
Revision 1.5 (ll-Jan-88)

written by S C

Copyright© 1987 by Apple Computer, Inc

CONTENTS

Introduction 3

SWIM Pinouts 3

GCR Encoding 5

GCR Track Format 6

MFM Encoding 7

.MFM Track Format 8

CR C Generation/Detection 9

Using the IWM Hardware 10

The IWM Register Set 11
·using the ISM Hardware 13

Parameter RAM 13

Trans-Space Machine 18

Error Correction 19

ISM Register Set 20

IWM State/ISM Register Mapping 26

IWM Register Summary 27

ISM Register Summary 28

Code Examples 30

Bibliography 34

SWIM Chip User's Reference - CONFIDENTIAL page 2 ... Copyright e 1987-1988 by Apple Computer, Inc.

Introduction

This document is a guide to writing software that uses the SWIM (Sander-Wozniak Integrated
Machine) disk controller chip. The SWIM combines two [virtually] independent disk controller chips
into a single package: the IWM (Integrated Woz Machine), currently used in all Macintosh and some
Apple II systems, and the ISM (Integrated Sander Machine), an independently-developed controller.
The IWM hardware is capable of reading and writing disks using GCR (Group Coded Recording)
encoding only. The ISM hardware is somewhat more flexible and can not only read and write GCR
disks, but also the MFM (Modified Frequency Modulation) disks used in MS-DOS systems.

IC Pinouts

Pinouts in a software guide? Well, yes. Writing code for this chip inevitably leads to hooking
the thing up to a logic analyzer to figure out what's really going on relative to what you think is going
on. The SWIM chip comes in three different packages: a 28 pin DIP, a 28 pin PLCC, and a 44 pin
PLCC. What's inside is exactly the same for all packages, but in the 44 pin PLCC some extra [ISM]
signals come out The 28-pin chips have exactly the same pinout as the two existing IWM versions.

PHASEO
NO-!'f"l

1 PHASE 1 t.tl t.tl t.tl t.tl
PHASE 2 2 PHASE 3

ti') ti') ti') ti')

<<<<
AO 3 Vcc <~====~ Q.. Q., Q., Q.,

Al 4 Q3/HDSEL
A2 5 24 FCLK A2 Q3/HDSEL
A3 6 23 RESET A3 FCLK

iSEV 7 28 PIN22 RDOATA i5EV
28 PIN

RESET
WROATA 8 DIP 21 SENSE WRDATA

PLCC
ROOATA

WRREQ 9 ENBLi WRREQ SENSE
DO 10 ENBL2 DO ENBLI
01 11 07 01 ENBI:2
02 12 06
03 13 05

N !'f"l
QQ ~ 25 Q 8 6

GND 14 04 c

<
o~

~ o s ~~~~I!~~ -<

NC NC
02 HDSEL
03 AO

MOTORENB PHASE 2
Vee 44 PIN

PHASEO
GND

PLCC
GND

04 OATlBYTE
05 PHASE 1

06 PHASE 3
3.5SEL Vcc

NC NC

Sil:;~ 8 ~<I'"" ul u ~~z> ~~..JcnZ
t.tl c Q t.tl ~ Q
cn oci::: ·=::_

et:: !'f"l
0

SWIM Chip User's Reference - CONFIDE~AL page 3 Copyright e 1987-1988 by Apple Computer, Inc.

pjn Name Description

/RESET Initializes the registers in the chip and resets any current operation.

FCLK The chip's clock (usually 14.3MHz for Apple II or 15.6672MHz for
Macintosh).

Q3/HDSEL On reset this signal becomes a Q3 input which is used to latch data on systems
where the data is not valid on the rising edge of /DEV. If this signal is not
needed for latching data, it can be used as a HDSEL output by setting bit 0 in the
ISM's Setup register.

;DEV This line is used to select the chip for reading or writing data from the processor.

A~A3 These lines are used by the processor to select which register to access. Since
the SWIM doesn't have a read/write line, the address lines determine whether an
access is a read or a write. When the IWM register set is selected, AO=O selects
a read register and AO=l selects a write register. When the ISM register set is
selected, A3=0 selects a write register and A3=1 selects a read register.

~D7 These lines contain the data that is read from or written to the chip.

PHASE ~PHASE 3 The phase lines are used for communication with a disk drive. When the ISM
register set is selected, they can be individually programmed to be either inputs
or outputs. When the IWM register set is selected, they are forced to be outputs
regardless of how the direction was set when the ISM registers were selected.

/ENBLl This output is used to select drive number 1.

/ENBL2 This output is used to select drive number 2.

RDDATA This input contains the serial data being read from the disk.

WRDATA This output contains the serial data being written to the disk.

!WRREQ When this output is active (low), the drive will be able to accept data from the
WRDATA output

SENSE This is a general-purpose input. In Apple systems with Sony floppy disk drives,
it is tied to the RDDATA input to be able to read drive status information.

/MOTORENB This output is active whenever the MotorOn bit (ISM mode register bit 7) is set
or the lf2 second timer (@16MHz) is still timing out (44-pin PLCC only).

/3.5SEL This is a programmable output line that may be used as desired (44-pin PLCC
only).

DATlBYIE This output goes high whenever the ISM register set is selected and a byte can be
read from or written to the FIFO. It is the same as bit 7 of the ISM Handshake
register (44-pin PLCC only).

HDSEL This output may be used to select the disk side to read to or write from on some
drives, or may be used as a general-purpose output (44-pin PLCC only).

SWIM Chip User's Reference - CONFIDENTIAL page 4 Copyright e 1987-1988 by Apple Computer, Inc.

GCR Encodin2

The IWM hardware, and for that matter, the ISM hardware as well, are essentially parallel-to
serial converters (and vice-versa). You write a byte of data to the chip, which in tum shifts out the byte
to the disk drive one bit at a time. To read the disk, the hardware groups sets of 8 bits together into a
byte and presents it to you to read.

GCR is the type of data encoding used in all Apple floppy disk drives. The rules for encoding
the serial data are very simple: a 11

l11 bit produces a pulse and a 110 11 bit doesn't Since each bit is 2µsec
long (4µsec long in slow mode), this gives pulse-to-pulse times of 2µsec, 4µsec or 6µsec for the three
possible bit combinations of 11, 101or1001, as shown:

Bit Cells

:_li~~n~~o~~n.___o~-0~-fl
. .

6µsec--~-i
:

r 2µsec ~ 4µsec •j •

More than two zeroes in a row is not allowed because the IWM hardware starts to have trouble telling
how far apart the previous "l 11 bit and the next one are. Also, the IWM has a rule that the most
significant bit of a data byte must be a 11 1" so that it knows where bytes begin. These two restrictions
lead to a solution that covers both. Obviously there are many byte values (0 ... 255) that have more than
two zero bits in a row. To get around this, the data to be written to a disk is "nibblized". This involves
splitting three consecutive bytes each into 2-bit and 6-bit parts, gathering up the three 2-bit parts into a
fourth 6-bit nibble, and encoding them into 8-bit nibblized bytes that have the most significant bit set to
11 1" and no more than two zeroes in a row. The process is shown as follows:

o o IA1IA~e1le~c1ICSI _.. 1 losl05ID4loolo2!01iool
~ IA51A41A~A2IA1IAol• o o IASIA3A31A21A1IAq _.. 1 leslE~E4jE~E2le1ieol

~les@4le3182le1~ol • o o lesle303je~e1leq _.. 1 IFSIFSIF41F3lF2IF1IFol
~ IC51C4IC3JC2lc1lcol • o o lcslC41C3ICijc1 ICOI • 1 ps~$4@$2jG1jGol

There are 81 bytes that satisfy the two above-mentioned restrictions. Out of that, two values ($D5 and
$AA) are reserved as mark bytes (to be discussed), and 64 bytes (26 bytes-sound familiar?) are used
for the actual data encoding. These 64 values have no more than one pair of "O"s and are hilighted in
black:

$92 $93 $94 $951111111111

$A4 $ASllllllllll

~' i ' ., : I " l_/ ~, ~' (' ') ::, I \ I

$D -.:[)() $[1/ $ I ' lJ $!) A $ D H $ D C $ D 0 $ D E $ D F

$F<J $!:"/\ $FH $FC $FD $FE $FF

To get the original data byte back, the nibblized byte read from the disk is decoded back to a 6-bit
nibble, and then when four of them have been read, the three 2-bit parts are recombined with their 6-bit
parts to form an 8-bit byte.

SWIM Chip User's Reference - CONFIDENTIAL page 5 Copyright e 1987-1988 by Apple Computer, Inc.

GCR Track Format

GCR disks formatted with Sony drives get the amount of information on a disk that they do by
varying the rotational speed of the disk depending on which of five speed zones the current track is in.
What this does is increase the number of sectors that will fit on most of the tracks:

Tracks 0 to 15:
16 to 31:
32 to 47:
48 to 63:
64 to 79:

12 sectors
11 sectors
10 sectors
9 sectors
8 sectors

When the disk is first formatted, the sectors are written so that they are spaced evenly around each track
(i.e., the amount of gap between each sector is about the same). The sector itself consists of two parts:
an address field that tells where we are, and a data field that contains the actual sector data.

