
BootBug
"the ideal tool for debugging boot-time code ... "

Brigent, Inc.
684 Costigan Circle

Milpitas, California 95035-3366
(408) 956-0322 (voice & fax)

AppleLink: ScottC

Warranty

Brigent Incorporated (Brigent) warrants BootBug hardware
against defects in material and workmanship for 90 Days from
the original purchase date.

Brigent shall, at its own expense and option, either repair or
replace the defective product during the warranty period,
provided that the original purchaser has notified Brigent and,
upon inspection by Brigent, Brigent has found the product
defective.

Purchaser's sole and exclusive remedy hereunder shall be
limited to the repair or replacement of the product.

Any misuse, abuse, modification, or tampering with serial
numbers shall void this warranty.

The express warranties set forth herein are in lieu of all other
warranties, expressed or implied, including without limitation,
any warranties of merchantability or fitness for a particular
purpose*.

In no event will Brigent be liable to the purchaser for damages,
including any lost profits, lost savings or other incidental or
consequential damages arising out of the use or inability to use
such product even if Brigent has been advised of the possibility
of such damages, or for any claim for any other party. In any
event, the liability of Brigent shall not exceed the purchase
price of the product*.

* May not apply in some states.

· Table of Contents

Introduction .. 1
What is BootBug? ... 1
How Does BootBug Work?1
About the Manual ... l
Notations ... 2

Installation .. 3
Using a Macintosh as the TerminaL 3
Installing the BootBug Card 3
Connecting the Serial Cable4
Installing the Terminal SOftware 4
Booting BootBug! .. 4
Using Another Computer as the TerminaL 5

How BootBug Works ... 6
The Boot Process .. 6
What BootBug Depends On 7

BootBug Debugging Tips .. 8
Debugger Trap ... 8
Breaking on a Primary Init 8
Breaking on a SCSI Driver 9

BootBug Command Reference 10
Command Expressions l0
ATB .. 11
ATC .. 12
ATD ... 13
ATSS .. 14
BAUD .. 15
BR .. 16
BRC .. 17
BRD ... 18
CS .. 19
DB .. 20
OL ...•............ 21
OM ... 22
DW .. 23
DRVR ... 24

F ••••••••••••••••.•••••.••...•.•.•.•.•.••.•..•••.••••.•••..•••.•.•.. 25
G •••.•••••••••••.••••.•.•..•.•.•..•...••.••.•.•..•••...•....••..... 26
Gf•..................•....•........................... 27
HOW ... 28
10 ... 29
IL ... 30
IP .. .31
R ••••.•...•.•.•.•.••.••.....•...•....•.•......•.•....•..•..•••...•. 32
RB .. 33
Register Name ; 34
RS .. 35
S ... 36
SC6 ... 37
SC7 ... 38
S839
SL .. ~ 40
SO ... ~~ ~ 41
SS ... 42
STARTUP ... 43
SW .•.•...•.......•.•...........•................................. 44
TO ••.•••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••• 45
W H ~•..... 46

Terminal Program ... 47
Terminal Files and Folders ..•......................... 47
Terminal Communication Settings 47
Terminal Settings .. 47
Saving BootBug Output to Disk 48
Other Terminal Settings 48

Appendix A TecllNotes .. 49
Appendix B Trouble Shooting 51
Appendix C BootBug Nubus Card 53

BootBug™ is a trademark of Brigent, Inc.
Applef) and Macintosh~ are registered trademarks of Apple
Computer, Inc.
Nubus™ is a trademark of Texas Instruments.
TMONTM is a trademark of ICOM Simulations Inc.

Introduction

What is BootBug?

BootBug is the ideal debugging tool for those who develop Nubus
Cards, SCSI Drivers, Accelerators, or any other boot time code.
BootBug is a Nubus card that contains a full featured MacsBug style
debugger in its configuration ROM and a serial port to talk to an
external terminal.

How Does BootBug Work?

The BootBug card is installed in a specific Nubus slot of your
Macintosh computer. When the system starts up, BootBug's
software will be the first software loaded into the system. The
software takes over as the systems debugger and allows you to
debug any software that loads afterwards.

About the Manual

This manual assumes you are familiar with low level debugging on
the Macintosh using debuggers such as MacsBug, TMON, or The
Debugger. If you are not familiar with low level debugging,
Chapters 1 through 7 of MacsBug Reference and Debugging Guide
cover the topic very well.

The manual contains the following chapters:

1. Installation
gives you step by step instructions for installing BootBug. If
you are familiar with the MacsBug command set, this
chapter may be all you need.

2. How BootBug Works
describes the boot process, when BootBug loads, and when
your software loads.

3. BootBug Debugging Tips
gives you a few pointers (or a handle) about debugging SCSI
drivers, primary inits, and card drivers.

1

4. BootBug Command Reference
is a full description of each of BootBug's commands.

5. BootBug Communication Software
gives descriptions of the free communication software
supplied with 8ootBug.

Notations

The following notations are used to describe BootBug commands:

Bo14 courier

Plain courier

Italic lext

(J

signifies text that is typed by the user.

signifies text that is displayed by BootBug.

signifies parameters that must be replaced
with data.

bracketed items are optional.

vertical bar signifies an either I or choice.

