCENAME value. The
result is that the remote file is opened at the station where the WFL job originated.

?BEGIN JOB;
 RUN OBJECT/PROG;
 FILE REM(TITLE = #MYSELF(SOURCENAME));
?END JOB

SOURCESTATION

6–10 8600 0502–407

SOURCESTATION

Type Real

Units Not applicable

Range See “Explanation” below

Default See below

Read Time Anytime; actual after initiation

Write Time See “Explanation” below

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Object code file dominant

Host Services Supported

Attribute Number 45

Synonym None

Restrictions None

Explanation

The SOURCESTATION task attribute records the unit that initiated this process family.
The SOURCESTATION value is divided into the following fields:

Field Meaning

[47:01] This field affects the printing of job summaries by any WFL jobs that are
initiated by this process. If the value is 0 (zero), the WFL job summary
file is saved under a special title for later printing by a message control
system (MCS). The title is built under the *REMLPnn/= directory, where
nn is the MCS number of the MCS that controls the LSN specified in
field [14:15]. On the other hand, if [47:01] has a value of 1, then the WFL
job summary is printed in the normal manner.

Note: The system ignores a 0 value in this field if the rest of the
SOURCESTATION value is also 0. If you wish to save job summaries,
but you do not wish to set fields [46:01] or [14:15], you can make this
field valid by setting another bit such as [45:01].

An MCS can write to this field, but cannot read it. Other processes
cannot read from or write to this field.

The DESTNAME and DESTSTATION task attributes completely override
the effect of this field if they are assigned values. For further
information, refer to the descriptions of these attributes.

 SOURCESTATION

8600 0502–407 6–11

Field Meaning

[46:01] If the value is 0 (zero), the system forwards copies of all process
messages to the MCS that controls the LSN specified infield [14:15].
Forwarded messages include DISPLAY messages, “BOT” and “EOT”
messages, and so on.

Note: The system ignores a 0 value in this field if the rest of the
SOURCESTATION value is also 0. If you wish to forward process
messages, but you do not wish to set fields [47:01] or [14:15], you can
make this field valid by setting another bit such as [45:01].

An MCS can write to this field, but cannot read it. Other processes
cannot read from or write to this field.

[14:15] The system stores the physical unit number of the originating unit in this
field. If the originating unit is a remote terminal, the controlling MCS
typically overwrites this field with the LSN of the originating terminal.
This field determines the MCS to which process messages are
forwarded (refer to the description of field [46:01]). This field contains 0
(zero) for processes initiated by the ??RUN (Run Code File) primitive
system command, by system software, or by a device on a remote BNA
host system.

An MCS can read from or write to this field. Other processes can read
from this field, but cannot write to it.

For details about how to access these fields, refer to “Accessing Task Attributes at the
Bit Level” in Section 1, “Accessing Task Attributes.”

Note: The LSN associated with any particular station can change over time. The
SOURCESTATION value is not updated to reflect such changes. An alternative to
SOURCESTATION is the SOURCENAME task attribute. SOURCENAME stores the
originating station name, which is less volatile than the LSN.

Only an MCS can make assignments to this task attribute. The MCS can assign this
attribute to a process only before the process is initiated.

Though the SOURCESTATION value is divided into fields, the first two fields are not
readable. Therefore, a process can read SOURCESTATION in the same way as it reads a
simple real-valued task attribute, without attempting to read the individual fields.

A process can only indirectly determine whether the SOURCESTATION value is an LSN
or a physical unit number. One method of determining this is for the process to read the
SOURCEKIND task attribute value. If SOURCEKIND = 3, then SOURCESTATION is an
LSN. Refer to the SOURCEKIND description for details.

Alternatively, the process can read the ORGUNIT value. Field [14:15] of the ORGUNIT
value is identical to field [14:15] of the SOURCESTATION value. However, one difference
between ORGUNIT and SOURCESTATION is that ORGUNIT has an extra field, [15:01],
that indicates whether the originating unit was a remote terminal. Refer to the ORGUNIT
description for details.

SOURCESTATION

6–12 8600 0502–407

One use for the SOURCESTATION task attribute is to enable tasks of WFL jobs to open
remote files. For an example, refer to the description of the STATION task attribute.

If SOURCESTATION is accessed through Host Services, bit 47 will always be zero (0).

Default

Before a process is initiated, the default SOURCESTATION value is 0. At initiation time,
the system assigns the appropriate SOURCESTATION value to the process. Processes
initiated from a MARC or CANDE session receive a SOURCESTATION value that records
the LSN associated with the session.

Inheritance

A process inherits the SOURCESTATION value of its parent.

If a WFL job is initiated from a CANDE or MARC session or from a task descended from
such a session, the WFL job inherits the SOURCESTATION of the session.

Run-Time Errors

SOURCESTATION ATTRIBUTE IS READ ONLY ON ACTIVE TASK

An MCS attempted to change the SOURCESTATION value of an in-use process. This
error is not fatal, but the requested change is not made.

SOURCESTATION ATTRIBUTE MAY ONLY BE SET BY AN MCS

A process that was not an MCS attempted to assign a value to SOURCESTATION. The
process, if nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
and HISTORYREASON = 52 (ONLYMCSMAYSETV).

 STACKHISTORY

8600 0502–407 6–13

STACKHISTORY

Type String

Units Not applicable

Range See “Explanation” below

Default Null string

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance Set to null string

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 30

Synonym None

Restrictions None

Explanation

The STACKHISTORY task attribute stores information about the structure of a process
that terminated abnormally. The STACKHISTORY value is stored regardless of whether
the termination was caused by a fault or by an operator command.

If the process terminates normally, the STACKHISTORY value is a null string. If the
process terminates abnormally, STACKHISTORY stores the address of the statement
that was being executed when the process terminated. STACKHISTORY also indicates
which procedures and blocks had been entered, but had not yet been exited, by storing
the addresses of the statements that invoked these procedures.

The STACKHISTORY value has the following format if the program was compiled with
the compiler control option LINEINFO set:

#SSS:AAAA:Y#(DDDDDDDD),....,#SSS:AAAA:Y#(DDDDDDDD).

The value has the following format if LINEINFO was not set:

#SSS:AAAA:Y,#SSS:AAAA:Y,....,#SSS:AAAA:Y.

STACKHISTORY

6–14 8600 0502–407

The elements shown in the preceding examples have the following meanings:

Element Meaning

SSS The code segment number in hexadecimal form. This field is expanded
to four characters, SSSS, for segment numbers greater than 4095.

Colon (:) A colon, which appears between the code segment number and the
code word address, and between the code word address and the code
syllable number.

AAAA The address, in hexadecimal, of the code word within that code
segment.

Y The number, in hexadecimal, of the syllable within that code word.

Comma (,) A comma, which appears after each code address except the rightmost
address.

Number sign
(#)

A blank space, in most cases. However, the blank space is replaced by
an asterisk (*) if the code address refers to MCP code.

Ellipsis (....) Signifies that the same format is repeated for each address.

DDDDDDDD The line number where the statement occurs in the source file. This
number appears only if the LINEINFO control option was set when the
program was compiled.

If NEWP INLINE procedures are referenced, the DDDDDDDD element
can consist of multiple line numbers, separated by slashes (/). The
leftmost line number indicates the most recently invoked procedure. For
example, the following address indicates that the most recently invoked
INLINE procedure is at line 23638000:

003:0580:1 (23638000/23638500/23639023)

Period (.) A period terminates the last address in the STACKHISTORY value.

The addresses are listed in reverse historical order. The first address is of the statement
that was being executed when the process terminated. The second address, if any, is of
the most recent procedure invocation. Subsequent addresses are of previous procedure
invocations.

In some cases, one or more of the code addresses in the STACKHISTORY value might
refer to MCP code rather than code in the application program. These references are
possible because system functions and I/O operations invoked by an application process
implicitly result in calls on MCP procedures, which are executed on the application
process stack.

For compilations initiated from CANDE, the LINEINFO option is set by default. The
DDDDDDDD parts of the STACKHISTORY value can be compared with the sequence
numbers in the source program to determine what statements are referred to.

 STACKHISTORY

8600 0502–407 6–15

For compilations initiated from WFL, LINEINFO is reset by default, but the LIST option is
set. The source code printout that results includes addresses of the form SSS:AAAA:Y
after each statement. The STACKHISTORY value can be compared with these addresses
to determine what statements are referred to. Alternatively, the programmer could
explicitly set LINEINFO and use the sequence numbers instead.

No value is stored for STACKHISTORY if the process incurs a fault but continues
executing normally. For an example of using STACKHISTORY, refer to the Task
Management Programming Guide.

The length of the STACKHISTORY value varies greatly, depending on the number of
procedure invocations that were active when the process terminated and whether the
program was compiled with the LINEINFO option set. To avoid task attribute errors, you
must be careful to read the STACKHISTORY value into an array large enough to hold that
value. The largest possible STACKHISTORY value is 400 words (that is, 2400 characters)
long.

Examples

In ALGOL, the following declaration creates an EBCDIC array large enough to hold any
STACKHISTORY value:

EBCDIC ARRAY STACKH[0:2399];

The following ALGOL statement reads the STACKHISTORY value into the array:

REPLACE STACKH BY T.STACKHISTORY;

Run-Time Error

TASK ATTRIBUTE ACCESS FAULT

An attempt was made to read the STACKHISTORY value into an array that is too short.
The reading process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 39 (INFANTICIDEV).

STACKLIMIT

6–16 8600 0502–407

STACKLIMIT

Type Integer

Units Words

Range 0 to 64032

Defaults See below

Read Time Anytime; actual after initiation

Write Time Anytime; effective before termination

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 50

Synonym None

Restrictions None

Explanation

The STACKLIMIT task attribute specifies the maximum size to which the process stack
can grow. If the process stack exceeds this limit, the system discontinues the process.
The system checks the STACKLIMIT value only when performing stack stretches; the
system does not consider STACKLIMIT when initiating a process.

For further information about STACKLIMIT, refer to the Task Management Programming
Guide.

Defaults

The defaults are as follows:

 6,000 words for most programs
 10,000 words for C programs
 16,000 words for C programs with the TADS option
 12,000 words for COBOL 85 programs with the TADS option

 12,000 words for PASCAL83 programs with the TADS option

 STACKLIMIT

8600 0502–407 6–17

Run-Time Errors

ILLEGAL ATTRIBUTE VALUE - TOO LARGE

An attempt was made to assign STACKLIMIT a value larger than 64032. The process, if
nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 135 (VALUETOOLARGEV).

STACK OVERFLOW

The process stack exceeded the size specified by the STACKLIMIT task attribute. The
process is discontinued with HISTORYCAUSE = 3 (RESOURCECAUSEV) and
HISTORYREASON = 2 (STACKEXCEEDEDV).

STACKNUMBER

6–18 8600 0502–407

STACKNUMBER

Type Integer

Units Not applicable

Range 0 to 4095

Default Not applicable

Read Time Anytime

Write Time Never

Inheritance None

Overwrite Rules None

Host Services Not supported

Attribute Number 77

Synonym None

Restrictions None

Explanation

The STACKNUMBER task attribute returns the stack number of a process. The stack
number uniquely identifies the process while it is executing and is used internally by the
system software.

A positive STACKNUMBER value indicates that a process is currently associated with the
task. A zero value indicates that the task is not currently associated with a process.

For more information about stack numbers, refer to the Task Management Programming
Guide.

 STACKSIZE

8600 0502–407 6–19

STACKSIZE

Type Integer

Units Words

Range See below

Default See below

Read Time Anytime

Write Time Before initiation

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 7

Synonym STACK

Restrictions None

Explanation

The STACKSIZE task attribute provides an estimate of the amount of memory that is
required for the process stack. The system inspects this value at initiation to determine
the amount of memory to be allocated for the process stack at initiation.

Note that STACKSIZE is not intended to return the current process stack size. This task
attribute returns only the stack estimate that was used when the process was initiated.

The programmer can affect process scheduling, or prevent stack stretches, by modifying
the STACKSIZE before initiating a process. For more information, refer to the Task
Management Programming Guide.

Range

STACKSIZE accepts values in the range 0 to 16384. If a higher value is assigned, no error
results, but the value is converted to 16384.

Default

STACKSIZE defaults to the value of the revised stack estimate, if there is one. If not,
STACKSIZE defaults to the value of the compiler stack estimate. For details, refer to the
Task Management Programming Guide.

STACKSIZE

6–20 8600 0502–407

Inheritance

An internal process inherits the STACKSIZE value of its parent. Other processes do not
inherit the parent's STACKSIZE.

Run-Time Error

STACKSIZE ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign the STACKSIZE task attribute of an in-use process. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 33 (READONLYONACTIVEV).

 STARTTIME

8600 0502–407 6–21

STARTTIME

Type String

Units Not applicable

Range <starttime specification>

Default Null string

Read Time Never

Write Time Before initiation

Fork() Inheritance Set to actual time started

Inheritance None

Overwrite Rules See below

Host Services Not supported

Attribute Number 79

Synonym None

Restrictions Available only in WFL

Range

<starttime specification>

ÄÄÂÄ<hour>ÄÄ : ÄÄ<minute>ÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë
 ÀÄ + ÄÄ<hours>ÄÄ : ÄÄ<minutes>ÄÙ

ëÄÂÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ ON ÄÂÄ<month>ÄÄ / ÄÄ<day>ÄÄ / ÄÄ<year>Ä´
 ÃÄ<julian date>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ + ÄÄ<days>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

The <day>, <days>, <hour>, <hours>, and <month> values are each a 1-digit or 2-digit
number.

The <minute> and <minutes> values must be 2-digit numbers.

The <year> value can be a 2-digit or 4-digit number.

The <Julian date> value can be a 5-digit or 7-digit number.

Explanation

The STARTTIME task attribute delays initiation of a WFL job until the specified time and
date. The job is compiled immediately, but remains in the job queue until the specified
start time. The job is then eligible for initiation the next time the system selects a job
from that job queue. The STARTTIME task attribute can be assigned only to WFL jobs.

A relative start time can be specified by preceding the time or date with a plus sign (+).
Thus, a start time of + 2:00 means that the job should be initiated in two hours.

STARTTIME

6–22 8600 0502–407

If no date or relative date is included in the STARTTIME value, today's date is assumed.

If a Julian date is used as the STARTTIME value, the last three digits signify the day of
the year. The preceding two or four digits signify the year. Thus, 94293 or 1994293 both
mean day 293 of 1994.

Overwrite Rules

STARTTIME can be assigned only in the following ways, which are listed in order from
most dominant to least dominant:

1. The STARTTIME of a job in a queue can be assigned or changed by the STARTTIME
system command or the CANDE ?STARTTIME command.

2. A STARTTIME assignment can be appended to the MARC, CANDE, or WFL START
statement that submits a WFL job.

3. A STARTTIME specification can be included in the job attribute list of a WFL job.

Examples

The following example shows a STARTTIME assignment in a WFL job:

?BEGIN JOB;
 STARTTIME = 11:00;
 RUN PROG;
?END JOB

The following is an example of a STARTTIME assignment appended to a CANDE, MARC,
or WFL START statement:

START WFL/TEST;STARTTIME = 19:00

The following is an example of a STARTTIME system command:

4698 STARTTIME = 21:00

The following examples show some of the possible formats for the STARTTIME value:

STARTTIME = 14:33;
STARTTIME = + 2:30;
STARTTIME = 23:15 ON + 1;
STARTTIME = 10:00 ON 94014;
STARTTIME = 10:00 ON 1994014;
STARTTIME = 10:00 ON 01/14/94;
STARTTIME = 10:00 ON 01/14/1994;

 STATION

8600 0502–407 6–23

STATION

Type Integer

Units Not applicable

Range –65535 to 0

Default 0

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 20

Synonym INITIATOR

Restrictions None

Explanation

The STATION task attribute stores the negative of the logical station number (LSN) of the
station to be assigned any remote files used by this process.