A~tr~~~eor ' ;··":.
'_rformat byte ., '-' ,.
/ rchecksum .;,.

Self-sync bytes Address
mark

(6) (3)

Address
header

(5)

Bit Gap
slip

bytes

(2) (?)

Self-sync bytes Data mark Sector data Bit
+ slip

checksum bytes

(6) (3) (699+3) (2)

Both parts of the sector begin with six self-sync bytes. This special pattern is such that no
matter what bytes preceed it, by the time all six bytes have been read, the hardware is synchronized with
the start of an address or data mark ..

The address field consists of three mark bytes ($D5, $AA, $96); the track, sector, side, format
and checksum bytes (encoded as GCR nibbles); and two bit slip bytes ($DE, $AA). The track and side
bytes actually combine into a 16-bit word that puts the side number into bit 11 and the track number into
bits 0-10.

The data field consists of three mark bytes ($D5, $AA, $AD), the sector number, sector data,
and two bit slip bytes ($DE, $AA). The sector data consists of 12 tag bytes which are used by the
operating system (see the Disk Driver chapter of Inside Macintosh), 512 data bytes and 3 checksum
bytes. When encoded as GCR nibbles, the data takes up 702 bytes: 4 * [(12 + 512) I 3 groups]= 699
data + 3 checksum bytes. The tag and data bytes are mangled a bit in the process. In case you were
curious, here are the algorithms. On the left side is the one for transforming the data bytes and
calculating the three checksum bytes, and on the right is the one for converting the de-nibblized bytes
back into data bytes and re-calculating the checksum.

WP-.•!:: To Pi/
checksumA • O; chsclcsumB • O; checksumC • O
clear carry

Then repeat the following until all bytes are encoded:

((;: ,V;> F A-r' r- F _::;

checksumA • O; chsclcsumB • O; chscksumC • O

Then repeat for all of the bytes:

cany - chsclcsumC[7]
checksumA • chscksumA + byteA + carry rotate chscksumC left one bit, but not through the carry
byteA • byteA XOR chsclcsumC

byteA • byteA XOR chscksumC
chscksumB • chscksumB + byteB + carry chscksumA,carry • chscksumA + byteA + carry
byteB • byteB XOR chscksumQ A

byteB • byteB XOR chsclcsumA
chscksumC • chscksumC + byteB + carry chscksumB,carry • chsclcsumB + byteB + carry
byteC - byteC XOR chscksumB
carry • chscksumC[7] byteC • byteC XOR chscksumB
rotate chscksumC left one bit, but not through the carry checksumC,carry • chscksµmC + byteC + carry

SWIM Chip User's Reference - CONFIDENTIAL page 6 Copyright e 1987-1988 by Apple Computer, Inc.

MFM Encodin2

MFM encoding is used in most non-Apple floppy disk drives, and in particular, MS-DOS
compatible machines. The rules for encoding the serial MFM data are exactly the same as GCR: a "1"
bit causes a data pulse to occur in the middle of a bit cell and a "O" doesn't Actually, there is one
difference: a pair of "O"s causes a clock pulse to occur on the common cell boundary of the two "O"s.
What all this means is that there are no restrictions on MFM data, so any data value (0 ... 255) is
perfectly legal.

Since each bit cell is 2µsec long, this gives pulse-to-pulse times of 2µsec, 3µsec or 4µsec for
the bit combinations of 000/11, 01/10 or 101 respectively, as shown:

Bit Cells l 1 0
:

0

~
0 1 0 ;

~ ~ n h n
~ 2µ.sec •I• 3µsec •1•2µsec .. l4--3µsec •:• 4µsec~

A phenomenon that occurs with both encoding formats, but is much more pronounced in MFM
is peak shift. What happens is that closer-spaced pulses (mainly 2µsec) tend to push apart, and in the
process shrink the spacing between the farther-spaced pulses (3µsec and especially 4µsec). The effect
is similar to putting two like magnets together: the closer you put them, the more they tend to push
apart.

Desired ~ 2µsec ~•9i!'..,.~~-3µsec --•e.1!-1' ~ ---4µsec ----t~r.'
spacing~--n ____ n..__ ____ --lfL
s:= ..n.·: I n I h n_·_i

i. • i 11
: i ! ~

~Peak Shift/

Like GCR, the MFM track format requires some reserved mark bytes to denote the start of
sectors. However, since all byte values can be used as data, another method has to be used to identify
the mark bytes. This is done by writing (and reading) an illegal MFM byte. The illegal combination
comes about as a result of dropping one of those clock pulse that normally show up between adjacent
"O" bits (in this case the middle clock pulse in a run of four zeroes). This creates a 4µsec cell time
beginning with a "O" instead of the normal "10 l" combination. Two types of mark bytes are needed: an
index mark (usually a $C2) and an address/data mark byte (usually a $Al). The difference between
normal and mark bytes is shown:

$C2 ... , 0 0 0 0 0
:

Data $C2 _Jl___.n n n n ___ n __ _
Index Mark $C2 _Jl_n n ® n n __ _

$A1-+I 0 0 0 0 0

Data$A1 _Jl.....__ _ __.n ___ n n n _ ___.n_

Addr/OataMark$A1 _Jl ___ n n ® n n_

SWW Chip User's Reference - CONFIDENTIAL page 7 Copyright te 1987-1988 by Apple Computer, Inc.

MFM Track Format

MFM disks are different from Apple GCR disks in that they have the same number of sectors on
every track since the disk spins at a constant rate. This is not to say that MFM disks can't have variable
numbers of sectors per track, but in in practice the disk controllers used to read and write MFM usually
don't support it.

The start of a track is aligned with a physical index pulse that is built into the drive. This index
pulse occurs once per revolution.

physical index pulse

l 4E ... 4E I 00 ... 00 ••• tj 4E ... 4E I sector 1

Gap to Sync Index mark Gap to
index field first
mark sector

(80) (12) (4) (50)

sector 2 SS
physical index puls

sector n I 4E .. .4E I
'-.,--J

Gap to
end of
track

(?)

Right after the index pulse is a field called the index mark that marks the start of the track. It is
composed of three "mark byte" $C2s followed by a normal $FC byte. Notice that the first of a set of
mark bytes must be preceeded by a set of twelve zeroes. These zeros synchronize the hardware to the
bits being read from the disk. The hardware then looks for the first non-2µsec pulse-to-pulse time
(remember that sets of zeroes have a clock pulse between the bit cells), which will hopefully be the start
of a mark byte.

The sectors are separated from each other by a fixed number of gap bytes. This gap is 84 bytes
long on single-density disks and 101 bytes long on double-density disks. After the last sector there is a
large gap that fills the empty space from there to the start of the next index pulse. Currently two disk
formats are being used: the single-density format uses the same double-sided media as the 800K GCR
disks, has 9 sectors per track side and can hold 720K bytes. The double-density format requires a
different kind of media (marked with "HD"), has 18 sectors per track side and can hold 1440K bytes.

Sync
field

(12)

Address
mark

(4)

Address CAC Intra-sector Sync
field gap field

(4) (2) (22) (12)

Data
mark

(4)

Sector CRC Inter-sector
data gap

(512) (2) (84/101)

Each of the sectors is made up of an address field and a data field. Again, note that before the
first of a set of mark bytes is a 12-byte sync field of all zeroes which synchronizes the hardware with
the data being read from the disk.

The address field consists of a 4-byte address mark, the track, side and sector numbers, and a
byte that tells how big the sector is. This byte should be $02 for both 720K and 1440K disks. Finally,
there is a 2-byte CRC checksum which is calculated on all of the just-mentioned bytes (see below).

The data field contains a 4-byte data mark, 512 bytes of data, and a 2-byte CRC. The 12 bytes
of tag information included in GCR sectors is not supported on MFM disks (see the File Manager and
Disk Driver chapters of Inside Macintosh for more information on file tags).

SWIM Chip User's Reference - CONFIDEXfIAL page 8 Copyright e 1987-1988 by Apple Computer, Inc.

CRC Generation/Detection

The ISM hardware uses a two-byte CRC (Cyclic Redundancy Check) that is appended to both
the address and data fields. Running the data bytes through the CRC generator will produce a 16-bit
CRC value that can be appended to the data that is written to disk. To determine if the data (and CRC)
are correct when reading it back. run both the data and the calculated CRC through the generator. The
resulting CRC will be zero if the data is correct. The CRC generator uses the CCITT-16 polynimial

G(x) =x16 +x12 +x5 + 1.

