
o

o

o

o

o

DOMA~N Biruo]e~ aRlo]

l~b~aw~afi1 ReferreUllce

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 004977
Revision 02

Copyright © 1987 Apollo Computer Inc.
All rights reserved. Printed in U.S.A.

First Printing: August, 1984
First Revision: July, 1985
Second Revision : January, 1987

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and WPS are trade
marks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAIN/IX, DOMAIN/La
ser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, DSEE, GMR, and GPR are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information contained in this publi
cation without prior notice, and the reader should in all cases consult Apollo Computer Inc. to determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE PRODUCTS AND
THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRIT
TEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO STATEMENTS RE
GARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS
DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE,
OR GIVE RISE TO ANY LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSE
QUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR
RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC.
HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND PROPRIE
TARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

r
",-,-,

o

o

o

o

o

Preface

This manual describes the binder (BIND), the librarian (LBR), and installed libraries (INLIB, etc.).
We've organized this manual as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Appendix A

Appendix B

Appendix C

Appendix D

Related Manuals

Explains the program development process on a DOMAIN system. Here,
we introduce the binder, the librarian, installed libraries, and the loader.

Describes the syntax of the binder utility.

Describes the syntax of the librarian utility.

Details installed libraries and explains how to use the INLIB utility.

Lists some of the binder warning and error messages, and provides possi
ble remedies.

Lists some of the librarian warning and error messages, and provides pos
sible remedies.

Explains all the section attributes.

Provides a tutorial session using various common binder and librarian op
tions. The programs used in the session can be found in an on-line direc
tory.

The following language manuals should be used in conjunction with this manual:

• The DOMAIN Pascal Language Reference (000792).

• The DOMAIN FORTRAN Language Reference (000530).

• The DOMAIN C Language Reference (002093).

Problems, Questions, and Suggestions
We appreciate comments from the people who use our system. In order to make it easy for you to com
municate with us, we provide the User Change Request (UCR) system for software-related comments,
and the Reader's Response form for documentation comments. By using these formal channels you make
it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System Command
Reference. Refer to the CRUCR (CREATE_VSER_CHANGE_REQVEST) Shell command description. You
can view the same description on-line by typing:

iii Preface

$ HELP CRUCR <RETURN>

For your documentation comments, we've included a Reader's Response form at the back of each manu- ~

al. (./

Documentation Conventions
Unless otherwise noted in the text, this manual uses the following symbolic conventions.

boldface

non boldface

italicized

output

color

<RETURN>

()

Bold, uppercase words or characters in formats and command descriptions repre
sent commands or keywords that you must use literally. Letters in uppercase
boldface must be used, but letters in lowercase boldface are optional. For in
stance, consider SIGnal. Since the word is boldfaced, it is mandatory. The ar
rangement of uppercase and lowercase letters indicates that the word can be ab
breviated to SIG.

Words that are neither boldfaced, nor italicized indicate a part of the expression
that you must supply, but you do not supply it literally. For instance, consider
pathname. Here, you must enter an argument. You would not enter the word
"pathname," you would enter a pathname instead.

Italicized words are optional arguments.

Typewriter font words in command examples represent literal system output or
pathnames.

Words printed in colored ink represent sample user input.

A word enclosed in angle brackets indicates a key on the keyboard. For exam
pIe, <RETURN> symbolizes the RETURN key.

In examples, parentheses enclose comments.

Horizontal ellipsis points indicate that the preceding item can be repeated one or
more times.

Vertical ellipsis points mean that irrelevant parts of a figure or example have been
omitted.

Summary of Technical Changes
We last revised this manual for AEGIS SR9.0. Since then, we've reorganized the manual and improved
its format. The LBR and INLIB utilities have not changed technically since SR9.0; however, we've made
the following changes to the binder since then:

• We've added a new -INLIB/-NOINLIB binder option. The -INLIB option is an alternative to the
INLIB utility.

• We've added a new -ENTRY binder option which allows you to specify a nondefault program start
ing address.

• We've added a new -ALLKEEPMARK option which preserves the marks on global symbols.

• We've added a -MERGEBSS binder option which merges all C global symbol sections into one sec
tion named BSS$.

Preface iv

C

c

c

C,'I

o

o

o

o

o

o If you specify an unrecognized option in interactive mode, the binder treats it as a warning, rather
than an error.

o The -BINARY option no longer allows the output binary file to begin with a hyphen (-).

• We increased the maximum number of sections per module from 2048 to 3072. This primarily
benefits C programmers (the C compiler creates a section for each global variable).

o When the binder cannot find or read a binary input file, it no longer prints out two different path
names in the warning or error message.

We've used changed bars to mark technical changes to the utilities since SR9.0.

v Preface

C

('
'--_.- '

CI

o Contents

Chapter 1 Program Development on the DOMAIN System

1.1 Program Development -- An Overview '.' . 1-1
1.1.1 The DSEE System .. 1-1

1.2 The Compilers . 1-1
1.3 The Binder .. 1-1
1.4 The Librarian and Library Files ... 1-1
1.5 Installed Libraries 1-1
1.6 The Loader .. 1-1
1.7 Limits and Restrictions 1-1

o Chapter 2 How to Use the DOMAIN Binder

2.1 When to Use the Binder ... 2-1
2.2 How to Invoke the Binder 2-1

2.2.1 Multilevel Binding .. 2-2
2.2.2 Spreading a Binder Command Over Several Lines 2-2
2.2.3 Comments .. 2-3
2.2.4 Errors ... 2-3

Undefined Global Symbols Errors ... 2-4

o 2.3 Binder Option Summary .. 2-4
2.4 Detailed Descriptions of Each Binder Option ; 2-6

-ALIGN ... 2-7
-ALLRESOL VED .. 2-8
-BDIR ... 2-9
-BINARY .. 2-11
-END ... 2-12
-ENTRY ... 2-13
-EXACTCASE .. 2-14
-GLOBALS ... 2-15

o -INCLUDE ... 2-17
-INLIB, -NOINLIB .. 2-19
-LOCALSEARCH, -NOLOCALSEARCH 2-22
-LOOKSECTION, -NOLOOKSECTION, -MARKSECTION, -UNMARKSECTION 2-25
-MAKERS ... 2-27
-MAP ... 2-28
-MARK, -ALLMARK, -ALLKEEPMARK, -UNMARK, -ALLUNMARK 2-31
-MERGEBSS ... 2-34
-MESSAGES, -NOMESSAGES .. 2-35
-MODULE ... 2-36
-MULTIRES, -NMUL TIRES, -NOMUL TIRES 2-37
-QUIT ... 2-38
-READONL YSECTION ... 2-39
-SECTIONS .. 2-40
-SET_VERSION ... 2-42
-SORTLOCATION, -SORTNAMES ... 2-43

o -SYSTEM .. 2-44
-SYSTYPE ... 2-45
-UNDEFINED, -NUNDEFINED, -NOUNDEFINED 2-46
-XREF .. 2-47

vii Contents

Chapter 3 How to Use the Librarian

3.1 Invoking the Librari.an ... 3-1
33. 11'21 COredatingfaELibrat:Y File: Examples ... 33- 11 C,
.. r er 0 xecu Ion -

3.1.3 Spreading a Librarian Command Over Several Lines . 3-1
3.1.4 In-Line Comments ... 3-1

3.2 Errors and Warnings ... 3-1
3.3 How the Binder Scans Library Files .. 3-1
3.4 Program Start Address . 3-1
3.5 Detailed Descriptions of Each Librarian Option 3-1

-DELETE .. 3-6
- EXTRACT ... 3-7
-LIST ... 3-8
-MESSAGES, -NaMES SAGES .. 3-10
-QUIT ... 3-11
-REPLACE .. : .. 3-12
-SYSTEM, -NOSYSTEM ... 3-13

Chapter 4 Installed Libraries c
4 .1 User-Defined Installed Libraries ... 4-1
4.2 System-Defined Installed Libraries ... 4-1
4.3 System-Defined Global Libraries ... 4-1
4.4 The User-Defined Global Library .. 4-1

4.4.1 Initializing Static Data in The User-Defined Global Library 4-1
4.5 Object Files Installed With the -INLIB Binder Option 4-1
4.6 Multiple Global Definitions in Installed Libraries . 4-1

Appendix A Binder Error and Warning Messages

Appendix B Librarian Error and Warning Messages

Appendix C Section Attributes

Appendix D Sample Program Development C~
D.l Sample Source Code .. D-l
D.2 Sample FORTRAN Program .. D-l
D.3 Sample Pascal Program .. D-l
D.4 Sample C Program .. D-l
D.5 Compiling ... D-l
D.6 Possible Program Development Paths ... D-l

D.6.1 Path 1: Binding .. D-l
D.6.2 Path 2: Creating a Library File, Then Binding D-l
D.6.3 Path 3: Using the INLIB Utility .. D-l

r , I ,--/

Contents viii

Illustrations

0
Figure Page

1-1 The Interaction of Program Development Utilities 1-2
2-1 -NOLOCALSEARCH Option. Beginning of Search. 2-23
2-2 -NOLOCALSEARCH Option. End of Search 2-23
2-3 -LOCALSEARCH Option. End of Search ' 2-24
D-1 Code Stored in File GEOSHAPES.FTN D-2
D-2 Code Stored in File MATH 1. FTN .. D-2
D-3 Code Stored in File MATH2.FTN .. D-2
D-4 Code Stored in File MATH3.FTN .. D-2
D-5 Code Stored in File GEOSHAPES.PAS D-3
D-6 Code Stored in File MATH1.PAS .. D-3
D-7 Code Stored in File MATH2.PAS .. D-4
D-8 Code Stored in File MATH3.PAS .. D-4

0
D-9
D-10
D-11

Code Stored in File EXTERNAL_ROUTINES. PAS D-4
Code Stored in File GEOSHAPES.C .. D-5
Code Stored in File MATH1.C ... D-5

D-12 Code Stored in File MATH2.C ... D-5
D-13 Code Stored in File MATH3.C ... D-5

Tables

Table Page

D-1 Compiling the Source Code .. D-1

o

o
ix Contents

c

c

o

o

o

o

o

Chapter

p1~ogrram Deve~OpmeU1~ OU1
~~e DOMA~N Sys~em

1

This chapter is a general introduction to program development on your DOMAIN system. Here, we de
scribe the role each that of the following programs and utilities plays in program development:

• The Compilers

• The Binder

• The Librarian

• Installed Libraries

• The Loader

If you want to know how to operate the compilers, see the appropriate language manuals (listed in the
Preface). To learn how to use the binder and the librarian, see Chapters 2 and 3, respectively, of this
manual. In Chapter 4 we detail installed libraries and the use of the INLIB utility. We describe the
loader in Chapter 1.

1.1 Program Development -- An Overview
Describing exactly how you should develop a DOMAIN FORTRAN, Pascal, or C program is not a trivial
task, as there are many program development paths for you to choose from. However, the start of pro
gram development is always the writing of source code. When writing source code, you can put it all into
one file, or you can spread it out over several files. After writing the source code, you must compile each
file separately. The compiler produces an object file, which is a file (usually with the filename extension
.BIN) that contains one or more object modules. (An object file created by the C or Pascal compiler al
ways contains one object module; an object file created by the FORTRAN compiler can contain one or
more object modules.) An object module contains machine language code and data in a form that can be
used by the binder, the librarian, INLIB, or the loader. You can do the following with an object file:

• In some cases, you can execute or debug the object file directly. However, in other cases, you
won't be able to execute or debug an object file until you use the binder to bind it with other ob-

1-1 Introduction

ject files. (Chapter 2 specifies the cases in which you must bind.) The binder creates an output
object file which can be used like any other object file. In fact, you can use the output object file
as an input file to a subsequent binder command.

• You can use the librarian to create a library file out of one or more object files. You can use a li
brary file as input to the binder or as input to another librarian command.

• You can use INLIB to install an object file as an installed library. (We explain what an installed
library is later in this chapter.)

Figure 1-1 illustrates the interaction of the various utilities. In the upcoming sections, we take a closer
look at each of the program development components on your DOMAIN system.

Source a Compilel Object
Code ~ File

BIND
Source a Compilel Object ~ ~

Object Code ~ File File

LBR Library
~

f-

Source a Compilel. Object
Code ~ File f-

Object I-
File

Loader Executing
~ Program

Library I---- Object
File

f--- INUB Installed
RINn O~ect ~ Library f-----

~ ile

Object
File I----

BIND
JIIII"'"

Library I---

Object
File t--

System
Installed I--

Library
Library f---

Figure 1-1. The Interaction of Program Development Utilities

Introduction 1-2

c

c

c

o

o

o

o

o

1.1.1 The OSEE System
In addition to the traditional programming development scheme shown in Figure 1-1, you can also use the
DOMAIN Software Engineering Environment (DSEE) system to develop DOMAIN programs. The DSEE
package is a support environment for software development. DSEE helps engineers develop, manage, and
maintain software projects; it is especially useful for large-scale projects involving a number of modules
and developers. You can use DSEE for:

o Source code and documentation storage and control

• Audit trails

o Release and Engineering Change Order (ECO) control

o Project histories

• Dependency tracking

• System building

In this chapter, we describe a traditional program development cycle; the DSEE product provides some
sophisticated enhancements to this cycle. For information on the optional DSEE product, see the DO
MAIN Software Engineering Environment (DSEE) Reference.

1.2 The Compilers
If you've written source code without errors, a compiler will create an object file. In this section, we con
centrate on two aspects of object files that are particularly relevant to program development.

First consider global symbols and external references. A global symbol is a definition that can be ac
cessed by code in another object file. A global symbol can be a subroutine name or a common block
name in FORTRAN. Also, a global symbol can be the name of an external procedure or external variable
in Pascal or C. An external reference is an attempt by a piece of code in one object file to access a
global symbol defined in another object file. A compiler cannot resolve external references because it
does not read anything other than the source code it is compiling. Therefore, a compiler simply flags the
external reference and waits for the binder or loader to match it with a global symbol.