You can also specify a station by using the STATIONNAME task attribute or the TITLE or
FILENAME file attribute. Of these attributes, STATIONNAME is the most dominant, and
STATION is the next most dominant. The TITLE or FILE attribute affects station
selection only if STATIONNAME is null and STATION is 0.

Note: The LSN associated with any particular station can change over time. The
STATION value is not updated to reflect such changes. Use the STATIONNAME task
attribute instead of STATION, because the STATIONNAME attribute specifies a station
name, which is less volatile than an LSN.

A process can change the STATION value after initiation. Only remote files opened after
the change to the STATION value are affected by the new value.

If the STATION value specifies an LSN that does not exist, no error occurs until an
attempt is made to open a remote file.

For further information about remote file assignment, refer to the I/O Subsystem
Programming Guide.

STATION

6–24 8600 0502–407

Inheritance

A process inherits the STATION value of its parent.

The STATION attribute of a task initiated from a MARC or CANDE session inherits the
negative of the LSN associated with the session. The fact that the value is negative is
not a problem; when the process opens the remote file, it is opened at the originating
session.

On the other hand, the STATION attribute of a WFL job submitted from a MARC or
CANDE session does not inherit the LSN associated with the session. If tasks of the
WFL job open remote files, and those tasks do not use the FILENAME file attribute to
specify a station, then the STATION task attribute should first be explicitly assigned. The
simplest way to do this is to assign STATION the value of the SOURCESTATION task
attribute. SOURCESTATION is a read-only task attribute that stores the originating station
number. Refer to the SOURCESTATION description for details.

Example

The following task equation can be used to allow a task initiated from a WFL job to open
a remote file:

RUN TASK/READIT;
 STATION = MYSELF(SOURCESTATION);

For a related example, refer to the description of the SOURCENAME task attribute.

Run-Time Error

UNKNOWN STATION: <file name>

This error message results if a process attempts to open a remote file, the
STATIONNAME attribute is null, and the STATION attribute specifies a station that
doesn't really exist. The process is discontinued with HISTORYCAUSE = 9
(NEWIOERRCAUSEV) and HISTORYREASON = or 38 (UNKNOWNSTA_EV).

This error can also occur as the result of an invalid STATIONNAME value; refer to
“STATIONNAME” later in this section.

 STATIONNAME

8600 0502–407 6–25

STATIONNAME

Type String

Units Not applicable

Range <name>

Default Null

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 144

Synonym None

Restrictions None

Explanation and Example

The STATIONNAME task attribute specifies the name of the station to be assigned any
remote files used by this process.

You can use this attribute in WFL jobs to enable tasks to successfully open remote files.
Following is an example:

MYJOB (STATIONNAME = #MYSELF(SOURCENAME));
RUN TASK/READIT;

The preceding statements assign a STATIONNAME value to the job, and this value is
then inherited by any tasks such as TASK/READIT.

You can also specify the station for remote files by using the STATION task attribute or
the TITLE or FILENAME file attribute. Of these attributes, STATIONNAME is the most
dominant, and STATION is the next most dominant. The TITLE or FILE attribute affects
station selection only if STATIONNAME is null and STATION is 0.

Assignments to the STATIONNAME value do not change the STATION value, and
assignments to the STATION value do not change the STATIONNAME value.

A process can change the STATIONNAME value after initiation. Only remote files
opened after the change to the STATIONNAME value are affected by the new value.

If the STATIONNAME value specifies a station name that does not exist, no error occurs
until an attempt is made to open a remote file.

STATIONNAME

6–26 8600 0502–407

The HOSTNAME task attribute and the HOSTNAME file attribute have the following
effects on the STATIONNAME:

• If you initiate a process with the HOSTNAME task attribute, then the process is
initiated at a remote host by way of Host Services remote tasking. By default, any
remote files opened by that process are opened at the remote host. The
STATIONNAME value should either be null or should specify a station name that
exists on the remote host.

• If a process opens a remote file using the HOSTNAME file attribute, then the remote
file is opened at a remote host by way of Host Services logical I/O. The system
ignores the STATIONNAME value when the remote file is opened. The process
must use the STATION task attribute or the TITLE or FILENAME attribute to specify
the station for the remote file.

For further information about remote file assignment, refer to the I/O Subsystem
Programming Guide.

Inheritance

A process inherits the STATIONNAME value of its parent.

However, a WFL job submitted from a MARC or CANDE session does not inherit the
STATIONNAME associated with the session. Therefore, you might wish to assign the
STATIONNAME value as described previously.

Run-Time Error

UNKNOWN STATION: <file name>

This error message results if a process attempts to open a remote file and the
STATIONNAME task attribute specifies an invalid station. The process is discontinued
with HISTORYCAUSE = 9 (NEWIOERRCAUSEV) and HISTORYREASON = 38
(UNKNOWNSTA_EV).

The UNKNOWN STATION error can also occur if the STATIONNAME value is null and the
STATION value specifies an invalid LSN; refer to “STATION” earlier in this section.

 STATUS

8600 0502–407 6–27

STATUS

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default NEVERUSED

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance None

Overwrite Rules See below

Host Services Supported

Attribute Number 12

Synonym None

Restrictions None

Explanation

A process can use the STATUS task attribute to read or assign the process state of
another process or of itself. Some of the STATUS values can be assigned only at certain
times; these limitations are noted in the following table:

Mnemonic
Value

Integer
Value

Meaning

BADINITIATE –2 Initiation of the process failed. Setting this attribute
to BADINITIATE has no effect. If the current value is
BADINITIATE, the only assignment that has an
effect is an assignment of NEVERUSED.

TERMINATED –1 The process completed execution normally or was
discontinued. Setting the attribute to TERMINATED
discontinues the process with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 39
(INFANTICIDEV). If the current value is
TERMINATED, the only assignment that has an
effect is an assignment of NEVERUSED.

NEVERUSED 0 No attempt has yet been made to initiate the
process. Assigning this value reinitializes the task
variable, restoring all task attribute values to their
defaults. Assigning this attribute also releases the
save memory for the task variable (100 to 200
words). This value can be set only when the current
value is NEVERUSED, TERMINATED, or
BADINITIATE. If the current value is NEVERUSED,
assignments of any other STATUS values have no
effect.

STATUS

6–28 8600 0502–407

Mnemonic
Value

Integer
Value

Meaning

SCHEDULED 1 The process is scheduled. Setting this value has no
effect.

ACTIVE 2 The process is active. Setting the attribute to
ACTIVE has no effect unless the current STATUS
value is SUSPENDED or FROZEN.

If the STATUS is SUSPENDED, then assigning a
value of ACTIVE resumes execution of the process.

If the STATUS is FROZEN, then the process is a
frozen server library. If the server library is a
permanent library, then assigning a value of ACTIVE
changes the library to a temporary library. New user
processes can continue to link to the library
instance. The STATUS attribute continues to return a
value of FROZEN until the last user delinks, when
the library unfreezes and resumes execution. Refer
to the description of the GOINGAWAY value later
under this heading.

Assigning ACTIVE has no effect on connection
libraries declared by the process.

If you have quit the task, assignment to ACTIVE
resets the HISTORYTYPE to 0.

SUSPENDED 3 The process is suspended. Setting the attribute to
SUSPENDED suspends the process.

FROZEN 5 The process is a frozen server library. Setting this
value has no effect.

This value is not related to connection libraries. A
connection library process never enters the FROZEN
state unless the process is also a server library
process.

GOINGAWAY 6 This value is meaningful only when assigned to a
frozen permanent server library process. Assigning a
STATUS of GOINGAWAY to such a process changes
the library to a temporary library, prevents any new
user processes from linking to the library, and leaves
a value of ACTIVE in the STATUS attribute.

Assigning GOINGAWAY to other types of processes
has no effect. Assigning GOINGAWAY has no effect
on connection libraries declared by the process. The
GOINGAWAY value is never returned when the
STATUS attribute is read. Refer to the description of
the ACTIVE value earlier under this heading.

 STATUS

8600 0502–407 6–29

Note that assignments to the STATUS task attribute might not affect the process
immediately. For example, a critical block exit error can occur if the STATUS attribute is
used to terminate a task and the critical block is exited before that STATUS change has
taken effect. The only assignment that has immediate effect is an assignment of
NEVERUSED.

Whenever the value of the STATUS task attribute changes, the system causes the
EXCEPTIONEVENT of the EXCEPTIONTASK of the process. For further information, refer
to the descriptions of these attributes.

Overwrite Rules

The STATUS task attribute is not inherited, and syntax errors result from any attempt to
assign the STATUS task attribute to an object code file or to assign STATUS in a task
equation. The STATUS task attribute of a task variable that is not in use is either
NEVERUSED, TERMINATED, or BADINITIATE. When the system initiates a process, the
system automatically overwrites the previous STATUS value and assigns a value that
reflects the success or failure of the initiation: ACTIVE, SCHEDULED, or BADINITIATE.

Run-Time Error

INITIATE ACTIVE TASK

An attempt was made to set the STATUS attribute of an in-use process to NEVERUSED.
The assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 3 (INITACTIVETASKV).

STOPPOINT

6–30 8600 0502–407

STOPPOINT

Type Real

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance Set to 0

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 18

Synonym None

Restrictions None

Explanation

The STOPPOINT task attribute reports the point at which the process terminated
abnormally. If the abnormal termination was due to a fault, the type of fault is also
reported. If the process terminates normally, the STOPPOINT value is zero.

The STOPPOINT value is divided into the following fields:

Field Meaning

[47:08] If the process encountered a fault, this field stores the type of fault. The
value is the same as that of the HISTORYREASON task attribute when
the value of the HISTORYCAUSE attribute is 4 (FAULTCAUSEV). Refer
to the description of the HISTORYREASON attribute for a list of these
values.

[38:03] This field, when the code segment index exceeds 8191, contains the
most significant bits of the index. See the description of field [12:13].

[35:03] This field stores the index of the syllable in the code word where
process execution terminated.

[32:13] This field stores the index of the word in the code segment where
process execution terminated.

[13:01] If reset, this bit indicates that the process was executing MCP code
when it terminated. If set, the process was not executing MCP code at
termination.

[12:13] This field stores the index of the code segment where process
execution ended. If the index exceeds 8191, the most significant bits
are in field [38:03].

 STOPPOINT

8600 0502–407 6–31

For details about how to access these fields, refer to “Accessing Task Attributes at the
Bit Level” in Section 1, “Accessing Task Attributes.”

If STOPPOINT is accessed through Host Services, bit 47 will always be zero.

The code segment, code word, and code syllable indexes appear in source program
listings created by the $SET LIST compiler option. For an example of such a listing, refer
to the discussion of process history in the Task Management Programming Guide.

Other information about a process that terminates abnormally is recorded in the
STACKHISTORY task attribute. In addition, the HISTORY task attribute records the type
of termination a process had. For further information, refer to the description of the
HISTORY task attribute.

SUPPLEMENTARYGRPS

6–32 8600 0502–407

SUPPLEMENTARYGRPS

Type String

Units Not applicable

Range <usercode assignment>

Default Null string

Read Time Anytime

Write Time Never

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 142

Synonym None

Restrictions None

Explanation

The SUPPLEMENTARYGRPS task attribute is a read-only attribute that specifies the list
of alternate groups of which the task is a member. Each group code in the list follows
the same syntax as the USERCODE task attribute.

For further information about group codes, refer to the discussion of the GROUPCODE
task attribute in Section 4.

Inheritance

When the USERCODE task attribute is inherited from the parent task or session, the
SUPPLEMENTARYGRPS attribute is inherited also.

When the USERCODE task attribute is modified, the system updates the
SUPPLEMENTARYGRPS attribute in one of the following ways:

• For a string assignment or USERCODE task variable equation, the supplementary
group setting is retrieved from the USERDATAFILE entry for the new USERCODE.

• For a task variable assignment from another task variable, the
SUPPLEMENTARYGRPS task attribute of the destination task variable is assigned
the value of the SUPPLEMENTARYGRPS attribute from the source task variable.

When the USERCODE attribute is set to the null string, the SUPPLEMENTARYGRPS
attribute is set to the null string also.

 SUPPRESSWARNING

8600 0502–407 6–33

SUPPRESSWARNING

Type String

Units Not applicable

Range <suppresswarning list>

Default Null string

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Not supported

Attribute Number 110

Synonym None

Restrictions None

Range

<suppresswarning list>

ÄÄÂÄÄÄÂÄÄÄÄÄÄÄÄ´
 ÃÄ ALL ÄÄÄ´
 ÃÄ NONE ÄÄ´
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÃÄÄÄÄÄÂÄÁÄ<warning number>ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄÙ
 ÃÄ + Ä´ ÀÄ<hyphen>ÄÄ<warning number>ÄÙ
 ÀÄ Ä ÄÙ

<warning number>

An unsigned integer in the range 1 through 29999.

Explanation

The SUPPRESSWARNING task attribute can be used to suppress run-time warning
messages for a process. Most of these messages are warnings that the process has just
used a feature that is scheduled for deimplementation on a future release. These
messages might not be of interest to a typical user or system operator, and it might be
desirable to suppress their display. A suppressed warning does not appear at the ODT or
in CANDE or MARC sessions. However, it does appear in the system log.

SUPPRESSWARNING

6–34 8600 0502–407

The programmer can suppress particular types of run-time warning messages by
assigning SUPPRESSWARNING a set of warning numbers or warning number ranges.
Each warning number corresponds to a particular run-time warning message. The
warning number for each warning message is included in the text of that message. Thus,
the following message corresponds to warning number 112:

WARNING 112: TIME calls that return the date in BCL will be
deimplemented on SSR <number> (Scheduled for <date>).

For a list of warning messages and the warning numbers corresponding to them, refer to
the Unisys e-@ction ClearPath Enterprise Servers System Messages Support Reference
Manual.

 Warning messages can also be suppressed by the system warning suppression value.
An operator can use the SUPPRESSWARNING (Suppress Warning) system command to
define this value, which affects all processes on the system. A particular warning is
suppressed for a process if either the system warning suppression value or the
SUPPRESSWARNING task attribute indicates that the warning should be suppressed.
However, the system warning suppression value and the SUPPRESSWARNING task
attribute value are maintained independently and can be completely different.

Note: The SUPPRESSWARNING option of the CO (Controller Options) system
command affects messages warning of system command deimplementation. This option
does not affect run-time warning messages for processes and is not related to the
SUPPRESSWARNING task attribute.

SUPPRESSWARNING can be assigned a list of numbers or number ranges. A number
range consists of two numbers separated by a hyphen. For example, assigning a value of
1,3-5 causes warning messages 1, 3, 4, and 5 to be suppressed for the process. If a
SUPPRESSWARNING assignment begins with a hyphen, it is interpreted as a minus sign
and deletes warning types from the SUPPRESSWARNING list. Thus, if
SUPPRESSWARNING has a value of 1,4,8-10, then an assignment of -1,9 results in a
SUPPRESSWARNING value of 4,8,10.

The programmer can suppress the display of all run-time warning messages for a
process by assigning SUPPRESSWARNING a value of ALL. The system translates this
into the value 1-29999, which is returned if a statement reads the attribute thereafter.

