
Rigid Disk Interface Spec
OC/J ~ec- /) 2C(

c;- /1 -:r /s-~
Page 1

L. Physical Interface - Pinout and Sienal Definition

The pinout of the Macintosh DB 19 connector is defined below. The third column defines the use
of those pins for this interface.

~ Macintosh name PCP usage Comment Macintosh connection

1 GND GND Cold ground
2 GND GND Cold ground
3 GND GND Cold ground
4 GND GND Cold ground
5 -12v N/C DCD to be self-powered!
6 +5v N/C DCD to be self-powered!
7 +12v N/C DCD to be self-powered!
8 +12v N/C DCD to be self-powered!
9 N/C N/C
10 PWM N/C
11 PHO PhaseO PhaseO-2 used for handshake IWM
12 PH1 Phase1 IWM
13 PH2 Phase2 IWM
14 PH3 Phase3 Used to allow multiple DCD's IWM
15 IWrReq N/C
16 HDSel N/C VIA/6522
17 IENBL2 IEnable IWM
18 RD Read Data Also connected to Sense on IWM IWM
19 WR Write Data IWM

Note that all DCD lines are outputs (from the perspective of the Macintosh) except ReadData, which
is input.

WriteData (from the point of view of the Macintosh) provides serial data transmission at 489.58K
bps (2.042 microsecond data cell). This is because the Macintosh clock is 7.8333 instead of a full
8.0 MHz. The high-order bit of each byte is always 1--a net data rate of 428.38K bps. ReadData
is bi-modal as a function of PhaseO-2 (described below). In read mode ReadData functions in
symmetric fashion to WriteData. In Sense mode it has a 0 or 1 "constant" value. For further
information see Dwg. #343-0041-B.

As described below, the eighth bit of each data byte is collected into a group (7 bits to a group) and
then transmitted separately (with the high-order bit set as required by the IWM).

II. Handshake and Data Transmission

Data is transmitted on the WriteData and read from the ReadData lines. The most significant bit
(MSB) of each byte transmitted by the IWM is always set (this is a requirement of the IWM chip).
For terminology, we will therefore distinguish between "data bytes" and "transmitted bytes"; data
bytes have a full eight bits of information while transmitted bytes have sevenbits of information
with the MSB set. In order to send seven data bytes, eight transmitted bytes must be sent. We
therefore talk about a "group" of seven data bytes (or eight transmitted bytes).

The least significant bit (LSB) of each data byte in a group is collected into the seven low order bits
of an eighth byte (which will become the eighth transmitted byte). The seven MSB's of each data
byte are shifted right one bit. The MSB of all of these eight bytes are then set, becoming a "group"
of eight transmitted bytes. Figure 1 on the next page shows some example data.

Apple Confidential

Rigid Disk Interface Spec Page 2

Data Bytes

$31 = 00110001-------.

$32= 0011001Q----.....

$33= 00110011---

$34= 0011010Q----

$35 = 0011 01 01~
$36= 00110110

$37 = 0011011;:~
1,1010101,

MSBJ '
LSB's

Transmitted Bytes

MSBl

---t.~ 10011000 = $98

---t.~ 10011001 = $99

---t.~ 10011001 =$99

---t.~ 10011010 =$9A.

---t.~ 10011010 = $9A

--,","",." 10011011 =$98

--,","",." 10011011 =$98

... =$05

Figure 1.
Transforming 7 data bytes into 8 transmitted bytes.

When sending data from the Macintosh to the DCD, the LSB-byte is sent first, followed by the
other seven transmitted bytes, in order. Using the sample data from figure 1:

$DS $98 $99 $99 $9A $9A $9B $9B

When sending data from the DCD to the Macintosh, the LSB-byte is sent last, following the other
seven transmitted bytes, in order. Using the sample data from figure 1:

$98 $99 $99 $9A $9A $9B $9B $DS

The phase lines plus the sense status of ReadData are used during startup to determine the presence
of a drive and its type. Subsequently they are used to handshake between the Macintosh and the
DeD to coordinate data transmission. Note that the Macintosh acts as the master. The states are
shown in the table below. Note that the phase lines can only change one at a time--one can't go
instantly from state 0 to 3, for example .