The second compiler concept worth noting is the section. A section is a named area of code or data that
shares a set of attributes. An attribute is an instruction to the binder, the loader, or INLIB to create or
execute an object file in a particular way. For example, a section can be made -READ ONLY to protect
its data. You can control some attributes through your source code -- some when you compile, some
when you bind, and some not at all. (See Appendix C for a complete list of attributes.) When the compil
er creates an object module, it notes which section each piece of code or data belongs to.

1.3 The Binder
The binder combines one or more input object modules to form one output object file. For example, the
following bind command reads in the input object modules compute_tax. bin and luxury_tax. bin to
create one output object file named taxes:

$ bind compute_tax. bin luxury_tax. bin -binary taxes

An important feature of the binder is that it resolves external references by matching them with their
global symbol counterparts. For example, in the previous example, suppose that compute_tax. bin
makes an external reference to a procedure called luxury_tax and that luxury_tax. bin defines the
procedure luxury_tax as a global symbol. In this case, the binder matches the external reference with
the global symbol so that in taxes, the code that was trying to call luxury_tax will be able to access it.

The binder combines only the object files you explicitly name on the binder command line. Therefore, if
you have experience with other operating systems, you may be wondering "How can the program execute

1-3 Introduction

without operating system routines and language routines?" The answer is that DOMAIN programs do re
quire such routines, but your program will access them at runtime instead of at bind time. At runtime, an
internal utility called the loader matches your program's requests for service routines with the service rou
tines available in the installed libraries.

Although the binder does not load routines from the installed libraries, it does look at a list of the global
symbols defined by the installed libraries. The binder checks this list to see if external references not re
solved within the input object modules can be resolved by a symbol in the installed libraries. If so, the
binder concludes that the unresolved external reference will be resolved at runtime, and therefore the
binder does not issue a warning. However, if an unresolved external reference cannot be resolved by a
global symbol in the list, then the binder issues a warning.

For example, suppose one of your input object modules makes an external reference to the symbol
ios_$get and that none of the input object modules define a global symbol ios_$get. Therefore, the
binder checks to see whether ios_$get is defined as a global symbol in an installed library. If it is, the
binder assumes that the loader can resolve ios_$get at runtime, and, therefore, the binder does not is
sue a warning. If ios_$get is not defined as a global symbol in an installed library, then the binder
knows that the loader will not be able to resolve ios_$get at runtime, and, therefore, the binder issues a
warning.

1.4 The Librarian and Library Files
The librarian is the utility that creates, edits, and describes library files. A library file is a special file
created by the librarian, consisting of one or more object modules collected together' for easy access by the
binder. Using the librarian, you can delete, extract, or replace object modules stored in a library file.
Typically, you store object modules in a library file so that the binder can load a subset of them.

c

You can use a library file as input to another librarian command or as input to the binder. You cannot use
a library file as input to INLIB, and you cannot use a library file as input to the loader. That is, you can-
not execute a library file. C, ,~
The binder accepts both library files and object files as input. The binder unconditionally loads all the
object modules stored in object files. However, the binder loads an object module stored in a library file
only if at least one of the following conditions is true:

• You explicitly specify that object module for loading with the binder switch -INCLUDE.

• The object module satisfies an unresolved external reference.

Basically, a library file makes binding easier by allowing you to store a number of object modules inside
one file. Therefore, you can simply put the name of one library file on the binder command line rather
than listing hundreds of individual object files. Furthermore, because the binder conditionally loads ob
ject modules in a library file, your program won't contain unnecessary code.

NOTE: Do not confuse a "library file" with an "installed library." Remember that only
the librarian can create a library file.

1.5 Installed Libraries
An installed library is a set of one or more object modules stored in a way that permits access by the
loader only. The loader uses the routines in installed libraries to resolve outstanding external references
made by running programs. In other words,' an installed library contains code and data that your program
can optionally execute at runtime.

For example, suppose global symbol fed_tax is defined in an installed library. Therefore, your object
file can make an external reference to fed_tax without resolving it at compile time or bind time. At
runtime, the loader will resolve the external reference from your program with the global symbol in the in
stalled library.

Introduction 1-4

o

o

o

o

o

Installed libraries are an often-overlooked feature of the DOMAIN operating system. They provide an al
ternative to binding required libraries to each program that uses them. Installed libraries result in much
smaller object module sizes on disk because they eliminate the replication of bound library copies. They
also allow for more efficient use of physical memory when two or more programs executing concurrently
require the same library. That's because the programs all share the same physical copy of the installed li
brary in memory. Finally, the use of installed libraries makes it much easier to update the software on a
node. When a new version of an installed library is available, the user need only copy it into those pro
grams. This is vastly simpler than having to locate all bound images that use the library and rebind them
to use the new version.

There are five types of installed libraries:

• User-defined installed libraries

• Object files installed with the - INLIB binder option

• System-defined installed libraries

• System-defined global libraries

• User-defined global library

We detail all five types in Chapter 4.

1.6 The Loader
The loader is the DOMAIN utility that oversees the execution of all user programs. When you enter the
name of a file to be executed, the loader prepares main memory for executing the program. A very im
portant function of the loader is to resolve outstanding external references in your program with global
symbols defined in the installed libraries. Thus, you might think of the loader as sort of an internal binder
utility.

As we noted before, there are no loader options or ways to talk to the loader. It is automatically invoked
whenever you attempt to execute a program.

1.7 Limits and Restrictions
Be aware of the following limits when you develop programs:

• The combined number of sections and marked global symbols in an object module cannot be
greater than 3,072.

• The combined number of sections and marked global symbols in an installed library cannot be
greater than 3,072.

• Only the first 32 characters of a global variable or section name are significant.

The binder can build a program of any size. That is, the output object module can be any size. However,
the ultimate restriction on the size of the program is based on the available disk space and the available
address space.

1-5 Introduction

c

C:

o

o

o

o

o

Chapter

How ~(O) U~e ~he lDOMA~N
f8~fJ1dew

2

This chapter explains when and how to use the DOMAIN binder utility. You should also refer to the ap
propriate language manual for information about source code and its effect on binding.

2.1 When to Use the Binder
You must use the binder if any of the following conditions are true:

• Your FORTRAN, Pascal, or C program consists of more than one source file.

• Your FORTRAN, Pascal, or C program requires an object module from a library file.

• Your one-file FORTRAN program contains more than one program unit.

In general, binding is unnecessary when your program consists of only one file. However, if that program
requires any object modules from a library file, then it will be necessary to bind. A program does not re
quire binding if it only requires object modules from installed libraries.

2.2 How to Invoke the Binder
To invoke the binder, type a command line of the following format:

$ BIND pathname1 ... pathnameN option1 ... optionN

In other words, the command line simply consists of the word BIND, one or more pathnames, and zero or
more options. Note that the command format is somewhat misleading in that some options must precede
pathnames but others must follow the pathnames.

The binder uses the object modules stored in pathname to create an executable object. A pathname
must be the name of a valid object file or valid library file. (A compiler creates a valid object file, and the

2-1 The Binder

librarian creates a valid library file.) You can use wildcards in pathnames. The binder automatically loads
all object modules stored in object files, but conditionally loads the object modules stored in libraries. For
details about how the binder loads the object modules in library files, see Chapter 3.

Options, detailed in the next section, modify the binder's actions. Of all the binder's options, -BINARY
is the most important. You must use this option to get an executable object. For example, the following
command line combines object files plot_data. bin and drawings. bin into the executable object file
plot_data:

$ bind plot_data. bin drawings. bin -binary plot_data

The binder processes arguments sequentially. However, the order of binary files is not important. That is,
you do not have to list the main program first followed by the subroutines. Most options apply to files you
specify later in the command string, but have no effect on the files previously specified. This feature al
lows you to turn options on and off, from one file to the next.

2.2.1 Multilevel Binding
Multilevel binding means binding to create an output object module, and then using that output object
module as an input object module to a second binder command line.

For example, suppose you issue the following command:

$ bind a.bin b.bin -binary levI

Single-level binding means that you do not use levI as an input object module in another binder com
mand line. Multilevel binding means that you use levI as an input object module to another binder
command line, as in the following:

$ bind levI c.bin d.bin -binary lev2

c

Multilevel binding is particularly useful when developing a program that consists of many, many object C
files. For instance, suppose your program consists of 100 object files, but that you want to fix bugs in only ---
one of those files. If multilevel binding did not exist, you would have to rebind all 100 object files each
time you recompiled. A more efficient scheme would be to bind the 99 unchanging object files once, and
then rebind this object file to the file that keeps getting recompiled.

2.2.2 Spreading a Binder Command Over Several Lines
If you want to spread a binder command over more than one line, then you must either:

• Put a hyphen (-) at the end of the first line.

• Enter the command BIND (and nothing else) as the first line.

To signal the end of a spread binder command, you must either:

• Put -END at the end of the command.

• Leave the final line blank.

For example, the following three binder command lines are equivalent. All three create an executable
object (in file roll_em) out of three object files:

$ BIND lights. bin -
* cameras. bin action. bin
* -BINARY roll_em -END

The Binder

or

2-2

c

o

o

o

o

o

o

$ BIND lights. bin -
* cameras. bin action.bin
* -BINARY roll_em

*

$ BIND

or

* lights. bin cameras. bin action. bin
* -BINARY roll_em

*

2.2.3 Comments
You can add comments to bind arguments. The binder ignores the text of comments. Delimit them with
braces { }, as shown below:

$ BIND sio.bin -
* {This is a comment.}
* rw.bin
* math. bin {This is another comment}
* -binary sio -end

If you forget to terminate a comment with a closing brace }, <RETURN> will terminate the comment.
Therefore, if you try to span a comment over two lines without starting the comments on both lines with
beginning braces {, the binder will interpret your comment as a list of pathnames. For example, compare
the right and wrong ways to specify a multiline comment.

$ bind apples. bin -
* oranges. bin {This is a }
* {good comment}
* lemons. bin
* pears.bin {This Ls a
* bad comment}

2.2.4 Errors
If a problem occurs during binding, the binder displays a message in standard error output. The message
indicates the nature and severity of the problem. The binder issues two kinds of messages: warning-level
and error-level. Warning-level messages indicate conditions that do not prevent the binder from produc
ing an output file. However, warning-level messages may mean that the file's contents are not what you
expect. Error-level messages are fatal conditions that prevent the binder from producing an output file.

Appendix A lists all binder error and warning messages and gives an explanation of the likely cause of
each problem.

If a binder command line generates an error, then the binder does the following. First, the binder looks in
the appropriate directory for a file with the same name as the file it would have created had binding suc
ceeded. Then, if this file exists, binder adds the . bak extension to its name. If this file doesn't exist,
then the binder takes no action. If you later rebind successfully, the binder deletes the . bak file when
creating the executable object file. For example, consider the following series of bind command lines.

First, binder creates filename q:

$ bind geoshapes.bin mathl.bin math2.bin math3.bin -binary q
All Globals are resolved.

Next, due to a binder error, binder changes the name of q to q. bak and does not create a new q:

2-3 The Binder

$ bind geoshapes.bin mathl.bin math2.bin math3.bin -ruff -binary q
?(bind) Error: Unknown Command Ignored

Finally, we rebind correctly causing the binder to delete q. bak and create a new q:

$ bind geoshapes.bin mathl.bin math2.bin math3.bin -binary q
All Globals are resolved.

Undefined Global Symbols Errors

If you forget to type the pathname of an object module you want to bind, the binder may report undefined
global symbols upon completion. This in itself is not a fatal error. If this occurs, you need not rebind all
modules. Just bind the resulting output module with the module you previously omitted. There is no limit
to the number of times a module can be bound. See the" Multilevel Binding" section earlier in this chap
ter for details.

2.3 Binder Option Summary
The bulk of this chapter is devoted to descriptions of all the binder options. We begin with a list of all the
options and their syntax. A few notes on typographical conventions are now in order. Consider, for ex
ample, the following entry:

-Binary pathname

The fact that -Binary is in boldface tells you that this part of the option is to be entered literally; however,
the lowercase letters inary are optional. In other words, you can specify this option as -Binary or as -B.
The fact that pathname is not boldfaced tells you that this part of the option is to be entered nonliterally.
In other words, do not enter the word "pathname," enter a pathname instead.

Option and Syntax

-ALIGN section name LONG

-ALIGN section_name QUAD

-ALIGN section name PAGE

-ALLKEEPMARK

-ALLMARK

-ALLRESolved

-ALLUNMARK

-BOIR directory_name

-Binary pathname

-END

-ENTRY global_symbol

The Binder

Purpose

Aligns the named section on a 32-bit boundary at runtime.

Aligns t}:le named section on a 64-bit boundary at runtime.

Aligns the named section on a 8, 192-bit boundary at runtime.

Preserves all marks.

Marks all global symbols in the input object files that appear after
the option on the bind command line.

Signals a shell severity level of "error" if there are unresolved
global symbols at the end of a bind command. Useful in control
ling Shell scripts.

Unmarks all global symbols in the input object files that appear
after the option on the bind command line. (DEFAULT)

Adds a pathname to the list of directories that the binder
searches in for input object files.

Creates an output object module and stores it at pathname.

Signifies the end of a command that is spread over several lines.

Specifies a nondefault start address.

2-4

o

c

c

c

-EXACTCASE

o -GLObals

-Help

-INCLude module_name

-INCLude -ALL

-INLIB pathname

-LOCALSEARCH

0 -LOOKSection section name

-LOOKSection -ALL

-MAKers

0 -MAP

-MARK global_symbol

-MARK -ALL

-MARKSection section name

0
-MARKSection -ALL

-MERGEbss

-MESsages

-MODule new_name

-MSGS

-MULTIRES

0
-NMSGS

-NOEXACTCASE

Makes the binder case-sensitive to all variable names and section
names.