The programmer can clear the SUPPRESSWARNING value by assigning a value of
NONE. If a process reads SUPPRESSWARNING after this assignment,
SUPPRESSWARNING returns a null string. In this case, the only warnings suppressed
are those specified by the system warning suppression value.

The SUPPRESSWARNING value does not prevent warnings from being recorded by the
TASKWARNINGS task attribute. For details, refer to the TASKWARNINGS description.

The SUPPRESSWARNING task attribute value of a library process also affects any user
processes while they are executing procedures from that library.

 SUPPRESSWARNING

8600 0502–407 6–35

Overwrite Rules

When an ALGOL or COBOL program assigns a set of warning numbers to
SUPPRESSWARNING, the numbers are added to the current SUPPRESSWARNING
value. The system incorporates the warning numbers in ascending order and combines
them into ranges where possible. For example, suppose SUPPRESSWARNING has a
value of 1,4,8-10. If a statement assigns a new value of 7,3, the resulting value is 1,3-4,7-
10. A program can remove warning numbers by assigning SUPPRESSWARNING a value
that begins with a hyphen or a value of NONE.

However, when SUPPRESSWARNING is assigned from CANDE, MARC, or WFL, the
current SUPPRESSWARNING value is discarded and changed to exactly the value
assigned. This is true regardless of whether the assignment is made by a task equation,
a task attribute assignment to a task variable, or a MODIFY statement that assigns task
attributes to an object code file.

Inheritance

The value of SUPPRESSWARNING is inherited from the parent when the code file for the
initiating parent is identical to the initiated offspring task. This behavior assumes there is
no previously defined SUPPRESSWARNING value for the offspring task and there is a
SUPPRESSWARNING value for the parent task.

Examples

The following syntax suppresses a range of warnings for a task run from a WFL job:

RUN OBJECT/TEST;
SUPPRESSWARNING = "138-139, 145-146";

The following ALGOL syntax suppresses the same range of warnings:

REPLACE MYSELF.SUPPRESSWARNING BY "138-139, 145-146";

Run-Time Error

SUPPRESSWARNING ATTRIBUTE INCORRECT SYNTAX

A process attempted to assign SUPPRESSWARNING a value that did not follow the
suppresswarning list syntax. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

SW1 through SW8

6–36 8600 0502–407

SW1 through SW8

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Anytime

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Numbers 84 through 91

Synonym None

Restrictions None

Explanation

The eight task attributes named SW1, SW2, SW3, SW4, SW5, SW6, SW7, and SW8 can
each be used to store a Boolean value. These task attributes serve simply as holders for
any Boolean values the user wishes to store. These attributes have no other effect on
the process.

You can design processes to communicate with each other by setting and reading these
task attributes. For an overview of the use of task attributes in interprocess
communication, refer to the Task Management Programming Guide.

You can also design processes to receive input from an operator by reading these task
attributes. The operator can assign these attributes through task equation, or can modify
these attributes for a running process with the SW (Switches) system command.

COBOL provides a special syntax for accessing these task attributes. A statement in the
SPECIAL-NAMES paragraph can assign special condition names, which can be used later
to access the task attribute value.

In RPG, the SW1 through SW8 task attributes can be accessed by way of the external
indicators U1 through U8. These external indicators can be used to condition various
operations so that they are only performed when the corresponding task attribute is
TRUE. For details, refer to the MCP/AS Report Program Generator (RPG) Programming
Reference Manual, Volume 1: Basic Implementation.

 SW1 through SW8

8600 0502–407 6–37

Example

The following COBOL74 or COBOL85 program accesses the SW1 task attribute in two
ways:

100 IDENTIFICATION DIVISION.
110 ENVIRONMENT DIVISION.
120 CONFIGURATION SECTION.
130 SPECIAL-NAMES.
140 SW1 ON STATUS IS SWITCH-ONE-ON,
150 OFF STATUS IS SWITCH-ONE-OFF.
160 DATA DIVISION.
170 WORKING-STORAGE SECTION.
180 PROCEDURE DIVISION.
190 START-HERE SECTION.
200 P1.
210 IF SWITCH-ONE-OFF DISPLAY "SWITCH ONE IS OFF".
220 IF ATTRIBUTE SW1 OF MYSELF = VALUE FALSE
230 DISPLAY "SWITCH ONE IS OFF".
240 STOP RUN.

First, SW1 is assigned condition names at lines 140 and 150. The statement at line 210
interrogates the SW1 value by condition name. The statement at line 220 interrogates
SW1 by way of the normal task attribute syntax.

TADS

6–38 8600 0502–407

TADS

Type Boolean

Units Not applicable

Range TRUE, FALSE

Default FALSE

Read Time Anytime

Write Time Before initiation

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 94

Synonym None

Restrictions None

Explanation

The TADS task attribute invokes the Test and Debug System (TADS) to cause a program
to run in test mode. The program must be written in ALGOL, C, COBOL74, COBOL85, or
FORTRAN77. The TADS task attribute is ignored unless the program was compiled with
the TADS compiler control option set to TRUE.

For directions about how to use TADS, refer to the following manuals:

• MCP/AS ALGOL Test and Debug System (TADS) Programming Guide

• MCP/AS C Test and Debug System (TADS) Programming Reference Manual

• MCP/AS COBOL ANSI-74 Test and Debug System (TADS) Programming Guide

• Unisys e-@ction Application Development Solutions COBOL ANSI-85 Test and
Debug System (TADS) Programming Reference Manual

• MCP/AS FORTRAN77 Test and Debug System (TADS) Programming Guide

• MCP/AS NEWP Programming Reference Manual

Inheritance

An internal process inherits the TADS value of its parent. This inheritance overrides any
TADS value explicitly assigned to the internal process. An external process does not
inherit the TADS value of its parent.

 TADS

8600 0502–407 6–39

Run-Time Error

TADS ATTRIBUTE IS READONLY ON ACTIVE TASK

An attempt was made to assign the TADS attribute of an in-use process. The assigning
process, if nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
and HISTORYREASON = 33 (READONLYONACTIVEV).

TANKING

6–40 8600 0502–407

TANKING

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default UNSPECIFIED

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Object code file dominant

Host Services Not supported

Attribute Number 60

Synonym None

Restrictions None

Explanation

The TANKING task attribute specifies the default tanking mode for remote files used by
the process. The system uses this default tanking mode for any remote files whose
TANKING file attribute has a value of UNSPECIFIED.

The TANKING task attribute values are as follows:

Mnemonic
Value

Integer
Value

Meaning

UNSPECIFIED 0 The remote file is not tanked unless the MCS
overrides this value when assigning the file.

NONE 1 The remote file is not tanked. The MCS cannot
override this value.

SYNC 2 The remote file is tanked. When the remote file is
closed, the process does not continue until all
tanked output has been completed. The MCS cannot
override the SYNC value.

ASYNC 3 The remote file is tanked. The process can continue
past the file close, and even terminate, without
waiting for the tanked output to be completed. The
system continues to transfer messages from the
tank file to the output queue until the tank file is
empty. The MCS cannot override the ASYNC value.

Some of the above values are ignored or interpreted differently for processes writing to
Transaction Server stations. For further information, refer to the discussion of tanking in
the Task Management Programming Guide.

 TANKING

8600 0502–407 6–41

Run-Time Error

TANKING ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign TANKING a value less than 0 or greater than 3. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 131 (INCORRECTSYNTAXV).

TARGET

6–42 8600 0502–407

TARGET

Type Integer

Units Not applicable

Range 0 through 549755813887

Default 0

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 6

Synonym TARGETTIME

Restrictions None

Explanation

The TARGET task attribute stores any integer value that is assigned to it by a user. The
value of this attribute has no effect on the process, nor does it report any information
about the process. Rather, it is provided for use in communicating information between
processes. For an overview of the use of task attributes in interprocess communication,
refer to the Task Management Programming Guide.

The value of TARGET formerly had some effect on process scheduling. The operating
system no longer uses this attribute for that purpose.

Run-Time Error

TARGET ILLEGAL ATTRIBUTE VALUE - TOO LARGE

An attempt was made to assign TARGET a value greater than its maximum. The
assigning process, if nonprivileged, is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 135 (VALUETOOLARGEV).

 TASKERROR

8600 0502–407 6–43

TASKERROR

Type Real

Units Not applicable

Range See “Explanation” below

Default 0

Read Time Any time

Write Time Never

Inheritance None

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 117

Synonym None

Restrictions None

Explanation

The TASKERROR task attribute indicates whether an error resulted from the most recent
attempt to access a task attribute of this process. If an error did result, the TASKERROR
value also indicates which task attribute was being accessed, and the type of error that
occurred.

The TASKERROR task attribute serves a purpose similar to the ERROR task attribute.
However, TASKERROR has the advantage of providing more information about the error
that occurred. Another advantage of using TASKERROR is that the value can be read
repeatedly, whereas the ERROR value is erased each time it is read.

Further, a program can use the TASKERROR value as input to the ATTRIBUTEMESSAGE
procedure, which translates the value into a textual error message. For information about
ATTRIBUTEMESSAGE, refer to “Using WFLSUPPORT to Access Task Attributes” in
Section 1, “Accessing Task Attributes.”

TASKERROR

6–44 8600 0502–407

The TASKERROR value is divided into the following fields:

Field Value Meaning

[47:08] 0 If field [00:01] is 1, then an error occurred in accessing
a task attribute other than FILECARDS or LIBRARY.
Field [39:16] stores the number of the task attribute
that was used incorrectly. For a list of task attributes
in numerical order, refer to Table 3–3, “Task
Attributes by Number.”

If field [00:01] is 0 (zero), then there was no task
attribute error.

 1 An error occurred in accessing the FILECARDS task
attribute. Field [39:16] stores the number of the file
attribute that was assigned incorrectly in FILECARDS.
For a list of file attributes in numerical order, refer to
the description of the ATTYPE file attribute in the File
Attributes Programming Reference Manual.

 6 An error occurred in assigning the LIBRARY task
attribute. Field [39:16] stores the number of the library
attribute that was assigned incorrectly in the LIBRARY
task attribute. For a list of library attributes in
numerical order, refer to Table 3–2, “Library Attributes
by Number.”

[39:16] (Various) The number of the task attribute, file attribute, or
library attribute that was assigned incorrectly. For
details about the meaning of this field, refer to the
discussion of field [47:08].

[23:16] (Various) If the last attribute to be assigned was the
USERCODE attribute, then this field contains a
USERDATA error code. For a list of the most common
USERDATA errors that can be stored in this field, refer
to Table 3–1, “USERDATA Errors.” For a complete
list, and general information about USERDATA errors,
refer to the Security Administration Guide.

If field [00:01] is set, and the last attribute to be
assigned was not the USERCODE attribute, then this
field stores an error code in one of the following
ranges of numbers:

1 through 999. Such an error code corresponds to the
HISTORYREASON task attribute value. For an
explanation of values in this range, refer to the
HISTORYREASON task attribute description.

1000 or greater. Such an error code corresponds to
the HANDLEATTRIBUTES error number. For an
explanation of values in this range, refer to Table 1–1,
“HANDLEATTRIBUTES Error Numbers.”

[07:05] 0 An unused field. Its value is always 0 (zero).

 TASKERROR

8600 0502–407 6–45

Field Value Meaning

[02:01] 0 The validity bit. This value indicates that fields [47:08]
and [39:16] do not contain valid values.

 1 Fields [47:08] and [39:16] contain valid values.

[01:01] 0 An unused field. Its value is always 0 (zero).

[00:01] 0 No error or warning occurred, and none of the
previously defined fields are used.

 1 An error or warning occurred, and the fields defined
previously are used.

For details about how to access these fields, refer to “Accessing Task Attributes at the
Bit Level” in Section 1, “Accessing Task Attributes.”

Examples

The following are examples of ALGOL statements that read the values of individual fields
of the TASKERROR task attribute. The assignments are all made to real variables (named
BUF, GENERAL_TYPE, ATTRIBUTE_NUMBER, and so on).

BUF := T.TASKERROR;
GENERAL_TYPE := BUF.[47:8];
ATTRIBUTE_NUMBER := BUF.[39:16];
ERROR_NUMBER := BUF.[23:16];
VALIDITY_BIT :=BUF.[2:1];
WARNING_BIT := BUF.[1:1];
EXCEPTION_BIT := BUF.[0:1];

The following are examples of COBOL74 or COBOL85 statements that read the values
of individual fields of the TASKERROR task attribute. The assignments are all made to 77-
level variables of type REAL (named BUF, GENERAL-TYPE, ATTRIBUTE-NUMBER, and
so on).

MOVE ATTRIBUTE TASKERROR OF TASK-VAR-1 TO BUF.
MOVE BUF TO GENERAL-TYPE [47:07:08].
MOVE BUF TO ATTRIBUTE-NUMBER [39:15:16].
MOVE BUF TO ERROR-NUMBER [23:15:16].
MOVE BUF TO VALIDITY-BIT [02:00:01].
MOVE BUF TO WARNING-BIT [01:00:01].
MOVE BUF TO EXCEPTION-BIT [00:00:01].

WFL allows TASKERROR to be read as a real value, but does not provide any syntax for
reading the individual fields within the TASKERROR value.

TASKERROR

6–46 8600 0502–407

Run-Time Error

TASKERROR ATTRIBUTE IS READONLY

An attempt was made to assign a value to the TASKERROR attribute. The assigning
process is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and
HISTORYREASON = 9 (ATTREADONLYV).

 TASKFILE

8600 0502–407 6–47

TASKFILE

Type File

Units Not applicable

Range See “Explanation” below

Default See below

Read Time Before termination; accurate only while
process is in use

Write Time Never

Inheritance None; new for process

Fork() Inheritance None; new for process

Overwrite Rules WFL file equations only

Host Services Not supported

Attribute Number 32

Synonym None

Restrictions None

Explanation

The TASKFILE task attribute is used to access the task file associated with a process.
The task file is a printer backup file that stores program dumps generated by the process.
The task file includes only those program dumps directed to printer rather than to disk.
For more information about program dumps, refer to the Task Management
Programming Guide.

The main use of the TASKFILE task attribute is to allow a process to write comments to
the task file before the process generates a dump. TASKFILE can also be used in
statements that close the task file or interrogate the file attributes of the task file.
TASKFILE cannot be used to assign file attributes to the task file, although the
FILECARDS task attribute can be used for this purpose. For information about assigning
file attributes to the task file, refer to the discussion of process history in the Task
Management Programming Guide.

A process can access its own task file or the task file of any of its ancestors. For
example, a task can access its job's task file by way of the MYJOB task variable and the
TASKFILE task attribute.

A process cannot access the task file of any descendant, sibling, or cousin process or of
any process outside its own process family.

TASKFILE

6–48 8600 0502–407

Default

By default, the TASKFILE attribute defines a file with the following attributes:

BACKUPKIND = DISK
BUFFERS = 1
INTMODE = EBCDIC
INTNAME = TASKFILE
KIND = PRINTER
LABELTYPE = OMITTED
MAXRECSIZE = 22
MYUSE = OUT

When the task file is opened, the system titles it according to the standard printer
backup file titling convention discussed in the Task Management Programming Guide.

Examples

The following ALGOL statements cause two program dumps and write a different
comment to each program dump. The CLOSE statement causes the program dumps to
be stored in two separate backup files:

 WRITE (MYSELF.TASKFILE,//,"HI THERE, DUMP 1");
 PROGRAMDUMP;
 CLOSE (MYSELF.TASKFILE);
 WRITE (MYSELF.TASKFILE,//,"HI THERE, DUMP 2");
 PROGRAMDUMP;

The following ALGOL statements interrogate file attributes of the task file:

 R := MYSELF.TASKFILE.KIND;
 IF MYSELF.TASKFILE.OPEN THEN ...