.s..ta1J:. Phase2 Phase) PhaseQ Interpretatjon

o
1
2
3
4
5
6
7

o
o
o
o
1
1
1
1

o
o
1
1
o
o
1
1

o
1
o
1
o
1
o
1

HOST asserted; HOFF asserted; ReadData in sense mode for /HSHK
HOST asserted; ReadData in data mode
Idle; ReadData in sense mode for /HSHK
HOST asserted; ReadData in sense mode for IHSHK
RESET asserted (DeD performs equivalent of power-up reset)
ReadData in sense mode; DCD must set ReadData to 0 (unused in Sony)
ReadData in sense mode; DCD must set ReadData to 1 (# sides in Sony)
ReadData in sense mode; DCD must set ReadData to 1 (It drive connected")

After startup the Macintosh will transition through states 6, 7, and 5 to determine that a drive is
connected and that it is a DCD as opposed to a 1- or 2-sided Sony.

In fact, it is possible to connect more than one DeD to a Macintosh if they have the proper
"flow-through" circuit (or if a T-connector with such a circuit is employed). As noted in section I,
the Phase3 line is reserved for connecting to multiple DeD's with the possibility of an external
Sony drive at the end of the chain. Figure 2 on the next page shows a possible flow-through circuit
(courtesy of Gary Marten).

KBY - 4/11 Apple Confidential

Rigid Disk Interface Spec

Mac
.----..,14

OeD

14 14

--.... 4

a 6

15

Figure 2.
Flowthrough Schematic

Next OeD

14.-----

6

Page 3

As is shown in Figure 2, whenever the IENBL line is raised (i.e., de-asserted) then the flip-flop in
the flowthrough circuit will clear, thus clearing any flowthrough circuits down the line. When the
IENBL line is lowered (asserting it), then the first DCD is enabled. At this time, the Macintosh will
go through the ID states (6, 7, and 5) to determine if the device selected is a DCD or an external
Sony drive. If it is a DCD, then the Macintosh may toggle Phase3 to enable the next device in the
chain (and disable the current DCD). Once again, the Macintosh should check the ID states to see if
another device exists, and if so, what kind. This can be repeated through all the devices chained
together. Note: Any DCD connected to the Macintosh must support this flowthrough circuit so
that the Macintosh does not assume there is an infinite sequence of DCD's connected. If a DCD
does not support additional chaining, it must support "phantom" states (i.e., returning a 1 for all
states 5, 6, and 7) after the "next" DCD has been selected. In this way, the Macintosh can know it
has reached the end of the chain.

Following the startup handshake, states 0-3 are used to transmit data between the Macintosh and
DCD. As described in the next section, transmissions are always paired--Macintosh to DCD
followed by a response from the DCD to Macintosh. Thus it is always clear which is the reader
and which is the writer.

Macintosh to DeD Handshake

A diagram of the Macintosh-to-DCD handshake is shown in figure 3 on the next page.

When the Macintosh wants to transmit it transitions to state 3 via the pahse lines (asserting that it
wants to send a command) and polls ReadData (the IWM Sense bit). When it goes low indicating
that the DCD is ready to receive, the Macintosh transitions to state 1 and sends a sync byte (either
$AA or $96) followed by transmitted bytes on the WriteData line. Typically this continues to the
end of the transmission at which point the Macintosh waits for the last transmitted byte to go out,
and then transitions to state 3 in order to sense the DCD's /HSHK line again. When it goes high,
the Macintosh transitions to the idle state, state 2.

KBY - 4111 Apple Confidential

Rigid Disk Interface Spec Page 4

HOST

IHSHK

HOFF

Data transmitted data >--+-~ transmitted data ~-+---

State 2 1 1,3 1 2

Figure 3.
Macintosh to DCD Handshake.

If the Macintosh wants to interrupt the transmission (e.g., to service the see chip) it sets the phase
lines to state 0 (HOFF asserted). After completing the transmission of the current group of eight
transmitted bytes, WriteData becomes invalid. The DeD indicates its acknowledgement of the
Hold-off by de-asserting ReadData (/HSHK). When the Macintosh is ready to resume
transmission it cycles briefly through state 1 to state 3, waits for IHSHK, transitions to state 1,
sends the same sync byte as at the beginning of the transmission, and then restarts transmitting with
the group that was interrupted. Note: If interrupts are occuring with high frequency, then it is
possible for the Macintosh to do a hold-off in the middle of the same (restarted) group over and
over again, potentially forever.

In order to abort a command, the Macintosh must do a hold-off first (by transitioning to state 0) and
then de-assert both HOST and HOFF by transitioning straight to state 2. The only place in which a
command may not be aborted is when the DeD is waiting for a sync byte.

DeD to Macintosh Handshake

HOST

IHSHK

HOFF

Data transmitted data >--+-+-< transmitted data >--+--

State 2 ,1 o 1,3 1 ,2

Figure 4.
DCD to Macintosh Handshake.