A pseudo-code algorithm for calculating the CRC is shown below:

Initialize the CRC to all ones
repeat

repeat
xorBit - CRC{15/ XOR DATA[7/
CRC{4/ • CRC[4/ XOR xorBit
CRC[11] - CRC{11] XOR xorSit
rotate CRC left one bit
shift DATA left one bit

for 88.ch bit in DA TA
for each DATA byte to be included in CRC

And for those of you who want the pictures too:

SWThf Chip User's Reference - CONFIDE~AL page 9

{XOR MSBs of data and CRC}
{then XOR that into the CRC}

{CRC[i/ ·> CRC[1+ 1/, xorBit-> CRC[OD
{DA TA[1] -> DA TA[i+ 1 /}

4 3

CRC

0

Copyright e 1987-1988 by Apple Computer, Inc.

Usin~ the IWM Hardware

The IWM is accessed through 16 addresses which control the state of 8 latches, as shown.

[O] set PHASEO output level
[1] set PHASE! output level
[2] set PHASE2 output level
[3] set PHASE3 output level
[4] set MotorOn state bit
[5] drive select (O=intemal, !=external)
[6] set L6 state bit
[7] set L 7 state bit

The upper three address bits (Al-A3) select a latch, and AO becomes the contents of the latch. The
PHASEx latches are directly connected to the PHASEx pins on the IWM. The drive select latch
determines which /ENBLx pin will be active.

The L 7, L6 and MotorOn state bits decode to select one of six registers that are used for reading
and writing. Reading from a register must be done from a "O" state (L7=0, L6=0 or MotorOn=O).
Writing to a register must be done from a "1" state (L7=1, L6=1 or MotorOn=l), although the first
write to a write-register should be made to L 7=1. If an operation occurs that changes the state of one of
these bits, the new state will select the register to be accessed and whether that operation will be a read
or a write.

L7 L6 MotorOn Register (State Name)

0 0 0 Read All Ones

0 0 1 Read Data

0 1 x Read Status .r ~ :· ' -
1 0 x Read Write-Handshake

1 1 0 Set: Mode

1 1 1 Write Data

An important note is that you can't just switch indiscriminately from one register to another by
any path you choose (remember you can only change one bit at a time), since it's possible to write
garbage to one of the other registers - often with disasterous results. So the best way to cycle between
the various registers as shown below.

001 011 111 101

----(Readingi--------(Writing)---....

SWIM Chip User's Reference - CONFIDESTIAL page 10 Copyright <O 1987-1988 by Apple Computer, Inc.

IWM Re2ister Set

Each register description includes the register name, whether it's a read or write register, the state
address [L7-L6-Motor0n] as three binary digits, and a description of each bit X means don't care, that
is, either a 0 or 1 may be substituted.

Read All Ones R [000]

7 6 5 4 3 2 1 0

l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 I

7 - 0 Reading from this address always returns the value $FF.

Read Data R [001]

7 6 5 4 3 2 1 0

lxlxlxlxlxlxlxlxl

Reading from either L 7 =() or L6=0 while in this state will return the current contents of the read buff er.

Read Status R [OlX]

7 6 5 4 3 2 1 0

ame as Mode register bits 0-4
'-EWEiLl or -mL2 is currently active

4 - 0 These bits echo the lowest five bits of the mode register.

5 The /ENBLx active bit will be set to 1 whenever either of the drive enable lines is active (low).

6 This bit is reserved for future expansion and will always read as a "O".

7 This bit returns the current state of the SENSE input.

Read Write-Handshake R [lOX]

served
'te state/un,__,derrun~:::.:

rite buffer empty

5 - 0 These bits are reserved for future expansion and will always read as ''l''s.

6 This bit will be a "1" while writing data However if a byte hasn't been loaded into the Write
Data register before the IWM hardware goes looking for it (called an underrun), then this bit
will be reset to "O" until either the chip is reset or taken out of write mode.

7 The write buffer empty bit will be set to "1" whenever the chip is ready to accept another byte
from the processor.

SWIM Chip User's Reference - CONFIDENTIAL page 11 Copyright© 1987-1988 by Apple Computer, Inc.

Set Mode w [110] Reset to 00000000

The mode register is not accessable for up to one second when the timer is enabled and counting down.
This is because the mode register is selected by clearing the internal delayed MotorOn line, so that
while the timer is counting down, this line will be held high even when MotorOn has been cleared.

atch mode
ynchronous handshake

er disabled
ast mQ9e/slow mode

MHz/7MFIZ
est mode
s~ select

eserved

0 In latch mode, the MSB of the read data is latched internally during /DEV low (this internally
latched MSB is then used for the determination of a valid data read). This bit should be set in
asynchronous mode.

1 If the asynchronous bit is zero (synchronous mode) each data byte must be read or written at
exact intervals (on each byte boundary). If the asynchronous bit is set, each data byte is read
when it's available or written when the write buffer is empty. It is highly recommended that
asynchronous mode be used whenever possible since the timimg is more flexible.

2 If this bit is "O", then /ENBLx will be held active for 223±100 FCLK periods (about 1 second) ·
after the MotorOn state bit is reset to "O". If the latch mode bit is set the timer is not guaranteed
to count up to 223. MotorOn is active, either /ENBLl or /ENBL2 will be active.

3 Fast mode selects a bit cell time of 2µsec instead of 4µsec.

4 This bit indicates whether the input clock (FCLK) is to be divided by 7 (0) or 8 (1) to provide
1 µsec internal timings.

5 When this bit is set, device operation is unspecified, except that status register bit 5 can always
be read and that the mode register can al ways be set. Also the 1-second timer will count down
in 1 OOms instead of 1 second.

6 The ISMIIWM bit selects which register set will be used. To select the ISM set, you must
write to the GCR mode register four times in a row with this bit set to "1 ", "O", "1","1 ",
respectively. This somewhat torturous route is set up to prevent unintentional intrusions into
the ISM world by existing software. After the switch, all further accesses to the SWIM will
then be routed to the ISM register set until you clear bit 6 in the ISM mode register.

7 This bit is reserved for future expansion and should always be set to "O".

Write Data w [111]

7 6 5 4 3 2 1 0

jxlxlxlxjxjxjxlxl

Writing to either L7=, L6=1 or MotorOn=l while in this state will write a byte of data to the write
buffer. This byte will in turn be loaded into the shifting hardware and sent out serially to the disk. This
buff er must be kept full, else an underrun will occur and further bytes will not be written to the disk.
The buffer empty bit in the Handshake register becomes a "l" whenever the chip can accept another
byte. Writing to the chip faster than this won't hurt anything, but the last byte written to the chip when
the buff er is emptied is the one that will be used.

SWIM Chip User's Reference - CONFIDEmIAL page 12 Copyright CO 1987-1988 by Apple Computer, Inc.

Usin2 The ISM

The ISM is designed to read and write both the current Apple GCR disks as well as those using
MFM encoding (it is also possible to read and write other formats). It has highly flexible read and write
timing made possible by user-programmable parameters; error correction logic that tries to interpret the
bit times out of the muddle of raw serial data; and write pre-compensation to correct for peak shift The
ISM uses a 2-byte read/write FIFO, so the software can "slip" out a byte from time to time without
causing an overrun (reading too quickly) or underrun (writing too slowly).

Unlike the IWM, the four address lines directly select one of 16 registers. The address bit A3
acts as the read/write line for the registers; registers are read when A3=1 and written when A3=0. Since
there are no "forbidden" paths for moving from state to state, registers may be accessed in any order.
However there is one rule that can't be ignored: the time between successive chip accesses
must be no less than 4 FCLKs (if the Setup register's FCLK/2 bit is "0") or 8 FCLKs
(if FCLK/2 is "1"). This includes accesses which cause a mode switch to the IWM.

The following sections describe the parameter RAM, Trans-Space machine, and Error Correction
weird terms now, but (hopefully) clearer later. Read on.

Parameter RAM

The parameter RAM is one of the ISM's registers, and actually consists of 16 bytes which
control the read and write timing that give the hardware so much of its flexibility. This section
discusses the individual parameters and how they fit into the greater scheme of things. Note that in the
timing descriptions, cell times are given to be either 2-, 3- or 4µsec. This is just because the main use
of the chip will be for reading and writing MFM at 16MHz (sort of a standard, I guess). HOWEVER,
it's just as easy to substitute in 2-, 4- and 6µsec cell times if you're working with Apple GCR, for
example.

0

2

3

4

5

6

7

7 6 5 4 3 2

MIN Cell Time

Correction Multiplier

SSL

SSS

SU.

SLS

RYI'

CSLS

~
j

;
:

i
i

0

8

9

A

B

c
D

E

F

7 6 5 4 3 2 0

LSL

LSS

UL

u.s
lATE l NORMAL

TIMEO

EARLY l NORMAL

TIME 1 ~

The first twelve bytes are used in read timing, and the remaining four are used for write timing. The
relationships between the read parameters is shown below:

i...._ 2µsec ~ • 3µsec ~ • 4µsec .;

j~-n~~--n n~~
~~Min~ i~Min~xSx~ i~Min~xSx~·xLx~•; RYI'___.,.