Run-Time Errors

The following errors are always fatal, even if the accessing process is privileged, an
MCS, a tasking program, or BNA Host Services.

NON ANCESTRAL TASKFILE

A process attempted to access the task file of another process that is not an ancestor of
the accessing process. The accessing process is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 12 (NONANCESTRALTASKFILEV).

TASKFILE ATTRIBUTE IS READONLY

An attempt was made to assign a value to TASKFILE. The assigning process is
discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 9
(ATTREADONLYV).

 TASKLIMIT

8600 0502–407 6–49

TASKLIMIT

Type Integer

Units Descendant tasks

Range 0 to 31

Default 0 (unlimited)

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 58

Synonym None

Restrictions None

Explanation

The TASKLIMIT task attribute limits the number of descendants a job can have. The
value of the job's TASKLIMIT is automatically decremented by 1 each time a descendant
task is initiated. When TASKLIMIT has been decremented to 0, the initiation of any
further descendants causes the initiating process to be discontinued.

The job's TASKLIMIT is also decremented by 1 when an independent process is initiated
by the job or one of the job's descendants. However, descendants of the independent
process do not affect the original job's TASKLIMIT.

The limit applied by TASKLIMIT is cumulative. That is, it limits the total number of
descendants a job can have during its history, not only the number of descendants a job
can have at the same time.

If TASKLIMIT has not been set, there is no limit on the number of descendants a job can
have, and reading TASKLIMIT returns a value of 0. However, explicitly assigning 0 to
TASKLIMIT sets a limit of 0 on the number of descendants.

TASKLIMIT has no effect when assigned to a task. It does not limit the number of
descendants the task can have.

Inheritance

If the TASKLIMIT attribute is set for a job queue, it is inherited by all WFL jobs run out of
that job queue. This is true even if the WFL job attribute list specifies a different
TASKLIMIT value. However, after initiation the WFL job can assign TASKLIMIT a different
value.

TASKLIMIT

6–50 8600 0502–407

Run-Time Error

TASKLIMIT EXCEEDED

The process attempted to initiate a task when the TASKLIMIT value of MYJOB was
already decremented to 0 (zero). The process is discontinued with HISTORYCAUSE = 2
(PROGRAMCAUSEV) and HISTORYREASON = 58 (TASKLIMITEXCEEDEDV).

 TASKSTRING

8600 0502–407 6–51

TASKSTRING

Type String

Units Not applicable

Range <taskstring specification>

Default Null

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Not supported

Attribute Number 113

Synonym None

Restrictions None

Range

<taskstring specification>

A string of up to 255 EBCDIC characters of which the last must be a null character.

Explanation

The TASKSTRING task attribute stores any string value that is assigned to it by a user.
The value of this attribute has no effect on the process nor does it report any information
about the process. Rather, it communicates information between processes, such as
communicating information to a controlling job at task termination. It is not a
recommended practice to change the attribute value and have the job continually check
whether the attribute has changed. Instead, use an existing event (such as task
termination) to determine when to read the attribute.

For an overview of the use of task attributes such as TASKSTRING in interprocess
communication, refer to the Task Management Programming Guide.

TASKSTRING

6–52 8600 0502–407

Examples

In ALGOL, the following statement could be used to assign TASKSTRING a value of
$SET LIST:

REPLACE T1.TASKSTRING BY "$SET LIST" 48"00";

In COBOL74 and COBOL85, the equivalent statement has the following form:

CHANGE ATTRIBUTE TASKSTRING OF T1 TO "$SET LIST".

In WFL, the assignment appears as follows:

T1(TASKSTRING = "$SET LIST");

Run-Time Error

TASKSTRING ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign a TASKSTRING value that was more than 255 characters
long or that was not terminated by a null character. The assigning process is
discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON =
131 (INCORRECTSYNTAXV).

 TASKVALUE

8600 0502–407 6–53

TASKVALUE

Type Real

Units Not applicable

Range –4.31E+68 to +4.31E+68

Default 0

Read Time Anytime

Write Time Anytime

Inheritance None

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 9

Synonym VALUE

Restrictions None

Explanation

The TASKVALUE task attribute stores any real value that is assigned to it by a user. The
value of this attribute has no effect on the process nor does it report any information
about the process. Rather, it is provided for use in communicating information between
processes.

If TASKVALUE is accessed through Host Services, bit 47 will always be zero (0).

An operator can change the TASKVALUE of an in-use process with the <mix number> HI
<integer> form of the HI (Cause EXCEPTIONEVENT) system command.

For an overview of the use of task attributes in interprocess communication, refer to the
Task Management Programming Guide.

TASKWARNINGS

6–54 8600 0502–407

TASKWARNINGS

Type String

Units Not applicable

Range <task warnings list>

Default Null string

Read Time Only while in-use

Write Time Never

Inheritance None

Fork() Inheritance From parent

Overwrite Rules None (read-only)

Host Services Not supported

Attribute Number 109

Synonym None

Restrictions None

Range

<task warnings list>

ÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄ´
 ³ ÚêÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄ¿ ³
 ÀÄÁÄ<warning number>ÄÁÄÙ

Explanation

The TASKWARNINGS task attribute records what run-time warning messages have been
issued for the object code file used by the process. Most run-time warning messages
notify the programmer that the process uses a feature that has been scheduled for
deimplementation on a future release. A programmer can use these messages to
determine what changes need to be made to a program so it can be run on a new
release.

The TASKWARNINGS value is the same as the value of the WARNINGS file attribute of
the object code file. The value consists of either a null string or a series of warning
numbers. Each warning number represents a particular run-time warning message. The
warning number for each warning message is included in the text of that message. Thus,
the following message corresponds to warning number 112:

WARNING 112: TIME calls that return the date in BCL will be
deimplemented on SSR <number> (Scheduled for <date>).

For a list of warning messages and the warning numbers corresponding to them, refer to
the Unisys e-@ction ClearPath Enterprise Servers System Messages Support Reference
Manual.

 TASKWARNINGS

8600 0502–407 6–55

In the TASKWARNINGS value, warning numbers are separated by commas and listed in
ascending order.

The TASKWARNINGS value includes warnings that were issued for other processes that
were instances of this same object code file, or that were executing a procedure from
this object code file when the warning occurred. For example, the TASKWARNINGS
attribute of a library process reflects any warnings that were issued for user processes
while they were executing procedures exported by the library.

If the TASKWARNINGS attribute of the MYSELF task variable is read within a library
program, it returns either the warnings stored in the library object code file or those
stored in the user process object code file, depending on the context. If
TASKWARNINGS is read in an exported library procedure, it returns warnings stored in
the user process object code file. If TASKWARNINGS is read elsewhere in the library,
such as by a statement executed before the library freezes, then TASKWARNINGS
returns warnings stored in the library object code file.

The TASKWARNINGS value includes all warnings that were issued for this object code
file, including any that were suppressed by the SUPPRESSWARNING task attribute or
the system warning suppression value. For details, refer to the description of the
SUPPRESSWARNING task attribute.

Run-Time Error

CODE FILE MUST BE ACTIVE

An attempt was made to read the TASKWARNINGS task attribute of a process that is
not in use. The accessing process, if nonprivileged, is discontinued with HISTORYCAUSE
= 2 (PROGRAMCAUSEV) and HISTORYREASON = 116 (CODEFILENOTACTIVEV).

TEMPFILELIMIT

6–56 8600 0502–407

TEMPFILELIMIT

Type Real

Units Disk Megabytes

Range –1 to about 4.31E+68

Default –1 (Unlimited)

Read Time Anytime

Write Time Anytime

Inheritance From parent

Fork() Inheritance From parent

Overwrite Rules See below

Host Services Supported

Attribute Number 118

Synonym None

Restrictions None

Explanation

The TEMPFILELIMIT task attribute specifies the maximum amount of disk space that can
be allocated at one time to temporary disk files owned by the process. For an
introduction to temporary files, refer to the Task Management Programming Guide.

The amount of disk space used for temporary files increases when a process creates a
new temporary disk file or increases the size of an existing temporary disk file. If one of
these operations causes the process to exceed the TEMPFILELIMIT value, the system
issues an I/O error for the process, and the I/O operation is not performed.

The TEMPFILELIMIT value is enforced only when the disk resource control system is
active, and is never enforced for library maintenance processes.

If TEMPFILELIMIT is accessed through Host Services, bit 47 will always be zero (0).

TEMPFILELIMIT returns a value of –1 if it is read and no value was previously assigned
to it. A value of –1 means that there is no limit on temporary file usage.

For more information about the disk resource control system, refer to the System
Administration Guide and the System Operations Guide. A related task attribute,
TEMPFILEMBYTES, is discussed later in this section.

 TEMPFILELIMIT

8600 0502–407 6–57

Overwrite Rules

When a process is initiated, the system assigns a TEMPFILELIMIT value that is the
minimum of the following values:

• The value of the TEMPFILELIMIT usercode attribute, if this attribute has been
defined for the usercode of this process

• The TEMPFILELIMIT value inherited from the parent, as long as it is not unlimited
(–1)

• Any TEMPFILELIMIT value that would result from standard overwrite rules, for
example, because of a previous TEMPFILELIMIT assignment to the task variable or
the object code file

Once a process is running, the current value of TEMPFILELIMIT can never be increased.
An assignment that attempts to increase the TEMPFILELIMIT value is ignored and the
TEMPFILELIMIT value remains unchanged. On the other hand, TEMPFILELIMIT can be
assigned a lower value at any time.

Run-Time Error

FILE <file name> I/O ERROR: ATTEMPT TO EXCEED TEMPORARY FILE
LIMIT

The process requested more space for temporary disk files than was allowed by the
TEMPFILELIMIT attribute. The I/O operation fails. If the process has specified error
handling for the I/O statement that caused the error, then the process can proceed
normally. Otherwise, the process is discontinued.

TEMPFILEMBYTES

6–58 8600 0502–407

TEMPFILEMBYTES

Type Real

Units Disk megabytes

Range 0 to about 4.31E+68

Default 0

Read Time Anytime

Write Time Never

Inheritance None

Fork() Inheritance Set to 0

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 119

Synonym None

Restrictions None

Explanation

The TEMPFILEMBYTES task attribute records the amount of disk space currently
allocated to temporary files owned by the process. For an introduction to temporary files,
refer to the Task Management Programming Guide.

The information returned by TEMPFILEMBYTES is valid only when the disk resource
control system is active and is continuously active during the entire life of the process.
Temporary files created by library maintenance processes and certain other system
functions are not included in the value returned by this attribute.

For more information about the disk resource control system, refer to the System
Administration Guide and the System Operations Guide.

If TEMPFILEMBYTES is accessed through Host Services, bit 47 will always be 0 (zero).

Run-Time Error

TEMPFILEMBYTES IS READONLY

A process attempted to assign a value to the TEMPFILEMBYTES attribute. The assigning
process, if nonprivileged, is discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV)
and HISTORYREASON = 9 (ATTREADONLYV).

 TYPE

8600 0502–407 6–59

TYPE

Type Mnemonic

Units Not applicable

Range See “Explanation” below

Default PROCESS

Read Time Anytime; accurate while in use

Write Time Never

Fork() Inheritance Set to 5 (FORK)

Inheritance None

Overwrite Rules None (read-only)

Host Services Supported

Attribute Number 11

Synonym None

Restrictions None

Explanation

The TYPE task attribute returns information about whether the process is synchronous or
asynchronous, and dependent or independent. The following are the possible values and
their meanings:

Mnemonic
Value

Integer
Value

Meaning

PROCESS 0 Asynchronous dependent process

CALL 1 Synchronous dependent process

RUN 2 Non-WFL independent process

JOBSTACK 3 WFL job

FORK 5 Process initiated by fork() function.

EXEC 6 Process initiated by exec() function.

For information about the fork() and exec() functions, refer to the POSIX User's Guide.

Read Time

The TYPE attribute can be read at any time. However, the value is reset to PROCESS
when the process terminates, regardless of what the value was when the process was
in use.

USERCODE

6–60 8600 0502–407

USERCODE

Type String

Units Not applicable

Range <usercode assignment>

Default Null string

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Object code file dominant

Host Services Supported

Attribute Number 8

Synonym None

Restrictions None

Range

<usercode assignment>

ÄÄ<usercode>ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ / ÄÄ<password>ÄÙ

Explanation

The USERCODE task attribute specifies the usercode under which the process is run.
The usercode is a major factor in determining the privilege status of the process and
what files can be accessed by the process. For information about usercodes and
privilege, refer to the Task Management Programming Guide.

A USERCODE assignment must include a password unless the usercode does not have
a password defined in the USERDATAFILE. However, when a process reads the
USERCODE task attribute, the password is omitted from the value returned.

When a process is initiated, the system performs validation to determine whether the
USERCODE value for a process is compatible with the ACCESSCODE task attribute
value and the CHARGE task attribute value. The following is an outline of this validation:

1. The system checks to see that a USER entry exists for the usercode in the
USERDATA file and that the password included in the USERCODE assignment is
valid. Otherwise, the system discontinues the process.

2. The system performs the accesscode validation that is explained in the
ACCESSCODE task attribute description.

 USERCODE

8600 0502–407 6–61

3. The system performs the charge code validation that is explained in the CHARGE
task attribute description.

4. For a WFL job, the WFL compiler performs both the accesscode and charge code
validation at compile time. The WFL compiler issues a syntax error if either of these
validations fails. (A WFL job can receive an ACCESSCODE or CHARGE value at
compile time either through inheritance or through an assignment in the job attribute
list).

If the USERCODE value of an in-use process is changed, the system performs only the
first of the above types of validation. The following are the effects on the CHARGE and
ACCESSCODE values:

CHARGE
The process retains its current CHARGE value, even if it is one that would not
normally be permitted for the new usercode. The process continues running
normally.

ACCESSCODE
The system always changes the ACCESSCODE task attribute to a null string, even if
the accesscode is one that is permitted for the new usercode. The process
continues running normally.

If you do not want the ACCESSCODE to change, use USERDATA Function 3 to
perform the USERCODE validation and assignment. USERDATA Function 3 causes
the process to retain its current ACCESSCODE, even if that ACCESSCODE is one
that would not normally be permitted for the new usercode.

If USERCODE is assigned a null string before initiation, the null value is overridden by
inheritance from the parent at initiation time. A nonusercoded process receives a special
security status, as described in the Task Management Programming Guide.

Only a privileged process, an MCS, a tasking program, or a compiler can assign a null
string to the USERCODE of an in-use process. If a nonprivileged process attempts to
assign a null string to the usercode of an in-use process, the nonprivileged process is
discontinued with a security violation.

If the USERCODE of an in-use process is assigned a null string, the process becomes a
nonusercoded process and the following effects also occur:

• The value of the ACCESSCODE task attribute is cleared.

• If a process was running under a privileged usercode, the process remains privileged.

• If the process is an MCS that was temporarily running under a usercode without
MCS privileges, the process resumes its MCS privileges.

For processes initiated from a session, changing the usercode has the side effect of
preventing process messages from being displayed at the originating terminal. The
messages resume if the original usercode is restored.

USERCODE

6–62 8600 0502–407

During process initiation, if the NAME task attribute does not specify the usercode of the
object code file, the system uses the USERCODE attribute of the initiator to search for
the object code file to initiate. The system does not use the USERCODE attribute of the
task variable being initiated for this purpose.