Writes currently defined global symbols to error output.

Prints this list of commands.

Unconditionally loads the named object module from a library
file into the output object file.

Unconditionally loads all object modules from a library into the
output object file.

Specifies that the object file(s) in pathname are to be "installed"
when the output object file is invoked. (This is an alternative to
using the - INLIB utility.)

Forces the binder to make another search through a library file if
the previous search loaded an object module containing an unre
solved external reference.

Makes the named section available for sharing with a public sec
tion in an installed library.

Makes all subsequent sections available for sharing with their
counterpart public sections in an installed library.

Lists the version numbers of the compilers, binders, etc., that
were used to create the input object files.

Writes a complete binder map to standard output.

Marks the specified global symbol.

Same as -ALLMARK.

Makes section_name public. Affects only those object files that
are destined to be installed as an installed library.

Makes all subsequent sections public. Affects only those object
files that are destined to be installed as an installed library.

Merges all sections corresponding to C global variables into a sin
gle section named BSS$.

Produces informational messages at the end of a bind command.
(DEFAULT)

Changes the name of the output object module from the default
(the first input object module loaded) to new_name.

Same as -MESSAGES. (DEFAULT)

Reports errors if multiple resolutions of the same external symbol
exist in object module libraries.

Same as -NOMESSAGES.

Sets the binder to ignore case differences on names. (DE
FAULT)

2-5 The Binder

-NOINLIB pathname

-NOLOOKSection section_name

-NOLOOKSection -ALL

-NOMARKSection section_name

-NOMARKSection -ALL

-NOMESsages

-NoMUL TIRES

-NoUN Defined

-Quit

-READONL Ysection section_name

-SECtions

-SET_VERsion number. number

-SORTLocation

-SORTNames

-SYStem

-SYSTYPE

-UNDefined

-UNMARK global_symbol

-UNMARK -ALL

-UNMARKSection name

-UNMARKSection -ALL

-XREF

- (hyphen)

Specifies that the object file(s) in pathname are no longer to be
"installed" when the program is invoked.

Makes the named section unavailable for sharing.

Makes all subsequent data sections unavailable for sharing.

Makes section_name private.

Makes all subsequent sections private.

Suppresses informational messages at the end of a bind com
mand.

Omits error reporting for mulitple resolutions in object module li
braries. (DEFAULT)

Suppresses the listing of undefined globals.

Exits from the binder without finishing.

Changes the read/write attribute of section_name to read-only.

Displays a section map.

Sets the program version in the map to the specified number.

Sorts global symbols numerically (by position).

Sorts globals symbols alphabetically (by name). (DEFAULT)

Makes system globals visible.

Builds a shared resource record into the bound output module.
Specify valid system names, such as sys3, sys5, bsd4.1, or
bsd4.2. This option overrides all system information from the
object modules.

Suppresses a listing of unresolved external symbols present at the
end of a bind command line.

Removes a mark from the specified global symbol.

Same as -ALLUNMARK.

Makes section_name private. Affects only those object files that
are destined to be installed as an installed library.

Makes all subsequent sections private. Affects only those object
files destined to be installed as an installed library.

Displays a listing of cross-references.

Tells the binder that more input will following on the next line.

2.4 Detailed Descriptions of Each Binder Option
The remainder of this chapter details each binder option.

The Binder 2-6

c

o

o

o

o

o

-ALIGN -- Aligns the specified section on a boundary (which may improve execution speed.)

FORMAT

You must specify one
of the following three:

-ALIGN section name
LONG
QUAD
PAGE

ARGUMENTS

section_name The name of the section you want to align.

The argument after section_name must be one of the following three:

DESCRIPTION

LONG

QUAD

PAGE

to align the section on a long (32-bit) boundary.

to align the section on a quad (64-bit) boundary.

to align the section on a page (8,192-bit) boundary.

The -ALIGN option directs the loader to align the section you specify on a 32-bit (LONG), a 64-bit
(QUAD), or an 8192-bit (PAGE) boundary. The default is LONG. Alignment on a LONG boundary
boosts a program's performance on certain nodes, such as the DN460, DN660 and DSP160.

You cannot place an -align option before the section is defined by one of the object modules. That is,
if you specify -align section_name, but section_name has not been defined yet, then the binder will re
port an error.

EXAMPLES

Suppose that we wanted to align a section named big on a page boundary. To do so, we'd issue a com
mand like the following:

~ bind one. bin two. bin -align big page -binary my_program

Don't forget that, by default, global variables in C programs are named sections.

2-7 The Binder

-ALLRESOLVED -- Causes the binder to generate a severity level of "ERROR" if it encounters
any unresolved global symbols.

FORMAT

-ALLRESolved

DESCRIPTION

This option affects the severity level issued by the binder if it encounters any unresolved global sym
bols. Readers unfamiliar with the concept of severity level should read about it in the Getting Started
With Your DOMAIN System manual.

If you do not specify the -ALLRESOL VED option, then unresolved global symbols do not affect the
severity level issued by the binder. If you do specify the -ALLRESOLVED option and the bind com
mand contains unresolved global symbols, then the binder will generate a severity level of ERROR.

EXAMPLE

Consider the following Shell script:

Without -ALLRESOLVED
bind geoshapes.bin mathl.bin math2.bin -binary my_program
args "This is line 3."

Here's what happens when we execute the script:

$ script
Undefined Globals:

circle First referenced in GEOSHAPES.BIN

This is line 3

Now consider what happens when the bind command line contains an -ALLRESOLVED option:

With -ALLRESOLVED
bind geoshapes.bin mathl.bin math2.bin -allresolved -binary my_program
args "This is line 3."

Executing this script results in an error-level severity (thus forcing an immediate exit from the script):

$ script
Undefined Globals:

circle First referenced in GEOSHAPES.BIN

?(bind) Error: Not all globals were resolved

1 Error.

The Binder 2-8

c\

o

o

o

o

o

-BDIR -- Adds a path name to the list of directories the binder searches for input object files.

FORMAT

-BDIR directory _path name

ARGUMENTS

directory _pathname The pathname of a directory that you want the binder to search.

DESCRIPTION

Use the -BDIR option to tell the binder to search for input object files in a directory other than the
working directory. The -BDIR option only affects input object files having relative pathnames; it does
not affect those having absolute pathnames.

An absolute pathname begins with a slash (I), double slash (//), tilde (-), or period (.); for example:

//tesich/breaking/away.bin
/reiner/stand/by/me
-truffaut/wild/child.bin
.kurys

A relative pathname is any pathname that does not begin with a slash (I), double slash (//), tilde (-),
or period (.). For example, any pathname that begins with a name is a relative pathname. Note that a
relative pathname specifies a file in a way that is relative to your working directory.

Now that we've distinguished between absolute and relative pathnames we can describe how -BDIR
works. If you do not specify the -BDIR option, the binder looks for each input object file using only
the file pathname you specify. If the input file cannot be found under the pathname, the binder re
ports a warning or error as appropriate. If, on the other hand, you specify the -BDIR option, then
when the binder cannot find an input file having a relative pathname, it goes on to search for that file
in the -BDIR directory. To do so, it prefixes the -BDIR directory's pathname, separated by a slash
(I), to the relative pathname you supplied for the input file.

Notice that the -BDIR option can only take one directoryyathname as an argument. Therefore, if
you want the binder to search multiple directorys, you must specify multiple -BDIR options. The bind
er will always search the working directory first, then it will search the -BDIR directories in the order
that they appear on the command line.

Bear in mind that the -BDIR option must precede on the command line the input object files that you
want it to affect. In attempting to locate a given input file, the binder does not take into account any
-BDIR options that follow that input file's pathname on the command line.

EXAMPLES

Suppose that you are developing a program, and that you keep copies of all of the program's con
situent object files (a. bin, b. bin I and c. bin) in the directory / / spielberg/develop/bins.
When you want to work on some piece of the program, you place copies of the appropriate source files
in your working directory, make your changes, and then compile them, directing the compiler to out
put the new object files into your working directory. (You don't want them output directly into the
central repository of object files because you haven't debugged them yet. Once you have done so, you
will copy them into the central repository.)

2-9 The Binder

You want a Shell script that you can run to bind the program together, one that will prefer any object
files in your working diretory over the copies in the central repository, taking the remaining object files
from the central repository. You do not want to have to change this Shell script each time you begin
work on a different piece of the system. That is, you do not want to have to say ahead of time what
object files will be in your working directory and what ones will not.

The Shell script might contain the following binder command line:

$ bind -bdir //spielberg/dev/progs a.bin b.bin c.bin -binary my_program

This command causes the binder to pick up any or all of the input files a. bin, b. bin, c. bin from
your working directory, depending on which are present there. For any that are not present in your
working directory, the binder gets them from / /spielberg/develop/bins. Therefore this command
will bind together a program containing your changes no matter what piece of the system you happen to
be working on.

The Binder 2-10

c

c

o

o

o

o

o

-BINARY -- Creates an executable object file.

FORMAT

-Binary path name

ARGUMENTS

pathname The pathname of the binary file you are trying to create.

DESCRIPTION

Virtually all binder command lines contain this option. It causes the binder to create an executable ob
ject file and store it at a specified pathname.

To avoid confusion, try not to choose a pathname of an input object file as the argument to -BINARY.

You can specify the -BINARY option anywhere in the binder command line, but you may not specify
it more than once. That is, the binder can only create one object file per command line.

Remember, if you don't use -BINARY, the binder won't create an executable object; however, the
binder will report errors and produce maps.

EXAMPLE

The following two commands are equivalent. Each produces an output object file named my_pro
gram.

$ bind one. bin two. bin -b my_program
$ bind one. bin two. bin -binary my_program

2-11 The Binder

-END -- Terminates a bind command that spans multiple lines.

C:
FORMAT

-END

DESCRIPTION

Use the -END option to mark the end of a binder command that extends over two or more lines.

EXAMPLES

To end a binder command line that spans multiple lines, you can either use the -END option or leave r."
the final line blank. For example, first we use the -END option: '_

$ bind lights. bin -
* cameras. bin action. bin
* -binary roll_em -end
$

Here we leave the final line blank:

$ bind lights. bin -
* cameras. bin action. bin
* -binary roll_em

*
$

The Binder

c

2-12

o

o

o

o

o

-ENTRY -- Specifies a nondefault program start address.

FORMAT

-ENTRY global_name

ARGUMENTS

global_name The name of a global symbol previously defined in the command line. Typi
cally, it is the name of a routine.

DESCRIPTION

By default, the output object module created by the binder specifies a start address corresponding to
the first executable instruction in the object module's main program ("mainO" in C, "program" in
Pascal or FORTRAN), if any. The -ENTRY option allows you to specify an alternative start address.

EXAMPLES

The following command does not contain an -ENTRY option; therefore, the binder sets the start ad
dress equal to the first executable instruction in the main routine:

$ bind geometry. bin circles.bin -binary geom

Suppose though that we did not want the default start address. Instead, we wanted the program start
address to be the first executable instruction in a routine named pie (defined somewhere in geome
try. bin or circles. bin). To accomplish this, we would issue the following command:

$ bind geometry. bin circles. bin -binary geom -entry pie

2-13 The Binder

-EXACTCASE -NOEXACTCASE -- Makes the binder case-sensitive or case-insensitive to the
arguments of binder options.

FORMAT

-EXACTCASE
-NOEXACTCASE

DESCRIPTION

The - EXACTCASE option causes the binder to distinguish between uppercase and lowercase letters
in names you use as arguments for such bind options as -INCLUDE, -MARKSECTION, and
-ALIGN. The default is -NOEXACTCASE. Thus, normally the binder ignores case differences,
treating uppercase and lowercase letters identically.

The -EXACTCASE option is primarily intended for object modules in the C language, since the C
compiler produces case-sensitive names. The -EXACTCASE option has no user-visible impact on
FORTRAN or Pascal object modules.

EXAMPLES

c

Consider a C global variable (and therefore a section) named big. If we do not use the -EX-
ACTCASE option, then the binder is case-insensitive, so the following two commands produce exactly (~"
the same results: "'----

$ bind a.bin b.bin -binary my_program
$ bind a.bin b.bin-binary my_program

-align big page
-align BIG page

However, if we use the -EXACTCASE option, then the first command produces the correct results
and the second command causes errors:

$ bind -exactcase a.bin b.bin -binary my_program
$ bind -exactcase a.bin b.bin -binary my_program

The Binder 2-14

-align big page (okay)
-align BIG page (error)

C:

o

o

o

0

o

-GLOBALS -- Causes the binder to display the current global map.

FORMAT

-GLObals

DESCRIPTION

The -GLOBALS option causes the binder to display the current global map. The global map contains
the name and position (as an offset from the beginning of a section) of all global symbols defined until
that point.

If you use the -MAP option, the binder displays the current global map as part of a larger listing. (So
placing -GLOBALS and -MAP adjacently on the same command line produces redundant informa
tion) .

If the message "No defined Globals" appears in the global map, it means that none of the input
object modules defined a global symbol.

Note that the binder prints the section map based on the object modules preceding -SECTIONS on
the command line. In other words, the section map that the binder produces depends on the position
within the command line of -SECTIONS.

EXAMPLE

$ bind a.bin b.bin c.bin -mark nick -binary abc -globals
Global Map:

Offset In Section Name
00000018 2 <apollo_c_startup>
OOOOOODO 2 b
00000000 4 big
000000F8 2 catch
0000002C 2 main
00000000 6 nick marked
00000000 7 rachel
00000000 5 str

All Globals are resolved.

The Global Map Explained

The Global Map describes each global symbol defined by the input object modules. The global map
lists each global symbol's name and position. The position is described as a hexadecimal offset from
the beginning of a particular section. For example, symbol catch is defined F8 16 bytes past the be
ginning of section 2. All symbols with the same section number are stored in the same section.

