
Page 1

Nisha Firmware Specification

Revision 1.0-0
Deo 9, 1984

Written by Rodger Hohme
HS-190 x4879

Page 2

SODJe Useful Definitions:

The following is an explanation of the symbols that will be used throughout
this document to describe the operation of the various firmware commands.

'<,}': The bracket symbols mean that the information inclosed within them is
manditory.

'[,]': The square bracket symbols mean that the information inclosed within
them is optional.

'I' : The vertical bar symbol is used to indicate an alternative or "OR"
condition. For example, AIS can be thought of as "Either A or S".

, .• = I: This symbol is used to indicate a definition or equi velence.

, {, } I: Curly brackets are used to denote cO/TlTlemnts.

, + ' The plus sign is used as an addition symbol or logical or' ing.

'$' : The dolar sign is used to indicate that a value is radix 16 {in other
words, the number is in hexadecimal}. Values that are not preceded by
, $' are assumed to be decimal.

'NULL ': This key word indicetes the empty set, or in some ceses the fect thet
the function whose value is NULL can be ignored. An example is:

Argle_Bargle : : = <NULL}

Essentially you can forget that Argle_Bargle exists for this context.

Page 3

CO/lllliind TYpes:

Widget commands are broken up into 3 categories:

1. Profile commands

These commands are used emulate a Profile mass storage device and
provide for downward compatibility.

2. Diagnostic commands

These commands are used to seperate the various subfunctions of the
drive and provide a means to troubleshoot a Widget without the
controller of performing any retrying of it' sown.

3. System commands

These commands are used to operate a Widget at it' s maximum efficiency.
Blocks are transfered logically in a multiple block fashion, up to 255
blocks.

Page 4

ProFile COlMJands:

Widget is designed to be backwards compatible with the current ProFile
Driver, and to that end there exists the three ProFile System commands {Read,
Write, and Write_Verify} within the firmware.

Opcode

$00

$01

$02

Definition

Read Logical Block
Write Logical Block
Write_Verify Logical Block

The three ProFile commands behave in exactly the same fashion as do the
corresponding instructions on ProFile, with one small exception: the Read
Logical command does not include information concerning Retry Count or Sparing
Threshold {holJ!ever, because of a side effect in the way that the
Host/Controller interface was designed, the Host may write as many command
bytes to the controller as it chooses. The Controller will only decode the
first four. }. The form of each command is:

($001$011$02) (3 bytes of Logical Block Address)

There are two 'special' logical address defined in the ProFile protocol,
namely $FFFFFF {-1} and $FFFFFE {-2}. Logical address (-1) returns as it's
value Device_ID {as explained under the section titles Diagnostic Commands}
and logical address (-2) returns as it's value Widget's spare table structure
in it's r<:lw form.

It should be noted that if at any time Widget can not pass it' s self test that
it will refuse to communicate via logical commands {both ProFile and System
type commands}; Widget will respond to Diagnostic commands at all times,
however.

The rest of the commands available on Widget are a complete departure from
the way that ProFile was implemented. The new form of any command,is:

(<Command_Byte>
<Instruction_Byte>

Page 5

[Instruction_Parameter]

(CheokBY'le>)

Conmand_Byte : : = <ConmandType_Nibble + ConmandLength_Nibble)

CommandType_Nibble : : = <Diagnostic_Conmand I System_Conmand>

Diagnostic_Conmand :: = <$10}

System_Conmand :: = ($20)

CorrmandLength_Nibble : : = <Count of all the bytes in the command string NOT
including the first one. for example, the conmand string to read
Device_ID is: (<$12> <$00> <$ED>). The conmandlength_nibble in this
case is 2. >

System_Conmand :: = <Sys_ReadISys_lIJriteISys_lIJrVer>

Diagnostic_Conmand : : = (<Read_ID I
Read_Controller_Status!
Read_Servo_Statusl
Send_Servo_Conmand!
Send Seekl
Send=:Restore!
Set_Recovery I
Soft_Reset I
Sendyarkl
Dia9-Readl
Diag_ReadHeaderl
Dia9-Writel
Auto_Offset I
Read_SpareTable\
Write_SpareTablel
format_Track!
Read_Abort_Statl
Reset_Servo I
Read_Track I
Write_Track>)

Instruction_Parameter ::= {This value is instruction dependent, and will
be formally defined at the same time as the individual instructions}