The system prevents the USERCODE attribute of a process from being copied if the
SETUSERCODE or SETGROUPCODE subattribute is set for the process code file. (For
information about these subattributes, refer to the SECURITYMODE file attribute
description in the File Attributes Programming Reference Manual.) For such a process,

• When the process terminates, the system nulls the USERCODE value in the task
variable.

• While the process is running, any attempt to copy the USERCODE value from one
task variable to another results in a security violation.

The USERCODE attribute cannot be transferred using task-to-task transfer if the source
task has been protected from modification, except by a tasking program. A task is
protected from modification when it is passed as a parameter to a library change or
approval procedure. While the change or approval procedure is active, access to the
MYSELF intrinsic generates a protected task.

Inheritance

A process typically inherits the usercode of its parent. Processes initiated from CANDE
or MARC sessions inherit the usercode of the session.

For library processes initiated by the library linkage mechanism with LIBACCESS =
BYTITLE, the USERCODE task attribute inherits the USERCODE value of the process
that is linking to the library.

If the SETUSERCODE subattribute of the SECURITYMODE attribute of the code file was
set, then the initial USERCODE value is taken from the usercode of the code file. A copy
of the initial USERCODE value is stored in the SAVEDUSERCODE task attribute. A copy
of the USERCODE value the process would have received from the initiating process is
stored in the REALUSERCODE task attribute. A process can use various functions to
toggle the USERCODE attribute value between the values stored in the
REALUSERCODE and SAVEDUSERCODE task attributes. For further information, refer
to the discussion of process identities in the Task Management Programming Guide.

Examples

This ALGOL statement assigns a usercode:

REPLACE TVAR.USERCODE BY "SMITH/DAVID.";

This ALGOL statement assigns a null usercode:

REPLACE TSK.USERCODE BY ".";

 USERCODE

8600 0502–407 6–63

Run-Time Errors

When an error occurs in assigning the USERCODE task attribute, field [27:20] of the
ERROR task attribute of the receiving process stores the USERDATA error code. In
addition, any of the following messages can be displayed.

SECURITY VIOLATION

An attempt was made to assign an illegal usercode value. The assigning process is
discontinued with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON =
29 (SECURITYERRORV). The system adds one of the following explanatory messages:

• If an attempt was made to assign a USERCODE value that failed security validation,
the following additional message appears.

INVALID TASK ATTRIBUTE: USERCODE

• If a nonprivileged process attempted to set the USERCODE of an in-use process to a
null value, the following additional message appears:

INVALID TASK ATTRIBUTE: USERCODE IS A DOT

• If an attempt was made to assign an invalid USERCODE to an object code file at
compile time, the following additional message appears:

INVALID USERCODE WHEN INITIATING A TASK

USERCODE ATTRIBUTE INCORRECT SYNTAX

An attempt was made to assign a USERCODE a value that did not follow the usercode
assignment syntax. The assigning process, if nonprivileged, is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 131
(INCORRECTSYNTAXV).

VALIDITYBITS

6–64 8600 0502–407

VALIDITYBITS
Note: The VALIDITYBITS task attribute is intended for use by the system software
only. The meanings of the various fields in the VALIDITYBITS value are subject to change
without notice. It is therefore not possible for application programs to receive reliable
information from VALIDITYBITS. For this reason, application programs should not use
this attribute.

 WAITLIMIT

8600 0502–407 6–65

 WAITLIMIT

Type Real

Units Seconds

Range 0 to 164925

Default 0 (maximum wait time allowed)

Read Time Anytime

Write Time Anytime

Inheritance See below

Fork() Inheritance From parent

Overwrite Rules Standard

Host Services Supported

Attribute Number 56

Synonym None

Restrictions None

Explanation

The WAITLIMIT task attribute specifies the number of seconds that the process is
allowed to spend in a user-requested wait state. If the process waits longer than its
WAITLIMIT, it is discontinued.

The WAITLIMIT task attribute applies only to program statements that explicitly wait on
one or more events. In particular, it does not apply to suspended processes that issue
RSVP messages, such as processes suspended with a NO FILE condition. This attribute
is intended to catch otherwise undetected application program errors.

WAITLIMIT is not cumulative; it applies to each WAIT statement separately.

You can assign WAITLIMIT a value greater than 164925 without incurring a compile-time
or run-time error. However, the system actually enforces a WAITLIMIT of 164925 in
these cases.

The default value of 0 also allows the process to wait for a maximum of 164925 seconds.
The effect is the same, regardless of whether the 0 value is assigned explicitly or
received as a default.

Note: The maximum effective value of WAITLIMIT is subject to change in future
releases.

WAITLIMIT

6–66 8600 0502–407

Some forms of the WAIT statement are not affected by WAITLIMIT. These forms can
cause the process to wait any amount of time without being discontinued. The following
are WAIT statement forms unaffected by WAITLIMIT:

WFL ALGOL COBOL

WAIT WAIT WAIT UNTIL INTERRUPT

WAIT (OK)

WAIT (<real expression>)

In the last of the three WFL statements shown, the real expression follows the syntax
described in the Work Flow Language (WFL) Programming Reference Manual.

If WAITLIMIT is accessed through Host Services, bit 47 will always be zero (0).

Inheritance

A task inherits the WAITLIMIT value of its job.

If a default value is assigned for the WAITLIMIT attribute of a job queue, that value is
inherited by WFL jobs run from that job queue. However, a WFL job can change its
WAITLIMIT value after initiation or assign a different WAITLIMIT value to a task.

If a limit value is set for the WAITLIMIT attribute of a job queue, then WFL jobs that
specify a higher WAITLIMIT value in the job attribute list cannot be accepted into that job
queue. However, after initiation a WFL job can assign a WAITLIMIT value higher than the
job queue WAITLIMIT.

Run-Time Error

WAIT TIME LIMIT EXCEEDED

The process remained in a user-requested wait state for longer than the time specified
by WAITLIMIT. The process is discontinued with HISTORYCAUSE = 3
(RESOURCECAUSEV) and HISTORYREASON = 9 (WAITEXCEEDEDV).

8600 0502–407 A–1

Appendix A
Understanding Railroad Diagrams

This appendix explains railroad diagrams, including the following concepts:

• Paths of a railroad diagram

• Constants and variables

• Constraints

The text describes the elements of the diagrams and provides examples.

Railroad Diagram Concepts
Railroad diagrams are diagrams that show you the standards for combining words and
symbols into commands and statements. These diagrams consist of a series of paths
that show the allowable structures of the command or statement.

Paths

Paths show the order in which the command or statement is constructed and are
represented by horizontal and vertical lines. Many commands and statements have a
number of options so the railroad diagram has a number of different paths you can take.

The following example has three paths:

ÄÄ REMOVE ÄÂÄÄÄÄÄÄÄÄÄÄÂÄÄ´
 ÃÄ SOURCE Ä´
 ÀÄ OBJECT ÄÙ

The three paths in the previous example show the following three possible commands:

• REMOVE

• REMOVE SOURCE

• REMOVE OBJECT

A railroad diagram is as complex as a command or statement requires. Regardless of the
level of complexity, all railroad diagrams are visual representations of commands and
statements.

Understanding Railroad Diagrams

A–2 8600 0502–407

Railroad diagrams are intended to show

• Mandatory items

• User-selected items

• Order in which the items must appear

• Number of times an item can be repeated

• Necessary punctuation

Follow the railroad diagrams to understand the correct syntax for commands and
statements. The diagrams serve as quick references to the commands and statements.

The following table introduces the elements of a railroad diagram:

Table A–1. Elements of a Railroad Diagram

The diagram element . . . Indicates an item that . . .

Constant Must be entered in full or as a specific abbreviation

Variable Represents data

Constraint Controls progression through the diagram path

Constants and Variables

A constant is an item that must be entered as it appears in the diagram, either in full or
as an allowable abbreviation. If part of a constant appears in boldface, you can abbreviate
the constant by

• Entering only the boldfaced letters

• Entering the boldfaced letters plus any of the remaining letters

If no part of the constant appears in boldface, the constant cannot be abbreviated.

Constants are never enclosed in angle brackets (< >) and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data that
meets the requirements of the particular command or statement. When replacing a
variable with data, you must follow the rules defined for the particular command or
statement.

In railroad diagrams, variables are enclosed in angle brackets.

In the following example, BEGIN and END are constants, whereas <statement list> is a
variable. The constant BEGIN can be abbreviated, since part of it appears in boldface.

ÄÄ BEGIN ÄÄ<statement list>ÄÄ END ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 Understanding Railroad Diagrams

8600 0502–407 A–3

Valid abbreviations for BEGIN are

• BE

• BEG

• BEGI

Constraints

Constraints are used in a railroad diagram to control progression through the diagram.
Constraints consist of symbols and unique railroad diagram line paths. They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (|) represents the end of a railroad diagram and indicates the
command or statement can be followed by another command or statement.

ÄÄ SECONDWORD ÄÄ (ÄÄ<arithmetic expression>ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the
command or statement must be on a line by itself.

ÄÄ STOP ÄÄÄ%

Right Arrow

The right arrow symbol (>)

• Is used when the railroad diagram is too long to fit on one line and must continue on
the next

• Appears at the end of the first line, and again at the beginning of the next line

ÄÄ SCALERIGHT ÄÄ (ÄÄ<arithmetic expression>ÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë

ëÄ<arithmetic expression>ÄÄ) ÄÄÄ´

Understanding Railroad Diagrams

A–4 8600 0502–407

Required Item

A required item can be

• A constant

• A variable

• Punctuation

If the path you are following contains a required item, you must enter the item in the
command or statement; the required item cannot be omitted.

A required item appears on a horizontal line as a single entry or with other items.
Required items can also exist on horizontal lines within alternate paths, or nested
(lower-level) diagrams.

In the following example, the word EVENT is a required constant and <identifier> is a
required variable:

ÄÄ EVENT ÄÄ<identifier>ÄÄ´

User-Selected Item

A user-selected item can be

• A constant

• A variable

• Punctuation

User-selected items appear one below the other in a vertical list. You can choose any
one of the items from the list. If the list also contains an empty path (solid line) above the
other items, none of the choices are required.

In the following railroad diagram, either the plus sign (+) or the minus sign (–) can be
entered before the required variable <arithmetic expression>, or the symbols can be
disregarded because the diagram also contains an empty path.

ÄÄÂÄÄÄÄÄÂÄ<arithmetic expression>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ + Ä´
 ÀÄ Ä ÄÙ

 Understanding Railroad Diagrams

8600 0502–407 A–5

Loop

A loop represents an item or a group of items that you can repeat. A loop can span all or
part of a railroad diagram. It always consists of at least two horizontal lines, one below
the other, connected on both sides by vertical lines. The top line is a right-to-left path
that contains information about repeating the loop.

Some loops include a return character. A return character is a character—often a
comma (,) or semicolon (;)—that is required before each repetition of a loop. If no return
character is included, the items must be separated by one or more spaces.

 ÚêÄÄÄÄÄÄ ; ÄÄÄÄÄ¿
ÄÄÁÄ<field value>ÄÁÄÄ´

Bridge

A loop can also include a bridge. A bridge is an integer enclosed in sloping lines (/ \) that

• Shows the maximum number of times the loop can be repeated

• Indicates the number of times you can cross that point in the diagram

The bridge can precede both the contents of the loop and the return character (if any) on
the upper line of the loop.

Not all loops have bridges. Those that do not can be repeated any number of times until
all valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two
times. In the second bridge example, you can enter LINKAGE or RUNTIME no more than
three times.

 ÚêÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄ¿
ÄÄÁÄ/2\ÄÂÄ LINKAGE ÄÂÄÁÄÄ´
 ÀÄ RUNTIME ÄÙ

 ÚêÄ/2\ÄÄÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄ LINKAGE ÄÂÄÁÄÄ´
 ÀÄ RUNTIME ÄÙ

In some bridges an asterisk (*) follows the number. The asterisk means that you must
cross that point in the diagram at least once. The maximum number of times that you
can cross that point is indicated by the number in the bridge.

 ÚêÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄ¿
ÄÄÁÄÂÄ/2*\Ä LINKAGE ÄÂÄÁÄÄÄ´
 ÀÄ RUNTIME ÄÄÄÄÄÄÙ

In the previous bridge example, you must enter LINKAGE at least once but no more than
twice, and you can enter RUNTIME any number of times.

Understanding Railroad Diagrams

A–6 8600 0502–407

Following the Paths of a Railroad Diagram
The paths of a railroad diagram lead you through the command or statement from
beginning to end. Some railroad diagrams have only one path; others have several
alternate paths that provide choices in the commands or statements.

The following railroad diagram indicates only one path that requires the constant
LINKAGE and the variable <linkage mnemonic>:

ÄÄ LINKAGE ÄÄ<linkage mnemonic>ÄÄ´

Alternate paths are provided by

• Loops

• User-selected items

• A combination of loops and user-selected items

More complex railroad diagrams can consist of many alternate paths, or nested
(lower-level) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate
paths. The top path includes

• An ampersand (&)

• Constants that are user-selected items

These constants are within a loop that can be repeated any number of times until all
options have been selected.

The first alternative path requires the ampersand and the required constant ADDRESS.
The second alternative path requires the ampersand followed by the required constant
ALTER and the required variable <new value>.

 ÚêÄÄÄÄÄÄ , ÄÄÄÄÄ¿
ÄÄ & ÄÂÄÁÄÂÄ TYPE ÄÄÄÄÂÄÁÄÄÄÄÂÄÄÄ´
 ³ ÃÄ ASCII ÄÄÄ´ ³
 ³ ÃÄ BCL ÄÄÄÄÄ´ ³
 ³ ÃÄ DECIMAL Ä´ ³
 ³ ÃÄ EBCDIC ÄÄ´ ³
 ³ ÃÄ HEX ÄÄÄÄÄ´ ³
 ³ ÀÄ OCTAL ÄÄÄÙ ³
 ÃÄ ADDRESS ÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ ALTER ÄÄ<new value>ÄÙ

 Understanding Railroad Diagrams

8600 0502–407 A–7

Railroad Diagram Examples with Sample Input
The following examples show five railroad diagrams and possible command and
statement constructions based on the paths of these diagrams.

Example 1

<lock statement>

ÄÄ LOCK ÄÄ (ÄÄ <file identifier> ÄÄ) ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

Sample Input Explanation

LOCK (FILE4) LOCK is a constant and cannot be altered. Because no part of
the word appears in boldface, the entire word must be entered.

 The parentheses are required punctuation, and FILE4 is a
sample file identifier.

Example 2

<open statement>

ÄÄ OPEN ÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄ<database name>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ INQUIRY Ä´
 ÀÄ UPDATE ÄÄÙ

Sample Input Explanation

OPEN DATABASE1 The constant OPEN is followed by the variable DATABASE1,
which is a database name.

 The railroad diagram shows two user-selected items, INQUIRY
and UPDATE. However, because an empty path (solid line) is
included, these entries are not required.

OPEN INQUIRY
DATABASE1

The constant OPEN is followed by the user-selected constant
INQUIRY and the variable DATABASE1.

OPEN UPDATE
DATABASE1

The constant OPEN is followed by the user-selected constant
UPDATE and the variable DATABASE1.

Understanding Railroad Diagrams

A–8 8600 0502–407

Example 3

<generate statement>

ÄÄ GENERATE ÄÄ<subset>ÄÄ = ÄÂÄ NULL ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÀÄ<subset>ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ÃÄ AND ÄÂÄ<subset>ÄÙ
 ÃÄ OR ÄÄ´
 ÃÄ + ÄÄÄ´
 ÀÄ Ä ÄÄÄÙ

Sample Input Explanation

GENERATE Z = NULL The GENERATE constant is followed by the variable Z,
an equal sign (=), and the user-selected constant NULL.