The word "marked" indicates that a particular symbol is marked. See the "-MARK" listing later in
this encyclopedia for an explanation of "marked" and "unmarked."

The binder prints the message" All Globals are resolved" in the following cases:

a You used the -SYSTEM option but your program makes no references to a symbol in an in
stalled library.

2-15 The Binder

• You did not use the -SYSTEM option, and all external references made by the input object
modules can be resolved by other input object modules or by installed libraries.

If neither is the case, the listing would show all the unresolved external references beneath the heading
"Undefined Globals". Next to each symbol name, the listing shows -the pathname of the file that the
symbol was "First referenced in". That is, if one or more input object files make an external reference
that the binder cannot resolve, the listing shows the pathname of the object file that referred to it first.

The Binder 2-16

c

o

o

o

o

o

-INCLUDE -- Forces the binder to load one or more object modules from a library file into the
output oblect module.

FORMAT

library _path name

ARGUMENTS

library _pathname

-INCLude

You must select one
of these two:

object module name
-ALL - -

The last pathname that precedes -INCLUDE must be a library file. (See
Chapter 3 for a definition of library files.) -INCLUDE affects this library file
only. If no library file precedes -INCLUDE or if there is some other path
name between the library file and -INCLUDE, then the binder issues an error
message.

You must select one of the following two arguments following the keyword -INCLUDE:

DESCRIPTION

object_module_name The name of one object module stored in li
brary yathname. (The binder issues an error mes
sage if object_module_name is not stored in the li
brary.) The binder will automatically load this object
module into the output object file. You cannot use a
wildcard in object_module_name.

-ALL The keyword -ALL causes the binder to automati
cally load every object module from library yath
name into the output object file.

By default, the binder loads an object module from a library file if it resolves an external reference. If
you specify -INCLUDE, then one or more object modules from the library file will be loaded whether
or not they resolve an external reference.

EXAMPLES

For example, suppose that math. lib is a library file consisting of object modules geom, tr ig, and
calculus. If you want to ensure that the binder loads trig into the output object module (waves),
then you could issue the following command:

$ bind a.bin b.bin math. lib -include trig -binary waves

If you had wanted to force-load both geom and trig, then you would have issued the following com
mand:

$ bind a.bin b.bin math. lib -include geom -include trig -binary waves

If you want to ensure that the binder loads all three object modules in rna th . lib, then you should is
sue the following command:

$ bind a.bin b.bin math. lib -include -all -binary waves

2-17 The Binder

You need to use -INCLUDE to ensure that the binder loads an object module from a library file into
the output object module. If you don't use -INCLUDE to load an object module, the binder will still
load it if it satisfies an unresolved external symbol. See Chapter 3 for more information on library files.

The Binder 2-18

c

C.
-,'

c

o

o

o

o

o

-INLlB, -NOINLIB -- Causes an object module to be installed when the output object file is exe
cuted.

FORMAT

-INLIB pathname
-NOINLIB pathname

ARGUMENTS

pathname

DESCRIPTION

The pathname of the object module you want to install. The pathname must
have been produced by a compiler or the binder, but not by the librarian. The
specified pathname is the one that will be used by the loader to locate the in
stalled library object module at execution time. The binder makes no attempt
to use this pathname at bind time. The binder merely writes the name into the
output object module for later use by the loader.

Use -INLIB as an alternative to the INLIB shell command. The -INLIB binder option makes code
available to an executing program without actually binding the code into the output object file. (For
some background information on installed libraries, see Chapter 1; for a detailed comparison of vari
ous kinds of installed libraries, see Chapter 4.)

Note that the new -INLIB binder option does not replace the DOMAIN INLIB utility or the
USERLIB.PRIVATE facility. It merely provides an alternate way of installing code on a per-program
basis, rather than on a per-shell or per-login session basis. (See Chapter 4 for complete details about
the other kinds of installed libraries.)

At bind time, the binder does not read from the object file specified in an -INLIB option. Therefore,
the binder will list as "unresolved" any references to global symbols in this object file. Rest assured,
though, that the loader will resolve these references at execution time. If you don't want these refer
ences listed as "unresolved," then use the INLIB utility to install the appropriate object files in the
process prior to invoking the binder. The marked global symbols in the installed object file will then be
known to the binder, just as the globals defined by system libraries are known to the binder. Although
the binder will still not actually resolve references to those globals at bind time, it will not list them as
unresolved.

The map produced by the binder's -MAP option includes information about any installed libraries re
quired by the object module.

-NOINLIB

The -NOINLIB option undoes the actions of the -INLIB option; that is, it makes the code unavailable
to the executing program. You would probably only use this option in one of the later steps of a multi
level bind.

The -NOINLIB option applies only to installed libraries specified earlier in the command line, either
directly via the -INLIB option or indirectly by an input object module. The binder issues a warning if it
encounters a -NOINLIB option specifying an installed library pathname that is not (yet) known to the
binder.

Installing More Than One Object File

If you want more than one object file to be installed when you invoke the program, then you must
specify more than one -INLIB option on the bind command line. For example, if you want to install

2-19 The Binder

tthe object files /lib/highlib and /lib/lowlib whenever my_program is invoked, you would is
sue a bind command like the following:

$ bind a.bin b.bin -inlib /lib/highlib -inlib /lib/lowlib -b my_program

If you put multiple -INLIB options on the same bind command line, the system will usually install the
objects in the same order that you specified them. However, we do not guarantee it; therefore, you
should not depend on it.

Instead of using multiple -INLIB options on the same command line, you can which set up a chain of
dependencies with -INLIB. For example, suppose you are building myyrogram which needs to call
/lib/highlib, but /lib/highlib in turn needs to call installed object file /lib/lowlib. Here is
what you do:

$ bind c.bin d.bin -inlib /lib/lowlib -b /lib/highlib
$ bind a.bin b.bin -inlib /lib/highlib -b my_program

Therefore, when you invoke my_program, the loader installs lowlib and then installs highlib.

Actually, the order you install libraries in is immaterial in most cases. Interlibrary dependencies that
result from procedure calls do not necessitate that the libraries be installed in any particular order.
However, inter-library dependencies that result from data references can impose ordering constraints. C ,.'
Thus, if /lib/highlib refers to named global data defined in /lib/lowlib, then /lib/lowlib .
must be installed prior to /lib/highlib.

How The Loader Locates Pathnames

In order to load a program that requires installed libraries, the system loader must determine whether
those libraries are already installed in the process, and if not, install them. To determine whether a li
brary with a given pathname is already installed in the process, the loader first identifies the file system
object that (currently) has that pathname. The loader then determines whether exactly that object has
been installed in the process. Thus, the determination is not based solely on a comparison of path
names.

Suppose, for example, that /lib/lowlib was installed earlier in the process, but since that time its
name has been changed to /lib/baselib. If the loader is then told to load a program that requires
the installed library /lib/baselib, it will detect that the file system object (currently) having the
pathname /lib/baselib is in fact already installed in the process. It can make this determination
even though that object has a different pathname now than it did when it was first installed in the proc-
ess.

{--' As another example, suppose that /lib/lowlib was installed in the process but was then renamed to \.
/lib/lowlib. old, and a new object module having the pathname /lib/lowlib was created. If the
loader is then told to load a program requiring /lib/lowlib, it will detect that the file system object
(currently) having that pathname is not installed in the process, even though earlier it did install a li-
brary that was (then) named /lib/lowlib.

In general, it is a good idea when specifying pathname to specify the absolute pathname of the object
file. If you specify a relative pathname and then move the output"object file to another directory, the
loader will not be able to locate the object file. (See the "-BDIR" listing earlier in this encyclopedia
for the distinction between absolute and relative pathnames.)

EXAMPLES

Consider an object file named main. bin that calls a function located in object file i . bin. Let's ex
amine the ways in which the two object files can be associated.

First, you could bind them and run the resulting object- file as follows:

$ bind main. bin i.bin -binary my_program
$ my_program

The Binder 2-20

-----------_.

o

o

o

o

o

A second method is to install i. bin and execute main. bin. The loader will resolve external refer
ences at runtime.

$ inlib i.bin
$ main.bin

A third method involves the -INLIB binder option. If we issue the following two commands, the
loader will install i. bin when you invoke my_program:

$ bind main. bin -inlib i.bin -binary my_program
$ my_program

Now let us examine the -NOINLIB option. Consider the following commands:

$ bind a. bin -inlib b. bin -binary levI (Use -inlib)
$ levI (Test lev1 with b.bin installed)
$ bind levI -noinlib b. bin b. bin c. bin -binary lev2 (Use -noinlib)
$ lev2 (Test lev2 with b.bin bound instead of installed.)

2-21 The Binder

-LOCALSEARCH, -NOLOCALSEARCH -- Controls the order in which the binder will search
through library files to satisfy unresolved external symbols.

FORMAT

-LOCALSEARCH
-NoLOCALSEARCH

DESCRIPTION

The -LOCALSEARCH and -NOLOCALSEARCH options control the way the binder searches
through a library file. Before reading this description, you should see Section 3.3 which explains the
default method that the binder uses to search through library files.

Consider what happens if you specify -NOLOCALSEARCH (the default). In this case, when the
binder scans a library file in order to resolve external references, it makes a single pass through the li
brary file. The binder loads those object modules that satisfy one or more unresolved references. The
binder then moves on to the next library file you specified on the command line, if any. After the
binder has scanned all the library files on the command line, it rescans them (in their original order) if
any unresolved external references remain. The binder continues scanning the libraries until no new
external references need to be resolved.

The search pattern described above sometimes causes the wrong object module to be loaded from a li
brary file. For example, suppose a library file contains an object module that makes an external refer
ence to a global symbol. However, the global symbol is defined by an object module that appears ear
lier in the same library. In this case, the binder may not load this object module on this pass through
the library file. Ordinarily, this is not a problem because the binder will eventually rescan the library
file. However, it is a problem when another object module in a different library file also happens to
define the global symbol. In this case, the binder may load the wrong object module by accident. The
purpose of - LOCALSEARCH is to prevent a faulty loading.

If you specify -LOCALSEARCH, instead of making a single pass over a library'S object modules be
fore moving on to the next library, the binder makes mUltiple passes over the library'S object modules,
moving on to the next library only after a pass results in no new object modules being loaded from the
library. Therefore -LOCAL SEARCH causes the binder to resolve as many external references as pos
sible using object modules from the current library file before scanning the next library file. New unre
solved references may arise from loading object modules from the library file.

Use -LOCALSEARCH to ensure that wherever possible, the binder resolves intra-library external
references using global symbols defined by object modules in the same library. Without
-LOCALSEARCH, you risk resolving external references with global symbols that happen to have the
same name in object modules contained in other library files.

EXAMPLES

Consider the following information regarding some object files:

• Object file main. bin makes an external reference that can be resolved by an object module
named circle.

• Object module circle is contained in library mathlibl. Circle makes an external refer
ence that can be resolved by an object module named subcircle.

• Two different versions of object module subcircle exist -- one in mathlibl and the other
in mathlib2. We want to load the version stored in mathlibl.

The Binder 2-22

c

c

o

o

o

o

o

If we issue the following command:

$ bind main. bin mathlibl mathlib2 -binary myprogram -nolocalsearch

then the binder will load the version of subcircle stored in mathlib2. Why? Consider the search
path. The binder first loads main. bin. Then the binder makes a single pass through mathlibl and
loads circle (as shown in Figure 2-1). (Since the desired version of subcircle precedes circle
in the library, the binder will not load it.)

subcircle (good version)

,.::: .. :.·.: •. :.C:::·::.::::l .•. ··:· .•. ·.r.·.:.··::·:·:·.:.c:·::::·.:.::·:l:·:::e ... ·::·::::··:·:·:.::::.::: •. : :)):):j:::::)))):() .. :.::.::.:.:•. ::.: .. :.:.:.:.::.: •. ::.: .•.. :.::.:.: :: :.:: ... : : .. : !: ... : .. : ... : :: .. : ...•. :.:.:.: ::.: ... :.: ... ::.:.: .. :.: .• , . :::::::::::)})~:}}~<:{~{:~: .

subcircle (bad version)

sphere

square

triangle

cube

pyramid

Figure 2-1. -NOLOCALSEARCH option. Beginning of search.

Next, the binder searches through mathlib2 and therefore loads subcircle (as shown in Figure
2-2).

mathlibl mathlib2

subcircle (good version) Ill$gBpir¢t~!:(Ba~!v¢rsiQri)i\::1
1!::8~t8J:~::::!:!:::::::··.:!:::::·:::.:.:,.::::.':m:::::::)? »:::::}}}H:!: •• !:!:!:I

square

triangle

sphere

cube

pyramid

Figure 2-2. -NOLOCALSEARCH option. End of search.

Now consider what happens if we use the -LOCAL SEARCH option as follows:

$ bind main. bin mathlibl mathlib2 -binary myprogram -local search

In this case, the binder loads the version of subcircle stored in mathlibl. First the binder loads
main.bin. Then it scans mathlib1 as shown in Figure 2-1. At the end of this first pass of mathlibl, the
external reference to sub circle is still unresolved; therefore, the binder rescans mathlib 1. During the
second pass over mathlibl, the binder loads the good version of subcircle. The binder keeps
res canning mathlibl until no new external references can be resolved. (Therefore, the binder
makes a total of three passes over mathlib1). Finally, the binder scans mathlib2. Figure 2-3 illustrates
the search order.