2

Chapter 1 Installation

To use BootBug, you will need the following equipment:

• NuBus equipped Macintosh.
• A second Macintosh or other computer equipped

with a serial port that can be used as a 9600 baud
terminal.

• BootBug card.
• BootBug serial cable or other serial cable.
• BootBug communication software or your own

communication software.

Using a Macintosh as the Terminal

Step 1 Installing the BootBug Card

The BootBug card needs to be installed in the
Macintosh that runs the software you want to
debug. BOOTBUG MUST BE IN A SPECIFIC SLOT
TO WORK PROPERLY. The slot varies depending
on the model of Macintosh you have.

Moos Slotll. Slot Position from Front
Mac II 9 Left Most Slot
Mac IIx 9 Left Most Slot
Mac IIcx 9 Left Most Slot
Mac IIci E Right Most Slot
Mac IIfx E Right Most Slot
Mac IIsi C In NuBus Extender
Quadra700 0 Left Most Slot
Quadra 900 9 Upper Most Slot
Quadra 950 9 Upper Most Slot

Be sure that the computer is off and that you have
grounded yourself to the metal power supply case.

If you are not familiar with installing Nubus cards,
please refer to the Setting Up booklet that came
with your Macintosh.

3

Step 2

Step 3

Step 4

Connecting the Serial Cable

Plug the 9 pin D connector end of the cable into the
BootBug connector at the back of the card. Plug the
8 pin DIN connector into the modem port of the
Macintosh you plan to use as a terminal.

Installing the Terminal Software

Simply insert the DootBug floppy into the
Macintosh you plan to use as a terminal, drag the
"Terminal" application and the "Terminal Folder"
onto your hard disk, and launch the program.
Besure that the application and the folder are in
the same folder.

The program is already set to 9600 baud 8 bits of
data, 1 stop bit, no parity, and XON/XOFF
handshaking using the modem port. If you want to
use your own communication software, be sure to
configure it to these parameters.

Booting BootBugl

Now that everything is installed and the
communication software is running on the Macintosh
being used as the terminal, it is time to turn on the
Macintosh that contains DootBug. After turning on
the Mac, you will hear the normal startup chime.
Then, the QootBug message will be displayed on
the terminal software. .

The message will tell you that you have some
number of seconds left to press a key in order to
invoke DootBug. If you do not press a key, BootBug
will let the Mac finish booting. In both cases,
BootBug will be installed in memory.

After you have invoked BootBug, you can begin
setting breakpoints, setting A-Trap breaks, single
stepping, and so on. Refer to the BootBug Command
Reference chapter for a complete description of the

4

commands and the Using BootBug chapter for ideas
on how to debug your software.

Using Another Computer as the Terminal

If you wish to use a PC, Apple II , VDT, or other type of device as
the terminal, you will have to supply the serial cable and any
terminal software yourself.

The serial port on the BootBug card has the same configuration as a
PC type serial port.

Pin
1
2
3
4
5
6
7
8
9

Signal
Carrier Detect
Receive Data

Transmit Data
Data Terminal Ready

Ground
Data Set Ready
Request to Send
Clear to Send
Ring Indicator

For example, to connect BootBug to a PC serial port, you will need
two 9 to 25 pin serial cables (male both ends), a Null Modem
adapter, and a gender changer.

The communication software you use must be set to 9600 baud, 8 bits
of data, 1 stop bit, and no parity. XON /XOFF handshaking helps,
but is not required.

After you have configured the cable and software, follow steps 1
and 4 above.

5

Chapter 2 How BootBug Works

The Boot Process

BootBug loads before any other software because the Macintosh
ROMs load and execute the Primary Inits of NuB us cards very early
in the boot process. Since BootBug is installed in the first slot that
the ROMs look at, BootBug loads before all other Primary Inils and
drivers.

Understanding the sequence of the boot process is important to
understanding how your software is loaded. Below is the
summarized sequence of the boot process:

• First, the system performs several self-tests, sounds
the startup ~hime, checks memory, and does basic
intialization of the 10 chips.

• Next, the system starts to initialize low memory
globals, the Memory Manager, the Trap
Dispatcher, and the interrupt dispatch tables.
Although initialized, interrupts have not been
enabled yet.

• A system zone is created. Resource Manager, Time
Manager, and ShutDown Manager are initialized.

• The system initializes the Slot Manager. This is
the point at which BootBug and the rest of the
Primary Inits are loaded and executed.

• The 60hz tick is initialized, and interrupts are
enabled.

• The driver queue is initialized.
• The SCSI Manager is initialized, and a SCSI Reset

is issued.
• The Unit Table is initialized. The .Sony, .Sound,

and the .SERD drivers are installed.
• If you ~re running a Mac II or Mac IIx, the ADB is

initialized followed by the opening of the video
driver for the startup screen. For Mac IIci machines
and above, the order is reversed.

• The slot interrupts are enabled. The "Beep Screen"
is drawn on the startup screen.

6

• The system starts to look for startup devices. It
will search the SCSI chain, floppies, and the
Nubus cards to find a device from which to boot the
OS. During this process, the SCSI drivers will be
loaded and opened.

• The system will then load and execute the boot
blocks. This will open the system file and read in
the boot resources.

For more information on the boot process, see the Start Manager
chapter of the Inside Macintosh Volume V.

