ARETE SYSTEMS CORPORATION

PROPRIETARY AND CONFIDENTIAL

System Bus Specification

General

The system bus is an N-port time-division multiplexed transmission switch. A module installed in any of the N ports (backplane positions/slots) can send (receive) transmissions to (from) any of the N ports, including itself. Each transmission consists of a SOURCE port address, a DESTINATION port address, a transmission TYPE and 8 bytes of "DATA". The transmission TYPE determines what the DATA field contains. Error detection is provided for the SOURCE slot address, DESTINATION slot address and transmission TYPE fields and optionally provided for the DATA field. The maximum value of N is 16 (ports). The clock rate is 20 MHz. The instantaneous peak data transfer rate is (8 Bytes * 20 MHz =) 160 MB/sec.

Modules installed in bus ports interact with each other by exchanging transmissions over the bus. There are two types of transmissions, COMMANDS and RESPONSES. A module on the bus begins an interaction with another module by sending a COMMAND. The source of the COMMAND is the MASTER for that interaction; the destination of the COMMAND is the SLAVE. The SLAVE sends a RESPONSE back to the MASTER if required to complete the COMMAND.

Bus Arbitration and Flow Control

The bus arbiter controls access to the bus. To transmit on the bus, a module asserts ARB_REQUEST, ARB_DEST[3:0] (the DESTINATION port address) and optionally, a request modifier (ARB_RESP and/or ARB_MODIFY) to the arbiter. If the request is to send a COMMAND, the arbiter checks that the destination port has a COMMAND input buffer available. A port with a COMMAND input buffer available is said to be READY. If the request is to send a RESPONSE, the module also asserts ARB_RESP to the arbiter. In this case the destination port is required to have to have enough RESPONSE input buffers available for the size of the RESPONSE it requested. Ports wanting to send COMMANDS to destinations that are READY and ports wanting to send RESPONSES arbitrate for time slots on the bus. Arbitration occurs for each available time slot. The arbiter asserts ARB_GRANT to each port that wins an arbitration.

Arbitration priority is a function of the port number of the requesting port. Ports are numbered (N-1) to 0. The ports are divided into 2 groups. Ports (N-1) thru (N-n) form the first group. Ports (N-n-1) thru 0 form the second group. The priority of ports in the first group is the same as their port number. Port (N-1) has the highest priority, and port (N-n) has the lowest. The priority of ports in the second group is lower than that of the ports in the first group. And unlike the first group, the

priority of the ports in the second group is periodically changed so that each port in the group has the same average priority. Half the time, the priority of the ports in the second group is the same as their port number (Port (N-n-1) has the highest priority, and port 0 has the lowest). The rest of the time, the priority of the ports is inverse to their port number (port 0 has the highest priority, and port (N-n-1) has the lowest).

The initial implementations of the sbus and arbiter have the same number of ports in each group (n = N/2).

Each module indicates to the arbiter when it has COMMAND input buffers available. Each COMMAND input buffer holds one transmission. If the module has at least one COMMAND buffer available, it asserts ARB_READY1 to the arbiter. If the module has at least 3 COMMAND buffers available, it may also assert ARB_READY3 to the arbiter. When the arbiter grants the transmission of a COMMAND, it asserts ARB_RDY_DEC to the destination port to inform the destination of the grant. This allows the destination port to update its values of ARB_READY1 and ARB_READY3 while the transmission is occurring.

The maximum rate at which a module can receive COMMANDS is determined by whether ARB_READY3 is asserted. Assertion of ARB_READY3 allows a COMMAND to arrive every bus clock tick. If ARB_READY3 is not asserted, COMMANDS can arrive no more frequently than every other bus clock tick. RESPONSES can arrive every bus clock tick.

Interlocked Sequences

The bus arbiter also supports interlocked sequences of operations. These sequences are required to to support the TAS, CAS and CAS2 instructions of the Motorola 68020 and are a generalization of the READ/MODIFY/WRITE operation. Interlocked sequences are atomic to each other and are composed of any number of READ and WRITE commands. The signal ARB_LOCK is asserted by the arbiter when an interlocked sequence is in progress.

To request an interlocked sequence, a module asserts ARB_REQUEST, ARB_DEST[3:0] (of the first interlocked COMMAND) and ARB_MODIFY to the arbiter. The interlocked sequence begins when ARB_LOCK is not asserted and a port asserting ARB_REQUEST and ARB_MODIFY to the arbiter is granted the bus. The interlocked sequence lasts as long as ARB_MODIFY is asserted by the locking module and ends when the locking module deasserts ARB_MODIFY.

