
,. ~ -$"'. ----·~'.! ,,,-.~- ., -·' ~_,___-~ _ _.,,,.:,·,_._·~,~., _ _,__ . ..,,_. ~ --- -

_,~~ • ~---''- .~..A -- . • ~ ••• ·-. __ ,___ •. ~-"- -'- - , .. _..,._ ·-·'·-

SOFnlARE CONTROL OF THE DISK II OR IWM CONTROLLER

PREPARED BY

N t

APRIL 26, l '984 ·

REVISION l, MAY 10, 1984

SOFTWARE CONTB.OL OF THE DISK II OR IWM CONTROLLER.

Each of the eight expansion elota of the Apple II computer baa the ezcluaive
uae of sixteen memory locations for 1/0 control. These memory loc.atioaa can
be used as software switches. A eoftware routine can instruct the interface
card in a particular slot to perfor11 a predefined hardware task bJ toggling a
software switch. Whenever the Apple II addresses one of the sixteen 1/0 loca
tions allocated to a particular alot, the signal on pin 41 of that slot, called
DEVICE SELECT/, switches to the active low state. This signal, 1n conjunction
with the four low-order address lines (AO - A3), can be used to enable logic
in the peripheral card to perform a particular task. The folloving table
illustrates the memory space for the sixteen 1/0 locations for each expansion
slot.

TABLE 1: PERIPHERAL CARD I/O SPACE

SLOT LOCATIONS

0
l
2
3
4
5
6
1

$C080 - $C08F
$C090 - $C09F
$COAO - $COAF
$COBO - $COBF
$COCO - $COCF
$CODO - $CODF
$COEO - $COEF
$COFO - $COFF

One common method of accessing peripheral card I/O control softswitches through
software is to use the Apple's (6502) indexed addressing mode. For example,
a LDA $C080, X instruction can be used to access softswitch 0 in any slot, if
the index register X is loaded with a value equal to the slot number times
sixteen.

Sixteen peripheral I/O addresses are used ~o co~trol the functions of the disk
II controller. the following table illustrates the functions of the sixteen
software switches.

TABLE 2: DISK II CONTROLLER SOFTSWITCHES

ADDRESS FUNCTION

$C080, x PHASE 0 OFF
$C081, x PHASE 0 ON
$C082, x PHASE 1 OFF
$C083, x PHASE l ON
$C084, x PHASE 2 OFF
$C085, x PHASE 2 ON
$C086, x PHASE 3 OFF
$C087, x PHASE 3 ON
$C088, x TURN MOTOR OFF
$C089, x TURN MOTOR ON
$C08A, x SELECT DR.IVE 1
$C08B,, x SELECT DRIVE 2
$C08C, x Q6L
$C08D, x Q6H
$C08E. x Q7L
$C08F, x Q7H

The· index register X has the. value of •lot number times 16. The last four
addresses have the following functions.

L
H
L
B

L
L
H
H

FUNCTION

READ
SENSE WRITE PROTECT OR PREWRITE STATE
WRITE
WRITE LOAD

In general, any valid 6502 instruction can be used to access the above eoft
awitch address, except a load instruction is used to read a byte of encoded
data from the controller and a store instruction is used to write a byte of
encoded data to the controller. Below are typical examples demonstrating the
use of the disk II controller aoftswitches. It is assumed that both Q6 and
Q7 are low at the beginning of the read/write examples.

LDA
LDA

SELECT DRIVE

$C08A, X
$C08B, X

SELECT DRIVE 1
SELECT DRIVE 2

The hardware design of the controller allows only one drive to be selected at
one time. A LOA $C08A, X instruction will select drive 1 and deselect drive
z. A LDA $C08B, X instruction will select drive 2 and deselect drive 1.

LDA
LDA

MOTOR ON

$C089, X
$C088, X

TURN MOTOR ON
TURN MOTOR OFF

It should be noted that there is only one interface signal (ENABLE/), going
from the controller to each floppy disk drive, which is used to enable the
drive' s read/write function and to turn on the motor. Both the select drive
and the motor on instructions must. be executed in order to activate the ENABLE/
signal of a parti.cular drive. A typical program-will select the drive first
and then turn on the motor at a later time. After the completion of the motor
on instruction, the program should wait at least 1 second for the motor to come
up to speed, before read/write functions can be performed reliably.