! h I h hi h h hi fl_
. : : ; ; : ; i : : i

The read parameters are basically bounds for determining what the actual pulse-to-pulse cell time
is. The MIN Cell Time is the lower limit for the smallest possible legal cell time; xSx parameters define
the 2µsec/3µsec boundary; the xLx parameters define the 3µsec/4µsec boundary; and RPT defines the
upper limit for the largest possible legal cell time.

SWTh1 Chip User's Reference - CONFIDEXf!AL page 13 Copyright e 1987-1988 by Apple Computer, Inc.

The "S"s and "L"s in the xSx and xLx parameter names refer to the cell times for the previous,
current and next cells. A shon cell is 2µsec long, and a long cell is 3 or 4µsec long. The various "S"s
and "L''s are differentiated so that the bounds can be adjusted for all possible cell combinations. So for
the 3µsec cell shown above, SSL would define the lower bounds and SIL the upper bounds.

The CSLS (Compensating SLS) parameter is used when the previous cell time was assumed to
be a long, but is resolved to actually be a shon. CSLS is shorter than the LLS since a previous shon
cell would tend to scrunch the current longer cell.

The Correction Multiplier (MUL T) is not a measure of cell boundaries, but rather a constant
used in error correction. It is defined as the value which causes an 8-bit counter to count from 0 to 255
over the pericxl of 32 samples if every cell is exactly the length that it theoretically should be. The 32
samples are taken when reading the sync field that preceeds mark bytes. If you recall, the sync field is
made up of all $00s, which is a gaggle of 2µsec cells. So if the 2µsec cells aren't, then the counter
won't be 255 and since the actual value can be read back (see Error Correction), you can determine how
far off the cell times are.

The write parameters are used for determining where the pulses should be put when writing to
the disk. The TIME 0 and TIME 1 values are used to build your basic 2µsec, 3µsec and 4µsec pulse
spacings, as shown:

i~ 2µsec ~ .. 3µsec Iii! • 4µsec Iii!
_Jl __ n n fL

j,._ Timel -1 '4 Timel ~ TimeO t4-" Timel ~ TimeO i! TimeO tf
The EARLY, NORMAL and LATE values are used for setting the amount of write pre

compensarion. Pre-comp is an adjusnnent made to the pulse placement in the opposite direction that
peak shift would push in an effon to make the pulses end up where you wanted them to in the first
place:

i ~ ~-. 2µsec-.. ~~n: ~.----4µsec---... ~~'.
n ____ 4_µ_se_c~----_-_-_-_~_·_n~-- ____________ fL
n 1 n n! rL
:~~·----NORMAL------4••!~ .. ~--NORMAL------ilio!
;1""'·-------- lATE ~: ... EARLY .i I

! : : i

'"it Jr Pre-comp

To calculate the parameters, we first need a few variables to work with: 12· t3 and t4 are the
number of FCLKs (the SWIM chip's clock) in 2µsec, 3µsec and 4µsec, respectively. fps is the typical
amount of peak shift in FCLKs. lpc is the numberofFCLKs of pre-comp. A bit of notation also: "[x]"
means to truncate x, that is, get rid of the fractional part of x. Most of the RAM parameters are based
on these values:

tMIN = [12 I 2] tssL = (12 + t3) I 2
tRYI' = 3/4 * t2 tsss = (t2 + t3) I 2 - tps
tTIMEO = t3 - t1 tsLL = (t3 + t4) I 2 - fps
tTIME1 = t1 tsLS = (t3 + t4) I 2 - (2 * ~)
tNoR..\4AL = [greater of 12 I 4 and 7]

SWIM Chip User's Reference - CONFIDENTIAL page 14

tLSL = (12 + t3) I 2 + ~
tLSs = (t2 + t3) /2
tuL = (t3 + t4) I 2
tLLS = (t3 + t4) / 2 - fps

Copyright e 1987-1988 by Apple Computer, Inc.

Once we have those values, we can then calculate the parameters (remember that the xSx parameters are
relative to MIN and the xLx parameters are relative to xSx).

MlN=tMIN
MUL T = 65536 I (32 * t2)

SSL= (tssL - tMJN)
SSS= (tsss - tMIN)

LSL = (tLSL - tMIN)
LSS = (tLSs - tMIN)
LLL = (tw. - [tt.srJ)
LLS = (tu.s - [tt.ssD

SLL = (tsIL - [tssrJ)
SLS = (tsLS - [tsssD

LA TF./NORMAL = (16 * [tNORMAL + ~) + tNORMAL

TIMEO = tTIMEO

RPT = tRPT

CSLS = SLS - [tLSs - tsssD
EARLY/NORMAL= (16 * [tNoRMAL - ~) + tNoRMAL
TIME I= tTIME1

Finally, MIN is reduced by 3 clocks, and xSx, xLx and TIMEx are reduced by 2 clocks to take into
account internal delays in the ISM hardware.

MlN=MIN-3
SSL= SSL-2
SSS= SSS-2
SLL= SLL-2
SLS = SLS -2
RPT=RPT-2
CSLS = CSLS - 2

LSL=LSL-2
LSS = LSS-2
LLL=LLL-2
LLS=LLS-2
TIMEO = TIMEO - 2
TIME! =TIMEl -2

All of the parameters except for MULT, EAR.LY, NORMAL and LA.TE are initial counter values
in half-clock units. A half-clock is one half of the clock period, which means that the counters are
decremented on every rising or falling edge of the clock. Since the above values are in full clock units
they must be converted to the half-clock units used by the chip. If the value is represented by "if'
where i is the integer part and/ is the fractional part, the value that will be stuffed into the register will
be:

2 * i + 0 if .00 5./ < .25 (rounded down)
2 * i + 1 if .25 5.f < .75 (rounded to .50)
2 * (i+l) if .75 5./5. .99 (rounded up)

Examples: 13.24 rounds down to 13.0
9 .25 rounds up to 9 .5
22.75 rounds up to 23.0

NOTE: these are "theoretical" values calculated for ideal conditions.
We've found that they work very well in the nominal case (no
drive speed variation, etc), but that performance falls off as
you move away from nominal. Usually you would start with
these values and experiment until you get the ones that work
best for your situation.

In the case of a Macintosh system with Sony SuperDrives, we get better results if we ignore the peak
shift component (lp.) of the equations to calculate the xSx and xLx parameters:

lxsx = (t2 + t3) I 2
txLx = (t3 + tJ I 2

and then factor peak shift back into the Sxx parameters only at the end. This is because if the previous
cell was a "S", it must have been 2µsec, whereas if it was a "L", it could have been either a 3- or 4µsec
cell so the peak shift is less certain. We use about 1 clock of peak shift is for the SSx and 1/2 clock for
the SLx parameters.

SWIM Chip User's Reference - CONFIDENTIAL page 15 Copyright© 1987-1988 by Apple Computer, Inc.

As an example, let's compare the theoretical and experimental parameters for a 15.6672MHz
FCLK; 2-, 3- and 4µsec cells; 125nsec of write pre-compensation; and a typical peak shift of lOOnsec.
First we need the basic building blocks:

t2 = (2.00µsec)(15.6672MHz) = 31.33 clocks
t3 = (3.00µsec)(15.6672MHz) = 47.00 clocks
t4 = (4.00µsec)(15.6672MHz) = 62.67 clocks

1>s = (100.00nsec)(15.6672MHz) = 1.57 clocks
l:pc = (125.00nsec)(l5.6672MHz) = 1.96 clocks-> 2.0 clocks

Then we calculate the parameters using the equations on page 14 (except for the xSx and xLx parameters
which are calculated both ways):

Theoretical

tMIN = [t2 I 2] = [31.33 I 2] = 15.00 clocks
tssL = (t2 + t3) I 2 = 39.17 clocks
tsss = (t2 + t3) I 2 - lps = 37.60 clocks
tsLL = (t3 + t4) I 2 - l:ps = 53.27 clocks
tsr.s = (t3 + t4) I 2 - (2 * ~) = 51.70 clocks
tRPr = 3/4 * t2 = 3/4 * 31.33 = 23.50 clocks
tLSL = (t2 + t3) I 2 + lps = 40.74 clocks

.. tLSs = (t2 + t3) I 2 = 39.17 clocks
tLLL = (t3 + t4) I 2 = 54.84 clocks
tLLS = (t3 + t4) I 2 - l:ps = 53.27 clocks
tTIMEo = t3 - t2 = 15.67 clocks
tTIMEl = t1 = 31.33 clocks
tNORMAL = [greater of t2 I 4 and 7] = 7 .0 clocks

"Real-World"

tMIN = [t2 I 2] = [31.33 I 2] = 15.00 clocks
tssL = (t2 + t3) I 2 = 39.17 clocks
tsss =(ti+ t3) I 2 = 39.17 clocks
tsLL = (t3 + t~ I 2 = 54.84 clocks
tsr.s = (t3 + t~ I 2 = 54.84 clocks
tRPT = 3/4 * t2 = 3/4 * 31.33 = 23.50 clocks
tr.sL = (t2 + t3) I 2 = 39.17 clocks
tLSs = (ti + t3) I 2 = 39.17 clocks
tLLL = (t3 + t~ I 2 = 54.84 clocks
tw = (t3 + t.J I 2 = 54.84 clocks
tTIMEo = t3 - t1=15.67 clocks
tTIMEl =ti= 31.33 clocks
tNoRMAL =[greater of t2 / 4 and 7] = 7.0 clocks

Calculate the actual parameter values (and round appropriately) ...