To minimize performance loss, an interlocked sequence does not lock out commands from ports not asserting MODIFY to the arbiter.

Bus Transmissions

The arbiter grants access to the bus by asserting ARB_GRANT to each module that wins an arbitration. ARB_GRANT is asserted to a module for one bus clock cycle. A module receiving ARB_GRANT may transmit on the bus during the clock cycle immediately following the clock cycle in which ARB_GRANT was received.

When a module is GRANTED the bus to send a RESPONSE, the module may use

the bus for up to four consecutive clock cycles by asserting ARB_BURST to the arbiter during all but the last clock cycle. The assertion of ARB_BURST during a clock cycle prevents the arbiter from issuing ARB GRANT to any module for use of the bus during the next clock cycle. Only RESPONSES can be sent in BURST mode. BURST mode RESPONSES can be to one or more DESTINATION ports.

When a module transmits on the bus, it asserts the signal BUS_ACTIVE to indicate the presence of a transmission.

Each module monitors all bus transmissions. Each transmission is first checked for destination field errors. A module recognizes a transmission as addressed to it if the destination field contains no detected errors and matches the module's port (slot) number. The transmission is then checked for source and type field errors. If the TYPE of the transmission is not CONTROL WRITE and BUS DATA PAR VLD was asserted, the DATA field is checked for parity errors. If the transmission is a RESPONSE, it must be expected and the SOURCE field must be that of the expected source.

Each transmission received without detected error is indicated by asserting BUS_ACK on the bus during the second clock cycle after the transmission. Transmissions received with one or more detected errors or with a TYPE field value that the module can not process are indicated by asserting BUS_NACK on the bus during the second clock cycle after the transmission.

Errors in the DATA field of transmissions of TYPE CONTROL WRITE or in transmissions with BUS DATA PAR VLD deasserted are ignored. These transmissions are ACKed or NACKed based on the detection of errors in the source and type fields.

Only the destination port asserts BUS_ACK or BUS_NACK for a transmission. Transmissions with destination field errors or destination fields not matching the port (slot) number of any installed module are neither ACKed nor NACKed.

When a system bus transmission fails, retry is permitted, but not required. If retry is attempted, the module that issued the COMMAND resulting in the failed transmission restarts the transaction by reissuing the COMMAND.

Transmission Format

Each transmission has a DESTINATION field, a SOURCE field, a TYPE field and a DATA field. The DESTINATION field contains the destination port number and, for error detection, the compliment of the DESTINATION port number. The SOURCE field contains the source port number and its compliment. The TYPE field indicates the type of COMMAND or RESPONSE and the format of the DATA field. The TYPE field has a parity bit for single-bit error detection. A parity bit is also defined for each byte of the DATA field for single-bit error detection, but implementation is optional. The source of a bus transmission indicates whether data parity bits have been sent by asserting BUS DATAPAR VLD during the transmission.

The DATA field is organized as 8 bytes of 8 bits each. The bytes are numbered 0 through 7 with byte 0 the most significant and of lowest address. Bits within a byte are numbered 7 through 0 with bit 7 the most significant. Each bit in the DATA field has a name of the form BUS DATA[B,b] where B is

the byte number and b is the bit number within the byte. The optional parity bit for byte B is BUS_DATA_PAR[B]. Data field parity is even. The bit BUS_DATAPAR_VLD indicates whether data field parity is implemented.

System addressing is by 4 bits of physical port number and 32 bits of offset. The address of an operand is the address of its first (most significant and lowest address) byte.

The bus COMMANDS are:

READ [size = 1, 2, 3, 4, 8, 16 or 32 bytes]

The operand of a READ command for 4 bytes or less must not cross a long word (4 byte) boundary. The operand of a READ command for 8, 16 or 32 bytes must be aligned on an 8, 16 or 32 byte boundary, respectively. READs of 8, 16 and 32 bytes are not supported by all module types. The offset address of the operand is sent in bytes 4 through 7 of the DATA field. Bytes 0 through 3 of the DATA field are undefined.

The operand is returned in the DATA field of one or more RESPONSE transmissions. The operand is aligned in the DATA field for an 8 byte wide port. Bytes in the DATA field that are not part of the requested operand are undefined.

READ operands longer than 8 bytes require multiple 8 byte RESPONSE transmissions. Bytes are returned in order of increasing byte address with the bytes of lowest address returned first. Multiple RESPONSE transmissions may be sent one at a time or in one or more bursts.