CheckByte :: = { This byte is the ones-complement of the sum, in HOD-256
arithmetic, of all the bytes in the instruction string including the
Conmand_Byte. }

Page 6

Diagnostic_Commands:

Widget's personality, or manner in which it behaves in a specific Host
environment, can be thoght of as having two distict parts: 1) that portion that
is dictated by the hardware and 2) that portion that is controlled by the
firmware. As trite as that last statement may see~ the fact remains that the
part of Widget that is the hardware is notr easily molded to adapt to different
conditions. The same is true, but not quite in the same manner, for the
firmware: the code is locked in a ROH of some sort and costs a lot to change.
How then can Widget's "personality" be changed {on-the-fly} to "adapt" to a new
environment? The answer in thjis case was to architect the firmware in a
layered fashion: build the intelligence required to operate Widget in it's
normal system mode from a pool of discrete, primi ti ve functions; these
primitive functions having just one specific task that they are capable of
completing. The implication of this architecture is that with very little
effort these same primitive functions are available to the Host system.

Page 7

Read 10

Read_ID : : = ($00)

Instruction_Parameter: : = <NULL>

This diagnostic command requires Widget to deliver to the host some device
specific information. The structural layout of the data returned is:

STRUCTURE Identity_Block

This identity block is defined by the data structures contained within it;
you will note, however, that a comment is given explaining the type of
structure for a given element and range of bytes - if the structure is thought
of as a linear array of bytes - that include the structure. An example is
NameString. It is a 13-character ascii string, and is located in bytes $0: C.

NameString : : = <LisalNisha2 {13 bytes/$O: C; Ascii String} >

Device_Type: : = <$000110 {3 bytes/$[): F} >

Firmware_Revision : : = < {2 bytes/$10: 11} >

Capacity:: = <$9836 {3 bytes/$12: 14}>

Bytes_Per_Block : : = (532 {2 bytes/$15: 16}>

Number_Of_Cylinders :: = <610 {2 bytes/$17: 18}>

Number_Of_Heads :: = <2 {1 byte/$19}>

Number_Of_Sectors :: = <32 {1 byte/$1A}>

Number _Of _Possible_SpareBlocks : : = <$00004C {3 bytes/$1B: 1D} >
Number_Of_SpareBlocks :: = <{3 bytes/$1E: 20, range 0 .. $4B}>

Number_Of _BadBlocks : : = < {3 bytes/$21: 23, range O .. $4B} >

Page 8

Read Controller Status

Read_Controller _Status: : = <$01 >

Every time an operation completes {normally or abnormally} Widget will
return Standard_Status. This allows the Host system to change it·s flow of
execution based on the state of the value returned in the Status. Normally,
Standard_Status is all that is necessary to ensure continuous operation. In
the exceptional case, or when the Host system is emulating the controler·s
functions, additional information concerning the state of Widget is mandatory:
without it the Host simply could not make an optimum choice in deciding a
course of action.

Controller_Status is then a means for the Host system to interrogate Widget
further. Each Status {with the exception of Abort_Status, which is a seperate
command and is discussed later in this document} belongs to a homogeneous data
structure: namely a four byte quantity containing a bit map representing the
various exceptional conditions thyat are available as the first four bytes
read from the controller upon completion of the current cOll1lland.

There are eight status· available to the Host system. The Host requests a
specific status by setting the Instruction_Parameter to the value
corresponding to the status needed.

IF (Instruction_Byte = Read_Controller_Status)
THEN Instruction_Parameter ::= «Standard_Status I

last_logical_Blockl
Current Seek Address I
Current=Cylinderl
Internal Status I
State_Registers I
Exception_Registers I
last-SeEk_Address»~

The four byte response to each of the above status requests is of the form:
Status_Response ::= «By teO> <Byte1> <Byte2> <Byte3»

Page 9

Standard_Status : : - ($00>

By teO : : = < Bit7: Other than $55 response from Host
Bi t6: Write Buffer OverFlow
Bit5: {not used}
Bit4: {not used}
Bi t3: Read Error
Bi t2: No Hatching Header Found
Bit 1: Servo Error
BitO: Operation Failed>

Byte1: : = < Bit7: {not used}
Bit6: Spare Table OverFlow
BitS: S or Less Spare Blocks Available
Bit4: {not used}
Bit3: Controller Self Test Failure
Bit2: Spare Table has been Updated
Bit 1: Seek Error
BitO: Controller Aborted Last Operation>