What BootBug Depends On

BootBug uses as little of the system software as possible so that it
will not interfere with your software. However, there are a few
basic system features BootBug needs to operate.

The most important is the SysError handler and its low memory
globals, MacJmp and $BFF. MacJmp and $BFF tell the SysError
handler to pass any exceptions it intercepts to BootBug.

BootBug also needs the low memory globals CPUFlag and SysZone
during installation and the global MMU32Bit all the time.

If Virtual Memory is running, BootBug will use the OebugUtil trap
to switch to supervisor mode and get the VM paging status.

BootBug is installed in the system heap. A second pointer is
allocated in the system heap for BootBug's globals.

7

Chapter 3

Debugger Trap

BootBug Debugging Tips

The simplest way to debug your code is to place a _Debugger or
_DebugStr trap. The _Debugger trap will simply invoke BootBug
whenever it is encountered. The following assembly language code
fragment demonstrates its use:

I···
; Invoke BootBug Here

I··· ; the rest of your program here

The _DebugStr trap will invoke BootBug, display a message, and
optionally execute BootBug commands in the string. Your program
puts the address of the pascal string on the stack and then executes
the _DebugStr trap. A semi-colon in the string separates the
message from the BootBug commands. The address of the string is
removed from the stack by BootBug. Below is an assembly language
code fragment using the _DebugStr:

STRING PASCAL

I···
pea myStr
_DebugStr

, ...

; Put address of shing on stack
; Invoke BootBug which will then
; display the 'Hello World' msg
; and execute the dm AO conunand.

myStr dc.b 'Hello World;DM AD'

Breaking on a Primary Init

Primary fnits are loaded from the declaration ROM by a call to the
_SlotManager with DO set to 5. This trap will load the Primary
Init into memory and store its address at the address in AD. The
address of the first instruction of the Primary Init win be @AO+8.

Assuming your card is in slot C, you would type the following
commands to break just before your Primary lnit is loaded:

8

ATB SlotHanager (DO.w~5) AND (@(AO+31).b=C)
G

When BootBug is re-invoked, the PC will point to the SlotManager
trap that will load your Primary Init. Use the Step Over command
to load the code, then set a breakpoint at the beginning of the code
(@AO+8), and Go.

SO
br @AO+8
G

The next time BootBug is invoked, the PC will point to the first
instruction of your Primary Init.

Breaking on a SCSI Driver

SCSI drivers generally call _DrvrInstall very early in their install
routine. Putting an A-Trap break on _DrvrInstall will cause a break
every time a SCSI driver tries to install itself onto the Unit Table.
It will also cause a break on the _DrvrInstall trap in the _Open
routine. You can distinguish the two since the _Open routine will be
in ROM while the SCSI driver will be in RAM.

9

Chapter 4 BootBug Command Reference

Command Expressions

Many of BootBug's commands accept numeric and boolean
expressions as parameters. Below is a description of the different
operands and operators that make up these expressions:

MathOp

BooleanOp

Value

+, -,., I, MOD, @,'\!, .b,.w

=,!=,> ,<,>= ,<=,AND ,OR,NOT,XOR

hexidecimal number, global name, register name, or
A-Trap name or number.

Expression.. . Value (MathOp value)

Boolean Expression BooleanOp Expression

Entering an expression on the command line causes BootBug to
display the result.

Example Assume: DO = $12345678, AD = $2000, and the long
at address $2000 = $lFPJ4.

88y.Zone
= $00002000 88192 *8192

DO.b * • + 2
= $OOOOOIEO *482 *482

DO • wAND 1'01'0
= $00005070 *20592 *20592

8AO
= $0001FF94 *130964 8130964

8(AO+2).w
= $FFFFFF94 *4294967188 8-108

(2+3) *6 > 30
= $00000000 10 10

DO.w • 5678
= $00000001 10 10

10

ATB - A-Trap Break

Description

Syntax

Examples

Also See

The A-Trap Break command invokes BootBug
whenever the cpu encounters the specified A-Trap.

ATB [trap [trap]] [n I boolean] [";command"]

trap
is the trap name or number of the trap. Two traps
specifies a range of traps. If no traps are specified
then BootBug will break on all A-Traps.

n
is the number of times the trap will be encountered
before invoking BootBug.

boolean
is a boolean expression that must be true before
BootBug will be invoked.

command
is a string of BootBug commands separated by semi
colons to be executed when BootBug is invoked.

ATB Open
will invoke BootBug whenever the _Open traps is
encountered.

ATB Blockmove 4 ",dm @AO"
will invoke BootBug after the fourth occurrence of
_Blockmove and then dump memory at AD.

ATB SlotManager DO.b=23
will invoke BootBug when a _SlotManager is
encountered and the byte in DO = $23.

ATe, ATD, ATSS

11

ATe - A-Trap Clear

Description A-Trap Oear command clears A-Trap breaks.

Syntax ATC (trap (trap))

Examples

Also See

trap
is the trap name or number of the A-Trap break to
clear. Two traps spedfy a range of A-Trap breaks
to clear. If no traps are specified, all A-Trap
breaks are cleared.

ATe Open
clears an A-Trap break on the _Open trap.

ATe Open KillIO
clears A-Trap breaks on traps _Open, _Close,
_Read, _Write, _Control, _Status, and _KilIIO.