WRITE [size = 1, 2, 3 or 4 bytes]

The operand of a WRITE command must not cross a long word boundary. The offset address of the operand is sent in bytes 4 through 7 of the DATA field.

The WRITE DATA is sent in bytes 0 through 3 of the data field and must be aligned for a 4 byte wide port.

CONTROL WRITE [signal = 0, 1, 2 or 3] [value = 0 or 1]

The CONTROL WRITE command allows one of several control signals in a module to be asserted or deasserted even in the presence of errors in the DATA field. The specified signal is set to the specified value. The DATA field is undefined.

The bus RESPONSES are:

RESPONSE [response type = DATA, ERROR DATA 0, ERROR DATA 1 or ERROR]

DATA is the normal response to a READ command. A READ command for more than 8 bytes requires more than one RESPONSE transmission.

ERROR DATA is the response to a READ command encountering a detected but uncorrectable data error. It contains the requested data as read or after correction has been attempted.

ERROR DATA 0 indicates that the error was detected by the device responding to the READ.

ERROR DATA 1 indicates that the error was a transmission error in the DATA field detected by the IO MODULE.

ERROR is the response to a READ command that is somehow recognized as having failed to read anything. The DATA field of the response is undefined.

The format of the transmission TYPE field is:

BUS TYPE [5:0] = [3 bit type field],[3 bit modifier field]

BUS_TYPE [5:3]	type	
0 1 2 3 4 5 6 7	RESPONSE READ WRITE CONTROL WRITE	
BUS_TYPE [2:0]	size	response type
0 1 2 3	4 bytes 1 byte 2 bytes 3 bytes	ERROR ERROR DATA 0 ERROR DATA 1
4 5 6 7	8 bytes 16 bytes 32 bytes	DATA
BUS_TYPE [2:1]	control signal	
0 1 2 3	module enable module interfac	e enable

SBUS Configuration Conventions

The assignment of modules to SBUS ports (slots) is determined by a module's maximum transfer rate requirements. The higher the maximum transfer rate, the higher the assigned SBUS priority.

In general, ports N thru (N-n) are for I/O Modules (IOM) and Memory Modules (MM) with I/O Modules having the higher priority. A maximum of 4 I/O Modules can be installed in an SBUS. Ports (N-n-1) thru 0 are for Processor Modules (PM) and Service Processor Modules (SPM).

Transmission Conventions

With the exception of CONTROL WRITE, the target of a READ or WRITE command is specified by its system address. Within a module, the defined offset address space is 256 megabytes or 4 gigabytes.

The control and status registers of a module are located at the top of the offset address space. For ease of use and testing, any bit that can be written in a control register can be read at the same byte and bit address and with the same sense. By definition, status registers are read-only.

If relevant, the size of a module's offset address space is controlled by a bit in one of the module's control registers. On RESET, the size of the offset address space is 256 megabytes. This requirement applies primarily to large memory modules (> 256 MB), I/O modules and I/O adapters.

The ID of each module is contained in a long word status register at offset address Oxfffffffc.

Intelligent modules also have high level message buffers and interrupt request buffers at the top of their offset address space.

The Service Processor module has interrupt acknowledge buffers at the top of the offset address space.

System wide address conventions:

```
0xffff ff04-07
                 Interrupt level 0 acknowledge (service processor)
0xffff ff0c-0f
                 Interrupt level 1 acknowledge (service processor)
0xffff ff14-17
                 Interrupt level 2 acknowledge (service processor)
                 Interrupt level 3 acknowledge (service processor)
Interrupt level 4 acknowledge (service processor)
0xffff ff1c-1f
0xffff ff24-27
0xffff ff2c-2f
                 Interrupt level 5 acknowledge (service processor)
0xffff ff34-37
                 Interrupt level 6 acknowledge (service processor)
0xffff ff3c-3f
                 Interrupt level 7 acknowledge (service processor)
0xffff ff44-47
                 Interrupt level 8 acknowledge (service processor)
0xffff ff4c-4f
                 Interrupt level 9 acknowledge (service processor)
0xffff ff54-57
                 Interrupt level A acknowledge (service processor)
                 Interrupt level B acknowledge (service processor)
0xffff ff5c-5f
0xffff ff64-67
                 Interrupt level C acknowledge (service processor)
0xffff ff6c-6f
                 Interrupt level D acknowledge (service processor)
Oxffff ff74-77
                 Interrupt level E acknowledge (service processor)
0xffff ff7c-7f
                Interrupt level F acknowledge (service processor)
```