Byte2 : : = < Bit7: First Status Response since Power-On
Bi t6: Logical Block Number Out of Range
Bit5: 0: {not used}>

Byte3 : : = < Bit7: Read Error Detected by Ecc circuitry
Bi t6: Read Error Detected by Grc circuitry
BitS: Header timeout
Bit4: {not used}
Bit3: 0 : Number of unsuccessful retries {out of 10}>

Page 10

last_logical_Block : : = <$01 >

By teO : : = {not used}

Byte1: : = <Host Significant Block Address)

Byte2 : : = <Next Host Significant Block Address>

Byte3 : : = <Least Significant Block Address>

Page 11

Current_Seek_Address : : = <$02>

By teO : : = <Host Significant Cylinder Address>

By tel: : = <Least Significant Cylinder Address>

Byte2 : : = <Head Address>

Byte3 : : = <Sector Address>

Page 12

Current_Cylinder :: = ($03>

By teO : : = <Host Significant Cylinder Address>

By tel: : = <Least Significant Cylinder Address>

Byte2 : : = <Head Address>

Byte3 : : = <Sector Address>

Page 13

Internal St&tus : : .. ($04)

By teO : : = <Bit7: Recovery On
Bi t6: Spare Table Almost Full
BitS: Buffer Structure is Contaminated
Bi t4: Power reset has just occured .
Bit3: Current Standard Status is non-zero
Bit2:1: {not used}
BitO: Controller LED is on>

Byte1: : = <Bit7: On_Track
Bi t6: Read Headers after data recal
Bit5: Current operation is a write operation
Bit4: Heads are parked
Bit3: Sequential look-ahead table search
Bit2: {not used}
Bit1: Seek_Complete
BitO: Auto_Offset is ON>

Byte2 : : = {this status is valid ONLV after a ProFile or System Command}
<Bit7: Seek Needed

Bit6: Head~Change_Needed
Bit5:2 {not used}
Bi t 1: Current block is a BAD block
BitO: Current block is a SPARE block>

Byte3 : : = <SpareTable_TypeIUserData_Type)
SpareTable_Type : : = <$08>
UserData_Type :: = <$02)

Page 14

State_Registers:: = <$05>

By teO : : = {not used}

By tel: : = <Bit7: RamJailure
Bit6: Eprom_Failure
BitS: Disk_Speed_Failure
Bit4: Servo_Failure
Bit3: Sector Count failure
Bit2: State Machine Failure
Bitl: Read Write faIlure
BitO: No_SpareTable_Found>

Byte2 :: = <Bit7: Disk Read/-Write
Bi t6: SioRdy
BitS: Hsel1
Bit4: HselO
Bit3: Bsy
Bit2: Cmd
Bi t 1: EccError {active low}
BitO: Start {active low}>

Byte3 : : = <Bit7: CrcError {active low}
Bit6: Write_Not_Valid {active low}
BitS: ServoReady
Bit4: ServoError
Bit3: 0 : Current state of the state-machine>

Page 15

Exoeption_Registers : : .. <$06)

By teO : : = <Bit7: Read error
Bit5: Servo error while reading
BitS: At least one successful read in last retry sequence
Bi t4: Header Timeout
Bit3: CrcError or EccError
Bit2: 0: {not used} >

Byte1: : = <Bit7 :: = EeeError
Bi t6 : : = CreError
Bi tS : : = Header Timeout
Bi t4 : : = {not used}
Bit3: 0: {number of bad retries out of 10}>

Byte2 : : = <Bit7: Write Error

Byte3

Bi t6: Servo Error while writing
Bit5: At least one sucessful write in last retry sequence
Bi t4: Header Timeout
Bi t3: 0: {not used}>

{number of bad retries out of 10}

Page 16

Read Servo Status

Read_Servo_Status : : = ($02)

Instruction_Parameter: : = (0 .. 8>

This status command is used to interrogate the Servo Processor in much the
same way that Read_Controller_Status is used. In fact, the form of the result
is the same four byte-mapped quantity.

This command is of the particular value to a diagnostician that is interested
in • scoping-out' the servo subsystem.

A more complete description of the servo commands can be read in the document
titled "Widget Servo Functional Objective" written by Jim Reed.