MIN= tMIN = 15.0 clocks
MUL T = [65536 I (32 * ti)] = 65
SSL = tssL - tMIN = 24.17 -> 24.0 clocks
SSS = tsss - tMIN = 22.60 -> 22.5 clocks
SLL = tsLL - [tssrJ = 14.27 -> 14.5 clocks
SLS = tsLS - [tsssl = 14.70-> 14.5 clocks
RPT = tRPT = 23.50 -> 23.5 clocks
CSLS = SLS-[tLSs-tsssl = 13.70-> 13.5 clocks
LSL = tLSL - tMIN = 25.74-> 25.5 clocks
LSS = tLSs - tMIN = 24.17 -> 24.0 clocks
LLL = tLLL - [tLSiJ = 14.84 -> 15.0 clocks
LLS = tLLS - [tLSsl = 14.27 -> 14.5 clocks
LA TE/NORMAL= $97
TIMEO = tTIMEO = 15.67 -> 15.5 clocks
EARLY/NORMAL= $57
TIME 1 = tTIMEl = 31.33 -> 31.5 clocks

SWIM Chip User's Reference - CONFIDENTIAL page 16

MIN = tMIN = 15.0 clocks
MULT = [65536/ (32 *ti)]= 65
SSL = tssL - tMIN = 24.17 -> 24.0 clocks
SSS = tsss - tMIN = 24.17 -> 24.0 clocks
SLL = tsIL - [tssrJ = 15.84-> 16.0 clocks
SLS = tsLS - [tsssl = 15.84 -> 16.0 clocks
RPT = tRPT = 23.50 -> 23.5 clocks
CSLS = SLS-[tLSs-tsssl = 15.84 -> 16.0 clocks
LSL = tLSL - tMIN = 24.17 -> 24.0 clocks
LSS = tLSs - tMIN = 24.17 -> 24.0 clocks
LLL = tLLL - [tLSrJ = 15.84 -> 16.0 clocks
LLS = tlLS - [tLSsl = 15.84-> 16.0 clocks
LA TF./NORMAL = $97
TIMEO = tTIMEO = 15.67 -> 15.5 clocks
EARLY/NORMAL= $57
TIMEl = tTIMEl = 31.33 -> 31.5 clocks

Copyright <O 1987-1988 by Apple Computer, Inc.

Finally, add in the peak shift to the "real-world" Sxx parameters:

SSx = 24.0 - 1.0 = 23.0 clocks
SLx = 16.0 - 0.5 = 15.5 clocks
CSLS = 16.0 - 0.5 = 15.5 clocks

Here's how the theoretical values compare with the "real-world" values:

Parameter Theoretical "Real· World"
MIN 15.0 FCLKs 15.0 FCLKs

MULT 65 65

SSL 24.0 FCLKs 23.0 FCLKs

SSS 22.5 FCLKs 23.0 FCLKs

SLL 14.5 FCLKs 15.5 FCLKs

SLS 14.5 FCLKs 15.5 FCLKs

RPT 23.5 FCLKs 23.5 FCLKs

CSLS 13.5 FCLKs 15.5 FCLKs

LSL 25.5 FCLKs 24.0 FCLKs

LSS 24.0 FCLKs 24.0 FCLKs

UL 15.0 FCLKs 16.0 FCLKs

LLS 14.5 FCLKs 16.0 FCLKs

Late/Nonna! $97 $97

TIMEO 15.5 FCLKs 15.5 FCLKs

Early/Normal $57 $57

TIME I 31.5 FCLKs 31.5 FCLKs

SWIM Chip User's Reference - CONFIDENTIAL page 17 Copyright e 1987-1988 by Apple Computer, Inc.

Trans-Space Machine

The Trans-Space Machine (fSM) is a part of the ISM hardware that converts data bytes into
MFM. Bit 6 of the Setup register (discussed later) controls whether the TSM is bypassed or not. If you
are using the ISM for reading/writing GCR data. it mJill be bypassed since the data does not need any
special encoding other than that done in software. The TSM uses the previous two, cu"ent and next
data bits to determine how the data will be encoded:

Current Bit Next Bit Trans-Space Data

0 0 1

0 1 01

1 0 0

1 1 1

"Where are the previous two data bits in the table," you say? Well, they're not there because the only
time they're used is when writing a mark byte. In that case, more than two bits is needed to determine
where to drop the clock bit (aha!). The TSM then looks for the pattern "1000" and drops a clock bit
before the last zero.

The zeroes and ones output frorn the TSM (or the actual data bits if the TSM is bypassed)
correspond to the TIME 0 and TIME 1 RAM parameters. A "O" bit makes a delay TIME 0 clocks long;
a "1" bit makes a delay TIME 1 clocks long and then causes a pulse (or transition) to occur on the
WRDATA output to the disk. For the case of 2,3,4µsec MFM, TIME 0 is lµsec long and TIME 1 is
2µsec long, so we get:

2µsec cells = TIME 1 clocks
3µsec cells = TIME 1 + TIME 0 clocks
4µsec cells = TIME I + TIME 0 + TIME 0 clocks

We can compare how the TSM generates the pattern written to the disk for both a data and mark $Al:

"data" $Al

' i

n
' 0 0 1 0 1 0 0 0 : 0 1 1 0

n n n
,., ,., ,., ,.,

01 0 01 0 1 1 1 01 1 0 ?
I I I

~3µsec ·~4 4µsec •:• 3µsec..,.. 2µ.sec 'i" 2µsec ~ 3µsec..,.. 2µsec.,... 3- or 4µsec •

"mark" $Al

0 ' 0 1 0 1 0 0 0 i 0 1 1 0

n ,., ,.,
n n

,., ,.,
1 01 0 01 0 1 00 1 01 l 0 ?

I I I

~3µsec +!4 4µsec •;•3µsec ... 4µsec ·~ • 3µsec..,.. 2µ.sec.,... 3- or 4µsec •

For GCR, there is no encoding of data bytes, so the output pulses are generated directly from the data:

any$D5

1 1 1 1 0 1 0 1 0 1 1 0

~ n n n n ___ n ___ n __ _ n
~ 2µsec 't- 2µsec 't- 2µ.sec "f+- 4µsec ·~· 4µsec ~9i"lll--- 4µsec ~ 2µsec ~ 4 or oµsec ·~·

SWIM Chip User's Reference - CONFIDE~AL page 18 Copyright e 1987-1988 by Apple Computer, Inc.

Error Correction

The ISM hardware can correct for errors due to assymetry and speed variation using the famous
Correction State Machine (CSM). The process starts when the ACTION bit is set in the mode register
and reading begins. The CSM looks for 32 pairs of minimum cells which coincidently show up in a
run of zero bytes, such as a sync field. After that it looks to see if the first non-minimum cell belongs to
a mark byte. If not, it starts looking for minimum cells again. It keeps track of the amount of error for
both cells in a pair. 32 pairs are used so that there is a large enough sample to accurately represent the
amount of error that is actually occurring. The reason why it looks for pairs is that when the data was
written to a disk, each of the data or clock bits causes a reversal in the direction of the magnetic field, so
we get alternating positive and negative transitions.

~ 2µsec •;• 2µsec •;• 2µsec •:• 2µsec __..,

Clock & Dam bits --r------!r------!~------!r fl
ResultingTransitions --t t f t r

It's important to make a distinction between the positive and negative transitions. Due to
properties of the media, there is a cenain amount of error in determining the exact location of a
transition. However, the error for positive transitions tends to be in one direction while the error for
negative transitions tends to be in the other direction. The CSM then corrects one way for every other
transition and the other way for the other transitions. The difference in the error between the positive
and negative transitions represents the assymetry error.

The other correction that can be made is for variations in the drive motor's rotational speed. If
the motor speeds up, the cells become shorter, if it slows down, they become longer. Both of these
cases make it difficult to read the data because the parameters are based on a particular drive speed.

HOWEVER, the ISM hardware does provide a way to dynamically adjust the parameters to the
current drive speed. The Correction Register (see the register set description in the next section) returns
two bytes that correspond to the amount of error for the two bytes in a pair over the above-mentioned
32-byte sampling. The first byte is the cumulative error for "even" transitions and the second byte is for
"odd" transitions.