ATB, ATD, ATSS

12

A TO - A-Trap Display

Description A-Trap Display shows all of the current A-Trap
breaks.

Syntax ATD

Also See ATB, ATD, ATSS

13

ATSS - A-Trap Step Spy

Description A-Trap Step Spy will compute a checksum on a
range of memory whenever the specified trap is
encountered and invokes BootBug if the checksum
has changed.

Syntax A TSS (trap (trap llIn I boolean), addrl (addr2 1

Examples

Notes

trap
is the trap name or number of the trap. Two traps
specify a range of traps. If no traps are specified,
then BootBug will break on all A-Traps.

n
. is the number of times the trap will be encountered
. before invoking BootBug.

boolean
is a boolean expression that must be true before
BootBug will compute the checksum.

Ilddrl, addr2
specify the address range to checksum. If only
addr1 is specified, then a long word at addr1 will
be checksummed.

ATSS _BlockHo •• , lb440
will checksum the long word at $18440 whenever
the _BlockMove trap is encountered, invoking
BootBug if it has changed.

ATSS _SlotHaDager DO.b-23,lb440
will checksum $1B440-$1B800 when both the
_SlotManager trap is encountered and the byte in
DO = $23, invoking BootBug if it has changed.

The system will slow down depending on the range
size and the frequency of the specified traps.

14

BAUD - Set or Display Baud Rate

Description BA UO sets or displays the communication baud
rate for BootBug.

Syntax BA UD [n]

Examples

n
is the baud rate to set. Valid baud rates are 1200,
2400, 4800, 9600, 19200, 38400, and 57600.

BAUD
will display the current baud rate.

BAUD 19200
will change the communication baud rate to 19200.

Note You will need to change the baud rate of your
communication software after entering this
command.

The baud rate is stored in the Parameter RAM for
the BootBug Nubus card. When the card is removed
and then re-installed, the baud rate will revert to
its default 9600 baud.

15

DR - Breakpoint

Description Breakpoint will invoke BootBug whenever the cpu
encounters the specified address.

Syntax BR addr (n I boolean) (";command")

addr

Examples

Note

Also See

is the memory address of the breakpoint.

n
is the number of times the breakpoint will be
encountered before invoking BootBug.

boolean
'. is a boolean that must be true before BootBug will

be invoked.

command
is a string of BootBug commands separated by semi
colons to be executed when BootBug is invoked.

8ft PC+I0
will invoke BootBug when the cpu executes the
instruction at $10 bytes past the current PC address.

8ft Ib~OO ~

will invoke BootBug the fourth time the cpu
executes the instruction at $18400.

8ft 810tKanager DO.b.23 ·,da AO·
will invoke BootBug when both the cpu executes
the first instruction of the SlotManager trap and DO
= $23, and then display memory at AO.

If the breakpoint address is in ROM, BootBug will
have to single step each instruction until the
breakpoint is reached. This will significantly slow
down the system.

BRC,BRD

16

BRC - Breakpoint Clear

Description Breakpoint Clear clears one or all breakpoints.

Syntax BR laddr]

Examples

Also See

addr
is the memory address of the breakpoint to be
cleared. If addr is omitted, then all breakpoints
are cleared.

BRClb400
will clear the break point at $1B400.

BRC
will clear all breakpoints.

BR, BRD

17

BRD - Breakpoint Display

Description Breakpoint Display will display all of the
breakpoints.

Syntax BRD

Also See BR, BRC

18

CS - Checksum

Description

Syntax

Examples

Checksum records the checksum of a range of
memory or checks to see if the checksum has
changed since the last Checksum command.

CS [addr [addr]]

addr
specifies the address range to be checksummed. If
only one addr is specified, then the long word at
addr will be checksummed. If no addr is specified,
then the checksum of the last checksum address
ranges is recalculated and compared to the previous
result.

CS 4000 5000
CS
Checksum is the same.
SB 4000 ff
CS
Checksum has changed.

19

DB - Display Byte

Description Display Byte shows the byte at a specified address
in hexidecimal, unsigned decimal, and signed
decimal.

Syntax DB [addr}

addr

Examples

Note

Also See

is the address of the byte to be displayed. If no
addr, then the byte at the dot address is displayed.

DB tSOO
will display the byte at address $4500 in hex,
unsigned decimal, decimal, and ASCII.

If you press return after the DB command, BootBug
will display the byte at the next address.

DW,DL,DM

20

DL - Display Long

Description Display Long shows the long at a specified address
in hexidecimal, unsigned decimal, and signed
decimal.

Syntax OL[addr]

Examples

Note

Also See

addr
is the address of the long to be displayed. If no
addr, then the long at the dot address is displayed.

DL 4500
will display the long at address $4500 in hex,
unsigned decimal, decimal, and ASCII.

If you press return after the DL command, BootBug
will display the long at the next address.

DB, OW, OM

21

DM - Display Memory

Desoiption Display Memory at the specified address.

Syntax OM (addr (n JJ

Examples

Note

Also See

addr
specifies the address of the memory to display. If
no addr is specified, then the memory at the dot
address is displayed.

n
specifies how many bytes to display. If omitted
then 16 bytes will be displayed.

. DII esy.Zone
will display 16 bytes at the address stored at
SysZone.

If you press return after the OM command, BootBug
will display memory at the next address.