GENERATE Z = X The GENERATE constant is followed by the variable Z,
an equal sign, and the user-selected variable X.

GENERATE Z = X AND B The GENERATE constant is followed by the variable Z,
an equal sign, the user-selected variable X, the AND
command (from the list of user-selected items in the
nested path), and a third variable, B.

GENERATE Z = X + B The GENERATE constant is followed by the variable Z,
an equal sign, the user-selected variable X, the plus sign
(from the list of user-selected items in the nested path),
and a third variable, B.

Example 4

<entity reference declaration>

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÄÄ ENTITY REFERENCE ÄÁÄ<entity ref ID>ÄÄ (ÄÄ<class ID>ÄÄ) ÄÁÄÄÄÄÄÄÄÄÄ´

Sample Input Explanation

ENTITY REFERENCE ADVISOR1
(INSTRUCTOR)

The required item ENTITY REFERENCE is
followed by the variable ADVISOR1 and
the variable INSTRUCTOR. The
parentheses are required.

ENTITY REFERENCE ADVISOR1
(INSTRUCTOR), ADVISOR2
(ASST_INSTRUCTOR)

Because the diagram contains a loop, the
pair of variables can be repeated any
number of times.

 Understanding Railroad Diagrams

8600 0502–407 A–9

Example 5

<PS MODIFY command>

 ÄÄ PS ÄÄ MODIFY ÄÄë

 ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ëÄÂÄÁÄÂÄ<request number>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÁÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄë
 ³ ÀÄ<request number>ÄÄ Ä ÄÄ<request number>ÄÙ ³
 ÀÄ ALL ÄÂÄÄÄ´
 ÀÄ EXCEPTIONS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

 ëÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
 ³ ÚêÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ , ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄÁÄÂÄÄÄÄÄÂÄ<file attribute phrase>ÄÂÄÁÄÙ
 ÃÄ Ä ÄÙ ³
 ÃÄÄÄÄÄÂÄ<print modifier phrase>ÄÙ
 ÀÄ Ä ÄÙ

Sample Input Explanation

PS MODIFY 11159 The constants PS and MODIFY are followed by the
variable 11159, which is a request number.

PS MODIFY
11159,11160,11163

Because the diagram contains a loop, the variable 11159
can be followed by a comma, the variable 11160,
another comma, and the final variable 11163.

PS MOD 11159–11161
DESTINATION = "LP7"

The constants PS and MODIFY are followed by the
user-selected variables 11159–11161, which are request
numbers, and the user-selected variable DESTINATION
= “LP7”, which is a file attribute phrase. Note that the
constant MODIFY has been abbreviated to its minimum
allowable form.

PS MOD ALL EXCEPTIONS The constants PS and MODIFY are followed by the
user-selected constants ALL and EXCEPTIONS.

Understanding Railroad Diagrams

A–10 8600 0502–407

8600 0502–407 B–1

Appendix B
Related Product Information

The following documents provide information directly related to the subject of this
manual.

MCP/AS POSIX User’s Guide (7011 8328)

This guide describes the basic concepts of the POSIX interface, including process control
and file management. It also describes specifically how the POSIX.1 interface is
implemented and used on the enterprise server. This guide is written for programmers
and any user who wants to understand the POSIX interface.

MCP/AS System Administration Guide (8600 0437)

This guide provides the reader with information required to make decisions about
system configuration, peripheral configuration, file management, resource use, and other
matters related to system administration. This guide is written for users with some, little,
or no experience who are responsible for making decisions about system administration.

Unisys e-@ction Application Development Solutions ALGOL Programming
Reference Manual, Volume 1: Basic Implementation (8600 0098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for the applications programmer or systems analyst
who is experienced in developing, maintaining, and reading ALGOL programs.

Unisys e-@ction Application Development Solutions COBOL ANSI-74
Programming Reference Manual, Volume 1: Basic Implementation
(8600 0296)

This manual describes the basic features of the standard COBOL ANSI-74 programming
language, which is fully compatible with the American National Standard, X3.23-1974.
This manual is written for programmers who are familiar with programming concepts.

Unisys e-@ction Application Development Solutions COBOL ANSI-85
Programming Reference Manual, Volume 1: Basic Implementation
(8600 1518)

This manual, written for programmers familiar with programming concepts, describes
the basic features of the COBOL ANSI-85 programming language.

Related Product Information

B–2 8600 0502–407

Unisys e-@ction ClearPath Enterprise Servers File Attributes Programming
Reference Manual (8600 0064)

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need to
understand the functionality of a given attribute. The I/O Subsystem Programming Guide
is a companion manual.

Unisys e-@ction ClearPath Enterprise Servers I/O Subsystem Programming
Guide (8600 0056)

This guide contains information about how to program for various types of peripheral
files and how to program for interprocess communication, using port files. This guide is
written for programmers who need to understand how to describe the characteristics of
a file in a program. The File Attributes Programming Reference Manual is a companion
manual.

Unisys e-@ction ClearPath Enterprise Servers Print System and Remote
Print System Administration, Operations, and Programming Guide
(8600 1039)

This guide describes the features of the Print System and provides a complete
description of its command syntax. This guide is written for programmers, operators,
system administrators, and other interactive users of Menu-Assisted Resource Control
(MARC) and CANDE.

Unisys e-@ction ClearPath Enterprise Servers Security Administration
Guide (8600 0973)

This guide describes system-level security features and suggests how to use them. It
provides administrators with the information necessary to set and implement effective
security policy. This guide is written for system administrators, security administrators,
and those responsible for establishing and implementing security policy.

Unisys e-@ction ClearPath Enterprise Servers System Commands
Operations Reference Manual (8600 0395)

This manual, written for systems operators and administrators, gives a complete
description of the system commands used to control system resources and work flow.

Unisys e-@ction ClearPath Enterprise Servers System Operations Guide
(8600 0387)

This guide describes concepts and procedures required to operate most Unisys systems.
Sections 1 and 2 contain information and procedures that can be done by novice
operators. Section 3 contains operations and procedures that require more advanced
operations experience. This guide is written for operators responsible for operating the
enterprise server, especially operators with little or no experience.

 Related Product Information

8600 0502–407 B–3

Unisys e-@ction ClearPath Enterprise Servers Task Management
Programming Guide (8600 0494)

This guide explains how to initiate, monitor, and control processes on an enterprise
server. It describes process structures and process family relationships, introduces the
uses of many task attributes, and gives an overview of interprocess communication
techniques.

Unisys e-@ction ClearPath Enterprise Servers Work Flow Language (WFL)
Programming Reference Manual (8600 1047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals with
some experience in programming in a block-structured language such as ALGOL and
who know how to create and edit files using CANDE or the Editor.

Related Product Information

B–4 8600 0502–407

8600 0502–407 Index–1

Index

A

absolute pathnames
and CURRENTDIRECTORY task

attribute, 3-42
accept event, 3-2
ACCEPT statement

and AX task attribute, 3-13
<ACCEPT string>

in BACKUPFAMILY task attribute, 3-13
ACCEPTEVENT ATTRIBUTE IS READONLY

error message, 3-3
ACCEPTEVENT task attribute, 3-2
ACCESSCODE ATTRIBUTE INCORRECT

SYNTAX error message, 3-6
ACCESSCODE task attribute, 3-4
accessing process

and task attribute errors, 1-31
ACCUMIOTIME task attribute, 3-7
ACCUMPROCTIME task attribute, 3-8

and MAXPROCTIME, 5-18
ALGOL

assigning task attributes from, 1-10
bit-level task attribute access, 1-14
Boolean task attribute syntax, 1-10
event task attribute syntax, 1-11
integer and real task attribute syntax, 1-12
mnemonic task attribute syntax, 1-12
string task attribute syntax, 1-13
task attribute access in, 1-6
task-valued task attribute syntax, 1-13

ANSI tape label formats
LABELFORMAT task attribute, 5-2

ANSI69 tape label format
LABELFORMAT task attribute, 5-3

ANSI87 tape label format
LABELFORMAT task attribute, 5-3

APPLYLIST task attribute, 3-9
ARRAYS option

of OPTION task attribute, 5-34
asynchronous processes

LOCKED task attribute, 5-12
ATTABLEGEN, 2-1

ATTEMPT TO EXCEED TEMPORARY FILE
LIMIT error message, 6-57

ATTRIBUTE/INTERPRETER/INTERFACE
and ATTRIBUTEMESSAGE calls, 1-23
and HANDLEATTRIBUTES calls, 1-16

ATTRIBUTEMESSAGE procedure of
WFLSUPPORT library, 1-23

AUTORESTORE task attribute, 3-10
AUTORM option

of OPTION task attribute, 5-34
AUTOSWITCHTOMARC task attribute, 3-12
AX (Accept) system command

and the ACCEPTEVENT task attribute, 3-2
AX ATTRIBUTE INCORRECT SYNTAX

message, 3-15
AX ATTRIBUTE IS WRITEONLY

message, 3-15
AX string, 3-13
AX task attribute, 3-13

B

BACKUP option
of OPTION task attribute, 5-35

BACKUPDESTINATION ATTRIBUTE
INCORRECT SYNTAX error
message, 3-60

BACKUPDESTINATION, synonym for
DESTNAME task attribute, 3-58

BACKUPFAMILY ATTRIBUTE MAY ONLY BE
SET BY AN MCS... message, 3-18

BACKUPFAMILY task attribute, 3-16
BACKUPKIND file attribute

and BACKUPFAMILY task attribute, 3-16
BACKUPPREFIX, synonym for BDNAME task

attribute, 3-19
BASE option

of OPTION task attribute, 5-35
BDBASE option

effect on BDNAME task attribute, 3-20
of OPTION task attribute, 5-35

BDNAME ATTRIBUTE INCORRECT SYNTAX
error message, 3-20

Index

Index–2 8600 0502–407

BDNAME ATTRIBUTE IS READONLY ON
ACTIVE TASK error message, 3-20

BDNAME task attribute, 3-19
bit-level access to task attributes, 1-14
BLOCKCREDENTIALS task attribute, 3-21

block usage of authentication credentials
by task, 3-21

prevent unwanted usage of
credentials, 3-21

Boolean task attributes, syntax for using, 1-10
BOTTIMESTAMP task attribute, 3-23
BRCLASS ATTRIBUTE INCORRECT SYNTAX

error message, 3-25
BRCLASS task attribute, 3-24

C

C language
chdir function

and CURRENTDIRECTORY task
attribute, 3-44

fork() function
task attribute inheritance, 2-11

CANNOT APPLY - PPB IS FOR CODEFILE
warning message, 3-9

CENTRALSUPPORT library, 3-33
CHARGE task attribute, 3-26
CHARGECODE ATTRIBUTE INCORRECT

SYNTAX error message, 3-28
CHARGECODE READONLY ON ACTIVE

TASK, NOT CHANGED
message, 3-28

CHARGECODE, synonym for CHARGE task
attribute, 3-26

chdir function, in C
and CURRENTDIRECTORY task

attribute, 3-44
checkpoint facility

RESTARTED task attribute, 5-66
CHECKPOINTABLE task attribute, 3-29
CLASS task attribute, 3-31
CO (Controller Options) system

command, 6-34
COBOL

assigning task attributes from, 1-10
bit-level task attribute access, 1-14
Boolean task attribute syntax, 1-11
event task attribute syntax, 1-11
integer and real task attribute syntax, 1-12
mnemonic task attribute syntax, 1-12

string task attribute syntax, 1-13
task-valued task attribute syntax, 1-13

COBOL74
task attribute access in, 1-6

COBOL85
task attribute access in, 1-6

CODE FILE MUST BE ACTIVE error
message, 6-55

code files (See object code files)
CODE option

of OPTION task attribute, 5-35
compilations

assigning task attributes at
in COMPILE statements, 1-9
using HANDLEATTRIBUTES, 1-26

compiled-in task attributes, 1-9
COMPILER modifier, in COMPILE

statements, 1-9
compiler status

and ability to assign null USERCODE, 6-61
CONTINUE statements

PARTNER task attribute, 5-46
PARTNEREXISTS task attribute, 5-48

CONVENTION task attribute, 3-33
CORE ATTRIBUTE INCORRECT SYNTAX

error message, 3-36
CORE task attribute, 3-35
COREESTIMATE, synonym for CORE task

attribute, 3-35
coroutines

PARTNER task attribute, 5-46
PARTNEREXISTS task attribute, 5-48

COUNTRY task attribute, 3-37
CPBDONLY system option

and BACKUP task option, 5-35
credentials

acquiring, 3-40
preventing unwanted use, 3-21

credentials inheritance, controlling, 4-53
CREDENTIALS task attribute, 3-38
CREDENTIALSBASE task attribute, 3-40
critical block

and STATUS task attribute, 6-29
CRITICALBLOCK option

of OPTION task attribute, 5-35
CURRENTDIRECTORY MUST BE ABSOLUTE

ON INACTIVE TASK message, 3-45
CURRENTDIRECTORY NOT CHANGED

ACCESS ERROR message, 3-45
INVALID SYNTAX message, 3-45

CURRENTDIRECTORY task attribute, 3-41
and chdir function, 3-44
and POSIX_CHANGEDIR procedure, 3-44

 Index

8600 0502–407 Index–3

CURRENTDIRECTORY WRITABLE ONLY BY
OWNER STACK ON ACTIVE TASK
message, 3-45

D

DATABASE ATTRIBUTE - RESTRICTED
ACCESS error message, 3-47

DATABASE task attribute, 3-46
databases

DATABASE task attribute, 3-46
MAXWAIT task attribute, 5-20

DATACOMM MUST BE ACTIVE TO SET
DESTSTATION error message, 3-62

date
returned to task, 3-48

DATEOFFSET task attribute, 3-48
DBS option

of OPTION task attribute, 5-35
DCIINPUTEVENT task attribute

and DCITASKEVENT, 3-51
DCIINPUTEVENT task attribute, 3-49
DCITASKEVENT task attribute, 3-51

and DCIINPUTEVENT, 3-51
DEBUG option

of OPTION task attribute, 5-35
DECKGROUPNO task attribute, 3-53
DEFAULTFILEGROUP task attribute, 3-54
deimplementation warnings

stored in object code file, 6-54
suppressing, 6-33

DEPTASKACCOUNTING task attribute, 3-55
and inheritance, 3-57
and values of, 3-56

DESTINATION file attribute
and MAXLINES task attribute, 5-16

DESTNAME ATTRIBUTE IS READ ONLY ON
ACTIVE TASK error message, 3-60

DESTNAME task attribute, 3-58
and DESTSTATION, 3-61
and inheritance, 3-59
and JOBSUMMARY, 3-59, 4-65
and JOBSUMMARYTITLE, 3-59, 4-67

DESTSTATION ATTRIBUTE IS READ ONLY
ON ACTIVE TASK message, 3-62

DESTSTATION task attribute, 3-61
and DESTNAME, 3-61
and inheritance, 3-61

direct window programs
DCIINPUTEVENT task attribute, 3-49
DCITASKEVENT task attribute, 3-51