If the value is in the range 0 to 192, then cell times were too long and this value is the amount of
error. If the value is in the range 193 to 255, then cell times were too short and the amount of error is
256-value. In either case, these values represent the number of clocks of error per 256 clocks. The
average of the two values is the speed error, and this can be used to create a new set of parameters, as
shown:

corr 1 is the first correction byte
corr2 is the second correction byte

corrAvg = (corrl + corr2) I 2

FCLK' = FCLK * (1 + (corrAvg I 256)]

So to calculate a new set of parameters, we substitute the new FCLK' value into the equations for tz, t3,
t4, tps and tpc. and then use these to calculate the actual parameters.

Example: FCLK = 15.6672MHz
corr!= 241-> 241-256 = -15
corr2 = 37

corrAvg = (-15 + 37) I 2 = 11

FCLK' = 15.6672MHz * [1+(11I256)] = 16.34MHz

SWIM Chip User's Reference - CONFIDENTIAL page 19 Copyright © 1987-1988 by Apple Computer, Inc.

ISM Re2ister Set
, .

. /~ -i r,..;,· ... ;.

This section describes the function of all bits in the 16 ISM registers. Each register description includes
the register name, whether it's a read or write register, and the register's address in binary (A3 ... AO).
Some mention is made of the term ACTION. This is just a bit in the Mode register that is used to start
up a read or write operation.

DAT A Register
CORRECTION Register

R/W [xOOO]
R (1000]

7 6 5 4 3 2 1 0

jxjxjxjxjxlxlxlxl

(ACTION=l)
(ACTION=O)

When ACTION is set, this register reads data from and writes data to the FIFO. If a mark byte
is read from this location, an error will occur (see Error register, bit 1). If there is still valid data to be
read when ACTION is not set, it can be read from the Mark register.

When ACTION is not set, two consecutive reads from this location will provide error correction
information (see the section on error correction).

MARK Register R/W [xOOl]

7 6 5 4 3 2 1 0

lxlxlxlxlxjxjxjxl

Reading from this register will allow a mark byte to be read without causing an error. Writing
to this register will cause a byte to be written that has a transition missing between two adjacent
zero-bits. This is then interpreted as a mark byte.

CRC Register
IWM Configuration Register

w (0010]
w [0010]

7 6 5 4 3 2 1 0

jxjxJxjxjxlxlxlxl

(ACTION:l)
(ACTION:O)

0

0 0 0 0
tch IWM Async as Sync

16M/8M
erride IWM timer

This location performs two separate functions depending on the state of the ACTION bit
When ACTION= I, writing any value to this location will causetwo bytes from the internal
CRC generator to be written out instead of a regular data byte. When ACTION=O, the
uppermost three bits modify some of the !WM-mode operations. This feature is not supponed
in the standard ISM.

4 - 0 These bits are reserved for future expansion and should always be set to z.ero.

5 Setting this bit to "l" causes the most-significant data bit (07) to be latched in asynchronous
mode (IWM mode register bit 1) as if the IWM was operating in synchronous mode.

6 Setting the bit to "I" causes the IWM timer to take twice as long to time out as usual.

7 If this bit=" I", the IWM timer can be killed before it times out To actually kill the timer, set
MotorOn=O, and then toggle the drive select either low-to-high or high-to-low.

SWIM Chip User's Reference - CONFIDENTIAL page 20 Copyright e 1987-1988 by Apple Computer, Inc.

PARAMETER RAM R/W [x011]

7 6 5 4 3 2 0

0 MIN Cell Time

Correction Multiplier

2

3

4

5

6

7

SSL

SSS

SIL

SLS

RPT

CSLS

;
~

:
:

!
!

~

i
:

8

9

A

B

c
D

E

F

7 6 5 4 3 2 1 0

I.SL

I.SS

UL

us
LATE] NORMAL

TIMEO

EARLY I NORMAL

TIMEl ;

This location consists of 16 bytes of parameter data used to control the read/write timing. An
auto-increment counter accesses consecutive RAM addresses every time that a read or write is
made to this register. The counter is set to zero after any access is made to the Mode 0 register
(register 6) or the chip is reset. See the section on parameter RAM calculations for a more
complete description of what each parameter does.

PHASE Register R/W [xlOO]

7 6 s 4 3 2 1 0

HASEO state
HASEl state

HASE2 state
HASE3 state

HASEO"iil/out
HASEl 111/out

HASE2 iii/out
HASE3 in/out

Reset to 11110000

The Phase register controls the direction and state of the four phase lines. Bits 4-7 control the
direction of each phase line. Clearing a bit causes the line to be an input, while setting a bit
makes the line an output. Bits 0-3 reflect the state of the individual phase lines. If a phase line
is configured as an output, setting its corresponding state bit high or low sets the output level on
that pin high or low; if it's configured as an input, reading the bit shows the current level of the
signal connected to that pin.

NOTE: when the SWIM switches between the IWM and ISM register
sets, the current levels of the phase lines are carried over so
that no glitches occur.

SWIM Chip User's Reference - CONFIDENTIAL page 21 Copyright e 1987-1988 by Apple Computer, Inc ..

SETUP Register R/W [xlOl] Reset to 00000000

The Setup register is used to configure the ISM hardware.

7 6 5 . 4 3 2 0

0 "O" makes the Q3*/HDSEL pin an input to support the Q3 clock; "1" makes the pin an output
to use as a drive head select line.

1 Sets the state of the 3.5SEL* pin (note the output state is the inverse of the bit value).

2 Setting the bit selects GCR mode; clearing it selects the normal operating mode.

3 Setting the bitcauses the FCLK clock frequency to be divided by 2; otherwise the clock is
passed on unmodified.

4 Enables the Error Correction Machine (see the section on em>r correction).

5 Sets up the RDDATA and WRDATA signals to be either pulses (1) or transitions (0):

Pulses

Transitions

6 Causes the Trans-Space logic to be bypassed. This bit must be set for GCR operation.

7 This bit is used to enable/disable the MotorOn timer which causes the drive enables to remain
active for about 1/2. second (at 16MHz) after the MotorOn bit is disabled. After setting this bit,
it is necessary to toggle the ACTION bit on then off to enable the timer.

SWIM Chip User's Reference - CONFIDENTIAL page 22 Copyright <e 1987-1988 by Apple Computer, Inc.

~. ,,·

MODE Register
ST A TUS Register

W [Ollx]
R (1110]

Reset to 00000000

The Mode register is used to set the various modes of the chip. One or more bits can be set to "O" bv
writing a byte with those bit(s) set to the "zeroes" location (0110); the bit(s) can be set to "1" by writing
to the "ones" location (0111). This scheme is used to make it possible to modify individual bits without
affecting other bits in the register that don't need to change. The Status register is used to read back the
current value of the mode register.

0

1

2

3

4

5

6

7

7 6 5 4 3 2 0

lear FIFO
Enable drive 1

Enable drive 2
ACITON

Read mode/Write mode
HDSEL

ISMJiWM select
nable MOTORON

Toggling the clear FIFO bit high then low clears the FIFO to begin a read or write operation,
and initializes the CRC generator with its starting value. Since this value is different for
reading or writing, the read*/write mode bit must be set to the appropriate state before toggling
the Clear AFO bit.

Setting this bit along with bit 7 (MotorOn) will enable drive 1.

Setting this bit along with bit 7 (MotorOn) will enable drive 2.

Setting the ACTION bit to "1" starts a read or write operation. It should be set only after
everything else has been set up. When writing, at least one byte of data should be written to
the FIFO before this bit is set to prevent an underrun when the chip goes to fetch a byte from
the [empty] FIFO. This bit will be cleared if an error occurs while in write mode, but not in
read mode.

This bit determines whether an operation will be a read (0) or write (1) operation.

Sets the state of the HDSEL pin if the Q3* /HDSEL bit in the Setup register is set to "1 ".

Clearing this bit switches to the IWM register set As long as this bit remains a "1" the ISM
register set will stay selected.

Enables/disables the /ENBLl and /ENBL2 drive enables (assuming bit 1 or 2 is set). This bit
must be set prior to setting ACTION and must not be cleared until after ACTION is cleared.

NOTE: MotorOn should be disabled before switching back to the
IWM register set. The first thing to do after switching is
to clear L 7 (and optionally L6) to get out of write mode.

NOTE: after setting ACTION on a read operation, the first byte that
will be returned will be a mark byte (as defined in the section
on MFM encoding). The search for the mark byte is invisible
to the software since it is handled entirely by the SWIM chip.

SWIM Chip User's Reference- CONFIDENTIAL page 23 Copyright e 1987-1988 by Apple Computer. Inc.

ERROR Register R [1010] Reset to 00000000

This register shows what kind of error has occurred. When any of the bits is set, the Error bit in the
Handshake register will also be set. Once one error bit is set, no other bits can be set until the register is
cleared. The register is cleared by either reading it or resetting the chip. This register must be cleared
before beginning a read or write operation.