Page 17

Send Servo Command

Send_Servo_Command : : = ($03>

Instruction_Parameter: : = «By teO> (Byte1> (Byte2> <Byte3»

Normally, the Host will allow the controller to manipulate the servo
processor in order to perform useful work. For example, let's suppose that the
Host system wishes to move drive's heads from one track to another. Under
normal operating conditions the preferred way to perform this task is to use
the Send_Seek command {explained later}. However, the Host has the capability
to bypass the controller and direct the servo processor. Indeed, the Host can
issue the servo command to position the heads so that the seek is completly
transparent to the controller. The implication of this command is that the Host
can gain even more control of the system if it so chooses.

A more complete description of the servo conmands can be read in the document
titled "Widget Servo Functional Objective" written by Jim Reed.

By teO : : = (S_Conmand + S_Direction + Hi_Magnitude>

S_Corrrnand : : = (Offset I
Diagnostic I
DataRecall
BrakeReleasel
Access I
Access_Offset I
Home>

Offset: : = <$10)
Diagnostic : : = ($20>
DataRecal : : = <$40)
BrakeRelease : : = ($70>
Access : : = <$80)
Access Offset:: = <$90>
Home::= <$CO>

S_Direction : : = <PositiveINegative)

Positive:: = <$08 {towards inside diameter}>
Negative:: = <$00 {towards outside diameter}>

Hi_Magnitude:: = <0 .. 3 {move heads in multiples of 256}>

Byte1: : = <Low_Magnitude: : = O .. 255)
{note: Hi_magnitude, Low_magnitude, and S_Oirection establish

the relative distance the heads must move to arrive at the
target track}

Page 18

Byte2 : : = <Offset_Direction + Auto_Offset_Swi tch + Offset_Hagni tude>

Offset_Direction : : = <Posi ti ve I Negati ve>

Positive:: = <$80 {towards outside diameter}>
Negati ve : : = <$00 {towards inside diameter} >

Auto_Offset_Switch :: = <ONIOFF>

ON : : = <$40 {assert fine positioning}>
OFF: : = <$00>

Offsetjiagnitude : : = <0 .. 32}

Byte3 : : = <StatusRquest>

Page 19

Send Seek

Send_Seek : : = <$04)

Instruction_Parameter: : = «HiCyl) <LoCyl} <Head} <Sector} <AutOffsetflag})

HiCyl, LoCyl, Head, Sector: : = ($00 .. $FF>
AutoOffsetFlag : = (ONIOFF)

ON :: = ($01>
OFF :: = <$00)

lJIidget • s Send_Seek conmand allows the Host system to place the heads over any
track on the disk. The value of the seek address is sent as the
InstructionJParameter, and each parameter is a byte in length. For example,
for the Host to seek to (Cylinder 1, Head 0, Sector 18) without AutoOffset a
seek conmand would be issued with the following InstructionJParameter: ($0000,
$00, $12, $00).

Page 20

Send Restore

Send_Restore: : = ($05)

Instruotion_Parameter : : = <DataReoalIBrakeRelease)

DataRecal : : = ($40>

BrakeRelease : : = ($70)

The Send_Restore oonmand is used by the Host to ini tialize the servo
processor and to put the heads in a known location. This conmand is the same as
performing a Data/F ormat Recal exoept that the controller updates it' s
internal state to aocount for the new servo position.

Page 21

Set_Recovery

Set_Recovery : : = <$06)
Instruction Parameter:: = <ONIOFF)

ON :: = <$01>
OFF: : = <$00)

The exception handling characteristics of Widget approximate a binary set:
either Widget handles everything, or the Host system does. The conmand
• Set_Recovery' is the Host' s link with this protocol in that it is through this
instruction that the Host can gain control of the media. When Widget comes up
after being reset, it assumes control and sets Recovery to be ON. The Host
system must overtly change this state if it wishes to emulate a different
exception handling criteria. Once Recovery is OFF, the controller will always
fail in an operation if an exception occurs: the Host must assume
responsibili ty for ALL error handling.

Page 22

Soft Reset

Soft_Reset : : = <$01>

Instruction_Parameter: : = <NULL>

This command instructs the Widget firmware to restart its flow of execution
at its initialization point. The results should be the same as a power reset.

PlIge 23

Send Park

Send Park : : = ($08) - .

Instruction_Paramter :: = <NULL>

When the Host issues a Send_Park command to the controller the results are
that the heads are moved off the data surface and held very near the inside
diameter crash stop. The difference between this command and the

. Send_Servo_Command: Home, is that Home is performed 'open-loop' with the crash
stop as its reference point, while Send_Park is an access command to a specific
track. The net result is a fairly hefty savings of time.