DISPLAYONLYTOMCS task attribute, 3-63
and inheritance, 3-64

DISPLAYTOSTANDARD function, and
BACKUPFAMILY task attribute, 3-17

DL (Disk Location) system command
and BACKUPFAMILY task attribute, 3-16
and CURRENTDIRECTORY task

attribute, 3-43
DL ROOT family

and CURRENTDIRECTORY task
attribute, 3-43

DSED option
of OPTION task attribute, 5-35

E

elapsed time
interrogating programmatically, 3-66

ELAPSED TIME LIMIT EXCEEDED error
message, 3-65

ELAPSEDLIMIT task attribute, 3-65
and inheritance, 3-65

ELAPSEDTIME task attribute, 3-66
ENABLE statement

and DCIINPUTEVENT task attribute, 3-49
and DCITASKEVENT task attribute, 3-51

Enterprise Database Server data set and
MAXWAIT, 5-20

ERROR ATTRIBUTE IS READONLY error
message, 3-74

ERROR task attribute, 3-67
and corresponding task attributes by

number, 3-70
and library attribute numbers, 3-69
and USERDATA error numbers, 3-69
interrogating at the bit level, 1-14
value of

fields, 3-68
errors in task attribute access, 1-31
event task attributes, syntax for using, 1-11
events

ACCEPTEVENT, 3-2
EXCEPTIONEVENT, 3-75

EXC I/O TIME error message, 5-15
EXC PROC TIME error message, 5-19
exception event, 3-75

and HI system command, 3-75
and LIBRARYUSERS task attribute, 3-75

exception task
EXCEPTIONTASK task attribute, 3-77

Index

Index–4 8600 0502–407

EXCEPTIONEVENT ATTRIBUTE IS
READONLY error message, 3-76

EXCEPTIONEVENT task attribute, 3-75
EXCEPTIONTASK task attribute, 3-77
exec() function

and TYPE task attribute, 6-59
external indicators, in RPG, 6-36

F

FAMILY ATTRIBUTE INCORRECT SYNTAX
error message, 4-5

FAMILY task attribute, 4-2
FAMILY usercode attribute, 4-3
FAULT option

of OPTION task attribute, 5-36
FETCH task attribute, 4-6
FILE <internal name> OPEN ERROR

TOO MANY NAMES message, 3-20
<file attribute value>, 4-12
<file attribute>, 4-12
file equations, 4-13
FILE, synonym for FILECARDS task

attribute, 4-12
FILEACCESSRULE ATTRIBUTE INCORRECT

SYNTAX error message, 4-9
FILEACCESSRULE task attribute, 4-8
FILEACCOUNTING task attribute, 4-10
FILECARDS ATTRIBUTE INCORRECT

SYNTAX error message, 4-16
FILECARDS ATTRIBUTE IS READONLY ON

ACTIVE TASK error message, 4-16
FILECARDS task attribute, 4-13
FILEGROUP task attribute, 4-17

group name, 3-54
value of, 3-54

FILEMASK task attribute, 4-19
files

restricting access, 4-19
FILES option

of OPTION task attribute, 5-36
fork() function

and TYPE task attribute, 6-59
task attribute inheritance, 2-11

G

group codes
GROUPCODE task attribute, 4-21
REALGROUPCODE task attribute, 5-59
SAVEDGROUPCODE task attribute, 6-2
SUPPLEMENTARYGRPS task

attribute, 6-32
GROUPCODE task attribute, 4-21

H

halt/loads
recovery, 5-66

HANDLEATTRIBUTES procedure of
WFLSUPPORT library, 1-15

HISTORY task attribute, 4-23
interrogating at the bit level, 1-14

HISTORYCAUSE task attribute, 4-24
HISTORYREASON task attribute, 4-27
HISTORYTYPE task attribute, 4-49
HOSTNAME ATTRIBUTE INCORRECT

SYNTAX error message, 4-51
HOSTNAME ATTRIBUTE IS READONLY ON

ACTIVE TASK error message, 4-51
HOSTNAME file attribute

and STATIONNAME task attribute, 6-26
HOSTNAME task attribute, 4-50

and STATIONNAME task attribute, 6-26
HSPARAMSIZE task attribute, 4-52

I

I/O time
interrogating programmatically, 3-7

ILLEGAL ATTRIBUTE VALUE - TOO LARGE
error message, 6-17

ILLEGAL HOST-TO-HOST TRANSFER OF
TASK error message, 4-51

ILLEGAL VISIT error message
and PARTNER task attribute, 5-47

inheritance, 1-28
and DEPTASKACCOUNTING task

attribute, 3-57
and DESTNAME task attribute, 3-59
and DESTSTATION task attribute, 3-61
and DISPLAYONLYTOMCS task

attribute, 3-64
and ELAPSEDLIMIT task attribute, 3-65

 Index

8600 0502–407 Index–5

and LANGUAGE
task attribute, 5-5

and MAXIOTIME task attribute, 5-15
and MAXLINES task attribute, 5-17
and MAXPROCTIME task attribute, 5-19
and NAME task attribute, 5-28
and NETPATH task attribute, 5-31
and PRIORITY task attribute, 5-58
and SAVEMEMORYLIMIT task

attribute, 6-4
and STATION task attribute, 6-24
and SUPPLEMENTARYGRPS task

attribute, 6-32
and task attributes, 2-11
and USERCODE task attribute, 6-62
and WAITLIMIT task attribute, 6-66

INHERITCREDENTIALS task attribute, 4-53
credential inheritance, 4-53

INHERITMCSSTATUS ATTRIBUTE -
RESTRICTED ACCESS
message, 4-56

INHERITMCSSTATUS task attribute, 4-54
INITIALIZE statement, in WFL, 1-8
INITIATE ACTIVE TASK error message, 6-29

when reusing task variables, 1-7
INITIATOR, synonym for STATION task

attribute, 6-23
INITPBITCOUNT task attribute, 4-57
INITPBITTIME task attribute, 4-58
integer task attributes, syntax for using, 1-11
integer value, storage, 5-13
INVALID CHARGECODE error message, 3-28
INVALID DESTINATION error message

and DESTNAME task attribute, 3-60
and DESTSTATION task attribute, 3-62

INVALID TASK ATTRIBUTE
ACCESSCODE error message, 3-6
JOBSUMMARYTITLE log message, 4-68
USERCODE error message, 6-63
USERCODE IS A DOT error message, 6-63

INVALID USERCODE WHEN INITIATING A
TASK error message, 6-63

ITINERARY task attribute, 4-59

J

job queues
effects on task attribute values, 1-28

JOBNUMBER ATTRIBUTE - RESTRICTED
ACCESS message, 4-62

JOBNUMBER ATTRIBUTE INCORRECT
SYNTAX error message, 4-62

JOBNUMBER ATTRIBUTE IS READONLY ON
ACTIVE TASK error message, 4-62

JOBNUMBER ATTRIBUTE MAY ONLY BE
SET BY AN MCS... message, 4-62

JOBNUMBER IS NOT A SESSIONNUMBER
error message, 4-62

JOBNUMBER task attribute, 4-61
JOBSUMMARY ATTRIBUTE INCORRECT

SYNTAX error message, 4-65
JOBSUMMARY task attribute, 4-63

and DESTNAME, 3-59, 4-65
and Print System, 3-59

JOBSUMMARYTITLE task attribute, 4-66
and DESTNAME, 4-67
and Print System, 3-59

JOBSUMMARYTITLE TASK ATTRIBUTE
INCORRECT SYNTAX message, 4-68

K

KEYEDIOII file and MAXWAIT, 5-20

L

LABELFORMAT system option, 5-3
LABELFORMAT task attribute, 5-2

values of, 5-3
LANGUAGE

command, in MARC or CANDE, 5-5
task attribute, 5-4

and inheritance, 5-5
usercode attribute, 5-5

LANGUAGE ATTRIBUTE INCORRECT
SYNTAX error message, 5-5

libraries
linkages

LIBRARYUSERS task attribute, 5-11
LIBRARIES option

of OPTION task attribute, 5-36
LIBRARY ATTRIBUTE IS READONLY ON

ACTIVE TASK error message, 5-8
library attribute numbers

and ERROR task attribute, 3-69
LIBRARY task attribute, 5-6
LIBRARYSTATE task attribute, 5-9

interrogating at the bit level, 1-14
LIBRARYUSERS task attribute

and exception event, 3-75

Index

Index–6 8600 0502–407

LIBRARYUSERS task attribute, 5-11
linkages

LIBRARYUSERS task attribute, 5-11
LOCKED task attribute, 5-12
LONG option

of OPTION task attribute, 5-36
LPBDONLY system option

and BACKUP task option, 5-35

M

MAKEUSER utility, 1-27
MAXCARDS task attribute, 5-13
MAXIOTIME ILLEGAL ATTRIBUTE VALUE

TOO LARGE message, 5-15
MAXIOTIME task attribute, 5-14

and inheritance, 5-15
MAXLINES task attribute, 5-16

and inheritance, 5-17
and PRINTCOPIES and DESTINATION file

attributes, 5-16
MAXPROCTIME ILLEGAL ATTRIBUTE

VALUE TOO LARGE message, 5-19
MAXPROCTIME task attribute, 5-18

and ACCUMPROCTIME, 5-18
and inheritance, 5-19

MAXWAIT ILLEGAL ATTRIBUTE VALUE -
TOO LARGE error message, 5-21

MAXWAIT task attribute, 5-20
MCPSUPPORT library

POSIX_CHANGEDIR procedure
and CURRENTDIRECTORY task

attribute, 3-44
MCSNAME task attribute, 5-22
message control systems

BACKUPFAMILY, ability to assign, 3-17
FILEACCESSRULE, ability to assign, 4-8
inheriting status from, 4-54
JOBNUMBER, ability to assign, 4-62
SOURCESTATION, ability to assign, 6-11
task attribute errors, 1-31
USERCODE, ability to assign null value

to, 6-61
MIXNUMBER task attribute, 5-23
mnemonic task attributes, syntax for

using, 1-12
MODIFY statement, in WFL, 1-9
MPID ATTRIBUTE INCORRECT

SYNTAX, 5-24
MPID ATTRIBUTE IS READONLY ON ACTIVE

TASK, 5-24

MPID task attribute, 5-24
MYPPB ATTRIBUTE IS READONLY ON

ACTIVE TASK error message, 5-26
MYPPB IS EMPTY, NOTHING TO APPLY

warning message, 3-9
MYPPB task attribute, 5-25

and HANDLEATTRIBUTES, 5-26

N

NAME ATTRIBUTE INCORRECT SYNTAX
error message, 5-29

NAME ATTRIBUTE IS READONLY ON
ACTIVE TASK error message, 5-29

NAME task attribute, 5-27
and inheritance, 5-28

NETPATH ATTRIBUTE INCORRECT SYNTAX
error message, 5-31

NETPATH task attribute, 5-30
and inheritance, 5-31

NO FILE message
and AUTORESTORE task attribute, 3-11

NOFETCH system option, 4-6
NOJOBSUMMARYIO task attribute, 5-32
NON ANCESTRAL TASK REFERENCE error

message, 3-76, 3-78
NON ANCESTRAL TASKFILE error

message, 6-48
NON-LOCAL ACCEPTEVENT error

message, 3-3
NON-OWNER WRITE ACCESS OF A

PRIVATE TASK error message, 5-39
<nonquote identifier>

in HOSTNAME task attribute, 4-50
NOSUMMARY option

of OPTION task attribute, 5-36
null string, 2-10

O

object code files
task attribute assignments

using COMPILE and MODIFY, 1-9
using HANDLEATTRIBUTES, 1-26

OP (Options) system command
CPBDONLY operating system option, 5-35
LPBDONLY operating system option, 5-35
NOFETCH operating system option, 4-6

 Index

8600 0502–407 Index–7

operating system options
LPBDONLY, 5-35
NOFETCH, 4-6

OPTION task attribute, 5-34
values of, 5-34

OPTIONAL task attribute, 5-40
ORGHOSTNAME task attribute, 2-13
ORGUNIT task attribute, 5-41

interrogating at the bit level, 1-14
OTHERPBITCOUNT task attribute, 5-44
OTHERPBITTIME task attribute, 5-45
overwrite rules, 1-29

P

<partial file name> REQUIRES ROOT
FAMILY TO BE SET WITH DL
COMMAND message, 3-45

partner processes, 5-46
PARTNER task attribute, 5-46
PARTNEREXISTS task attribute, 5-48
PATHNAME file attribute

and CURRENTDIRECTORY task
attribute, 3-42

pathnames
absolute, 3-42
and CURRENTDIRECTORY task

attribute, 3-42
relative, 3-42
resolved, 3-43

PDUMPTITLE attribute, 5-49
POSIX

and CURRENTDIRECTORY task
attribute, 3-42

and TYPE task attribute, 6-59
fork() function

task attribute inheritance, 2-11
task attribute inheritance, 2-11

POSIX_CHANGEDIR procedure, of MCP
and CURRENTDIRECTORY task

attribute, 3-44
POSIXINITDIR usercode attribute

and CURRENTDIRECTORY task
attribute, 3-44

PRESENTARRAYS option
of OPTION task attribute, 5-36

PRINT LIMIT EXCEEDED error message
in task attribute discussion, 5-17

print system
PRINTDEFAULTS task attribute, 5-51

Print System
and JOBSUMMARY task attribute, 3-59
and JOBSUMMARYTITLE task

attribute, 3-59
PRINTCOPIES file attribute

and MAXLINES task attribute, 5-16
PRINTDEFAULTS ATTRIBUTE INCORRECT

SYNTAX error message, 5-52
PRINTDEFAULTS task attribute, 5-51
PRIORHISTORY task attribute, 5-53
PRIORHISTORYCAUSE task attribute, 5-54
PRIORHISTORYREASON task attribute, 5-55
PRIORHISTORYTYPE task attribute, 5-56
PRIORITY task attribute, 5-57

and inheritance, 5-58
and PRIORITY usercode attribute, 5-58

private processes
and OPTION task attribute, 5-36

PRIVATELIBRARIES option
of OPTION task attribute, 5-36

PRIVILEGED REQUIRED TO SET
FILEACCESSRULE = ACTOR
message, 4-9

process stack number, 6-18
processes

accessing, and task attribute errors, 1-31
receiving, and task attribute errors, 1-31

PROCESSIOTIME, synonym for
ACCUMIOTIME task attribute, 3-7

processor time
interrogating programmatically, 3-8

PROCESSTIME, synonym for
ACCUMPROCTIME task
attribute, 3-8

Q

QUEUE, synonym for CLASS task
attribute, 3-31

QUEUEDAX system option
and AX task attribute, 3-13

R

railroad diagrams, explanation of, A-1
read-only task attributes, 2-11
real task attributes, syntax for using, 1-11
REALGROUPCODE task attribute, 5-59
REALUSERCODE task attribute, 5-60