When the DeD wants to transmit (a response to a command) it asserts IHSHK. When the
Macintosh senses this on ReadData (sense mode) it transitions briefly through state 3 to state 1 and
begins reading data (from ReadData in data mode). Following reception of a sync byte (which is
always $AA) actual data is received until /HSHK is de-asserted. The Macintosh transitions briefly
through state 3 back to the idle state 2.

If the Macintosh must interrupt its reception it transitions to state 0 (HOFF asserted) and can then

KBY - 4/11 Apple Confidential

Rigid Disk Interface Spec Page 5

ignore the rest of the group in progress. The DCD de-asserts /HSHK following its transmission of
the last byte of the group. When the Macintosh is ready to resume it de-asserts HOFF,
transitioning briefly through state 1 to state 3. When /HSHK is asserted it transitions to state 1
where it reads a sync byte ($AA again) and then restarts reading data with the group that was
interrupted. Note: If interrupts are occuring with high frequency, then it is possible for the
Macintosh to do a hold-off in the middle of the same (restarted) group over and over again,
potentially forever.

III. Command. Status and Data Formats

Provided here are the formats for Status, MultiBlock Read, and MultiBlock Write. The
synchronizing bytes ("sync-bytes") are shown in bold-face before the data bytes (NOTE: since the
sync-bytes are sent "raw" over the IWM, they will always have the hi-bit set).

For the status byte that is returned on some commands, only three bits are defined. The most
significant bit indicates "operation failed". The Macintosh will only retry or fail when this is set.

Const
{status bits}
stat_ opfailed = $80;
stat softerr = $40;
stat=: warn = $20;

The "softerr" bit indicates some other exceptional condition. This would indicate to a user
diagnostic that further information should be queried from the drive. Some examples of
exceptional conditions that are not fatal are 1) a block was spared during the last operation, 2) a
recoverable seek error occured, or 3) a recoverable ECC error occured.

The "warn" bit indicates that the condition of the disk currently is in doubt. Currently, the only
condition that would set this bit is having less than five spare blocks. The operating system can
take this warning and notify some application (perhaps the Finder) to post a warning to the user.

MultiBlock Read

Mac AA I 00 I#blksl block (h,m,l) pad chk
;:::

OeD AA I 80 I #blks I stat I pad I pad I pad I data chk or

OeD AA 80 #-1 I stat I pad I pad I pad I data chk

•
•
•

OeD AA 80 1 I stat I pad I pad I pad I data chk

If checksum error then NAK

oeD AA I 7F I pad I pad I pad I pad I pad I

KBY - 4/11 Apple Confidential

Rigid Disk Interface Spec Page 6

Note that the command includes only one byte for the block count. The (possibly multiple)
reponses will decrement the sequence #, starting at the number of blocks. For example, if the
Macintosh requests 10 blocks, the sequence numbers will go from 10 to 1.

~
MultiBlock WritelWrite-verify '- 0"2..

Mac 96 01 I #blks I block (h,m,l) pad data chk

DeD AA 81 I #blks I stat I pad I pad I pad I chk I or --------,

Mac 96 41 #-1 I pad I pad pad pad data chk

DeD AA 81 #-1 stat pad pad pad chk or --------------~~~

•
•
•

Mac 96 41 1 I pad I pad pad pad data chk

DeD AA 81 1 I stat I pad I pad I pad I chk or --------------~~~

If checksum error then NAK

DeD AA I 7F I pad I pad I pad I pad I pad chk

In this case, when the block count is greater than 1, the sequence numbers start at one less than the
block count and continue down to one this is because the first block (sequence number "count") is
included with the command. The fIrst block of data is sent with the command in order to optimize
one-block writes, of which there seem to be a lot in the Macintosh.

Note that there are three bytes of padding between the sequence number and the write data when
sending more than one block. This is so that the data will line up the same during each
write-transmission, which should make it easier for coding.

Status

KBY - 4/11 Apple Confidential

Rigid Disk Interface sr;:; 5~tr"
I AA I 03 7 ~d pad I pad I pad I pad I chk

Page 7

AA 83 I pad I stat I pad I pad I pad I identity block chk
or]

If checksum error then NAK ___ -----------.......