The disk II controller hardware will keep the ENABLE/ signal to its active low
state for approximately one second after the execution of the motor off in
struction, therefore read/write can be performed reliably within this period.
To be on the safe side, the program should verify that the motor is spinning
by monitoring the change in data pattern read from the drive. This delay
in turning off the motor facilitate rapid and repeat access to the same drive.

LDA
LDA
BMI

SENSE WRITE PROTECT

Q6H, X
Q7L, X
WRPROT

WRITE PROTECT SENSE MODE
READ CONTROLLER STATUS REG.
BRANCH IF BIT 7 OP STATUS REG. IS HIGH

The above instruction will load the content of the controller's status reg
ister into the accumulator. Bit 7 of the status register is the write protect
.lag. A "one'" in bit 7 of the status register indicates that a write protected
diskette is inserted into the drive. A BMI instruction will check the write
protect flag. The program will branch to the WRPROT address label if the
write protect flag is set.

LOOP

LP

LDA
LDA
BPL

•
•
•
•

LDA
BPL

•

llEAD A DATA BYTE

Q7L, X
Q6L, X
LOOP

Q6L, X
LP

MAKE SURE IN READ l«>DE
READ nlE BYTE
STAY IN nlE LOOP U THE M.S. BIT IS LOW

READ ANOTHER BYTE
SAY IN THE LOOP IF THE M.S. BIT IS LOW

NOTE: THERE SHOULD BE NO PAGE CROSSING FOR THE BPL INSTRUCTIONS.

The LDA Q7L, X instruction makes sure that the controller is in read
mode. The LDA Q6L, X instruction loads the contents of the controller's
data shift register into the accumulator. Since the Apple GCR code requires
that the most significant bit of every encoded data byte is high, the BPL
instruction will force the program to stay in a two instruction loop 1mtil
the M.S. bit of the controller data shift register is high. At the beginning
of every byte time, the controller internal logic will clear the data shift
register. As data bits are shifted into the data shift register, the M.S.
bit of the register is high, if and only if a full byte of data is assembled
in the register. The data byte will stay in the register for a little more
than 7 us. Therefore, it is important to make sure that the BPL instruction
does not cross the page boundary. This is necessary to ensure that the exe
cution time of the two ~nstruction loop (LDA, BPL} is no more than.7 us.

LDA
LDA
LDA
STA

---------- LDA
EXECUTION TIME

OF THESE INSTRUCTIONS
MUST BE EXACTLY
32 CLOCK CYCLES

•
•

STA
---------- LDA

•
•
•

LDA
LDA

WRITE A DATA BYTE

Q6H, X
Q7L, X
DATA
Q7H, X
Q6L, X

Q6H, X
Q6L, X

Q7L, X
.Q6L, X

GO TO
PREWRITE STATE

PARALLEL LOAD DATA INTO CONTROLLER
CONTROLLER SHIFT DATA OUT SERIALLY

PARALLEL LOAD ANOTHER BYTE
SHIFT OUT DATA

OUT OF WRITE MODE
TO READ MODE

NOTE: It is important to write a garbage byte (HEX FF) before turning
off the write mode, so that the drive electronics has enough time
to write the last valid data byte.

..
The first two instruction• force the controller into the prewrite atate. These
are the 1ame instructions to aenae the write protect flag. It ia important
to execute these two instructions even the programmer does not want to 1en1e
the write protect flag. The STA instruction loads the contents of the accum
ulator into the controller'• data shift register. The next instruction (LDA
Q6L,' X] causes the data in the register to shift oat aerially. Q6H and Q78
are the conditions required for parallel loading the data into the controller.
Shifting out the data aerially to the disk drive requires Q6L and Q7H. The
first STA instruction sets Q7 high, because the conditions are Q6B and Q7L
before executing this instruction. The condition. are Q6L and Q7H before the
second STA instruction, therefore the second STA instruction sets Q6H.

The execution time of the instructions between the end of two consecutive
parallel load instructions {STA] has to be exactly 32 clock cycles, otherwise
invalid data will be written on the diskette. In order to calculate the exe
cution time, it is important to note that the 6502 processor requires one
additional execution cycle for branching or indexing operations crossing the
page boundary. The program should switch the controller back to the read mode
after all the data has been written.