2-23 The Binder

The Binder

mathlibl

subcircle (good version)

\

....•... -:.:-:-:-:-:.:-:.:-:-:.:-::-:.:-:.:-:-:.:- :::.'::.:::.:::::'::'.:"::.:::.:::::'::":"::.'::.:::.'.1

•.. ·.:.:·.:.:.c:.·.·::.·::·.i .•.. ::.r.: ... : : ... c:·:.:::·.··:.·.l: •. :·:e.:::.·.· .. :::.:::.·.:.:.'.:.:.:.::::.::: .. :.:.::.:.':-:-::::::::::::::::::::::::::::::<;:::: . :::::::::::::;::::::::::::::::::::::::;:;:;:;:;::::::::.:.:.:.

square

triangle

l:i:$?11~i,t~I,~·.··:i(g:9:94i:i:·Y~~$j~~) :::i::'i:\
circle

square

triangle

subcircle (good version)

circle

square

triangle

mathlib2

subcircle (bad version)

sphere

cube

pyramid

Figure 2-3. -LOCALSEARCH option. End of search.

2-24

~,

"'-'--"

c

o

o

o

o

o

o

-LOOKSECTION, -NOLOOKSECTION, -MARKSECTION, -UNMARKSECTION -- Controls the shar
ing of data sections between an executing object file and an installed library.

FORMAT

-LOOKSection
-NOLOOKSection
-MARKSection
-UNMARKSection

ARGUMENTS

section_name

-ALL

DESCRIPTION

pick one from
this column

section name
-ALL -

The name of one section defined by an input object module appearing earlier
in the command line. That is, you must place the option after the section has
been defined.

The keyword -ALL. By specifying -ALL, the option applies to all sections in
subsequent object modules appearing on the command line. -ALL affects
all sections (with the correct attributes) in all subsequent object modules.
Therefore, position the option before the object files that define the sections.

These options only affect programmers who are creating their own installed libraries; if you are not de
veloping object files to install, then you can ignore these options. You use these options to control the
sharing of data at runtime between a section in a non-installed object file and a section in an installed
library.

Use the -LOOKSECTION option to set the LOOKSECTION attribute; use the -MARKSECTION op
tion to set the MARKSECTION attribute. The -NOLOOKSECTION and -NOMARKSECTION turn
off the LOOKSECTION and MARKSECTION attributes, respectively. (See Appendix B for a descrip
tion of all attributes.) If the following two conditions are both true, then the section shares data:

• The LOOKSECTION attribute of a section in a non-installed object file is set.

• The MARKSECTION attribute of a section in an installed library is set.

However, if either condition is not true, then the two sections do not share data. By default, both the
LOOKSECTION attribute and the MARKSECTION attribute are off.

Data Sharing Between Two Installed Libraries

You can also use these options to permit (or to prevent) two installed libraries to share a data section.
You do this by setting the MARKSECTION attribute on the section from the object file to be installed
first and the LOOKSECTION attribute on the section from the object file to be installed subsequently.
In addition, if you don't know which section is going to be installed first, you can cover all possibilities
by setting both attributes on the same section in the object file.

Refer to the discussion of INLIB in Chapter 4 for more information about installed libraries.

2-25 The Binder

Eligible Sections

The four options affect only those sections having all three of the following attributes:

• data

• overlay

• read/write

In other words, the binder ignores the option if the specified section does not have all the specified at
tributes. To create such a section in FORTRAN, you define a COMMON area. To create such a sec
tion in Pascal, you define a named section by putting a name in parentheses just after the reserved
word VAR. To create such a section in the C language, just define a global variable. (For details, see
the DOMAIN Language Reference manuals for FORTRAN, Pascal, and C.)

EXAMPLE

Suppose you created two object files (a. bin and b. bin) which each define a section named
c_array. Further suppose that the c_array section has the data, overlay, and read/write attributes. f'"
Finally, you want b. b in to be part of an installed library, and a. b in to be non-installed. ,, ____ ,

If you want the installed library to share data in c_array with the executing program, then bind in the
following manner:

$ bind b.bin
$ bind a.bin

The Binder

-marksection c_array -binary to_be_installed
-looksection c_array -binary user_program

2-26

c

C)

o

o

o

o

o

-MAKERS -- Displays the version numbers of the compilers, binders, etc. used to create the
output object file.

FORMAT

-MAKers

DESCRIPTION

Use the -MAKERS option to learn the version numbers of the utilities that built the input object files.

EXAMPLE

$ bind ab c.bin -b abc -makers
This object was made by the following:

cc, Rev 4.52, Date: 1986/09/04 15:05:11 EDT (Thu)
bind, Rev 4.36, Date: 1986/07/30 15:47:14 EDT (Wed)

All Globals are resolved.

2-27 The Binder

-MAP -- Causes the binder to print a load map.

FORMAT

-MAP

DESCRIPTION

Use the -MAP option to learn all sorts of information about the input and output object modules. The
-MAP option produces a header, a section map, and a global map. If you only want the section map,
specify the -SECTIONS option instead of -MAP. If you only want the global map, specify the
-GLOBALS option instead of -MAP.

By default, the binder sends the listing to standard output. If you want to redirect the listing to a file,
use the greater-than sign (». For instance, the following example sends a map to file ties. map:

$ bind ties. bin -MAP -binary ties >ties.map

EXAMPLE

$ bind a. bin b. bin c. bin -mark nick -binary abc -map (bind and create a map)
A POL L 0 Object Module Binder 5.03
1986/09/11 11:23:15 EDT (Thu)
File Name = abc
Module_Name = A_C Version = 0.00
start Address = 00000018 in section 2

This object was made by the following:
bind, Rev 5.03, Date: 1986/08/27 13:13:15 EDT (Wed)
cc, Rev 4.52, Date: 1986/09/04 15:05:11 EDT (Thu)

section Map:
Id Size Name Modules Attributes

1 OOOOOOFC procedure$ R/O Concat Instr Long-aligned
00000000 OOOOOOAC A_C
OOOOOOAC 0000002C B_C
000000D8 00000024 C_C

2 00000120 data$
00000000
OOOOOOCC
000000F4

3 0000007E debug$
00000000
0000004A
00000062

4 OOOOOOOC big
5 00000006 str
6 00000011 nick
7 00000190 rachel

Global Map:

OOOOOOCC
00000028
0000002C

0000004A
00000018
0000001C

offset In section Name

A_C
B_C
C_C

A_C
B_C
C_C

00000018 2 <apollo_c_startup>
OOOOOODO 2 b
00000000
000000F8
0000002C
00000000
00000000
00000000

All Globals
No Errors.

The Binder

are

4 big
2 catch
2 main
6 nick
7 rachel
5 str
resolved.

Concat Data Zero Long-aligned

R/O Concat Data Long-aligned

Ovly Mixed Data Look_installed Zero Long-aligned
Ovly Mixed Data Look_installed Zero Long-aligned
Ovly Mixed Data Look_installed Zero Long-aligned
Ovly Mixed Data Look_installed Zero Long-aligned

Marked

2-28

c

c

c'

o

o

o

o

o

The Map Explained

The map can be divided into three distinct areas:

• Header

• Section Map

• Global Map

We examine these areas individually.

The Header

A POL L 0 Object Module Binder 5.03
1986/09/11 11:23:15 EDT (Thu)

5.03 is the version number of the binder utility used in the example. Your binder version number may
vary. The second line shows the year/month/day and hour:minute:second that the binding took place.

File Name = abc
Module Name = A eVersion = 0.00
start Address =-00000018 in Section 2

abc is the name of the output object module. (See the "-MODULE" listing later in this section for
information on object module names.)

The version number of abc is 0.00. (See the "-SET_VERSION" listing for information on version
numbers.)

Start address refers to the address of the first instruction that is executed at runtime. The start address
in our sample is the instruction located 1816 bytes past the beginning of section 2. You control the start
address through your source code or through the -ENTRY binder option. If your source code is writ
ten in Pascal then the start address corresponds to the first executable instruction from the source file
with the heading "PROGRAM." If your source code is written in C, then the start address corresponds
to the first executable instruction from the source file in the "mainO" function. If your source code is
written in FORTRAN, then the first executable instruction in your main program will correspond to the
start address. The start address in our example comes from the object module named A_C. (Refer
to Section 3.4 of Chapter 3 for details on start address.)

This object was made by the following:
bind, Rev 5.03, Date: 1986/08/27 13:13:15 EDT (Wed)
cc, Rev 4.52, Date: 1986/09/04 15:05:11 EDT (Thu)

By default, the -MAP option lists the -MAKERS option information. The -MAKERS option tells you
what compiler, binder version, etc. was used to create the object modules. Refer to the "-MAKERS"
listing earlier in this encyclopedia for more information.

The Section Map

Since the section map can also be generated by the -SECTIONS option, we describe this map in the
"-SECTIONS" listing later in this encyclopedia.

The Global Map

Since the global map can also be generated by the -GLOBALS option, we describe this map in the
"-GLOBALS" listing earlier in this encyclopedia.

2-29 The Binder

-MARK, -ALLMARK, -ALLKEEPMARK, -UNMARK, -ALLUNMARK -- Marks, unmarks, or pre
serves a mark on one or more global symbols.

FORMAT

You must specify one of
these two as arguments:

-MARK global symbol
-ALL - ~

You must specify one of
these two as arguments:

-UN MAR global_symbol
-ALL

-ALLMARK (a synonym for -MARK -ALL) -ALLUNMARK (a synonym for -UNMARK -ALL)

-ALLKEEPMARK

ARGUMENTS

global_symbol

-ALL

DESCRIPTION

You must specify the name of one global symbol. The global_symbol must
have been previously defined by one and only one input object module on the
binder command line.

By specifying -ALL, you tell the binder to mark or unmark every global sym
bol in every input object module appearing after the -ALL option on the
binder command line.

By default, compilers mark all global symbols in the output binary file, and the binder unmarks all
global symbols in the output object module it creates. In some situations, you may want to unmark a
marked symbol or vice-versa, and we provide the -MARK, -UNMARK, -ALLMARK,
-ALL UNMARK, and -ALLKEEPMARK options to do just that. The marking or unmarking of a
symbol is important in the following two situations only:

• A binding operation in which two or more input object modules define the same global symbol.
(Usually, this only happens when Y9U perform multilevel binding. See Section 2.2.1 for an ex
planation of multilevel binding.)

o A binding operation in which the output object file will be installed as an installed library.

Let's now consider the first situation. When two or more input object files define the same global sym
bol, the following occurs:

• If the symbol is marked in only one file, then the binder uses that definition.

• If the symbol is marked in more than one file, then the binder uses the first marked symbol it
encounters and then issues a "Multiply Defined Global" warning.

• If the symbol is unmarked in every file, then the binder uses the first definition encountered.

Now let's consider the second situation, namely, how marking affects installed libraries. An unmarked
global symbol in an installed library cannot resolve an outstanding external reference, but a marked
global symbol in an installed library can. Therefore,

• If you install an object file produced by the compiler (as opposed to the binder), then its global
symbols can resolve outstanding external references at runtime.

The Binder 2-30

o

c

c

c'

o

o

o

o

o

o If you install an object file produced by the binder, then the global symbols cannot resolve out
standing external references at runtime unless you mark them when you bind.

The Five Options

Here is the distinction between the options:

• Use -MARK global_symbol to mark one global symbol. Place the option on the command line
at some point after the global symbol has been defined by an input object file.

o Use -MARK -ALL or -ALLMARK to mark all global symbols defined by input object mod
ules that appear after the option on the bind command line.

CD Use -ALLKEEPMARK to preserve any existing marks on global symbols. The option only in
fluences global symbols defined in input object files placed after the option on the bind com
mand line.

• Use -UNMARK global_symbol to unmark one global symbol. Place the option on the com
mand line at some point after the global symbol has been defined by an input object file.

o Use -UNMARK -ALL or -ALLUNMARK to unmark all global symbols defined by input ob
ject modules that appear after the option on the bind command line.

EXAMPLES

This section contains four examples demonstrating the various marking options. In all the examples,
we rely on the following information:

• We created five object files (a. bin, b. bin, c. bin, d. bin, and e. bin) with a DOMAIN
compiler.

o a. bin makes an unresolved external reference to symbol earth.

o b. bin and c. bin each define earth. as a global symbol. Since the compiler created b.bin
and c. bin, earth is a marked global symbol in both files.

• d. bin and e. bin neither define nor refer to earth.

Example 1

Consider the following bind command line:

$ bind a.bin b.bin c.bin -binary abc
?(bind) Warning: "earth" Multiply Defined Global
All Globals are resolved.

The binder issued a warning because earth was marked in both b. b in and c. bin. Since it was
marked twice, the binder resolves the unresolved external reference with the global symbol in b. bin
since it appears first.

Example 2

Consider the following multilevel binding:

$ bind
$ bind
$ bind

b.bin d.bin
c.bin e.bin
a.bin lev! lev2

-binary lev!
-binary lev2
-binary lev3

2-31

(EARTH is unmarked in lev1)
(EARTH is unmarked in lev2)

The Binder

By default, the binder unmarks all global symbols when it creates the output object file. Therefore, the
binder unmarks earth in lev! and lev2. When creating lev3, the binder resolves the external
reference from a. bin with the first occurrence of global symbol earth (from lev! which was origi- C~

nally from b. bin). _/

Suppose you want to ensure that the binder resolves the external reference to earth with the global
symbol earth stored in c. bin. To accomplish this, you must mark earth in c. bin (and unmark it
in b. bin). So the sequence would look like this:

$ bind b.bin d.bin -unmark earth -binary lev!
$ bind c.bin e.bin -mark earth -binary lev2
$ bind a.bin lev! lev2 -binary lev3

(earth is unmarked in lev1)
(earth is marked in lev2)

The -unmark earth option in the first binder command is not necessary since earth will be un
marked by default.

Example 3

Object file b. bin was created by a compiler; therefore, earth is marked. If you issue the following C
INLIB command: _ .. _

$ inlib b.bin

then earth will be accessible to running programs since it is marked in b. bin. However, if you try to
install a bound object file. as in the following example:

$ bind b.bin d.bin -binary bound_file
$ inlib bound_file

then earth will be inaccessible to running programs because it is unmarked in bound_file. If you ~,

want earth to be accessible to running programs, you should mark it as in the following example: \ ___ .