7 6 5 4 3 2 0

orrection error
:J'ransition too narrow

:J'ransition too wide
nresolved transition

t used

0 The processor is not reading/writing fast enough to keep up with the chip.

1 A mark byte (missing transition) was read from the Data register.

2 The processor is reading faster than bytes are available or writing faster than the FIFO is
requesting bytes.

3 The correction number obtained in the Error COITection Machine is so large that the error
cannot be cOITected.

4 A transition occurred before the MIN cell time, making the cell too narrow to be legal.

5 A transition didn't occur before MIN+xSx+xLx+RPT clocks, making the cell too wide to be
legal.

6 There were three marginal transitions in a row which implies that the transitions cannot be
resolved.

7 This bit is reseived for future expansion and will always read as a "O".

SWIM Chip User's Reference - CONFIDENTIAL page 24 Copyright e 1987-1988 by Apple Computer, Inc.

HANDSHAKE Register R [1111]

7 6 5 4 3 2 1 0

ark byte
RC error

DATA input
ENSE input

MOTORONstate
r (see Error register)

2 empty (write)/available (read) bytes in FIFO
1 or 2 empty (write)/available (read) bytes in FIFO

0 If set to 11 111
, it indicates that the next byte to be read is a mark byte (i.e., has a dropped clock

pulse).

1 The CRC error bit is cleared to zero if the CRC generated on the bytes up to and including the
byte about to be read is zero (meaning all the bytes are correct). It's set to 11 1" if the internal
CRC is currently non-zero. The bit is usually checked when the second CRC byte is about to
be read from the FIFO.

2 This bit returns the current state of the RDDATA input from the drive.

3 This bit returns the current state of the SENSE input.

4 This bit is set to 11 I" if either the MotorOn bit in the mode register is a 11 l 11 or the timer is timing
out.

5 If this bit is set, it indicates that one of the bits in the Error register is set. The bit is cleared by
reading the Error register or when the chip is reset

6 In read mode, this bit indicates that the FIFO contains 2 bytes to be read. In write mode, it
indicates that 2 bytes can be written to the FIFO.

7 In read mode, this bit indicates that the FIFO contains at least 1 byte to be read. In write mode,
it indicates that at least 1 byte can be written to the FIFO.

SWIM Chip User's Reference - CONFIDENTIAL page 25 Copyright@ 1987-1988 by Apple Computer, Inc.

IWM StateaSM Re~ister Mappin&

This table shows how the IWM's state bits and the ISM's registers are mapped into the SWIM's
address space:

Address IWM State ISM Register

0 PHASEO =0 Write Data

1 PHASEO= 1 Write Mark

2 PHASE! =0 Write CRC/IWM Config

3 PHASE!= 1 Write Parameter RAM

4 PHASE2=0 Write Phases

5 PHASE2=1 Write Setup

6 PHASE3 =0 Write Mode (O's)

7 PHASE3=1 Write Mode (l's)

8 MOTORON=O Read Data

9 MOTORON=l Read Mark

10 DRIVESEL=O Read GRC" 2JU19] - /-'(?/

11 DRIVESEL= 1 Read Parameter RAM~

12 L6=0 Read Phases

13 L6= 1 Read Setup

14 L7=0 Read Status

15 L7= 1 Read Handshake

SWIM Chip User's Reference - COSFIDENTIAL page 26 Copyright e 1987-1988 by Apple Computer, Inc.

.·''·.

.... _,

...
:,-'

\,' _,·

.... :·

, .. ~. ,.
, •.'

0 ~Afu
~t<. .,.y.,v-
l/I~'-:.., _> ~ ,,wrJ

...;

I

2

2 ~ C/i..C

3~~kv~

'f~~-

:z~
7 ,d--~-R

~.1,,.;~)_,__,
~~

."•

i; ,-.

!,.·,

· .. ··.•

-~'

• . : 'J

.··.'

. ·'·" ...

..'.+

..• -·:.:''\

!WM Re2ister Summary

Read All Ones

Read Data

Read Status

Read Write-Handshake

Set Mode

Write Data

7 6 5 4 3 2 1 0

!1l1l1l1l1l1I Iii
7 6 5 4 3 2 1 0

lxlxlxlxlxlxlxlxl

7 6 5 4 3 2 1 0

__,_....e ... served
· te state/underrun

· te buffer empty

latch mode
ynchronous handshake

'-'timer disabled

·~nlM.de/slow mode

"'-1SLJil.ode
ISMJIWM select

served

7 6 5 4 3 2 1 0

jxjxjxjxlxlxlxlxl

Nl171! 27 Col>vriidit e 1987-1988 by Apple Computer, Inc.

ISM Re2ister Summary

Data Register

Mark Register

Write CRC &

IWM Configuration

Parameter RAM

Phase Register

0

1

2

3

4

5

6

7

7 6 5 4 3 2 1 0

jxjxjxjxjxjxjxjxj

7 6 5 4 3 2 1 0

lxlxlxlxlxlxlxlxl

7 6 5 4 3 2 0

jxjxlxlxlxlxlxlxl

atch IWM Async as Sync
16M/8M

eiride IWM timer

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

MIN Cell Time ;
:

Correction Multiplier

SSL
:
:
!

SSS i :
SU. i

;

SLS !
:

RPI'

CSLS :

7 6 5 4 3 2 1 0

8

9

A

B

c
D

E

F

HASEO state
HASEl state

HASE2 state
HASE3 state

HASEO "iii/out
HASEl i1Vout

HASE2Ul/out
HASE3Ul/out

LSL

LSS

UL

u.s

LATE I NORMAL

TIMEO

EARLY I NORMAL

TIME 1

SWIM Chip User's Reference - CONFIDENTIAL page 28 Copyright e 1987-1988 by Apple Computer, Inc.

Setup Register

Mode/Status Register

Error Register

Handshake Register

7 6 5 4 3 2 0

7 6 5 4 3 2 1 0

lear FIFO
nable drive 1

Enable drive 2
A en ON

ead mode/Write mode
EL

SM/IWM select
Enable MOTORON

7 6 5 4 3 2 1 0

Undemm
ark byte read from data register

errun
orrection error

:fransition too narrow
:fransition too wide

nresolved transition
used

7 6 5 4 3 2 1 0

ark byte
RC error

DATA input
ENSEinput

OI'ORON state
rror (see Error register)

i empty (write)/available (read) bytes in FIFO
1 or 2 empty (write)/available (read) bytes in FIFO

SWIM Chip User's Reference - CONFIDENTIAL page 29 Copyright <O 1987-1988 by Apple Computer, Inc.

Code Examples

Here are a couple of short code fragments that illustrate how to read and write in both GCR and
MFM. Each example will be written in both 68000 and 6502 assembly language so that everyone
can see what's going on.

Read GCR Address Field (68000):

addrMarks DC.a $DS,$AA,$96,SDE,$AA,SFF
DNiblTbl DC.a $00,$01, ...

RdAddr LEA DNiblTbl-$96,A3
MOVEA.L IWM,A4
LEA Q6L(A4),A4

RdAddrMark LEA addrMarks,AO
MOVEQ i3-l, Dl

RdNextMark MOVE.a (A4),DO
BPL.S RdNextMark
CMP.B (AO)+, DO
BNE.S RdAddrMark
DaRA Dl,RdNextMark

MOVEQ iO,Dl
Rd Track MOVE.a (A4) ,Dl

BPL.S RdTrack
MOVE.a O(A3,Dl),Dl
MOVE.a Dl,D4
ROR.W i6,Dl

MOVEQ i0,D2
RdSector MOVE.a (A4),D2

BPL.S RdSector
MOVE.a 0(A3,D2),D2
EOR.B D2,D4

MOVEQ i0,D3
RdSide MOVE.a (A4),D3

BPL.S RdSide
MOVE.a 0(A3,D3),Dl
EOR.a Dl,D4
ROL.W t6,Dl

RdFormat MOVE.a (A4),03
aPL.S RdFormat
MOVE.a O(AJ,03),03
EOR.a 03,04

MOVEQ tO,DO
RdChecksum MOVE.a (A4),00

aPL.S RdChecksum
MOVE.B O(AJ,00),00
EOR.a 00,04
aNE.S aadChecksum

MOVEQ i2-l,DO
RdBitSlip MOVE.B (A4) ,04

BPL.S RdBitSlip
CMP.a (A0)+,04
BNE.S NoaitSlip
OBRA DO, RdBitSlip

•
SWIM Chip User's Reference - CONFIDE!'llTIAL

;De-nibblized values (OOxxxxxx)

;Point to de-nibblizing table

;Point to L6-0 for speed

;Read a byte
; (not valid until bit 7=1)
;Is it the correct mark byte?
;Start over if not

for all 64

;Loop until all mark bytes have been read

;Read the track number

combinations

; and de-nibblize it: (OJ (OJ [TS] (T4] [T3] [T2] [Tl] [TO]
;Initialize the checksum
;Make space for 6 bits of side

;Read the sector number

; and de-nibblize it: (O] (O] [SS] (S4] [S3] [S2] [Sl] [SO)
;Update the checksum

;Read the side number + upper track number bits

; and de-nibblize it: [0] [0] [SO] [TlO] [T9] [TS] [T7] [T6]
;Update the checksum
; Dl. w-[O][O](O](O][SO][TlO][T9][T8][TI](T6][T5][T4][T3][T2][Tl][TO]

;Read the format byte (number of sides)

; and de-nibblize it: [0] [0] [FS] [F4] [F3] [F2] (Fl] [FO]
;Update the checksum

;Read the checksum

; and de-nibblize it: [0] (OJ [CS] [C4] (C3] (C2] (Cl] (C:J]

;Is the checksum OK?
;Exit if not

;Read a couple of bit slip marks

;Is it the correct byte?
;Exit with an error if not

page 30 Copyright <e 1987-1988 by Apple Computer, Inc.