Page 24

Diag_Read

Diag_Read : : = ($09>

Instruction_Parameter: : = «Sector>(SeqValue»

Sector : : = «0 .. 31»
SeqValue ::= «NewSector/lncSector><Long»

NewSector :: = $80 {selects 'Sector' as the sector to be operated on}
IncSector : : = $40 {increments the last sector value}
Long ::= $20 {if Long then the ECC syndrome will be ignored and the

checkbytes will be included at the end of the data}

The Diag_Read conmand is used to read the block on the disk pointed to by the
last seek address. The form of the returned data is exactly the same as that of
ProFile_Read or Sys_Read in that 4 bytes of Standard_Status precede the block
of data.

Page 25

Diag_ReadHeader

Diag_ReadHeader : : = <$OA>

Instruction_Parameter: : = «Sector><SeqValue»

Sector : : = «0 .. 31»
SeqValue : : = «NewSector I IncSector ><Long >)

NewSector :: = $80 {selects 'Sector' as the sector to be operated on}
IncSector :: = $40 {increments the last sector value}
Long ::= $20 {if Long then the ECC syndrome will be ignored and the

checkbytes will be included at the end of the data}

When the heads are positioned over an unknown location, or when it is
suspected that a block's header is shot, it is time to use the Dia9-ReadHeader
command. This instruction allows the host to 'suck-up' both whatever
information is residing in the block's header field as well as the data from
the block. The form of the result is:

Result:: = «Header {bytes/$OO: OS}>
(Gap {bytes/$06:0G}>
(Data {bytes/$OD:21F}»

Header : : = «HiCyl> (LowCyl> (HdSct> (-HiCyl> (-LowCyl> (-HdSct»

HiCyl :: = (Host significant byte of cylinder address>
LowCyl : : = <Least significant byte of cylinder address>
HdSct : : = <Bit7: 6 : Head address

BitS: 0 : Sector address>

-HiCyl :: = (ones-complement of HiCyl>
-LowCyl :: = (ones-complement of LowCyl>
-HdSct : : = (ones-complement of HdSct>

Gap : : = ($00>

Page 26

Diag_Write : : = <$08>

Instruction_Parameter : : = <NULL>

Sector : : = «0 .. 31»
SeqValue : : = «NewSector I IncSector><Long»

NewSector :: = $80 {selects 'Sector' as the sector to be operated on}
IncSector :: = $40 {increments the last sector value}
Long: : = $2~ {if Long then the ECC checkbytes are to be supplied at the

end of the write data}

This instruction allows the Host to write a block of data to the location on
the disk pointed to by the last seek address. Diag_Write is valid for all
states that the controller may wid up in, but is recommended that a Send_Seek
command precede the write command to ensure that the correct block will be
written.

Page 27

Auto Offset

Auto_Offset :: = <$OC>

Instruction_Parameter:: = <NULL>

This command is used by the Host to fine-position the heads after they are
on-track. The auto_offset function can also be implemented by using the
Send Servo Command instruction; the difference is that the controller will
update some internal information {remember, servo commands are transparent} as
well as select the correct head to offset off of {the Widget system uses head 1
only for fine positioning}.

Page 28

Read_SpareTable

Read_SpareTable :: = ($OD)

Instruction_Parameter: : = <NULL>

Reading {and writing} the Widget' s sparetable is an absolute must for
diagnostic purpose~ and if the Host wishes to emulate the controller. The
result of this instruction is identical to performing a ProFile_Read from
block -1 {$FFFFFE} and has the form:

Resul t : : = «Fence {bytes/$OO: 03} >
<RunNumber {bytes/$04:07}>
(Format_Offset {byte/$08}>
<Format_Interleave {by te/$09} >
<HeadPtr_Array {bytes/$OA:49}>
<SpareCount {by te/$4A} >
<BadBlockCount {by te/$4B} >
<BitMap {bytes/$4G:55}>
<Heap {bytes/$56:185}>
<Interleave_Map {bytes/$185:1A5}>
<CheckSum {bytes/$1A5: 1A7}>
<Fence {bytes/$1A8:1AB}>
<Zone_Table {bytes/$1AC:1C1}>
<Fence {bytes/$200:203}>)

Fence: : = «$FO> <$78> <$3C> <$1E>)

RunNumber :: = <32-bit integer>
This integer is incremented once each time the spare table is written to
to the disk. Because two copies are kept on the the disk... the RunNumber is
used to indicate which is the more recent of the two, should both
copies not be updated.