$ bind b.bin d.bin -mark earth -binary bound_file
$ inlib bound_file

Example 4

The -ALLKEEPMARK preserves a mark that would otherwise disappear as the result of a multilevel
binding. For example, in the following series of commands, earth is marked in lev!. but then be
comes unmarked in lev2 (since the -MARK option was not specified in the second binder com
mand):

$ bind b.bin -mark earth d.bin -binary lev!
$ bind lev! e.bin -binary lev2
$ inlib lev2

{EARTH is marked in lev!}
{EARTH is unmarked in lev2}

$ a.bin {External reference to EARTH cannot be resolved at runtime.}

. .. (runtime errors)

We correct the problem in the following series of commands simply by using an -ALLKEEPMARK op
tion in the second binder command line:

$ bind b.bin -mark earth d.bin -binary lev! {EARTH is marked in lev!}
$ bind -allkeepmark lev! e.bin -binary lev2 {EARTH remains marked in

lev2}
$ inlib lev2
$ a.bin {External reference to EARTH can be resolved at runtime.}

. .. (no runtime errors)

The Binder 2-32

c

o

o

o

o

o

-MERGEBSS -- Combines the sections generated by C global variables into one section named
BSS$.

FORMAT

-MERGEbss

DESCRIPTION

Use this option to merge every section that corresponds to a C global variable into a single section
named BSS$.

By default, the C compiler creates a new section for each global variable. The section name is the same
as the global variable name. Use the -MERGEBSS option to merge all these sections into one section.
You can greatly reduce the number of sections, and in many cases, improve load performance by using
this option.

The C compiler gives the following attributes to the sections it creates for global variables: Ovly, Mixed,
Data, Look_installed, Zero, and Long-aligned. (See Appendix C for a description of each attribute.)
Normally, the -MERGEBSS option merges together all named sections having these attributes; how
ever, this is not always the case. Ifa named section has these attributes, and an installed library avail
able in the current shell contains a section by the same name that is visible to programs run in that
process, then the binder does not merge the section into the BSS$ section. It instead assumes that the
program intends to "share" global data with the installed library at excecution time.

When you use multilevel binding (see Section 2.2.1 for details) to develop a program, you should not
use the -MERGEBSS option until the final bind.

By default, at SR9.5, the DOMAIN/IX 'ld' command and /bin/cc merge sections as described for
-MERGEBSS. Use the 'r' flag (of either utility) to suppress this merging.

EXAMPLES

Consider the following sample C source code files:

Contents of file "hi.c"

int x = 5;
char rachel[] = {"Hello"};
extern void' f ()

main ()
{

}

printf ("%d\n" I x);
printf ("%s\n" I rachel);
fO;

Contents of file "ho.c"

extern int x;

void f ()
{

printf ("%d\n" I x * 10);
}

Suppose we compile them. If we bind the resulting object files as follows, the binder will create a sec
tion named x to contain variable x and a section named rachel to contain variable rachel:

$ bind hi.bin ho.bin -binary hideeho

However, if we bind the object files with the -MERGEBSS option as follows, the binder will create a
section named BSS$ which will contain variables x and rachel:

$ bind hi. bin he. bin -mergebss -binary hideeho

2-33 The Binder

-MESSAGES, -NOMESSAGES -- Directs the binder to report or suppress informational mes
sages at the end of a successful binder session.

FORMAT

-MESsages (which can also be abbreviated to -MSGS)
-NOMESsages (which can also be abbreviated to -NMSGS)

DESCRIPTION

The binder prints two kinds of "informational" messages. The first informational message is

All Globals are resolved.

The second informational message is a report of the number of errors and warnings encountered dur- C
ing the binder session; for example: ./

2 Errors; 1 Warning

If there were no errors and no warnings, the binder does not print anything.

Use the -MESSAGES option to direct the binder to continue printing informational messages. Use the
-NOMESSAGES option to suppress printing informational messages. -MESSAGES is the default.

EXAMPLES

$ bind a.bin b.bin c.bin -ruff -binary ab -nomessages
?(bind) Warning: "earth" Multiply Defined Global

Input file "c. bin"
?(bind) Error: Unknown Command Ignored

Input file "c. bin"
Cmd = "-RUFF"

(no informational messages)

$ bind a.bin b.bin c.bin -ruff -b ab -messages
?(bind) Warning: "earth" Multiply Defined Global

Input file "c. bin"
?(bind) Error: Unknown Command Ignored

Input file "c. bin"
Cmd = "-RUFF"

All Globals are resolved.
1 Error; 1 Warning.

The Binder 2-34

(informational message)
(informational message)

c~

C'i

o

o

o

o

o

-MODULE -- Lets you specify a nondefault name for the output object module.

FORMAT

ARGUMENTS

Here's where you specify the new name for the output object module.

DESCRIPTION

By default, the binder uses the name of the first input object module it encounters as the name of the
output object module. Use -MODULE to specify a nondefault name for the output object module.

-MODULE is particularly useful when you are preparing an object module to be passed on to the li
brarian. Since the librarian won't let you add a module if there is already a module with that name in
the library, you can change the object module's name with -MODULE. Otherwise, the name of an
object module has no effect on program execution. Don'.t confuse the object module's name with the
name of the file that the object module is stored in. The -MODULE option has no effect on the file
name.

You can find the name of the output object module by using the -MAP option.

EXAMPLES

Suppose the name of the object module stored inside file mathl. bin is real_math. Therefore, if
you issue the following command line, the binder names the output object module real_math:

$ bind mathl.bin math2.bin -binary math

However, suppose you want the output object module to be called double_real_math. To accom
plish this, you would issue the following command line:

$ bind mathl.bin math2.bin -module double_real math -binary math

2-35 The Binder

-MUL TIRES, -NMUL TIRES, -NOMUL TIRES -- Reports or suppresses errors if the binder finds
multiple resolution of global symbols in library files.

FORMAT

-MULTIRES

-NMUL TIRES~
-NOMUL TIRES"""""""- these are synonyms.

DESCRIPTION

The -MULTIRES option causes bind to report a particular error; the -NMULTIRES or
-NOMULTIRES options causes the binder to suppress this error. The error in question is:

?(bind) Error: Multiple resolutions are possible for implicitly resolved
symbol

which means that more than one object module in a library file can resolve an unresolved external
symbol.

Because -NOMUL TIRES supppresses errors, by using this option you risk accidentally binding the
wrong modules from a library file.

-NOMUL TIRES is on by default.

EXAMPLES

Suppose that· object file a. bin contains an unresolved external symbol named B which can be re
solved by two different modules in library mylib. Compare the following two bind command lines:

$ bind a.bin mylib -multires -binary abcd
?(bind) Error: Multiple resolutions are possible for implicitly resolved
symbol

Input file "mylib"
Module name ltc_cIt
Global name "B"

All Globals are resolved.
1 Error.

$ bind a.bin mylib -nomultires -binary abcd
All Globals are resolved.

The Binder 2-36

C

c:

C)
./

o

o

o

o

o

-QUIT -- Causes an immediate exit from an interactive binder session.

FORMAT

-Quit

DESCRIPTION

The -QUIT option causes an immediate exit from the binder. The binder closes all input and output
files but does not complete processing. The binder does not produce an output object module. How
ever, if an existing object file has the pathname that the binder would have created, then the binder
changes the name of the existing file by appending .bak to it (as described in Section 2.2.4).

2-37 The Binder

-READONL YSECTION -- Changes the read/write attribute of a specified section to read-only.

FORMAT

-READONLYsection section_name

ARGUMENTS

section_name

DESCRIPTION

The name of a section previously defined by an input object file. The section
must have the read/write attribute in every input file that contains the section.

Use the -READONLYSECTION option to change the read/write attribute of a specified section to
read-only. A section with the read/write attribute is not write-protected, but a section with the read
only attribute is write-protected. Here is a list of read/write sections that you may want to change into
read-only sections:

• In FORTRAN, any COMMON blocks or other COMMON sections whose contents are initial
ized by DATA statements and are not modified at runtime.

• In C, any global variable (assuming that the -MERGEBSS option was not used).

o

c

• In Pascal, any "named variable section". You create a named variable section by putting a sec- C
tion name in parentheses following V AR; for example:

VAR (a_named_seetion)
X : INTEGER;
Y : CHAR;

Here are three advantages that read-only sections have over read/write sections:

• Read-only sections are mapped to memory rather than copied by the loader. Therefore, the
system performs less disk I/O. C

• A read-only section cannot be overwritten or modified inadvertently.

• A read-only section does not require a backing store (i.e., some disk swapping space).

EXAMPLE

Suppose that an object module stored inside object file parser. bin contains a read/write section
called parser_tables. To change parser_tables to read-only, you would issue the following
command:

$ bind main. bin parser. bin -readonlyseetion parser_tables -binary mle

The Binder 2-38

c

~-----------.-----.--~~ -------

o

o

0

o

o

-SECTIONS -- Displays a section map.

FORMAT

-SECtions

DESCRIPTION

This option causes the binder to display a section map, which is a subset of the listing produced by
-MAP. Use this option if you want information about sections but don't want the other information
that comes with -MAP.

Note that the binder prints the section map based on the object modules preceding -SECTIONS on
the command line. In other words, the section map that the binder produces depends on the position
within the command line of -SECTIONS.

EXAMPLE

$ bind a.bin b.bin c.bin -binary abc -sections
section Map:
Id Size Name Modules

1 OOOOOOFC procedure$
00000000 OOOOOOAC A_C
OOOOOOAC 0000002C B_C
000000D8 00000024 C_C

2 00000120 data$
00000000 OOOOOOCC A_C
OOOOOOCC 00000028 B_C
000000F4 0000002C C_C

3 0000007E debug$
00000000 0000004A A_C
0000004A 00000018 B_C
00000062 0000001C C_C

4 OOOOOOOC big
5 00000006 str
6 00000011 nick
7 00000190 rachel

Attributes
RIO Concat Instr Long-aligned

Concat Data Zero Long-aligned

RIO Concat Data Long-aligned

Ovly Mixed Data Look_installed Zero Long-aligned
Ovly Mixed Data Look_installed Zero Long-aligned
Ovly Mixed Data Look_installed Zero Long-aligned
Ovly Mixed Data Look_installed Zero Long-aligned

All Globals are resolved.

The Section Map Explained

This section map tells us the following information:

•

•

•
•

The Id number of each section -- this section map contains seven sections numbered 1
through 7.

The total hexadecimal Size of each section -- for example, the total size of section 2 is 12016

bytes.

The Name of each section -- for example, procedure$, data$, debug$, big, etc.

The Modules comprising each section -- the binder supplies the following information under
the Modules heading: the hexadecimal offset (within the section) of the contributing object
module, the hexadecimal byte length (within the section) of the contributing object module,
and the name of the contributing object module. For example, consider the following line of
information:

OOOOOOAC 0000002C B C

It shows that object module B_C contributed 2C16 bytes of data to section 2, and that these
bytes are offset AC 16 bytes from the start of section 2.

2-39 The Binder

• The Attributes of each section -- a set of attributes characterizes each section. For example,
section 2 has the concatenated, data, and long-aligned attributes. Appendix C explains what
all these attributes mean.

The Binder 2-40

C"
./

c

c

c

o

o

o

o

o

-SET_VERSION -- Specifies the version number of the output object module.

FORMAT

-SET_VERsion nnnnn. mmmmm

ARGUMENTS

nnnnn.mmmmm Is the version number of the output object module. You can specify any posi
tive integer less than 65535 on either side of the decimal point. If you specify
only one digit after the decimal point, the binder will precede this digit with a
O. For example, if you specify 5.7, the binder will give the output object file a
version number of 5.07.

DESCRIPTION

Object files produced by a compiler do not carry a version number; however, object files produced by
the binder do. A version number is simply two integers separated by a decimal point that you can use
to help you distinguish between different versions of the same program. The default version number of
an object file is 0.0. However, you can change this default number with the -SET_VERSION option.

The binder uses the following rules to determine the version number of the output object file:

• If you specify the -SET_VERSION option, the output object file will carry the version number
specified by the option.

• If you do not specify the -SET_VERSION option, then the output object file will carry the ver
sion number of the first input object file that has a version number other than 0.0.

• If you do not specify the -SET_VERSION option and none of the input object files have a ver
sion number other than 0.0, then the binder sets the version number to 0.0.

Use the binder map (generated by the -MAP option) to find the actual version number generated by
the binder.

EXAMPLES

$ bind a.bin b.bin c.bin -binary abc
(version number of abc = 0.0)

$ bind one. bin two. bin -set_version 10.20 -binary my_program
(version number of myyrogram = 10.20)

$ bind my_program three. bin -binary our_program
(version number of ouryrogram = 10.20)

2-41 The Binder

-SORTLOCATION, -SORTNAMES -- Sorts the list of global symbols in a global map.

FORMAT

-SORTLocation
-SORTNames

DESCRIPTION

These options affect the global symbols listing generated by the -MAP or -GLOBALS options. If you
use -SORTLOCATION, the binder sorts the list of global symbols numerically, by section number and
offset. If you use -SORTNAMES, the binder sorts the list of global symbols alphabetically, by name.

-SORTNAMES is the default.

EXAMPLES

$ bind a.bin b.bin c.bin -binary abc -sortlocation -globals
Global Map:

Offset In
00000018
0000002C
OOOOOODO
000000F8
00000000
00000000
00000000
00000000

All Globals

Section Name
2 <apollo_c_startup>
2 main
2 b
2 c
4 big
5 str
6 nick
7 rachel

are resolved.

$ bind a.bin b.bin c.bin -binary abc -sortnames -globals
Global Map:

Offset In
00000018
OOOOOODO
00000000
000000F8
0000002C
00000000
00000000
00000000

All Globals

The Binder

Section Name
2 <apollo_c_startup>
2 b
4 big
2 c
2 main
6 nick
7 rachel
5 str

are resolved.

