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ABSTRACT
This report discusses the design and implementation of a special-purpose Unix file system interface, called LFS, that lies at the heart
of a new multiprocessor NFS file server. This server addresses the latest generation of RISC-based Unix workstations, which have I/O
demands that can be satisfied only by very high-performance file servers directly connected to multiple networks. LFS is organized
into client and server modules that execute on different physical processors. The LFS interface (operation set) is an extension of the
NFS interface. The LFS server implementation is based on the BSD 4.2 file system (UFS) with split data and control caches. The LFS
SunOS client code fits easily into the SunOS kernel by sandwiching between the standard Virtual File System (VFS) and block I/O
interfaces. Because the LFS server executes on a non-Unix processor, the normal procedure calls that occur between these kernel
interfaces are transparently replaced with extremely fast message exchanges. These message operations are managed by a lightweight
multiprocessor kernel that executes in each processor.
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1 OVERVIEW
The latest generation of Unix workstations have I/O requirements that file servers are largely unable to satisfy. This network I/O
performance gap--between client and server--has developed because dramatic jumps in microprocessor performance have not been
matched by similar boosts in server I/O channel performance.

This paper explores the file system of a new NFS server--the Auspex NS 5000--that delivers significantly greater network I/O
performance than conventional servers. The NS 5000 is a multiprocessor network server that distributes performance-limiting I/O
functions to independent processors. This paper provides an overview of Auspex's hardware architecture and details one aspect of NS
5000 software architecture--the separation of the Unix file and storage processing components onto dedicated processors. In
particular, it discusses how the NS 5000's Local File System was easily constructed using the standard VFS and NFS software
interfaces of SunOS Unix.

Figure 1: Conventional file server architecture. Using a single CPU, conventional servers share the execution of server functions with
the Unix operating system. The dashed line indicates the basic flow of an NFS request through the processor. All network, file
system, and most storage functions are performed by this single processor. Today, most of these processors--especially the latest
RISC designs--are optimized for instruction fetch and execution, not I/O latency and bandwidth. This has exacerbated the I/O
performance gap. In an attempt to address the storage speed issue, some vendors have recently added higher performance,
microprocessor-based, caching disk controllers to their systems. But this is only an incremental step along the path to a server with
balanced I/O throughput.

1.1 Performance Limitations of Conventional Server Architectures

In CASE and CAD environments, a frequent rule-of-thumb is that a single CISC- or even RISC-based rack-mounted file server can
support from 5 to 10 diskless client workstations. This low client-to-server ratio is the result of a traditional approach to server design:
repackaging a workstation in a rack. While conversion of a display-less workstation into a server may address disk capacity issues,
but it does nothing to address fundamental I/O limitations. As a Network File System (NFS) server [Sandberg86], the one-time
workstation must sustain 5-10 or more times the network, disk, backplane, and file system throughput than it was designed to support
as a client. Adding larger disks, more network adaptors, or extra CPU memory does not resolve basic architectural I/O constraints.
Adding CPU MIPS does not solve the problem. None of these steps increases overall network I/O throughput, as shown in figure 1.
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Closing the NFS I/O performance gap requires a new, server-specific I/O architecture that can flexibly balance client data demand
with server I/O throughput. The new I/O architecture must scale in power and capacity just as easily as client workstations scale in
performance. The new architecture must focus on optimizing a Unix NFS network server's most common actions--NFS operations--
just as RISC processors focus on optimizing a CPU's most common instructions.

Figure 2: The NS 5000 functional multiprocessing I/O architecture. All network, file system, and storage processing is completely
removed from the Unix host processor and performed instead by dedicated processors. Primary memory contains only file data and no
instructions. The dashed line shows the data flow of an NFS read request through the system.

1.2 A High Performance Network Server Architecture

Auspex developed a network server, the NS 5000, with a functional multiprocessing (FMP) I/O architecture [Auspex89]. The NS
5000 emphasizes file--and not compute--service by maximizing utilization of the data paths between client workstations and the
server's network interfaces, file system, and disk storage subsystem. As shown in figure 2, the NS 5000 achieves its performance
advantage with highly intelligent processors that operate in parallel to optimize NFS throughput. The Unix operating system is
completely eliminated from all network, file, and storage processing.

A key feature of the NS 5000 software architecture is that the Unix file system is totally separated--factored out--of the kernel and
executes on its own independent file processor. Because optimizing NFS was our primary goal, the file processor presents a
streamlined, tailored-for-NFS file system interface--called the Local File System, or LFS--as its primary software interface. LFS
presents this interface to its two types of clients: the local Unix host processor and remote Unix workstations:

n The Unix host processor accesses the NS 5000 file system through an LFS interface layer of the standard virtual file system
interface executing in the host processor.

n Remote Unix workstations send NFS requests to an Ethernet processor, which converts NFS request packets from the network into
LFS message requests to the file processor.