Format Offset:: = <0 .. NumberOfSectors>
Format_Offset is the number of physical sectors there are from index
mark until logical sector O.

Format Interleave : : = <0 .. 6>
This number is the interleave factor for this disk and is used in
calculating where each of the logical sectors are relative to actual
sector locations.

HeadPtr_Array :: = (ARRAV[O .. 63] of HeadPtr

HeadPtr :: = <Nil+Ptr)
Nil : : = <$80 {if Nil the end-of -chain} >

.'

Page 29

Ptr : : = <$00 .. $7F {address of next element}>
A Ptr is a 7 -bi t structure that I points I to a

specific location within the Heap. To arrive
at the actual index value within the Heap,
the Ptr must first be multiplied by 4 {the
length of each element}.

When a disk is formatted and being written to for the first time, each logical
block is assigned the first available physical block on the disk. Therefore you
would expect that LogicalBlock(O) would occupy PhysicalBlock(O), L(1) -->
P(1), etc. There are instances, however, when a block of data must be relocated
to anaother space on the disk that does not follow the original progression
(for example, the original space was defective). In order to 'find' these
relocated blocks in the future a record must be kept as to where all these
relocated blocks have been put. This record takes the form of 128 linked lists
having the form:

HeadPtr[n] --> LinkedList[n], where n ::= [0 .. 127]

The algorithm for deciding whether or not a logical block has been relocated
is to extract bits 10:16 from the LogicalBlockNumber and use it as an index
into the HeadPtrArray:

IF (HeadPtr[LogicalBlockNumber/bits 10: 16]. Nil)
THEN LogicalBlock has not been relocated
ELSE use HeadPtr []. Ptr to begin searching the chain for a matching

element {refer to the structure of ListElement for more detail}
IF no matching ListElement

THEN LogicalBlock has not been relocated
ELSE the element position in the Heap corresponds to the new

physical block location

SpareCount : : = <$00 .. $4B>

BadBlockCount : : = <$00 .. $4B)

BitMap: : = <ARRAV[$OO .. $4B] of Bits)
The bit map is used to keep a record of which spare blocks are
occupied.

Heap:: = <ARRAV[$OO .. $4B) of ListElement>

ListElement : : = «Nil +Used+Useable+Spr _ Type+Oata_ Type)
<Token>
<Ptr»

Used : : = <$40)
Useable : : = <$20>
Spr_Type :: = <SpareIBadBlock>

Spare : : = <$10>
BadBlock : : = <$00)

Data_Type:: = <OataISpareTable>
Data : : = <$02>

Page 30

SpareTable : : = <$08>

Token: : = <Bits 0: 9 of logicalBlock>

Interleave_Hap : : = <ARRAV [0 .. 31] of [0 .. 31] >
The Interleave_Hap is used to logical re-interleave the drive so that
lJJidget can be run optimally on any system without having different
manufacturing or formatting processes.

Cheek_Sum: : = <sum of all bytes in the spare table from the first fence to
beginning of this structure, in HOD-65536 arithmetic>

Zone_Table: : = <ARRAV[O .. NumberOfZones] of Zone_Element>

Zone_Element: : = <Offset_Direction+Offset_Hagnitude>

Page 31

Write _ SpareTable

Write_SpareTable :: = <$QE)

Instruction_Parameter: : = «$fO> ($78> ($3C> ($lE»

This command allows the Host to 'force' a new spare table on the controller,
and is executed just like any of the other write commands (data, in this case,
MUST conform to the structure presented in Read_SpareTable}. The data sent to
the controller is written to the two spare table locations on the disk.

Page 32

Format Track

Format_Track: : = <$OF)

Instruction_Parameter: : = «Passl}.lord»

Passl}.lord : : = «$FO> <$78> <$3C> <$1E»

The format conmand is used to:

1. Operate on the track that is currently beneath the heads - this
implies that the Host had best perform a Send_Seek and Auto_Offset
conmand prior top formatting a track.