WRITE SELF SYNC BYTE

LDA Q6H, X
LDA Q7L, X
LDA D$FF
STA Q7H, X ' l'ARALLEL LOAD AUTO SYNC BYTE
ORA Q6L, X START TO SHIFT OUT AUTO SYNC BYTE

I OF
EXECUTION TIME ORA IS USED SO THAT LDA #$FF IS NOT
THESE INSTRUCTIONS NEEDED TO WRITE THE NEXT SYNC CYCLE

I

MUST BE EXACTLY
40 CLOCK CYCLES

SELF SYNC BYTE
40 CLOCK CYCLES

DATA BYTE
32 CLOCK CYCLES

~~~~~~~~~~ 

. 
STA Q6H, x 
ORA Q6L, x 

• 

LDA DATA 
STA Q6H, X 
LDA Q6L, X 

• 
• 

STA Q6B, X 
LDA Q6L, X 

• 
• 
• 

LDA 
LDA 

Q7L, X 
Q6L, X 

PARALLEL LOAD ANOTHER AUTO 
SHIFT OUT SYllC BYTE 

LOAD FIRST DATA BYTE 
SHIFT OOT DAtA BYTE 

OUT OF WRITE MODE 
TO READ MODE 

SYNC BYTE 

NOTE: Write a garbage byte {HEX FF) before turning off write mode. 



t 

The Apple CCR code uses a unique synchronization technique to deteraia.e the 
byte boundary. A •elf sync byte consists of eight bita of ·1· and two bit• 
of ·o.· The procedure to write a sync byte is the same as to write a data 
byte, except that the execution time of the instructions between the end of 
two consecutive parallel load sync byte instructions has to be exactlJ 40 us. 
During the write sync byte time, the processor loads eight bits of ·1· into 
the controller. After shifting out 8 bits of ·1·, the controller hardware 
will shift out ·o· until the next parallel load instruction. Since there are 
40 us between two consecutive parallel load instructions and a 4 us bit time, 
8 bits of •1• from the processor and 2 bits of ·o· appended by the coatroller 
hardware are shifted out to the drive. It is necessary to write at least five 
self sync bytes at the beginning of both the address and data field. 

READ SELF SYNC BYTE 

Due to the Apple GCR code's unique synchronization technique, the coutroller 
hardware will determine the byte boundary automatically. The following is a 
brief description of the Apple synchronization technique. 

FIGURE l: SYNCHRONIZATION PROCESS 

lST STH 
SYNC BYTE SYNC BYTE 

,l l l l l l ll,OO,l l ll ll l l,PO). l lll l l lp0,11111111,00).1111111,00 

1111111100,l l l l l l l l,001111111100,ll ll l 11lpop111111,oo 

lltlllllOOJllllll~OOtlllllllpO~lllllllpOJllllllbOO 

111J1111001Jllllll0,0Jllllll~OOJ111llllp0Jlllllll,OO 

111111110011111111001111111100,11111111,001111111100 

ltlllf 110011~1111100\JllllllQOJlillll~OO!lllllllpO 

lllll~llOOllll}lllOOllJ.1111100,!llllll~OOJllllllbOO 

lllllll.,10011111Jll00111J.llll001,J.llllllq~ 

In the above diagram, each row of brackets represent what the controller will 
send out to the Apple II should the controller start reading at any given bit 
in the first self sync byte. The controller groups the self sync read data 
stream into 8-bit byte with a ·1· in the most significant bit of each byte. 
Any "O" bit between bytes are dropped out. From the above diagram, it is shown 
that the controller is able to group the data at the correct byte boundary 
within five byte time after the beginning of the read. This is alwa7s true 
for any bit position to start the reading. Therefore, a minimum of five self 
sync bytes are required for the controller to sync on the read data. After 
the fifth self sync byte, the controller has established the byte boundary and 
is able to read the data following the sync bytes correctly. The -05 AA 96" 
and "DS AA AD" address mark sequences follows the self sync bytes in the 