DB, OW, DL

22

DW - Display Word

Description

Syntax

Examples

Note

Also See

Display Word shows the word at a specified
address in hexidecimal, unsigned decimal, and
signed decimal.

DW [addr]

addr
is the address of the word to be displayed. If no
addr, then the word at the dot address is
displayed.

DW 4500
will display the word at address $4500 in hex,
unsigned decimal, decimal, and ASCII.

If you press return after the DW command, BootBug
will display the word at the next address.

DB, DL, DM

23

DRVR - Display Driver Information

Description Display Driver Information displays the reference
number, name, flags, head, storage, window, delay,
driver address, and DCE address for each driver in
the Unit Table.

Syntax DRVR

24

F - Find

Description

Syntax

Examples

Note

Find will search an address range until it finds the
specified value of the string.

F addr nbytes value I "string "

addr
is the starting address of the memory to be
searched.

nbytes
is the number of bytes in the memory range (search
from addr to addr+nBytes).

value
is the byte word or long to search for.

string
is the quoted string to search for.

P EOO 1000 40809AE6
will cause BootBug to search from $EOO to $lEOO
looking $40809AE6.

If you press return after the F command is complete
,BootBug will continue searching from the address
after the last find.

25

G-Go

Description Go exits BootBug and resumes program execution.

Syntax G (addr]

Examples

addr
specifies the address to resume execution at. If addr
is not given, then execution resumes at the PC
address.

Q

will continue execution at the PC.

Q lb440
will resume execution at address $18440.

Also See Gf

26

GT -Go Until

Description

Syntax

Examples

Go Until exits BootBug, resumes program execution
at the PC, and will invoke BootBug when the
specified address is reached. This is shorthand for
setting a breakpoint (BR), exiting BootBug (G), and
then clearing the breakpoint (BRC).

GT addr [";command"]

addr
is the address where execution will stop and
BootBug will be invoked.

command
is a string of BootBug commands separated by semi
colons to be executed when BootBug is invoked.

GT PC+l0
will resume execution until it reaches the address
PC+I0.

Also See G

27

HOW - How BootBug Was Invoked

Description How will restate the reason BootBug was last
invoked.

Syntax HOW
\.

Examples BOW
User break at 18440.

28

ID - Instruction Disassembly

Description Instruction Disassembly displays the disassembly
of one instruction.

Syntax 10 [addr 1

addr
is the address of the instruction to disassemble. If
not specified, the PC address will be used.

Examples ID

Note

Also See

will disassemble one instruction at the PC.

ID lb440
will disassemble one instruction at the address
$lB440.

If you press return after the ID command has been
completed BootBug, will· disassemble the next
instruction.

IL,IP

29

IL - Instruction List

Description Instruction List displays the disassembly of ten
instructions.

Syntax IL (addr)

Examples

Note

Also See

addr
is the address of the first instruction to
disassemble. If not specified, the PC address will
be used.

IP
will disassemble ten instructions starting at the PC
address .

. 1P1b440
will disassemble ten instructions starting at address
$18440.

If you press return after the IL command has been
completed, BootBug will disassemble the next ten
instructions.

IO,IP

30

IP - Disassemble Around

Description

Syntax

Disassemble Around will display the disassembly
of ten instructions around an address.

IP [addr]

addr
is the address of the instruction to disassemble
around. If not specified, the PC address will be
used.

Examples IP

Note

Also See

will disassemble ten instructions around the PC
address.

IPlb440
will disassemble ten instructions around address
$1B440.

If you press return after the IP command has been
completed, BootBug will disassemble the next ten
instructions.

ID,IL

31

R - Display Register

Description Register displays the general cpu registers and
disassembles the instruction at the PC. This
command is automatically executed each time
BootBug is invoked.

Syntax R

Also See TO

32

RB -Reboot

Description Reboot command will unmount the startup volume
and then restart the system.

Syntax RB

Also See RS

33

Register Name

Description Register allows you to display or set the value of
specific cpu registers.

Syntax registerName 1= expression)

registerName
is one of the cpu's registers: 00-07, AO-D7, SR, PC,
ISP, MSP, USP, VDR, CACR.

expression
is the value that will be assigned to the register.

Examples DO. 123.
'. assigns 1234 to DO.

vbr
will display the contents of the VBR register.

Also See R, TO

34

RS - Restart

Description Restart unmounts all volumes and then restarts the
system.

Syntax RS

Also See RB

35

S - Step

Description Step executes the instruction at the PC and then
invokes BootBug with the PC pointing to the next
instruction. If the instruction at the PC is an A
Trap, the next instruction will be the first
instruction of the A-Trap routine.

Syntax 5

Note Control - 5 is the equivalent of S and then Return.

Also See SO

36

SC6 - A6 Stack Crawl

Description A6 Stack Crawl displays the A6 frame addresses
and possible return addresses from the stack.

Syntax SC6 [addr [nbytes]]

Examples

addr
is the address of the first A6 stack frame. If not
specified, then A6 will be used.

nbytes
addr+nbytes specifies the upper limit of the stack.
If not specified, then OCurStackBase is used.

SC6
will display all of the A6 frame and return
addresses from A6 to OCurStackBase.

SC6 278d40 2000
will display all of the A6 stack frames and return
addresses from address $278040 to $27 A040.