Read GCR Address Field (6502):

addrMarks DC.B $96,$AA,$05
bitSlipMarks DC.B $AA,$DE
DNiblTbl DC.B $00, $01, ...

Rd.Addr LDX slotl6
BIT Motor On

RdAddrMark LOY t3-l
RdNextMark LOA Q6L,X

BPL RdNextMark
CMP addrMarks,Y
BNE RdAddrMark
DEY
BPL RdNextMark

Rd Track LOY Q6L,X
BPL RdTrack
LOA ONiblTbl-$96,Y
STA checksum
ASL A
ASL A
STA track

RdSector LOY Q6L,X
BPL RdSector
LOA DNiblTbl-$96,Y
STA sector
EOR checksum
STA checksum

RdSide LOY Q6L,X
BPL RdSide
LOA DNiblTbl-$96,Y
STA track+l
EOR checksum
STA checksum
LSR track+l
ROR track
LSR track+l
ROR track

RdFormat LOY Q6L,X
BPL RdFormat
LOA ONiblTbl-$96,Y
STA format
EOR checksum
STA checksum

RdChecksum LDY Q6L,X
BPL RdChecksum
LDA ONiblTbl-$96,Y
EOR checksum
BNE BadChecksum

LOY in-1
RdBitSlip LOA Q6L,X

BPL RdBitSlip
CMP bitSlipMarks,Y
BNE NoBitSlip
DEY
BPL RdBitSlip

SWIM Chip User's Reference - CONFIDE~AL

;De-nibblized values (00xxxxxx) for all 64 combinations

;X=l6* (slot+8)
;Enable the drive

;Read a byte
; (not valid until bit 7al)
;Is it the correct mark byte?
;Start over if not

;Loop until all mark bytes have been read

;Read the track number

; and de-nibblize it: [OJ [OJ [TS] [T4] [T3] [T2] ['!.'l] [TO]
;Initialize the checksum
;A=[TSJ [T4] [T3] [T2] [Tl] [TO] [0] [OJ

;Read the sector number

; and de-nibblize it: [0] [OJ [SS] [S4] [S3] [52] [Sl] [SO]

;Update the checksum

;Read the side number + upper track number bits

; and de-nibblize it: [OJ [0] [SO] (TlO] (T9] (T8] [T7] [T6]

;Update the checksum

;track+l=[O] [O] (0] (OJ [SO] (TlO] [T9] [T8]
;track=[T7] [T6] [TS] (T4] [T3] [T2] [Tl] [TO]

;Read the format byte (number of sides)

; and de-nibblize it: [0] [OJ [FS] [F4] (F3] (F2] (Fl] [FO]

;Update the checksum

;Read the checksum

; and de-nibblize it: [0] [0] [CS] [C4] [C3] [C2] [Cl] [CO]
;Is the checksum OK?
; Exit if not

;Read a couple of bit slip marks

;Is it the correct byte?
;Exit with an error if not

page 31 Copyright e 1987-1988 by Apple Computer, Inc.

Read MFM Address Field (68000):

addrMarks DC.B $Al,$Al,$Al,$FE

RdAddr MOVEA.L IWM,A4
LEA

LEA

RdAddrMark TST.B
MOVE.B
!«>VE.a
!«>VE.a
MOVE.a
I.EA
!«JVEQ

RdNextMark

Rd.Track

Rd.Side

SideO
RdSector

Rd.BlkSize

Rd.CR Cl

Rd.CRC2

TST.a
BPL.S
MOVE.a
CMP.a
BNE.S
OBRA

!«JVEQ
TST.a
BPL.S
MOVE.a

TST.a
BPL.S
TST.B
BEQ.S
BSET

!«JVEQ
TST.a
BPL.S
!«>VE.a

MOVEQ
TST.a
BPL.S
OR.B

TST.a
BPL.S
TST.a

!OJE.a
BPL.S
TST.a

BTST
BNE.S

rHandshake(A4),A3
rMark(A4),A4

rError-rMark(A4)
t$18,wZeroes-rMark(A4)
t$01,wOnes-rMark(A4)
tS01,wZeroes-rMark(A4)
t$08,w0nes-rMark(A4)
addrMarks,AO
t4-l,Ol

(A3)
RdNextMark
(A4),00
(A0)+,00

RdAddrMark
01,Rc!NextMark

t0,01
(A3)
RdNextMark
(A4) ,01

(A3)
RdNextMark
(A4)
SideO
Ul,01

t0,02
(A3)

RdNextMark
(A4) ,02

t$20,03
(A3)

RdNextMark
(A4) ,03

(A3)
RdNextMark
(A4)

(A3) ,05
RdNextMark
(A4)

U,05
CRCError

;Point to the Handshake register
; and the Read Data register for speed

;Clear the error register
;Clear the write and action bits
;Toqqle to clear FIJ'O bit to clear out
; any data in the FIFO
;Turn on the action bit: GO!

;Wait for data valid

; then read a mark byte
;Is it the correct mark byte?
;Start over if not
;Loop until all mark bytes have been read

;Wait for data valid

;Read the track number

;Wait for data valid

;Is it side l?

;Yes, set the side bit to "l"

;Wait for data valid

;Read the sector number

;Wait for data valid

;Read the block size byte (should be $02)

;Wait for data valid

;Toss the first CRC byte

;Wait for data valid (save the CRC error bit)

;Toss the second CRC byte

;CRC error?
;Exit with error if so

SWIM Chip User's Reference - CONFIDENTIAL page 32 Copyright@ 1987-1988 by Apple Computer, Inc.

Read MFM Address Field (6502):

addrMarks DC.B$FE,$Al,$Al,$Al

RdAddr LDX slotl6

RdAddrMark BIT rError, X

LDA tS18
SI'A wZeroes, X
IDA #$01
SI'A wOnes, X
STA wZeroes, X
LOA t$08

STA wOnes,X
RdAddrMark LOY t4-l

RdNextMark LOA rHandshake, X
BPL RdNextMark
LOA rMark,X

Rd Track

Rd.Side

RdSector

CMP addrMarks, Y
BNE RdAddrMark
DEY
BPL RdNextMark

LOA rHandshake, X
BPL RdTrack
IDA rData,X
SI'A track

LOA rHandshake, X
BPL Rc!Side
IDA rData,X
STA side

IDA rHandshake, X
BPL Rc!Sector
LOA rData,X
STA sector

RdBlkSize LOA rHandshake, X
BPL RdBlkSize
LOA rData,X

RdCRCl

RdCRC2

SI'A blockSize

IDA rHandshake, X
BPL RdCRCl
IDA rData,X

UlA rHandshake, X
BPL ~C2
LOY rData,X

AND noooooo10
BNE CRCError

SWIM Chip User's Reference - CONFIDENTIAL

;Address mark bytes (backwards)

;X = 16*(slot+8)

;Clear the error register
;Clear the wi:it• and action bits

;Toggle to cl .. r rD'O bit to clear out
; any data in the FIFO

;Turn on the action bit: GO!

;Wait for data valid

; then read a mark byte
;Is it the correct mark byte?
;Start over if not

;Loop until all mark bytes have been read

;Wait for data valid

;Read the track number

;Wait for data valid

;Read the side nUITber

;Wait for data valid

;Read the sector number

;Wait for data valid

;Read the block size byte (should be $02)

;Wait for data valid

;Toss the first CRC byte

;Wait for data valid (save the CRC error bit}

;Toss the second CRC byte

;CRC error?
;Exit with error if so

page 33 Copyright <e 1987-1988 by Apple Computer, Inc.

Biblioeraphy

"Integrated WOZ Machine (IWM) Device Specification," Apple Computer, Inc. 1978.

Macintosh .SONY floppy disk driver source, Apple Computer, Inc. 1982.

"Inside Macintosh, Volumes I, II, ID", Apple Computer, Inc. 1985.

"ISM ASIC Specifications, revision 4.1", Apple Computer, Inc. July 2, 1987.

"SWIM Chip Specification", Apple Computer, Inc. September 29, 1987.

"Microcomputer Products Data Book, Volume 2of2", pp. 6-21, 6-24, 6-25 (µPD765A),
NEC Electronics Inc. 1987.

SWIM Chip User's Reference - CONFIDENTIAL page 34 Copyright e 1987-1988 by Apple Computer, Inc.