2-42

c

c~

o

o

0

o

o

-SYSTEM -- Lists as "Undefined Globals" those symbols that can be resolved by installed li
braries.

FORMAT

-SYStem
-NOSYStem

DESCRIPTION

If you use the -SYSTEM option, the binder classifies as "Undefined Globals" any external reference
that cannot be resolved by an input object module. In other words, the -SYSTEM option causes the
binder to ignore the global symbols defined in installed libraries when reporting "Undefined Globals."
You can use this option to verify that the binder is, in fact, referring to the expected specific global
symbols defined in installed libraries. The -SYSTEM option is purely informational and has no effect
on the output object module.

EXAMPLES

Compare the following two bind sessions. The first command line does not contain -SYSTEM, but the
second one does.

$ bind a.bin b.bin -binary myprog
Undefined Globals:

catch First referenced in A.BIN

$ bind -system a.bin b.bin -binary myprog
Undefined Globals:

catch First referenced in A.BIN
printf First referenced in A.BIN
scanf First referenced in A.BIN
unix_$main First referenced in A.BIN

In the first session, an "Undefined Global" was any external reference that could not be resolved by
another input object file or an object module in an installed library. In the second session, an "Unde
fined Global" was any external reference that could not be resolved by another input object file. No
tice that the output object file, myprog, is the same for both sessions.

2-43 The Binder

-SYSTYPE -- Override the systype for which the input object modules were compiled, and
stamp the output object module with the given systype.

FORMAT

You must specify one
of these five as an
argument:

bsd4.1
bsd4.2

-SYSTYPE sys3

ARGUMENTS

bsd4.1

bsd4.2

sys3

sys5

any

DESCRIPTION

sys5
any

To specify the Berkeley 4.1bsd environment.

To specify the Berkeley 4.2bsd environment.

To specify the AT&T System III environment. (This is the default systype.)

To specify the AT&T System V release 2 environment.

To specify that the program is independent of a particular environment. c
The -SYSTYPE option is of importance primarily to C programmers or to programmers intending to
run the output object module under DOMAIN/IX. An object module's systype, which is normally set
by the C compiler, affects its runtime behavior. The systype determines which set of functions are
called and makes sure that the proper calling conventions are used. This is important since different
DOMAIN/IX environments may have functions with the same name but with different semantics or C"
calling conventions. _,'

By default, the binder propagates the systype of input object modules by stamping the output object
module with the same systype. The binder reports an error if input object modules are stamped with
conflicting systypes.

You can use the binder's -SYSTYPE option to specify a non-default systype for the output object
module. You must use the -SYSTYPE option if input object modules are stamped with conflicting sys
types, in order to suppress the error the binder would otherwise report.

NOTE: Be especially careful about using the systype "any". Most programs are not in
dependent of a particular operating system version. If your target is the DO
MAIN operating system, then the systype must be "sys3."

For more information about systypes and their effect on the C compiler and the runtime environment,
refer to the DOMAIN C Language Reference or the DOMAIN C Library (CLIB) Reference.

The Binder 2-44

C'
"

o

o

o

o

o

-UNDEFINED, -NOUNDEFINED, -NUN DEFINED -- Displays or suppresses a listing of unresolved
external references.

FORMAT

-UNDefined

-NOUNDefined ___
-NUNDefined ___ These are synonyms.

DESCRIPTION

Use the -UNDEFINED option to display a list of any unresolved external references in an interactive
binder session. This is a very useful option because it can help you determine which if any object files
you omitted from the binder command line.

The -NOUNDEFINED (or -NUNDEFINED) option suppresses the listing of undefined globals that
the binder lists by default at the end of a binder command.

EXAMPLES

$ bind testl.bin
* test2.bin
* -undefined
Undefined Globals:

simple_exp
* test6.bin
* -undefined
All Globals are resolved.
* -end

First referenced in //OXY/B/TESTl.BIN

In the preceding binder session, the first -UNDEFINED showed us that testl. bin made an
unresolved external reference to simple_expo Therefore, we added object file test6. bin to the
binder command line (knowing that it resolves simple_exp). Before ending the session, we used
-UNDEFINED a second time which confirmed that "All Globals are resolved."

In the following example, notice how the -NOUNDEFINED option suppresses the listing of unresolved
external references in the binder's final report:

$ bind a.bin d.bin -noundefined

$ bind a.bin d.bin
Undefined Globals:

earth First referenced in A.BIN

2-45 The Binder

-XREF -- Provides a cross-reference listing.

FORMAT

-XREF

DESCRIPTION

The -XREF option tells you which object modules and sections refer to other modules and sections. It
also shows you which modules and sections define global symbols, and where those global symbols are
resolved. This option allows you to see how object modules are using globally visible names.

-XREF can only provide cross-reference information on the files that come after it on the command
line. Therefore, if you put -XREF at the end of the binder command line, the cross-reference will
show nothing. Conversely, if you put it right after the command name BIND, -XREF will provide a
cross-reference of every input object module.

See the next page for an example.

The Binder 2-46

c

c~

o

o

o

o

o

EXAMPLE

$ bind -xref a.bin mylib -binary my_program
All Globals are resolved.
Module Cross Reference
a_c Compiled: 1986/09/10 15:08:38 EDT (Wed)

Defined Globals:
<APOLLO_C_STARTUP> BIG MAIN

References To Globals:
B C

References To Modules:
b_c c_c

Sections:
BIG DATA$ DEBUG$ PROCEDURE $

b_c Compiled: 1986/09/10 13:38:03 EDT (Wed)
Defined Globals:

B

Referenced By Modules:
a_c

Sections:
DATA $ DEBUG$ PROCEDURE $

c c Compiled: 1986/09/10 13:38:06 EDT (Wed)
Defined Globals:

C
Referenced By Modules:

a_c
Sections:

DATA $ DEBUG$ PROCEDURE$
Global Cross Reference
<APOLLO_C_STARTUP> Defined In :a_c
B Defined In :b_c

Referenced By Modules:
a_c

BIG Defined In :a_c
C Defined In :c_c

Referenced By Modules:
a_c

MAIN Defined In :a_c
Section Cross Reference
BIG

Defined In Modules:
a_c

DATA$
Defined In Modules:

a_c b_c c_c
DEBUG$

Defined In Modules:
a_c b_c c_c

PROCEDURE $
Defined In Modules:

a_c b_c c_c

2-47 The Binder

c

c'

o

o

o

o

o

Chapter 3

Use the librarian to create, edit, or describe a library file. A library file consists of one or more object
modules collected together for easy access by the binder. Typically, you store object modules in a library
file so that the binder will load a subset. of them. This chapter details the following topics:

• How to invoke the librarian.

• How to create a library file.

• How the librarian analyzes command lines.

• How to spread a librarian command over multiple lines.

• How to imbed comments in a librarian command.

• How the binder analyzes library files.

• How the binder sometimes uses library files to determine program start address.

• How to use all the librarian options.

To learn about the role library files play in program development, see Chapter 1.

NOTE: This chapter is about library files; it is not about DOMAIN Software Engineering
Environment (DSEE) libraries or installed libraries.

3.1 Invoking the Librarian
Use the following format to invoke the librarian:

$ LBR -CReate
-UPDate library _pathname object....pathname(s) option(s)

3-1 The Librarian

After the keyword LBR, you must enter either the keyword -CREATE or the keyword -UPDATE. Enter
-CREATE if you are creating a library. Otherwise, enter -UPDATE (even if you just want a listing). The
abbreviation for -CREATE is -CR and the abbreviation for - UPDATE is - UPD.

Following -CREATE or -UPDATE, you must enter a libraryyathname. If you specified -CREATE, en
ter the pathname you want to create; this pathname must not already exist. If you specified -UPDATE,
libraryyathname must be the name of the library you want to work on. For -UPDATE, you must pick
the pathname of an existing, valid library.

If you specified -CREATE, then following the libraryyathname, you must specify at least one object
pathname. Such an object can be either an object file (Le., a file produced by either the compiler or the
binder) or another library file. The object modules within these objectyathnames will form the contents
of the created library file.

If you used -UPDATE, then you can optionally enter one or more object pathnames which the librarian
will add to the existing library.

Finally, you can enter zero or more of the following options:

-DELETE

-EXTRACT

-LIST

-MSGS, -NOMSGS

-QUIT

-REPLACE

-SYSTEM, -NOSYSTEM

Deletes one object module from the library.

Extracts one object module from the library and optionally writes it to an
other file.

Generates a library file map.

Tells the librarian to write or suppress purely i.nformational messages.

Causes the librarian to ignore everything that appears after the option on
the command line.

Replaces an object module already stored in a library file or adds a new
object module to the library file.

Affects the map generated by -LIST; does not affect the output library
file in any way. These options control the manner in which the librarian
reports unresolved external references.

NOTE: You can only use wildcards with the -REPLACE option or while adding new ob
ject files to a library. If you try to use wildcards in any other place in the com
mand, the librarian issues an error message.

3.1.1 Creating a Library File: Examples
The following command line creates a library file named my 1 i b containing the object modules stored in
files b. bin, c. bin, and d. bin.

$ Ibr -create mylib b.bin c.bin d.bin

The following command builds a library named mylib2, from another library (mylib) and from all the
object modules stored in e. bin and a. bin:

$ Ibr -create mylib2 e.bin a.bin mylib

3.1.2 Order of Execution
The librarian executes options and prints warning messages as it encounters them. For example, consider
the following command line:

The Librarian 3-2

C~

c~

Cl

o

o

o

o

$ lbr -update math.lib t.bin sine. bin -list gl.bin -replace cost. bin -list

The librarian executes the commands as they appear from left to right. That is, the librarian executes the
commands in the following order:

1. The beginning of the command ($ I br -update math. lib) tells the librarian that you intend
to work on existing library file rna th . lib.

2. The librarian adds the object modules stored in t. bin and sine. bin to math. lib.

3. The -list option tells the librarian to list the contents of math. lib at that point.

4. The librarian adds the object module stored in g1.bin to math.lib.

5. The -replace option tells the librarian to replace an object module from math.lib with the object
module stored in cos.bin.

6. The final -list option tells the librarian to list the contents of math.lib.

If your command line contains an error, the librarian stops executing at the error. Therefore, the portion
of the command prior to the error is still executed. For example, suppose that gl. bin (in the previous
example) had not contained a valid object module. In this case, the librarian adds t. bin and sine. bin
to math. lib, lists (-LIST) the contents of math. lib, prints an error message, and returns to the
Shell.

3.1.3 Spreading a Librarian Command Over Several Lines
If you want to spread a librarian command over more than one line, you must either:

• Put a hyphen (-) at the end of the first line.

• Enter the command LBR (and nothing else) as the first line.

To signal the end of a continued the librarian command, you must either put -END at the end of the
command or leave the final line blank. For example, the following three librarian commands are equiva
lent. All three create a new library (math .lb) out of ten object modules:

$ lbr -create math.lb -
* add. bin sub. bin mult.bin div.bin exp.bin e.bin
* loglO.bin In. bin sine. bin cosine. bin -end
$

or

$ lbr ~create math.lb -
* add. bin sub. bin mult.bin div.bin exp.bin e.bin
* loglO.bin In. bin sine. bin cosine. bin

*
$

or

$ lbr
* -create math.lb
* add. bin sub. bin mult.bin div.bin exp.bin e.bin
* 10glO.bin In. bin sine. bin cosine. bin

*
$

3-3 The Librarian

3.1.4 In-Line Comments
You can put comments on your LBR command line. Simply enclose your comments in braces, as in the
following example:

$ lbr
* -upd my. lib
* vec?*.bin {gather vector modules}
* plot. bin {vector plotting}
* {vector mapping modules:}
* mapa. bin
* map13.bin
* map. lib
* -list {generate a listing and finish} -end

3.2 Errors and Warnings
If the librarian detects a problem with the command line, it issues either an error message or a warning
message. An error message indicates that the librarian could not perform the requested operation or that
some error condition arose while the librarian was trying to perform the operation. In either case, the re- ("-
suIt is probably an unusable library file. ~~/

A warning message indicates that one of the following is true:

• The librarian could perform the requested operation, but the contents of the library file may not
be what you were expecting.

• The librarian could not perform the operation, but the library file was not corrupted. Therefore,
you can issue a corrected command on the original library file.

Appendix B contains a complete list of all librarian error and warning messages, and an explanation of the (~
likely cause of the problem.

3.3 How the Binder Scans Library Files
Unlike many binder or linker products on other operating systems, the order of object modules in a DO
MAIN library is relatively unimportant. You may be familiar with one or two pass binder or linker prod
ucts in which it is impossible to make forward external references. However, using the DOMAIN binder,
you can make both forward and backward external references to object modules in a library. That's be
cause the DOMAIN binder makes as many passes as is necessary to resolve outstanding external symbols.
The result is that, with one exception, the DOMAIN binder will create the same program file regardless of
the arrangement of object modules inside the library. The one exception is that when more than one ob
ject module could satisfy an unresolved external symbol" the binder loads the first it encounters.

Here's how the binder scans to resolve external symbols. The binder starts scanning at the fi~~.t object file
or library file on the command line and moves to the right. As the binder scans, it automatically loads all
object modules stored in object files and all -INCLUDEd object modules. Any of these object modules
may contain external references and definitions. The binder first tries to resolve these external references
and external definitions in object modules already loaded. When the binder reaches the end of the object
files and libraries, it checks to see if there are any remaining unresolved external references. If there are
none, the scan ends. However, if there are some unresolved external references, the binder rescans. On
a rescan, the binder only searches library files. The binder searches library files in the order you entered
them on the command line. On a rescan, the binder attempts to satisfy outstanding unresolved references
by using unloaded modules from library files. This process continues until the binder determines either
that all external references are resolved or that no further resolutions can be made.