AA 7F I pad I pad I pad I pad I pad I chk

The identity block need be only 288 bytes long, but a total of 532 bytes are still sent. The
manufacturer may place any other information in the last 244 bytes. Assuming a truly "packed"
structure, the ID block can be defined as follows:

CONST
{ Device Characteristics}

Mountable
Readable
Writable
Ejectable

TYPE
byte
tbreebytes

ID _Block = packed record
Device_Type:
Device Manuf:
Device Character:
Num Blocks:
Num _Spares:
Num BadBlocks:
Manuf Reserved:

~con:

Filler:
end;

KBY - 4/11

= $80;
=$40;
=$20;
= $10;

= O .. $FF;
= O .. $FFFFFF;

word;
word;
byte;
threebytes;
word;
word;

Write ""protected
Icon Included
Disk In Place

packed array [0.51] of byte;
packed array [0.255] of byte;
packed array [0 .. 191] of byte;

=$08;
=$04;
=$02;

{ Device type }
{ Device Manufacturer, Apple = I}
{ Characteristics of device }
{ Number of blocks on device}
{ Number of spare blocks left}
{ Number of bad blocks currently}
{ Reserved for manufacturer info}
{ Icon + mask for device}
{Filler bytes to make it 512 bytes}

Apple Confidential

Data Transmission From Drive to Mac

Mac

Holdoff ___________

Rene

------------~~ dam >)--------~ data

t2 I t3 I t4

to - Rene will wait forever for Mac to respond to handshake.

t1 - Rene will send sync within 33us.

t7

>~---

I t8 I t9

t2 - Mac may assert holdoff anywhere in a group. That group will be ignored and will not be included in the checksum.

t3 - Rene will acknowledge the holdoff immediately after the last byte of the group is sent

t4 - Must be a minimum of l00us. Mter that, Rene will wait forever for holdoff to de-assert.

t5 - Rene will respond to de-assertion of holdoff within 18us after t4.

t6 - Transmission starts with group that was interrupted by holdoff within 34us.

t7 - Dam transmission time is dependent on the number of groups sent (8 bytes * byte time * number of groups).

t8 - Rene signals end of transmission within 3us of last byte loaded into IWM. Mac will received it one byte time later.

t9 - Rene will wait forever for Mac to de-assert.

Data Transmission From Mac to Drive

Mac

Holdoff ___________1

Rene

Data --------~ data)>--------~ data)>-----

I t8 I t9 I t2 I t3 I t4 t7

to - Rene normally responds to Mac in 14us, but may take as long as 2 seconds if doing self test.

t1 - Rene will wait forever for a valid sync byte.

t2 - Mac may assert holdoff anywhere in a group. That group will be ignored and will not be included in the checksum.

t3 - Rene will acknowledge the holdoff immediately after the last byte of the group is received.

t4 - Must be a minimum of 70us. After that, Rene will wait forever for holdoff to de-assert.

t5 - Rene will respond to de-assertion of holdoff within 14us after t4.

t6 - Same as t1. Transmission starts with group that was interrupted by holdoff.

t7 - Data transmission time is dependent on the number of groups sent (8 bytes * byte time * number of groups).

t8 - Rene acknowledges end of transmission within 3us of last byte received.

t9 - Rene will wait forever for Mac to de-assert.

Rene Command Format

Read Commands haue the format:

~ 7 bytes ... J4
I c.d I [eo.and Pcraetrs [+ Pad J J I Olk I

Read Buff.,..

Write Commands haue the format:

~------ 7 btaltM ------I~ ... ~--

I c.d I [eo.and Pcraeters 1+ Pad) J I

I Aspns I Stat 1 I Staut Stat31 Stat4 [~] Chk I

c.d - a i~ I'UIbr for .ach ~ AIM can do.
Pad - 0-& bytes UHd to pad a block out to a -..1 tipl. of 7 bytes.
Chk - a ~ on the 8'1tl,.. block of data being trGnsfrred.
Ftspns - COMand response b\ltFCId+S80.
Stab - standard .tatus bytes reUrned by al.ost all c.OMGnds.

System Commands:

Read Block I too I tnt I Block (H,",L) ~1:ri(~ Chk I
Ior-i te Block Block (H,t1,L) Ior-i te Buffer

Diagnostic Commands:

Read Device ID

Controller Status

SerYo Status

Servo CoMand $05 CoMand bt.Ites ~C~~:.:~ Chk

Seek to6 I Track (H,L) I Head I Sect IFI~ I Chk

Data Recall
Brake Ra lease

SetRecoYerv

Soft Reset

$OR m~_~:iiff_~~ Chk

D i CQ"OSt i c Read scm I Sect I _~r""'~~ ~ Flags ~ ~,~,,' ~, Chk

Read Header

Diagnostic Urite Uri te Buffer

B.Jto Offset

Read Spcre T com I e

Uri te Spcre Table Uri te Buffer

FOI'Wlt Track $11 $FO $78 sac $1E ~~!.{~~(~ ~(~~}~ Chk

~t Status

Servo Reset

Diagnostic Commends (new stuff):

Read Track

~it.e .. ffer