Note If A6 does not point to an A6 Stack frame, then
nothing will be displayed.

SC is equivalent to SC6.

Also See SC7

37

SC7 - A7 Stack Crawl

Desuiption A7 Stack Crawl displays all of the possible return
addresses on the stack.

Syntax SC7 (addr [nbytes])

addr

Examples

Note

Also See

is the base of the stack. If not specified, A7 will be
used.

nbytes
addr+nbytes specifies the upper limit of the stack.
If not specified, then OCurStackBase is used .

. SC7
. will display all of the possible return addresses

from A1 to OCurStackBase.

SC7 2784'0 2000
will display all of the possible return addresses
from address $278040 to $27 A040.

A1 Stack Crawl will make its best guess about what
is a return address, but is not always correct. The
user should verify the addresses that are
displayed.

SC6

38

SB - Set Byte

Description

Syntax

Examples

Also See

Set Byte assigns values to one or more bytes starting
at a specified address.

SB addr expression [expression]

addr
is the starting address of the bytes to be set.

expression
is one or more byte values to assign.

SB 1b440 40 41 42
will set the byte at $1B440 to $40, $1B441 to $41,
and $1 B442 to $42.

SW, SL

39

SL- Set Long

Description Set Long assigns values to one or more longs starting
at a specified address.

Syntax SL addr expression (expression)

addr

Examples

Also See

is the starting address of the longs to be set.

expression
is one or more long values to assign.

8L 1b~~O 11111111 22222222
will set the long at $18440 to $11111111 and

'. $18444 to $22222222.

S8,SW

40

\

)

so -Step Over

Description Step Over executes one instruction at the PC and
then invokes BootBug. If the instruction at the PC
is a JSR, BSR, or an A-Trap, Step Over will execute
the entire subroutine. The PC will point to the
instruction after the JSR, BSR, or A-Trap.

Syntax SO

Note T and Control- T are equivalent to SO.

When stepping over an A-Trap instruction, all A
Trap breaks are temporarily disabled.

Also See 5

41

SS - Step Spy

Description Step Spy checksums a range of memory before the
execution of each instruction. If the checksum
changes, BootBug will be invoked.

Syntax SS addrl (addr2 J

addrl, addr2
specifies the address range to checksum. If only
addrl is specified, then a long word at addrl will
be checksummed.

Examples SS CurStackBase
will checksum the long at CurStackBase before

'. executing each instruction and will invoke BootBug
if it changes.

SSlb4401bSOO
will checksum the address range $18440 to $18500
and will invoke BootBug if it changes.

Note Step Spy will significantly slow down the system.
It is recommended that Step Spy be used only while
debugging a small section of code.

If you press return after Step Spy has caused
BootBug to be invoked, the Step Spy will checksum
the same range again.

Also See ATSS

42

STARTUP - Set Startup Mode

Description

Syntax

Examples

Startup sets the BootBug startup mode. When
BootBug is first loaded, it can automatically: a) be
invoked, b) allow the user some number of seconds to
press a key before being invoked or not, or c) just
continue the boot process without invoking BootBug.

STARTUP [mode]

mode
is the startup mode. Valid modes are ALWAYS,
NEVER, or a number which specifies the number of
seconds to allow the user to press a key. If no mode
is specified, Startup will display the current
startup mode.

STARTUP ALWAYS

will cause the BootBug to always be invoked after
startup.

STARTUP NEVER
will cause BootBug not to be automatically invoked
after startup and to continue the boot process.

STARTUP 4
will cause BootBug to wait four seconds for the user
to press a key. If a key is pressed, BootBug will be
invoked. If no key is pressed, the boot process will
rontinue.

Note The startup mode is stored in the Parameter RAM
for the BootBug Nubus card. When the card is
removed and then re-installed, the Startup mode
will revert to its default of waiting 10 seconds.

43

SW-SetWord

Description Set Word assigns values to one or more words
starting at a specified address.

Syntax SW addr expression (expression)

addr
is the starting address of the words to be set.

expression
is one or more word values to assign.

Examples 811 lb660 1111 2222
will set the word at $18440 to $1111 and $1002 to

'. $2222.

Also See 58, sL

44

TD - Total Display of Register

Description Total Display will show the values of all of the
cpu's registers.

Syntax TD

Examples 1D
DO = 00000001 AO = 0001B440 USP = 00000000
D1 FFFFOOOO A1 00000000 MSP = 00000000
D2 = 001B4400 A2 = 00000000 ISP = 0027E4CO
D3 = 00000000 A3 = 00000000 VBR = 00000000
D4 = 00000000 A4 = 001B434C CACR = 00003111
D~ = 00443E40 AS = 00000000
D6 00000000 A6 = 00000000 PC = 4080274E
D7 = 00000007 A7 = 0027E4CO SR = Srn7xnzvc

Also See R

45

WH-Where

Description Where displays information about the location of
an address or A-Trap.

Syntax WH [addr I trap)

addr

Examples

is an address to ~isplay information about

trap
is an A-Trap name or number to display infonnation
about. If no trap or addr is specified, then Where
will display infonnation about the PC address.

. WB OpeD
. Open (AOOO) = 00098E42

WB lb'f.O
00018440 = Main+004E

46

Chapter 5 Terminal Program

The terminal program included in the BootBug package is a
publicdomain general purpose communication program. Its features
include: file transfer, scripting, macros, and text capture. BootBug
only requires a subset of these features which are documented
below. However, if you are interested in using the other features of
the terminal program, a complete manual is on the BootBug disk in
the terminal folder.