Some background on the basic Unix file system will be useful before a discussion of LFS.

2 UNIX FILE SYSTEM BACKGROUND
In Unix before the advent of NFS, the Unix system call layer was directly connected to the underlying file system. These versions of
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Unix include V7, BSD4.2, and System V R.2. The file system interface in these versions of Unix is known as the Unix File System, or
UFS.

2.1 Typical UFS Control Flow

UFS maps the file abstraction to its representation on the disk using inodes, the kernel's internal representation of a file. The inode
contains information such as the device (disk) number, the partition holding the file, and a list of the file's first n block numbers.
Application calls through the system call layer translate a file descriptor (or path) to an inode pointer.

Figure 3 illustrates the UFS control flow of a disk I/O request from an application to the disk device driver in BSD 4.2. An application
program making a system call, for example write, would call ufs_write, then the block I/O routine (bwrite), and finally the disk driver
(dkstrategy) which would schedule the disk transfers.

Figure 3: Unix file system processing before the NFS era. Application calls to the file system map directly to the disk block I/O
functions.

2.2 The Virtual File System Interface

When Sun Microsystems introduced NFS in SunOS V2.0, it also introduced a new file system abstraction--called the virtual file
system or VFS [Kleiman86]--so that NFS could compatibly and transparently coexist with UFS. VFS included two new fundamental
data structures: the vnode and the vnodeops vector. The VFS interface has a level of indirection so a file vnode can refer to either a
UFS file, to an NFS file, or to a file on some other type of file system. Each vnode refers to a vector of vnodeops--the vnode's
supported operations--such as create, read, write, getattr, and setattr. Table 1 has the complete operations list. Each operation is
performed with a call through a V_OP entry.

access      close       cmp         create      dump        fid         
fsync       getattr     getpage     inactive    ioctl       link        
lockctl     lookup      map         mkdir       putpage     rdwr        
readdir     readlink    realvp      remove      rename      rmdir       
select      setattr     open        symlink                             

Table 1: A table of the vnodeops operations.

For example, the rdwr (read-write) system call with a vnode pointer vp basically contains the macro

VOP_RDWR(vp, uiop, rw, f, c)
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which translates into

(*vp->v_op->vn_rdwr)(vp, uiop, rw, f, c).

Figure 4: File system processing through the VFS interface. NFS and UFS are transparently supported through the VFS abstraction.

With VFS, file system processing has evolved as shown in figure 4. If an application makes a write system call to an open remote
file--a file on an NFS server--the write routine is called with a vnode pointer which refers to an rnode. The VOP_RDWR macro will
therefore call the nfs_write routine. This eventually initiates an nfs_write remote procedure call (RPC) on that file. The remote call is
synchronous in that it blocks until the RPC returns, indicating that the data has been safely written by the NFS server.

3 THE LOCAL FILE SYSTEM INTERFACE
The Local File System (LFS) is implemented as a service running on an independent file processor. The LFS client code runs on both
the Unix host processor as a VFS layer and on the Ethernet processor(s). Since these processors do not share instruction memory, the
client and server portions of LFS communicate through message passing. Message operations are provided by a kernel, discussed
next.

3.1 FMK--The Functional Multiprocessing Kernel

The NS 5000's functional multiprocessing architecture uses four types of loosely coupled processors, each with local instruction and
data memory. All of these processors, including the Unix host processor, run a functional multiprocessor kernel (FMK) [Auspex90].
FMK is a small kernel for writing operating systems, and as such it provides only fundamental services such as lightweight processes,
process scheduling, message passing, and memory allocation. A library of standard functions and processes provide services such as
sleep, wakeup, error logging, and real time clocks, which are an integral part of the kernel itself in the Unix system.

The FMP architecture uses Unix to provide the large set of ancillary services that are not sufficiently frequent or time critical to
justify implementation on dedicated processors. As a result, FMK was integrated into the Unix kernel, so Unix heavyweight processes
appear to be compatible peers to the lightweight processes on non-host processors.

3.2 LFS Control Flow

Using FMK to direct LFS messages between processors, the previous file processing diagram evolves again as shown in figure 5.
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Figure 5: LFS control flow using VFS. LFS requests and responses are exchanged through message passing and not procedure calls.
The FMK is a lightweight message-passing kernel used for interprocess communication between NS 5000 physical processors. From
the FMK, LFS messages pass to the file processor (not shown).