2. New headers will be layed down in every sector of the track.

PlIge 33

Read Abort Status

Instruction_Parameter:: = <NULL>

Read_Abort_Status will return vaild data only AFTER the controller has
aborted (identified by Standard_Status. Byte1. BitO}. The form of the result is
a 16 byte string, and its contents are the contents of the controller's
registers at the time of the abort - with the exception of byte $OF, which is
the value of the Abort taken.

Page 34

Reset Servo

Reset_Servo: : = ($12>

Instruction_Parameter: : = (NULL>

Reset_Servo allows the Host to initialize the servo processor witho~t having
to power the device down. The controller will automatically reset the Servo,
set the baud rate at 57.6K, and check for valid initial conditions.

Page 35

Read Track

Read_Track:: = <$13>

Instruction_Parameter ::= «Sector><SeqValue»

Sector: : = «0 .. 31»
SeqValue ::= «NewSectorllncSector><Long»

NewSector : : = $80 {selects • Sector' as the sector to be operated on}
IncSector : : = $40 {increments the last sector value}
Long ::= $20 {if Long then the ECC syndrome will be ignored and the

checkbytes will be included at the end of the data}

Page 36

Write Track

Write_Track: : = <$13>

Instruction_Parameter: : = «Sector><SeqValue»

Sector : : = «0 .. 31»
SeqValue ::= «NewSectorllncSector><Long»

NewSector : : = $80 {selects I Sector I as the sector to be operated on}
IncSector : : = $40 {increments the last sector value}
Long ::= $20 {if Long then the ECC checkbytesare to be supplied at the

end of the write data}

This diagnostic command is used mainly to facilitate the Nisha FST program.
The entire track (as defined by the last Seek address, and beginning with
Sector or Last_Sector + 1 if NewSector or IncSector is set) is written. Data,
however is sent for only the first sector written (implying that the whole
track will be written with the same data pattern). This diagnostic command is
used mainly to facilitate the Nisha FST program.

pzsge 37

Systl!lll COIIJIII8nds:

System commands have been implemented for essentially two reasons:

1. It was important for Widget to add one more check on the CHD/BSY
handshake: namely the addition of a checkbyte following the conmand
string.

2. In order to increase the performance of the system without modifying
the hardware it was critical to introduce another level of parallelism
into the Host/Controller interface. Host of the reads for a specific
block on the disk are followed by a read for the next logically sequential
block. Therefore the conmand decoding and check byte comparison for all
but the first block has been suppressed into a multiblock-type conmand.
The implementation for this added parallelism is to send an extra
parameter with the (first) LogicalBlock indicating the number of blocks
to be read sequentially.

Page 38

Sys_Read

Instruction_Par ameter :: = «BlockCount> <LogicaIBlock»

BlockCount : : = <$01 .. $fF>
This parameter is the number of blocks to be read that follow
sequentially from LogicalBlock. It is assumed that one block
(LogicaIBlock) will be read.

LogicalBlock :: = <$000000 .. 009835>

Page 39

Sys_Write

Instruction_Parameter:: = «BlockCount) <LogicalBlock»

BlockCount : : = ($01 .. $Ff)
This parameter is the number of blocks to be read that follow
sequentially from LogicalBlock. It is assumed that one block
(LogicalBlock) will be read.

LogicalBlock : : = <$000000 .. 009835>

Page 40

Command Summary
ProFile_Commands:

ProFile_Read : : = «$00> <3 bytes LogicalBlock»
ProFile_Wri te : : = «$01> <3 bytes LogioalBlook»

Diagnostic_Commands:

Read Id : : = «$12> <$00> <$ED»
Read:=Controller :: = «$13> <$01 > <StatusRequest> <CheckByte»
Read_Servo_Status : : = «$13> <$02> <StatusRequest> <CheokByte»
Send_Servo_Conmand : : = «$16> <$03> <ConmandRequest> <CheckByte»
Send_Seek : : = «$17> <$04> <SeekAddress> <AutoOffset Flag> <CheokByte»
Send_Restore:: = «$13) ($05> (RecalType) (CheckByte»
Set_Recovery: : = «$13) ($06> (On/Off> (CheckByte»
Soft Reset : : = «$12) ($07> ($E6»
Send-Park:: = «$12> ($08> ($E5»
Diag:=Read : : = «$14) ($09> (Sector) (SeqValue> (CheckByte»
Diag_ReadHeader :: = «$14> <$OA> <Sector> <SeqValue> <CheckByte»
Diag_Write :: = «$14) ($08> (Sector) (SeqValue> (CheckByte»
Auto Offset:: = «$12> ($OC> <$E1»
Read:=SpareTable : : = «$12> ($OD) ($EO»
Write_SpareTable :: = «$16> ($OE> <PassWord> (CheckByte»
Format_Track:: = «$16) ($OF) (PassWord> (CheckByte»
Read Abort Status : : = «$12> <$11> <$DC»
Reset Servo: : = «$12> ($12> ($DB»
Read_Track:: = «$14> <$13> <Sector> (SeqValue> (CheckByte»
Write_Track:: = «$14) ($14> (Sector) (SeqValue> (CheckByte»