Oxffff ff80-9f Higher level message buffers

```
(processor, service processor)
                       0xffff ff80-83
                                                                      Command buffer
                                                                       (processor, service processor)
                       0xffff ffa0-a3
                                                                      Interrupt request (service processor)
                       0xffff ffb0-b3
                                                                      Interrupt vector (memory)
                        0xffff ffc0-ff
                                                                     Control and Status registers (All)
                      Oxffff ffe4-e7
Oxffff ffec-ef
Oxffff fff4-f7
Oxffff fffc-fe
Oxfffff-fe
Oxfffff-fe
Oxffff-fe
Oxffff-fe
Oxffff-fe
Oxffff-fe
Oxff
Electrical Interface
The bus signals are:
                                                                                              SBus Destination Slot Address [3:0]
                       BUS DEST[3:0]
                                                                                               SBus Destination Slot Address [3:0]*
                       BUS DEST[3:0]*
                                                                                               SBus Source Slot Address [3:0]
                       BUS SRC[3:0]
                       BUS SRC[3:0]*
                                                                                               SBus Source Slot Address [3:0]*
                       BUS TYPE[5:0]
                                                                                               SBus Type [5:0]
                       BUS TYPE PARITY
                                                                                               SBus Type Field Parity
                       BUS DATA[07:00]
                                                                                               SBus Data Byte 0 [7:0]
                       BUS DATA[17:11]
                                                                                               SBus Data Byte 1 [7:0]
                       BUS DATA[27:20]
                                                                                               SBus Data Byte 2 [7:0]
                       BUS DATA[37:30]
                                                                                               SBus Data Byte 3 [7:0]
                                                                                               SBus Data Byte 4 [7:0]
                       BUS DATA[47:40]
                       BUS DATA[57:50]
                                                                                               SBus Data Byte 5 [7:0]
                                                                                               SBus Data Byte 6 [7:0]
                        BUS DATA[67:60]
                                                                                               SBus Data Byte 7 [7:0]
                        BUS DATA[77:70]
                        BUS DATA PAR[0:7]
                                                                                               SBus Data Parity [0:7]
                                                                                               SBus Data Parity Valid
                        BUS DATAPAR VLD
                                                                                               SBus Active
                       BUS ACTIVE
                                                                                               SBus Acknowledge
                        BUS ACK
```

BUS NACK

SBus Negative Acknowledge

The signals from the arbiter to each port are:

ARB CLOCK*

The SBUS clock. SBUS clock cycles begin and end on the falling edge of ARB CLOCK*.

ARB RDY DEC*

When asserted, ARB_RDY_DEC indicates that the arbiter has granted the transmission of a COMMAND to this port and new values of ARB_READY1 and/or ARB_READY3 must be computed during the current clock cycle.

ARB GRANT*

When asserted, ARB_GRANT indicates that the port may transmit on the bus during the next clock cycle and must deassert ARB_REQUEST at the beginning of the next clock cycle unless another transmission request is ready.

ARB LOCK*

When asserted, ARB_LOCK indicates that an interlocked sequence of operations is in progress. The signal is provided for test purposes only and is not required for normal operation of the bus.

ARB GRANTERR*

When asserted, GRANTERR indicates that two or more GRANT's were issued for one bus cycle. GRANTERR is asserted during the third cycle after the cycle in which the multiple GRANT fault occurred. The signal is for fault isolation only.

The signals from each port to the arbiter are:

ARB READY1*

When asserted, ARB_READY1 indicates to the arbiter that the port has at least 1 free COMMAND input buffer.

ARB READY3*

When asserted, ARB_READY3 indicates to the arbiter that the port has at least 3 free COMMAND input buffers.

ARB REQUEST*

When asserted, ARB_REQUEST indicates that the port wants transmit a COMMAND or RESPONSE on the bus. ARB_REQUEST must be deasserted in the cycle following the reception of ARB_GRANT unless another ARB_GRANT is desired. In the latter case, ARB_RESP or the next value of ARB_DEST[3:0] must be asserted during the cycle following the reception of ARB_GRANT.

ARB DEST[3:0]

The destination port address for a COMMAND. ARB_DEST[3:0] must be valid for all cycles

that ARB_REQUEST is asserted and ARB_RESP not asserted. ARB_DEST[3:0] need not be valid when ARB_RESP is asserted or ARB_REQUEST not asserted.

ARB RESP*

When asserted in conjunction with ARB_REQUEST, ARB_RESP indicates that the port wants to transmit a RESPONSE.