Terminal Files and Folders

The application file, "Terminal", can be located anywhere on your
disk. The associated data files, "Terminal Settings" and ".m"
macro files, must either be in the same folder as the application or
in a folder titled "Terminal Folder" located in the same folder as
the application.

Terminal Communication Settings

Selecting the "Communication" item under the "Options" menu will
display a dialog box which allows you to change the
communication settings. The default settings are set to the correct
values for BootBug operation. They are as follows:

BAUD 9600
Data Bits 8
Stop Bits 1
Parity None
Handshaking XON /XOFF

If you change the BootBug baud rate using the BAUD command (see
Command Reference Chapter 4), you will also need to change the
terminal applications baud rate.

Terminal SeHings

Selecting the "Terminal" item under the "Options" menu will
display a dialog box which allows you to change the TIY terminal
emulation settings. The default settings are set to the correct values
for BootBug operation. They are as follows:

47

Local Echo
Remote Echo
Display
Capture
AutoLF
Startup Script

Disabled
Disabled
Enabled
Enabled
Disabled
Disabled

These values should not be changed for operation with BootBug.

Saving BootBug Output to Disk

There are two ways to save BootBug output to disk. The first is to
use the "Save capture buffer ... " item under the "File" menu. This
will present a standard file dialog box allowing you to save the
contents of the capture buffer (the last 32k) to a file.

The second way is to select the "Text Capture" item under the
"File" menu. This will present a standard file dialog box allowing
you to save all further output to a file. After Text Capture is
activated, the Text Capture menu item will appear in an outline
font to indicate that it is active. To stop the Text Capture, select
the Text Capture menu item again.

Holding down a modifier key (shift, option, command) while
selecting Save Capture Buffer or Text Capture will append the
data to the selected file.

Other Terminal SeHings

The file creator type of the output files can be set by selecting the
"Other ... " item under the "Options" menu. This will display a
dialog box that will allow you to change the creator type.

The same dialog box will allow you to change the modifier key
used to create control characters. For example, selecting the
command key will feel very comfortable to MacsBug users who are
used to command-S for step and command-T for step over, etc.

48

Appendix A TechNotes

Below is a list of special circumstances where BootBug will behave
differently.

Mode32

Rocket

MacsBug

Mode32 from Connectix must reboot the system in
order to install its 32 bit memory manager. This
causes BootBug to be loaded twice, first under a 24
bit system and then under a 32 bit clean system.
BootBug will not remember the breakpoints or A
Trap break points during this reboot.

Also, be aware that if you are debugging a Primary
Init, card driver, or SCSI driver, your software will
also be loaded twice.

Rocket from Radius, Inc. also reboots the system
while loading, but in a slightly different way from
Mode 32. The system first boots on the motherboard
normally. BootBug will be loaded as well as
Primary Inits and drivers. Once Rocket takes over,
it will reboot the system using Rocket's cpu and
memory. BootBug, the Primary Inits, and the
drivers will be reloaded on Rocket.

In contrast to Mode 32's reboot, the first instance of
BootBug which was installed on the motherboard
is still active. If you set breakpoints within the
first instance of BootBug, they may be triggered by
the Rocket software on the motherboard while the
rest of the system is running on Rocket's cpu. In fact,
if both BootBugs (the motherboard instance and the
Rocket instance) are invoked at the same time,
they will conflict with each other's access to the
BootBug hardware.

If MacsBug is in the system folder it will replace
BootBug as the system debugger. In general, the
handoff works fairly well. The exception is when
there are A-Trap breaks set when BootBug loads.
When and if an A-Trap break is encountered, it will

49

invoke BootBug. Once in BootBug, execute an ATe
and thenaG.

If you do not want MaesBug to replace 8ootBug,
remove it from the system folder.

50

Appendix B Trouble Shooting

This appendix contains information to help you trouble shoot
problems you may have with BootBug. First, it is important to
know about the two status LED's on the BootBug card. They
indicate the current state of BootBug. The meanings are as follows:

RED is off and GREEN is on.

BootBug is installed. The system is executing code.

RED is on and GREEN is off.

BootBug is installed. BootBug has been invoked by a breakpoint,
A-Trap break, bus error, NMI, etc.

Both RED and GREEN are on.

This indicates that BootBug was not recognized by the system and
was not installed. Note, however, when the BootBug is executing a
Step Spy command it will be switching between the RED on,
GREEN off state and the RED off, GREEN on state quickly. It may
look as if both LED's are on. Of course, if you had a chance to set
enter a Step Spy command, this means that BootBug was loaded.

Both RED and GREEN are off.

BootBug encountered a problem while trying to install itself. The
most likely problem is low memory.

If You Do Not Get Any Messages from BootBug

Either BootBug is not getting installed, or the terminal is not
getting the message.

First determine if BootBug is installed by looking at the LED's. If
only one LED is on (RED or GREEN), then BootBug was installed.

If it was installed, make sure the terminal communications are
okay by checking the serial cable, the settings of the terminal

51

program, and the configuration of the serial port. Make sure any
network software on the terminal computer is not interfering with
the serial port. If you are using a Power Book , make sure the
modem port is configured to external modem.