address and data field respectively. It is not necessary to read and verify 
the sync byte. In order to read/write a sector, the program should look for 
the "DS AA 96" sequence which are the address mark bytes for the address field. 



The. D5 and AA patterns are reserved for addreaa aark. These pattern• are not 
used to encode data. Therefore, byte ayncronizatioa for the addre11 field ia 
achieved by aearching for the •D5 >.A 96" aequence. Byte aynchronization for 
the data field is done by looking for the •Ds AA AD• aequence. 

SEEK'TO ANOTHER TRACK 

The stepper motor in the Diak II ia a four phase atepper motor. Eight 1/0 
control aoftswitches are used to toggle the four phase on and off as shown in 
table 2. Two adjacent phases have to be activated in aequence in order to 
move the R/W head to the adjacent track. Activating the phases in ascending 
order (0, l, 2, 3, O, 1, ••• ) moves the head towards (inward) the center of 
the diskette. The head moves away (outward) from the center of the diskette 
when the phases are activated in descending order (3, 2, 1, O, 3, 2, ••• ). 
All even numbered tracks are positioned under phase 0 and all odd numbered 
ti:.acks are under phase 2. In order to step in a track, the phase 1 and then 
phase 2 have to be activated in sequence from an even numbered track, while 
the phase 3 and then phase 0 is activated in sequence from an odd numbered 
track. The phase 3 and then phase 2 sequence is used to step out a track from 
an even numbered track. For stepping out a track from an odd numbered track, 
the phase 1 and then phase 0 sequence is used. The spindle motor should be on 
for 150 ms before starting the seek operation. The following is an example to\ 
step in a track from an even numbered track. 

LDA $C083, X TURN ON PHASE 1 

ll.5 msec delay loop 

• 
LDA $C085, X TURN ON PHASE 2 

0.1 msec delay loop 

• 
LDA $C084, X TURN OFF PHASE 1 

• 

36.6 msec delay loop 
• 

LDA $C086, X TURN OFF PHASE 2 

The above programming example is used to illustrate the timing required to 
step in a track from an even numbered track. The user may use a indexed look 
up table for the parameter required for different delay loops. No matter how 
many tracks to step, the user has to allow the last phase to be on for 36.6 msec, 
because this timing includes the head settling time requirement (25 ms) of the 
drive. For long seek (step a number of tracks), tvo adjacent phases can over
lap the phase on time in order to increase the torque of the stepper motor 
and to reduce the seek time. Since the timing between the phase ON/OFF time 
is critical, it is recommended that the user calls upon the SEEK ~outine in 

I the Apple DOS for seeking. Figure 2 shows the waveforms of the phases to seek 
from track 0 to track 9. 



PHASE 3 

FIGURE 2: PHASE WAVEFORMS TO SEEK FROM TRACK 0 TO TRACK 9 

3.6 

. . 
2.8 

4 ~I~; { 2.9 ~~·~IL 18.6 

3 
11. l 

3.6~ ~~ )"~ 

4. l 

PHASE 2 1 13.2 1 1 9 1 re:-.s1 r1a- -, 1 36.6 L 
4. 8 -.1 ~ I 3 .1 " ~ l 2. a -tt "' l 3. 2 ~ i..- I o .1 ~~ 

PHASE i I 16.2 I 19.4 I 1 s.s l I 9.3 I 19.4 I _______ _ 
I ~ iE-3.~ I -ti~ 2.8 I-~ ~3 I ~ ~4.8 

PHASE 0 I lo.3 l . I s.s l I s.91 I 12.1 I ________ _ 

NOTE: ALL THE NUMBERS SHOWN IN THE DIAGRAM ARE IN MILLISECONDS. 

,"\ 



* 