ARB MODIFY*

When asserted in conjunction with ARB_REQUEST, ARB_MODIFY indicates that the port wants to transmit a READ or WRITE COMMAND that is part of an interlocked sequence of operations. Once a port is granted the bus to begin an interlocked sequence, no other port can begin an interlocked sequence until the locking port deasserts ARB MODIFY.

ARB BURST*

When asserted, ARB BURST prevents any ARB GRANT from being issued for the next clock cycle. A module may assert ARB BURST to send several RESPONSE transmissions during consecutive SBUS clock cycles. The module must receive an ABR GRANT for the SBUS cycle in which it first asserts ARB BURST and may assert the signal for a maximum of three (3) consecutive SBUS clock cycles. This permits a maximum burst length of 4 clock cycles.

Timing:

The timing of signals passing between a bus module and the arbiter is specified at the backplane connector which connects the pc board of the module to the arbiter. The timing of all signals is relative to the falling (LOW going) edge of ARB CLOCK*

Signal	Setup Time 	Hold Time
ARB_READY1*	15.0 ns	5.0 ns
ARB_READY3*	15.0 ns	5.0 ns
ARB_REQUEST*	15.0 ns	5.0 ns
ARB_RESP*	15.0 ns	5.0 ns
ARB_MODIFY*	15.0 ns	5.0 ns
ARB_DEST[3:0]	15.0 ns	5.0 ns
ARB_BURST*	34.0 ns	5.0 ns
ARB_GRANT*	7.0 ns	6.0 ns

ARB RDY DEC*

35.0 ns 4.0 ns

The timing of BUS signals passing between a bus module and the backplane is specified at the backplane connector. The timing of all signals is relative to the falling (LOW going) edge of ARB CLOCK*

Signal	Setup Time	Hold Time
editer states across across comm	made code corre store made	
All P1 signals		
incoming	2.0 ns	7.0 ns
outgoing	24.0 ns	7.0 ns

Drivers:

With the exception of BUS ACTIVE, BUS IOX ACTIVE, BUS ACK and BUS NACK, all P1 bus signals are driven with 74F241's with half the output enables driven from the Q side of a 74F74 or 74F109 flipflop and the other half of the output enables driven from the Q* side of the same flipflop.

BUS ACTIVE, BUS IOX ACTIVE, BUS ACK and BUS NACK are driven with discrete open emitter 100 mA drivers.

Receivers:

ARB CLOCK* is received with an AS1804 and loaded with six AS1804 or equivilant inputs. The fixed number of input loads standardizes the capacitive load on ARB_CLOCK* so as to minimize the module to module received clock skew.

All P1 bus signals are received with 74F374 or 74F534 D-type registers clocked by ARB CLOCK.

System Bus - P1 ______

Pin	Row A	Row B	Row C
1 2 3 4	COMMON COMMON COMMON COMMON	BUS_DATA_PAR[0] BUS_DATA[06] BUS_DATA[04] BUS_DATA[02]	BUS_DATA[07] BUS_DATA[05] BUS_DATA[03] BUS_DATA[01]
5 6 7 8 9	COMMON COMMON COMMON COMMON COMMON	BUS_DATA[00] BUS_DATA[17] BUS_DATA[15] BUS_DATA[13] BUS_DATA[11]	BUS_DATA_PAR[1] BUS_DATA[16] BUS_DATA[14] BUS_DATA[12] BUS_DATA[10]
10	COMMON	BUS_DATA_PAR[2]	BUS_DATA[27]