If none of this helps, make sure BootBug is set to Its default
configuration by turning off the Macintosh that contains BootBug,
remove BootBug, tum the computer back on, tum it off again, and re
install BootBug. This will clear the Parameter RAM, force
BootBug to return to its default of 9600 baud, and allow the user ten
seconds to press a key.

If you determine that BootBug is not loaded by looking at the
LBD's, then there is probably a hardware problem with the
BootBug card or one of the other cards in the system.

If you stiD are having trouble, contact us at:

Brigent, Inc.
684 Costigan Circle
Milpitas, California 95035-3366
(408) 956-0322
AppleLink:
Compuserve:

ScottC
70672,1313

52

,
J

AppendixC BootBug Nubus Card

The BootBug Nubus card contains a configuration ROM, 16450
UART, and supporting logic. The 16450 UART is similar to the
UART used in PC's. The card uses byte lane three. The address map
for the card is:

FssOOOOO
Fss00003
Fss00007
FssOOOOB
FssOOOOF
Fss00013
Fss00017
FssOOOIB
FssEOOOO

CaI'li Base
Transmit and Receive Holding Register
Interrupt Enable Register
Interrupt Status Register
Line Control Register
Modem Control Register
Line Status Register
Modem Status Register
Base of ROM

The decloration ROM containts three sResources:

Board

BootBug

UART

Contains the standard baord sResource data.

Contains an sBlock that holds the debugger code
and data.

Contains the addresses of the 16450 UART. The
minorBaseOS contains the slot base address for the
first register of the UART and the minroLength
contains the offset from one register to the next.

53

Index

A-Trap 11, 12, 14
ATB11
ATC12
ATD13
ATSS14
DAU015
Boot Process 6
BootBug Card 3
DR 16
BRC17
DR018
Breakpoint 16, 17, 18
()becksunn14,19,42
CS19
DB 20
Debugger 8
DebugSb' 8
Disassembly 29, 30, 31
DL21
OM 22
DRVR24
OW 23

. Expressions 10
Find 25
G26
Gf27
HOW2S
1029
IL30
IP31
LED's 51
MacsBug49
Other Terminal Settings 48
Prinnary Inits 8
R32
Reboot 33
Register 32
Register Name 34
Restart 35

S36
Saving BootBug Output to Disk 48
SB 39
SC637
SC738
SCSI drivers 9
Serial Cable 4
Serial port 5
SL40
Slot 3
5041
5542
STARTUP 43
Step 36, 41
Step Spy 14,42
SW44
TD45
Terminal Communication Settings 47
Terminal Files and Folders 47
Terminal Program 47
Terminal Settings 47
Terminal Software 4
Unit Table 24
WH46

.. /

BootBug
"the ideal tool for debugging boot-time code ... "

Addendum to the Manual

Version 1.3

Brigent. Inc.
684 Costigan Circle

Milpitas, California 95035-3366
Phone: (408) 956-1234

Fax: (408) 956-0322
AppleLink: ScottC

Table of Contents

DM ... A-l
He ... A-2

;' HD ... A-3
HT .. A-4
HX ... A-5
HZ ... A-6
TMP .. A-7

/

/

/

DM - Display Memory

Description

Syntax

Examples

Note

Also See

Display Memory at the specified address.

DM [addr [n I template I basic type]]

addr
specifies the address of the memory to display. If
no addr is specified, then the memory at the dot
address is displayed.

n
specifies how many bytes to display. If omitted
then 16 bytes will be displayed.

template
specifies named templates to use in formatting the
display output.

basic type
specifies a named basic type to use in formatting
the display output.

DM @SysZone
will display 16 bytes at the address stored at
SysZone.

DM @sysZone Zone
will display the system zone formatted as a zone
data structure.

If you press return after the DM command, BootBug
will display memory at the next address.

DB, DL, DW, TMP

A-I

/

HC - Heap Check

pescription Heap Check will identify corruption in the heap
zone header or any of the block headers in the
current heap.

Syntax HC

Also See HD, HT, HX, HZ

A-2

HD - Heap Display

Description Heap Display will display information about the
blocks in the current heap.

Syntax HD

Also See He, HT, HX, HZ

A-3

/

/

.... "

HT - Heap Totals

Description

Syntax

Also See

Heap Totals will display information about the
current heap.

HT

He, HD, HX, HZ

A-4

I

HX - Heap Exchange

Description

Syntax

Also See

Heap Exchange will select the current heap.

HX [addr]

addr
specifies the address of a heap zone. If the address
is not specified, then the HX command will cycle
through the available heaps.

He, HO, HT, HZ

A-5

/

HZ - Heap Zone

Description

Syntax

Also See

Heap Zone will list the starting and ending
addresses of all known heaps.

HZ [addr 1

addr
is the starting address of a heap containing
embedded heaps.

He, HD, HT, HX

A-6

/

J

TMP - List Templates

Description TMP will display the names of the a vaila ble
templates.

Syntax TMP

A-7

Index

.. DM, A-I

/'

I
/

'He, A-2
HD, A-3
Heap, A-2, A-3, A-4, A-5, A-6
HT, A-4
HX, A-5
HZ, A-6
Templates, A-1, A-7
TMP, A-7

A-8