Index

Index–8 8600 0502–407

RECEIVE statement
and DCIINPUTEVENT task attribute, 3-49
and DCITASKEVENT task attribute, 3-51

receiving process
and task attribute errors, 1-31

relative pathnames
and CURRENTDIRECTORY task

attribute, 3-42
remote files

and STATION task attribute, 6-23
and STATIONNAME task attribute, 6-25
effects of TANKING task attribute on, 6-40

remote tasks
and STATIONNAME task attribute, 6-26

REPORTBADINITIATE task attribute, 5-61
REQUIRES PK message

and FAMILY task attribute, 4-5
REQUIRES ROOT FAMILY TO BE SET WITH

DL COMMAND message, 3-45
resolved pathnames

and CURRENTDIRECTORY task
attribute, 3-43

RESOURCE ATTRIBUTE IS WRITE ONLY
error message, 5-64

RESOURCE task attribute, 5-62
RESOURCECHECK system option, 5-63
RESTART task attribute, 5-65
RESTARTED task attribute, 5-66
root family

and CURRENTDIRECTORY task
attribute, 3-43

RPG, 6-36
run-time errors

and task attributes, 2-14

S

SAVEDGROUPCODE task attribute, 6-2
SAVEDUSERCODE task attribute, 6-3
SAVEMEMORYLIMIT task attribute, 6-4

and inheritance, 6-4
SB (Substitute Backup) system command

and BACKUPFAMILY task attribute, 3-16
SEARCHRULE file attribute

and CURRENTDIRECTORY task
attribute, 3-43

SECOPT (Security Options) system command
and LABELFORMAT task attribute, 5-3

Secure Accountability Facility
and LABELFORMAT task attribute, 5-3

security
restricting file access, 4-19
verifying, 3-38

Security Services for ClearPath MCP
UNITNO file attribute restrictions, 5-43

SECURITY VIOLATION error message
and ACCESSCODE assignment, 3-6
and JOBSUMMARYTITLE task

attribute, 4-68
and USERCODE task attribute, 6-63

SECURITYLABELS REQUIRE ANSI87
LABELS BUT OPTION ISN'T SET, 5-3

SECURITYLABELS volume attribute
and LABELFORMAT task attribute, 5-3

SECURITYMODE file attribute
and FILEMASK task attribute, 4-19
and GROUPCODE task attribute, 4-22
and SAVEDGROUPCODE task

attribute, 6-2
and SAVEDUSERCODE task attribute, 6-3

session number
inheritance by JOBNUMBER task

attribute, 4-61
SETGROUPCODE subattribute

and GROUPCODE task attribute, 4-22
and SAVEDGROUPCODE task

attribute, 6-2
SETTING FILEACCESSRULE TO ACTOR IS

RESTRICTED... message, 4-9
SETUSERCODE subattribute

and SAVEDUSERCODE task attribute, 6-3
SORTLIMITS option

of OPTION task attribute, 5-36
SOURCEKIND task attribute, 6-6
SOURCENAME task attribute, 6-8
SOURCESTATION ATTRIBUTE IS READ

ONLY ON ACTIVE TASK
message, 6-12

SOURCESTATION ATTRIBUTE MAY ONLY
BE SET BY AN MCS message, 6-12

SOURCESTATION task attribute, 6-10
interrogating at the bit level, 1-14

STACK OVERFLOW error message
and STACKLIMIT task attribute, 6-17

STACK, synonym for STACKSIZE task
attribute, 6-19

STACKHISTORY task attribute, 6-13
STACKLIMIT task attribute, 6-16
STACKNO, synonym for MIXNUMBER task

attribute, 5-23
STACKNUMBER task attribute, 6-18
STACKSIZE ATTRIBUTE IS READONLY ON

ACTIVE TASK error message, 6-20

 Index

8600 0502–407 Index–9

STACKSIZE task attribute, 6-19
standard form, and BACKUPFAMILY task

attribute, 3-17
STARTTIME task attribute, 6-21
STATION task attribute, 6-23

and inheritance, 6-24
STATIONNAME task attribute, 6-25
STATUS task attribute, 6-27
STOPPOINT task attribute, 6-30

interrogating at the bit level, 1-14
string task attributes

null string, 2-10
syntax for using, 1-12

SUPPLEMENTARYGRPS task attribute, 6-32
and inheritance, 6-32

SUPPRESSWARNING (Suppress Warning)
system command, 6-34

SUPPRESSWARNING ATTRIBUTE
INCORRECT SYNTAX error
message, 6-35

SUPPRESSWARNING option of CO
(Controller Options) command, 6-34

SUPPRESSWARNING task attribute, 6-33
SW (Switches) system command, 6-36
SW1 through SW8 task attributes, 6-36
SYMBOL/ATTABLEGEN, 2-1
SYMBOL/ATTRIBUTE/INTERPRETER/

INTERFACE
and ATTRIBUTEMESSAGE calls, 1-23
and HANDLEATTRIBUTES calls, 1-16

SYSOPS (System Options) system
command, 3-34, 5-5

and AX task attribute, 3-13
LABELFORMAT option, 5-3

system options
CPBDONLY

and BACKUP task option, 5-35
LPBDONLY

and BACKUP task option, 5-35
RESOURCECHECK, 5-63

T

TADS ATTRIBUTE IS READONLY ON ACTIVE
TASK error message, 6-39

TADS task attribute, 6-38
TANKING ATTRIBUTE INCORRECT SYNTAX

error message, 6-41
tanking mode, for remote files, 6-40
TANKING task attribute, 6-40

tape labels
LABELFORMAT task attribute, 5-2

TAPE LIMIT EXCEEDED error message, 5-63
TAPECHECK security option

and LABELFORMAT task attribute, 5-3
tapes

and RESOURCE task attribute, 5-63
LABELFORMAT task attribute, 5-2

TARGET ILLEGAL ATTRIBUTE VALUE - TOO
LARGE, 6-42

TARGET task attribute, 6-42
TASK ATTRIBUTE ACCESS FAULT error

message, 4-68
and STACKHISTORY task attribute, 6-15

task attributes
accessing from programs, 1-6
accessing through WFLSUPPORT

library, 1-15
and ERROR task attribute, 3-70
and inheritance, 2-11
and run-time errors, 2-14
assigning to a session, 1-5
assigning to job queues, 1-28
assigning to usercodes, 1-27
automatic updates of, 1-29
bit-level access to, 1-14
Boolean, syntax for using, 1-10
compiled-in, 1-9
default values for, 1-28
definition, 1-2
descriptions, 2-1, 3-1, 4-1, 5-1, 6-1
errors in accessing, 1-31
event, syntax for using, 1-11
format of descriptions, 2-7
functional groupings, 2-1
inheritance, 1-28
integer, syntax for using, 1-11
mnemonic, syntax for using, 1-12
name, 2-13

nonpreferred, 2-13
object code files, assigning to, 1-9
operator commands used to access, 1-5
read-only, 2-11
real, syntax for using, 1-11
sources for accessing, 1-4
string, syntax for using, 1-12
synonyms, 2-13
system administrator access to, 1-27
task equations, assigning by way of

in CANDE or MARC, 1-4
in WFL, 1-8

task-valued, syntax for using, 1-13
unsupported, 2-1

Index

Index–10 8600 0502–407

usercode-related, 1-27
using task equations to assign values

to, 1-4
write-only, 2-10

task equations
in CANDE or MARC, 1-4
in WFL, 1-8

task file
task attribute access to, 6-47

task variables, 1-6
reusing, 1-7

TASKATTERR, synonym for ERROR task
attribute, 3-67

TASKERROR ATTRIBUTE IS READONLY
error message, 6-46

TASKERROR task attribute, 6-43
TASKFILE ATTRIBUTE IS READONLY error

message, 6-48
TASKFILE task attribute, 6-47
TASKLIMIT EXCEEDED message

and TASKLIMIT task attribute, 6-50
TASKLIMIT task attribute, 6-49
TASKSTRING ATTRIBUTE INCORRECT

SYNTAX error message, 6-52
<taskstring specification>, 6-51
TASKSTRING task attribute, 6-51
TASKVALUE task attribute, 6-53
task-valued task attributes, syntax for

using, 1-13
TASKWARNINGS task attribute, 6-54
TEMPFILELIMIT task attribute, 6-56
TEMPFILEMBYTES IS READONLY error

message, 6-58
TEMPFILEMBYTES task attribute, 6-58
terminal usercodes

CHARGE task attribute, 3-27
CLASS task attribute, 3-32
PRIORITY task attribute, 5-58

Test and Debug System (TADS), 6-38
TIME intrinsic

date returned when called, 3-48
TITLE file attribute

and CURRENTDIRECTORY task
attribute, 3-42

TO BE CONTINUED stack state
and PARTNER task attribute, 5-47

TODISK option
of OPTION task attribute, 5-37

TODISK program dump option, 5-37
TOO MANY LANGUAGES IN USE BY

SYSTEM error message, 5-5
TOPRINTER option

of OPTION task attribute, 5-37

TOPRINTER program dump option, 5-37
Transaction Processor is DSED Because...

error message, 3-50
transaction processors, in Transaction Server

DCIINPUTEVENT task attribute, 3-49
DCITASKEVENT task attribute, 3-51

Transaction Server direct window programs
DCIINPUTEVENT task attribute, 3-49
DCITASKEVENT task attribute, 3-51

TYPE task attribute, 6-59

U

U1 through U8 external indicators, in
RPG, 6-36

UNABLE TO OBTAIN STATION NAME error
message, 3-60

UNITNO file attribute
example of use, 5-43

UNKNOWN STATION error message, 6-24,
6-26

UP LEVEL TASK ASSIGNMENT error
message

and EXCEPTIONTASK task attribute, 3-78
USER SAVE MEMORY LIMIT EXCEEDED

error message, 6-5
USERCODE ATTRIBUTE INCORRECT

SYNTAX error message, 6-63
usercode attributes, 1-27
USERCODE task attribute, 6-60

and inheritance, 6-62
usercodes

related task attributes, 1-27
USERDATA error numbers

and ERROR task attribute, 3-69
USERDATA function

in DCALGOL, 1-27
USERDATAFILE, 1-27
USERDATAFILE, setting FILEGROUP

attribute in, 4-17

V

VALIDITYBITS task attribute, 6-64
VISIT NONACTIVE TASK error message, 5-47

 Index

8600 0502–407 Index–11

W

WAIT TIME LIMIT EXCEEDED error
message, 6-66

WAITING FOR PRINTSUPPORT TO
INITIALIZE message, 5-52

WAITING FOR RESOURCE message, 5-62
WAITLIMIT task attribute, 6-65

and inheritance, 6-66
warning messages, interrogating, 6-54
WFL

assigning task attributes to object code
files, 1-9

bit-level task attribute access, not available
in, 1-14

Boolean task attribute syntax, 1-10
compiler task equations in, 1-9
event task attribute syntax, 1-11
integer and real task syntax, 1-11
job attribute assignments in, 1-8
mnemonic task attribute syntax, 1-12
string task attribute syntax, 1-13
task equations in, 1-8
task-valued task attributes, not available

in, 1-13
WFLSUPPORT library, 1-15
write-only task attributes, 2-10

Index

Index–12 8600 0502–407

.

86000502-407
8 6 0 0 0 5 0 2 – 4 0 7

	Documentation Notes
	Table of Contents
	Table of Tables
	Section 1. Accessing Task Attributes
	What Are Task Attributes?
	Why Use Task Attributes?
	Who Can Access Task Attributes?
	Performance Considerations

	Operator and End-User Access to Task Attributes
	Using CANDE and MARC Task Equations
	Assigning Task Attributes to a Session
	Using Operator Commands

	Programmer Access to Task Attributes
	Using Task Variables
	Reusing Task Variables
	Using WFL Task Equations
	Using the WFL Job Attribute List
	Assigning Task Attributes to an Object Code File
	Task Attribute Syntax Examples
	Using WFLSUPPORT to Access Task Attributes
	Assigning Task Attributes through HANDLEATTRIBUTES
	Decoding Error Values with ATTRIBUTEMESSAGE
	Examples

	System Administrator Access to Task Attributes
	Assigning Task Attributes to Usercodes
	Assigning Job Queue Attributes

	System Access to Task Attributes
	Providing Default Values
	Providing Inherited Values
	Updating Task Attribute Values
	Resolving Conflicting Values
	Overwrite Rules for WFL Jobs
	Overwrite Rules for Session Tasks
	Overwrite Rules for Other Processes
	Task Attribute Errors

	Section 2. Task Attribute Descriptions
	Choosing the Right Task Attribute
	Format of the Descriptions
	Name
	Type
	Units
	Range
	Default
	Read Time
	Write Time
	Inheritance
	Fork() Inheritance
	Overwrite Rules
	Host Services
	Attribute Number
	Synonym
	Restrictions
	Explanation
	Examples
	Run-Time Errors

	Section 3. Task Attributes A through E
	ACCEPTEVENT
	ACCESSCODE
	ACCUMIOTIME
	ACCUMPROCTIME
	APPLYLIST
	AUTORESTORE
	AUTOSWITCHTOMARC
	AX
	BACKUPFAMILY
	BDNAME
	BLOCKCREDENTIALS
	BOTTIMESTAMP
	BRCLASS
	CHARGE
	CHECKPOINTABLE
	CLASS
	CONVENTION
	CORE
	COUNTRY
	CREDENTIALS
	CREDENTIALSBASE
	CURRENTDIRECTORY
	DATABASE
	DATEOFFSET
	DCIINPUTEVENT
	DCITASKEVENT
	DECKGROUPNO
	DEFAULTFILEGROUP
	DEPTASKACCOUNTING
	DESTNAME
	DESTSTATION
	DISPLAYONLYTOMCS
	ELAPSEDLIMIT
	ELAPSEDTIME
	ERROR
	EXCEPTIONEVENT
	EXCEPTIONTASK

	Section 4. Task Attributes F through K
	FAMILY
	FETCH
	FILEACCESSRULE
	FILEACCOUNTING
	FILECARDS
	FILEGROUP
	FILEMASK
	GROUPCODE
	HISTORY
	HISTORYCAUSE
	HISTORYREASON
	HISTORYTYPE
	HOSTNAME
	HSPARAMSIZE
	INHERITCREDENTIALS
	INHERITMCSSTATUS
	INITPBITCOUNT
	INITPBITTIME
	ITINERARY
	JOBNUMBER
	JOBSUMMARY
	JOBSUMMARYTITLE

	Section 5. Task Attributes L through R
	LABELFORMAT
	LANGUAGE
	LIBRARY
	LIBRARYSTATE
	LIBRARYUSERS
	LOCKED
	MAXCARDS
	MAXIOTIME
	MAXLINES
	MAXPROCTIME
	MAXWAIT
	MCSNAME
	MIXNUMBER
	MPID
	MYPPB
	NAME
	NETPATH
	NOJOBSUMMARYIO
	OPTION
	OPTIONAL
	ORGUNIT
	OTHERPBITCOUNT
	OTHERPBITTIME
	PARTNER
	PARTNEREXISTS
	PDUMPTITLE
	PRINTDEFAULTS
	PRIORHISTORY
	PRIORHISTORYCAUSE
	PRIORHISTORYREASON
	PRIORHISTORYTYPE
	PRIORITY
	REALGROUPCODE
	REALUSERCODE
	REPORTBADINITIATE
	RESOURCE
	RESTART
	RESTARTED

	Section 6. Task Attributes S through Z
	SAVEDGROUPCODE
	SAVEDUSERCODE
	SAVEMEMORYLIMIT
	SOURCEKIND
	SOURCENAME
	SOURCESTATION
	STACKHISTORY
	STACKLIMIT
	STACKNUMBER
	STACKSIZE
	STARTTIME
	STATION
	STATIONNAME
	STATUS
	STOPPOINT
	SUPPLEMENTARYGRPS
	SUPPRESSWARNING
	SW1 through SW8
	TADS
	TANKING
	TARGET
	TASKERROR
	TASKFILE
	TASKLIMIT
	TASKSTRING
	TASKVALUE
	TASKWARNINGS
	TEMPFILELIMIT
	TEMPFILEMBYTES
	TYPE
	USERCODE
	VALIDITYBITS
	WAITLIMIT

	Appendix A. Understanding Railroad Diagrams
	Railroad Diagram Concepts
	Paths
	Constants and Variables
	Constraints

	Following the Paths of a Railroad Diagram
	Railroad Diagram Examples with Sample Input

	Appendix B. Related Product Information
	Index
	Master Glossary