11 12 13	COMMON COMMON COMMON	BUS_DATA[26] BUS_DATA[24] BUS_DATA[22]	BUS_DATA[25] BUS_DATA[23] BUS_DATA[21]
14 15 16 17 18	COMMON COMMON COMMON COMMON	BUS_DATA[20] BUS_DATA[37] BUS_DATA[35] BUS_DATA[33] BUS_DATA[31]	BUS_DATA_PAR[3] BUS_DATA[36] BUS_DATA[34] BUS_DATA[32] BUS_DATA[30]
19 20 21 22	COMMON COMMON COMMON	BUS_DATA_PAR[4] BUS_DATA[46] BUS_DATA[44] BUS_DATA[42]	BUS_DATA[47] BUS_DATA[45] BUS_DATA[43] BUS_DATA[41]
23 24 25 26 27	COMMON COMMON COMMON COMMON COMMON	BUS_DATA[40] BUS_DATA[57] BUS_DATA[55] BUS_DATA[53] BUS_DATA[51]	BUS_DATA_PAR[5] BUS_DATA[56] BUS_DATA[54] BUS_DATA[52] BUS_DATA[50]
28 29 30 31	COMMON COMMON COMMON COMMON	BUS_DATA_PAR[6] BUS_DATA[66] BUS_DATA[64] BUS_DATA[62]	BUS_DATA[67] BUS_DATA[65] BUS_DATA[63] BUS_DATA[61]
32 33 34 35 36	COMMON COMMON COMMON COMMON	BUS_DATA[60] BUS_DATA[77] BUS_DATA[75] BUS_DATA[73] BUS_DATA[71]	BUS_DATA_PAR[7] BUS_DATA[76] BUS_DATA[74] BUS_DATA[72] BUS_DATA[70]
37 38 39 40	COMMON COMMON COMMON	BUS_SRC[3] BUS_SRC[2] BUS_SRC[1] BUS_SRC[0]	BUS_SRC[3]* BUS_SRC[2]* BUS_SRC[1]* BUS_SRC[0]*
41 42 43 44	COMMON COMMON COMMON	BUS_DEST[3] BUS_DEST[2] BUS_DEST[1] BUS_DEST[0]	BUS_DEST[3]* BUS_DEST[2]* BUS_DEST[1]* BUS_DEST[0]*
45 46 47 48	COMMON COMMON COMMON	BUS_TYPE_PARITY BUS_TYPE[4] BUS_TYPE[2] BUS_TYPE[0]	BUS_TYPE[5] BUS_TYPE[3] BUS_TYPE[1] BUS_DATAPAR_VLD
49 50	COMMON	BUS_IOX_ACTIVE BUS_ACK	BUS_ACTIVE BUS_NACK

NOTES:

BUS_DATA[], BUS_DATA PAR[], BUS_DATAPAR_VLD, BUS_SRC[], BUS_SRC[]*, BUS_DEST[], BUS_DEST[]*, BUS_TYPE[], BUS_TYPE PARITY and spare are terminated at each with 150 Ohms +/- 2%, 100 mW to +5V and 100 Ohms +/-2%, 100 mW to COMMON (equivilent to 60.0 Ohms in series with 2.00 v, nominal).

BUS ACTIVE, BUS IOX ACTIVE, BUS ACK and BUS NACK are terminated at each end with 820 Ohms +/- 5%, 100 mW to +5V and 43 $\overline{\text{Ohms}}$ +/- 5%, 100 mW to COMMON (equivilent to 40.9 Ohms in series with 0.25 v, nominal).

System Bus - P2

Pin	Row A	Row B	Row C
2		+5V	
4 5 6 7 8 9	+12V ARB_CLOCK* ARB_RDY_DEC* ARB_DEST[3] ARB_DEST[2] ARB_DEST[1]	n/c COMMON COMMON COMMON COMMON	+12V BUS_C5 BUS_SLOT[3] BUS_SLOT[2] BUS_SLOT[1] BUS_SLOT[0]
10 11 12 13 14 15 16 17 18	ARB_DEST[0] ARB_GRANT* ARB_BURST* ARB_REQUEST* ARB_RESP* ARB_MODIFY* ARB_LOCK* ARB_READY1* ARB_READY3* ARB_GRANTERR*	COMMON	BUS_C10 BUS_C11 BUS_C12 BUS_C13 BUS_C14 BUS_C15 COMMON BUS_C17 COMMON BUS_RESET*
20 21 22 23 24 25 26 27 28 29	BUS_A20 BUS_A21 BUS_A22 BUS_A23 BUS_A24 +12\overline{V}AUX BUS_A26 -12\overline{V}AUX BUS_A28 -12\overline{V}	COMMON COMMON COMMON COMMON COMMON +12VAUX COMMON -12VAUX COMMON n/c	COMMON BUS_C21 BUS_C22 BUS_C23 BUS_C24 +12VAUX BUS_C26 -12VAUX BUS_C28 -12V
31		+5VAUX	

NOTES:

BUS_RESET*, BUS_AXX and BUS_CXX are terminated at each end with 150 Ohms +/-5% to +5V and 220 Ohms +/-5% to COMMON (equivilent to 89.2 Ohms in series with 2.97 V, nominal).

BUS_SLOT[3:0] are not bused. BUS_SLOT[3;0] for each slot are selectively connected to COMMON to encode the slot number in positive logic. The low value is provided by the connection to COMMON on the backplane; the high value is provided by a pullup resistor per signal on each module.