System_Commands:

Sys_Read : : = «$26> ($00) (BlockCount> (LogicalBlock) (CheckByte»
Sys_Write :: = «$26) <$01> <BlockCount> <LogicalBlock> <CheckByte»
Sys_WrVer : : = «$25) ($02) <LogicalBlock) (CheckByte»

PassWord: : = «$FO> ($1B) ($3C) ($1E»

Abort Status Variables

There are occasions when the Nisha Controller will detect that'something is
radically wrong with the Nisha SubSystem, i. e., the ram on board the controller goes
on vacation, or the positioning system gives up the ghost, etc. In one of these
cases the controller will abort its current instruction and return control to the
Host, hopefully with enough information that the Host can make an intelligent
decision concerning the state of Nisha.

The Host can read some information concerning the abort that the controller took
by requesting Read_Abort_Status. This command returns a result that is 20 bytes
long: 4 bytes of standard status and 16 bytes of abort status. The contents of the
abort status are dependent upon the actual abort taken, and is determined by
examining the contents of byte 16: the value of the abort taken.

$01: Illegal interface response, or Host Nak
Byte/$09: Response byte that caused abort

$02: Illegal Ram Bank select
Byte/$OO: Bank number

$03: Format Error: illegal state-machine state
Byte/$OA: state of state-machine at time of abort

$04: Illegal Rom Bank Select
Byte/$OO: Bank number

$05: Illegal interrupt or DeadMan_Timeout
Bytes/$OA: OB: Address of routine at time of timeout

$06: Format Error: Error while writing sector
Byte/$09: Error status from FormatBlock

$08: Cotnmand Check byte Error
$09: ProFile or System command attempted while Self Test Error
$OA: Illegal Command
$OB: Unrecoverable Servo Error while reading
$OC: Sparing attempted on non-existent spare block
$00: Sparing attempted while sparetable full
tOE: Deletion attempted of non-existent bad block
$OF: Illegal exception instruction
$10: Write buffer overflow
$11: Unrecoverable servo error while writing
$12: Servo status request sent as Servo command
$13: Restore Error: Non-Recal parameter

Byte/$OO: Value of illegal parameter sent
$14: Illegal password sent to Write_SpareTable_Command
$15: Illegal password sent to Format command
$16: Illegal format parameters

Bytes/$09:0A: illegal parameters
$17: Illegal password sent to Init_SpareTab1e_Command
$18: Zero block count sent to System_Command
$19: Write Error: Illegal state-machine state ..

Byte/$OA: State-machine state at time of abort
$1A: Read Error: illegal state-machine state

Byte/$OA: State-machine state at time of abort

$lB: ReadHeader Error: illegal state-machine state
Byte/$OA: State-machine state at time of abort

$lC: Request for illegal logical block
Bytes/$OO: 02: logical block number

$10: External Stack overflow
Bytes/$04:07: stack history

$lE: Search for SpareTable failed
$lf: No sparetable structure found in sparetable
$20: Update of sparetable failed
$21: Illegal sparecount instruction

Bytes/$09: value of illegal instruction
$22: Unrecoverable servo error while seeking
$23: Unable to transmit conmand to servo
$24: Unable to receive status from servo
$25: Unable to find any headers after OataRecal
$26: Servo error after servo reset

Byte/$OA: value of controller status port
$27: Servo conmunication error after servo reset
$28: Scan attempted without sparetable
$29: Illegal Bank Call
$2A: Illegal Bank Return
$2B: Illegal Sector value detected in LocateSector
$2C: Illefal Sector value detected while remapping
$20: Control/Status register in GA is non-functional
$2E: Read gate not active
$2F: Read always active
$30: Statemachine single step error
$31: Data compare mismatch in r/w self test
$32: SpareTable Ptr is addressing out-of-bounds

. $33: New Spare not found by Overlap