** 
** 

***** * **** 
***************** 

•••4************ 
*************** 

************** 
************** 

************** 

DATE: Hay 29, 1984 

TO: Distribution 

FROM: N L 

SUBJECT: Software Routine to Determine A 
State Machine or IWM Controller 

The attached software routine will determine whether a state machin.e disk II 
controller or an IWM controller is installed in the system. This routine may be 
useful for programmer writing copy protection codes for Apple II. 

Upon exiting from the routine, the IWM controller will restore back to 
synchronous mode (line no. 46 and 47), since all our current applications of IWM 
for Apple II is in that mode. Future application of the IWM may require the 
asynchronous mode, the user should set up the mode register (line 46} 
accordingly. 

NL:npk 
Attachment 

DISTRIBUTION 

M. A:__ 
p B, 
c c 
B G 
J, s 
R w 



:E FJLE 181 •>JW1 
flOwdl J • 
18881 2. 
18881 3 •THIS ROUTINE WILL DETERHJNE WHETHER A STATE HACHJNE DJSK JJ CCNTROLLI 
88881 4 • OR AN IW'1 CCNTROLLER IS INSTALLED JN THE SYST8'1. 
1888: S • UPON EXIT FRCli THE ROUTINE, Y•l MEANS JU1 CCNTROLLER AND Y•8 MEANS 
8888: 6 •STATE MACHINE DISK JJ C~ROLLER. 
8888: 7 • 
88881 8 t ASSlJ1E A MOTOR OFF INSTRUCTJC't4 CLOA $C888,Xl HAS BEEN EXECUTED FOR 
8888: 9 •TWO SECIJ'.lOS BEFORE THE USER CALLS €1'4 THIS ROUTINE. OTHERWISE, A 
88881 18 t TWO SECIJ'.lO DELAY LOOP HUST BE ADDED AFTER THE FIRST HOTOR OFF 
0888: 11 t INSTRUCTJa-. CLDA SC888,Xl AT THE BEGI~ING OF THIS ROUTINE. 
8888: 12 I 

8888: 13 t THE ENABLED DISK DRIVE WILL CCNTINUE TO BE Cl" FOR 1 SEC 
8888: 14 t AFTER EXIT FR(J1 THIS ROUTINE. 
6888: 15• 
8888: 16 I 

----- NEXT OBJECT FILE NttiE IS 
1888: 1888 l 7 
J800:AE 41 18 18 
t883:eo ss C8 19 
1eeo:A0 88 28 
1e0e:eo so C8 21 
1000:00 sF C8 22 
l'" -~A9 84 23 

. 90 BF ce 24 
1a13:BD SE C8 25 
1816:80 89 CB 26 
1 81 9 : 48 27 LOOP 
181A:6S 28 
181s:48 29 ' 
J 81C:68 38 
1810:48 31 
181E:68 32 
181F:48 33 
1828:68 34 
1S21:48 35 
1822:68 36 
1823:C8 37 
1824:08 F3 1819 38 
1s26:eo BE ce - 39 
1829:90 88 cs 41 
182C:29 lF 41 
182E:C9 84 42 
1838:08 89 1838 43 
l832:C8 44 I~ 
1833:80 SF CS 45 
1836:A9 88 46 
1838:90 SF ce 47 
l p 90 SE ca 48 DJSKII 
L .SD BC ce 49 
1841: 1041 58 FIN 
1841: 68 51 SLOTXl 6 

ILJH.8 
ORG 
LOX 
LOA 
LOY 
LOA 
LOA 
LOA 
STA 
LOA 
LOA 
PHA 
PLA 
PHA 
PLA 
PHA 
PLA 
PHA 
PLA 
PHA 
PLA 
INY 
BNE 
LOA 
STA 
ANO 
01P 
BNE 
INY 
LOA 
LOA 
STA 
LOA 
LOA 
EQU 
OFB 

$1088 
SLOTX16 
$C888,X 
188 
$C88D,X 
$C88F ,X 
#$84 
$C08F,X 
tC08E,X 
$C889,X 

LOOP 
$C88E,X 
tceee,x 
HlF 
1$84 
DISKII 

tC88F,X 
ff 88 
tC88F,X 
$C88E,X 
tC8BC,X 

* $68 

;X REG=SLOT NO. X 16 
;MOTOR OFF 
;CLEAR REG. Y 
;Q6H 
;Q7H, ADDRESS MODE REG. 

;DISABLE TIMER BIT IN MODE 
;Q7L, OUT OF WRITE NODE 
;HOTOR ct4 
Jl8 HSEC DELAY LOOP 

.;WAIT FOR THE MOTOR a-. 
;SIGNAL TO BE ACTIVE IN 
JTHE CCNTROLLER CARD 

;END OF DELAY LOOP 
J07L, READ STATUS REG. 
;MOTOR OFF 
JHASK 5 L.S. 8JTS 
;CHECK TIMER BIT 

REG • 

;DISK II CC't4TROLLER IF NOT EQ 
;INCREMENT Y REG. 

;07H, ADDRESS MODE REG. 

107H, RESTORE HOOE REG. 
;Q7L, 
;Q6L 1 RESTORE TO READ HOOE 



/" u., .. OJSKJI ?1141 FJN ?1832 Jt.11 1119 LOOP 
1841 SUJTXl & 

•• SUCCESSFUL ASSEMBLY 1• NO ERRORS 
•· '~SEMBLER CREATED 0'4 15-JAN-84 21128 

.TAL Llt-4ES ASSEMBLED Sl 
~EE SPACE PAGE COltO' 89 