For example, when an application makes a write to an open file which is an LFS file--i.e., a file mounted by a file processor--write is
called with a vnode pointer which refers to an LFS-flavored rnode. The VOP_RDWR macro calls the lfs_write routine which
eventually sends a message to the file processor, specifically to the FP_Manager process in charge of that file system. The message
requests a write operation on that file. The call is still completely synchronous; however, the entire operation occurs more quickly
than an NFS operation because the LFS message and the associated data are transfered across the NS 5000 backplane, not across an
Ethernet.

3.3 LFS Operations

The Unix host processor--and other LFS clients--use FMK to send messages to the LFS server on the file processor. The LFS server
on the file processor supports a request-reply message interface whose 24 message operations are based on NFS. LFS includes the 17
basic NFS messages, as well as mount, umount, and the VFS functions fsync, access, and syncfs. The LFS data transfer messages
(read, write, readdir) are unlike NFS in that the file processor does not copy data. Instead these operations return the address of a data
buffer in NS 5000 primary memory. When an LFS client finishes with the data, it sends a second LFS message back to the LFS
server to release the buffer.
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Figure 6: The architecture of the file processor software. FMK routes LFS requests to the LFS server. The LFS server makes UFS
calls, and UFS calls FP_strategy.

4 SEPARATING THE FILE SYSTEM FROM UNIX
4.1 File Processor Software Organization

In separating LFS from Unix, we found that the existing VFS and block driver interfaces were natural places to partition file and disk
processing into separate components that could run on specialized file and storage processors. As shown in figure 6, the file processor
runs almost standard UFS code with veneers on the top and bottom to provide the Unix kernel services required by UFS. On the top, a
layer of LFS server code cracks the LFS messages and makes the appropriate UFS subroutine calls as described in the previous
section. On the bottom, the block I/O layer (bread, bwrite, etc.) was modified to communicate with the storage processor. All calls
through the device driver switch were replaced with simple calls to FP_strategy, which sends FMK messages to the storage processor
to initiate I/O.

4.2 Raw I/O and UFS Interfaces for Utilities

The NS 5000 also has a normal block device interface to the storage processor from the Unix host processor. Therefore, file systems
can be mounted directly on /dev/adnn, the special device name for the storage processor, using the normal UFS code in the host
processor's kernel. Utilities that need to access the raw disk device work normally on the NS 5000, specifically dkinfo, fsck, newfs,
tunefs, format, etc.

4.3 Overall Software Architecture

Figure 7 shows the NS 5000 software architecture. Note, in particular, how the VFS, block I/O, and UFS interfaces discussed above
actually fit into the overall picture.

Figure 7: NS 5000 software structure. FMK executes on each hardware processor (large boxes). Solid connecting lines represent
function calls. Dashed lines denote control paths using FMK messages. While the software structure is complex, the optimized NFS
path is simple. The modules performing primary NFS processing are denoted FMP Software (shaded boxes).
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4.4 Splitting the Buffer Cache

The major modification to UFS was splitting the buffer cache into two parts: a large data cache in primary memory and a smaller
control cache in file processor private memory. The data cache contains all user data blocks for files and symlinks. The control cache
contains all other disk data, including super-blocks, disk inodes, directory contents, and indirect blocks.

Putting file data into primary memory allows the storage processors, Ethernet processors, and the Unix host processor to access it
without interfering with file processor private memory. Similarly, the file processor can access control structures without using
backplane bandwidth. Thus, the split control and data caches allow each processor appropriate access with minimal memory
contention.

4.5 Origin of LFS Components

The LFS server code was modeled after the NFS server code provided in the licensed NFS 4.0 VAX reference release. Like the NFS
server code, LFS uses VFS to access the UFS layer; however, we could remove the VFS layer for efficiency. Handling multiple file
system types can be more easily accomplished with a separate FMK server process for each type. The UFS code, from the bottom of
the VFS layer down through the block-I/O layer, is also derived from the NFS reference release.

5 CONCLUSION
Separating the file system from the Unix operating system was a sound decision for increasing server I/O throughput. The VFS and
NFS interfaces made the implementation fairly straightforward, given the existence of the FMK. File system performance improved
significantly by executing it on a dedicated file processor with unhindered access to buffer cache. In addition, the file system runs
unencumbered by normal Unix context switching and scheduling overhead. Finally, and most importantly, the file processor sits in the
middle position between the network and storage processors, coordinating the NS 5000's highly streamlined datapath that services
NFS requests.
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