The binder always scans libraries in the order presented on the command line. Within a library, the
binder scans libraries in the order that they appear in the report generated by the -LIST option of the li
brarian.

The Librarian 3-4

~
I

\"--.. '

c

o

o

o

o

o

3.4 Program Start Address
A start address is the first executable instruction of the output object file. Although the binder, not the li
brarian, determines the start address, we describe the process here because library files play an important
role in the determination.

The binder calculates the start address from the possible start addresses defined by the input object files
and library files. By default, you define a possible start address through the following source code:

• In FORTRAN, the possible start address is the first executable instruction in the main program
unit.

• In Pascal, the possible start address is the first executable instruction in the source file that has the
header "PROGRAM".

• In C, the possible start address is the first executable instruction in the "mainO" function.

(If you don't want a default start addres, you can use the -ENTRY binder option to define a nondefault
one.)

The binder uses the following rules to determine the start address of the output object module:

• If exactly one input object module defines a possible start address, then this becomes the start ad
dress of the output object module.

• If more than one input object module defines a possible start address, then the binder sets the
start address to the first possible start address it encounters.

• If no input object module defines a possible start address, then the binder looks for a possible
start address in the unloaded library object modules. The binder makes this search only if it
would have to scan the libraries anyway to satisfy unresolved external references. That is, on the
binder's first pass, it tries to find a possible start address in the input object files and -INCLUDEd
library object modules. However, if none of them defines a possible start address, then the binder
(concurrent with its search to satisfy unresolved external references) searches the unloaded li
brary object modules for a possible start address. The binder will load the first library object
module that defines a possible start address (even if it does not satisfy an outstanding external ref
erence) . If the binder resolves all external references prior to finding a possible start address,
then it halts the search and leaves the output object module without a start address.

3.5 Detailed Descriptions of Each Librarian Option
The remainder of this chapter is devoted to detailed descriptions of each librarian option.

3-5 The Librarian

-DELETE -- Deletes one object module from the library file.

FORMAT

-DELete object_module _name

ARGUMENTS

object_module_name Specify the name of one object module stored in the library file.

DESCRIPTION

Deletes one object module from the library file. If you accidentally specify an object module that is
not in the library file, the librarian issues a warning. Note that the librarian is case-sensitive to C,
object_module_name. _-"

EXAMPLE

The following command line removes an object module named circle from the library file mylib:

$ lbr -update mylib -delete circle

The Librarian 3-6

("

-.-

o

o

o

o

o

-EXTRACT -- Finds the named object module inside a library file and copies it to another file.

FORMAT

-EXtract object_module_name -0 pathname

ARGUMENTS

object_module_name Specify the name of one object module stored in the library file. This is the
object module that you want to copy from the library. Note that the librarian is
case-sensitive to object_module_name.

-0 pathname

DESCRIPTION

The -0 pathname is optional. If you specify it, the librarian copies the object
module into pathname. If you do not specify -0 pathname, the librarian cop
ies the object module to a file having the same name as the object module.

Use the -EXTRACT option to make a copy of an object module stored inside a library file. You can
write the object module to the pathname of your choice. The -EXTRACT option does not change the
library file in any way.

EXAMPLES

The following command finds the object module named circle from the library and copies it to a file
named circle.

$ lbr -update mylib -extract circle

The following command finds the object module named circle from the library and copies it to a file
named peg.

$ lbr -update mylib -extract circle -0 peg

3-7 The Ubrarian

-LIST -- Generates a library file map.

FORMAT

-List

DESCRIPTION

Writes a report of the library file contents to standard output. This report contains the name of each
object module in the library file, with a list of section information and global declarations and refer
ences for each object module.

EXAMPLE

lbr -update mylib -list (Create a list)
A POL L 0 object Module Librarian 2.09
1986/09/29 16:29:24 EDT (Mon)

Library file name = mylib
module section symbol bytes

CIRCLE_C timestamp: 1986/09/29 16:26:53 EDT (Mon)

offset attributes

entered into library on: 1986/09/29 16:27:20 EDT (Mon)
procedureS 00000048 00000020 R/O Concat Instr Long-aligned
data$ 00000024 00000000 Concat Data Zero Long-aligned

circle 00000010
debugS
rachel

Long-aligned

0000001C 00000068 R/O Concat Data Long-aligned
00000009 00000000 Ovly Data Look_installed Zero

rachel 00000000

SQUARE_C timestamp: 1986/09/29 16:29:08 EDT (Mon)
entered into library on: 1986/09/29 16:29:19 EDT (Mon)
procedureS 00000048 00000020 R/O Concat Instr Long-aligned
data$ 00000024 00000000 Concat Data Zero Long-aligned

square OOOOOOOC
debugS

external references:
line

0000001E 00000068 R/O Concat Data Long-aligned

The Map Explained

This section explains the elements of the sample map.

A POL L 0 Object Module Librarian
1986/09/29 16:29:24 EDT (Mon)

Library file name = mylib

2.09

2.09 is the version number of the librarian utility. The second line shows the year/month/day and
hour:minute:second that we executed the librarian. The next line shows the name of the file that the li
brarian is providing information about (my 1 i b) .

The Ubrarian 3-8

o

o

o

o

o

module section symbol bytes offset attributes

CIRCLE C timestamp: 1986/09/29 16:26:53 EDT (Man)
entered into library on: 1986/09/29 16:27:20 EDT (Man)

procedure$ 00000048 00000020 R/O Concat Instr
data$ 00000024 00000000 Concat Data Zero

circle 00000010

debug$
rachel

rachel

0000001C 00000068 R/O Concat Data
00000009 00000000 Ovly Data Look_

00000000

Next, the map describes each of the object modules in the library file. A line of dashes (-) separates each
input object module. For each input object module, the listing shows the object module's name,
timestamp, and time entered into the library. For example, the first input object module is named
CIRCLE_C. It was created (by a compiler or by the binder) on September 29 at 4:26 in the afternoon.
CIRCLE_C became part of mylib on September 29 at 4:27 in the afternoon. Note that the name of the
object module does not necessarily correspond to the name of the file originally containing it.

Next, the listing describes the following information:

• Under the heading "section" -- the map lists all the sections comprising the input object module.
For example, CIRCLE_C consists of the procedure$, da ta$, debug$, and rachel sections.

• Under the heading "symbol" -- the map lists all the global symbols defined in each section. For
example, circle is defined in the data$ section.

• Under the heading "bytes" -- the map shows the hexadecimal size of each section in bytes. For
example, the procedure$ section is 48 16 (= 72 10) bytes long.

• Under the heading "offset" -- the map shows the starting position of each section or global vari
able. For a section, the offset is the hexadecimal number of bytes that the section (or global vari
able) is offset from the beginning of the object module. For a global variable, the offset is the hex
number of bytes that the global variable is offset from the beginning of the section that contains it.
For example, the da ta$ section starts at the very beginning of the object module, but the pro
cedure$ section is offset 24 bytes from the start of the object module. Furthermore, global vari
able circle is defined 10 bytes from the beginning of the data$ section.

• Under the heading" attributes" -- the map shows the attributes that characterize the section. See
Appendix C for a description of what these attributes mean.

external references:
line

• Under the heading "external references" -- the map lists all symbols referred to in the object
module but not defined by the object module. In other words, the listing names all unresolved ex
ternal references. For example, the map shows that square contains an external reference to
line. You must resolve these external references at bind time or runtime in order for the pro
gram to execute properly. This map did not show any external references that could be resolved
by global symbols in an installed library. However, we could have gotten a list of those references
by using the -SYSTEM option prior to the -LIST option.

3-9 The Librarian

-MESSAGES, -NOMESSAGES -- Reports or suppresses a report on the number of errors and
warnings encountered in a binder session.

FORMAT

-MESsages
-NOMESsages

DESCRIPTION

(-MESSAGES can be abbreviated as -MES or -MSG)
(-NOMESSAGES can be abbreviated as -NOMES or -NMSGS)

Use these two options to force the librarian to either report or suppress a summary of the number of
errors and warnings that occurred in a librarian session. -MESSAGES (the default) forces the report,
and -NOMESSAGES suppresses the report.

EXAMPLES

Compare the following two lbr command lines. In the first command line we used the -MESSAGES
option to generate an informational summary.

$ lbr -messages -create mylbr foobar.bin
?(LBR) Error: CREATE option specified but named file already exists,
can't create.

File name "mylbr"
?(LBR) Error: No library specified, no add done.

2 Errors. (the informational summary)

But in this command line we used the -NOMESSAGES option to suppress an informational summary:

$ lbr -nomessages -create mylbr foobar.bin
?(LBR) Error: CREATE option specified but named file already exists,
can't create.

File name "mylbr"
?(LBR) Error: No library specified, no add done.

(no informational summary)

The Ubrarian 3-10

o

c

c

c

c'

o

o

o

o

o

-QUIT -- Causes the librarian to ignore everything that appears after this option on the com
mand line.

FORMAT

-Quit

DESCRIPTION

The -QUIT option causes the librarian to ignore everything that appears after it on the command line.
The librarian still attempts to process every part of the command that precedes -QUIT. This option is
useful if you detect a mistake somewhere in the middle of a command, but you still want the librarian
to execute the beginning. If the LBR command spans more than one line, then the line on which
-QUIT appears will be the last.

EXAMPLE

$ dlf whylib
$ lbr -create whylib -
* square. bin circle.bin
* -quit triangle. bin
$

3-11 The Librarian

-REPLACE -- Replaces one or more object modules already stored in a library file or adds
new object modules to the library file.

FORMAT

-REPLace path name

ARGUMENTS

pathname The pathname of an object file or library file.

DESCRIPTION

Use -REPLACE to replace one or more object modules stored in a library file. or to add new object (---------\
modules to the library file. The librarian handles the -REPLACE pathname option in the following ~_/

way.

1. The librarian reads the file stored in pathname to learn which object module(s) is stored there.

2. The librarian scans the library file to see if this object module(s) is stored in the library file.

3. If the object module is stored in the library file, the librarian deletes it from the library file and
stores the object module from pathname in its place. If the object module is not stored in the li- C
brary file, the librarian issues a warning and then adds the object module to the library file.

EXAMPLES

Suppose that an object module named triangle was stored inside mylib; however, you discovered a
flaw in it. The source code for triangle is stored in file d. pas. Therefore, you correct the prob
lems in d. pas and recompile it to create d. bin. Finally. to replace the defective triangle in
mylib with the good triangle in d. bin, you issue the following command:

$ lbr -update mylib -replace d.bin

Now suppose that object file e. bin contains an object module named rhombus. and that no version
of rhombus is stored in mylib. If we issue the following command, the librarian issues a warning but
adds the object module to the library anyway.

$ lbr -update mylib -replace e.bin
?(LBR) Warning: Replace of module which is not in library, module is
added.

File name "e. bin"
Module name "RHOMBUS"

No Errors; 1 Warning.

Instead of the preceding command, we could have issued the following command which adds the con
tents of e. bin to the library without issuing a warning.

$ lbr -update mylib e.bin

The Librarian 3-12

o

o

o

o

o

-SYSTEM, -NOSYSTEM -- Affects the listing generated by -LIST.

FORMAT

-SYStem
-NoSYStem

DESCRIPTION

These two options affect the listing generated by the -LIST option. If you specify -SYSTEM. the li
brarian reports unresolved external references even if they can be resolved by an installed library. If
you specify -NOSYSTEM, the librarian does not report unresolved external references if they can be
resolved by an installed library.

These are purely informational options; neither one affects the output library file in any way.

-NOSYSTEM is the default.

EXAMPLES

Here we compare the affect of the -SYSTEM option to the -NOSYSTEM option. First. we study
-SYSTEM. Notice how the following listing reports as "external references" a symbol that can be re
solved by an installed library.

$ lbr -create whylib circle.bin square. bin -system--list

(We omitted irrelevant parts of the listing.)

SQUARE_C timestamp: 1986/09/29 15:54:00 EDT (Man)

entered into library on: 1986/09/29 15:54:35 EDT (Man)

procedure$ 0000002C 00000020 R/O Cone at Instr Long-aligned

data$ 00000020 00000000 Concat Data Zero Long-aligned

square 00000008

debug$ 0000001C 0000004C R/O Concat Data Long-aligned

external references: ... ~--------
mmislll printf

Next, we examine the -NOSYSTEM option. Notice how it does not report the external references
that -SYSTEM reported.

$ lbr -create whylib circle.bin square. bin -nosystem -list

(We omitted irrelevant parts of the listing.)

SQUARE_C timestamp: 1986/09/29 15:54:00 EDT (Man)

entered into library on: 1986/09/29 15:54:35 EDT (Mon)

proeedure$ 0000002C

data$ 00000020

square

debug$ 0000001C

3-13

00000020

00000000

00000008

0000004C

R/O Concat Instr Long-aligned

Coneat Data Zero Long-aligned

R/O Concat Data Long-aligned

The Librarian

c

c

c> I

o

o

o

o

o

Chapter 4

An installed library is a set of one or more object modules that can only be accessed at runtime. (See
Chapter 1 for an introduction to installed libraries.) There are five types of installed libraries:

• User-defined- installed libraries

• System-defined installed libraries

• System-defined global libraries

• User-defined global library

• Object files installed with the -INLIB binder option

This chapter describes all five types.

NOTE: Most programmers can skip over this chapter. If, however, you want to create
your own installed libraries, you will find this chapter quite useful.

4.1 User-Defined Installed Libraries
A user-defined installed library is a very useful alternative to loading object modules with the binder. Basi
cally, the binder resolves external symbols at bind time (of course), but if you've created an user-defined
installed library, the loader resolves external symbols at runtime.

A user-defined installed library is temporary; it lasts only as long as the shell process that created it. You
create a user-defined installed library with the shell command INLIB. Invoking INLIB is simple: all you
have to do is issue a shell command of the following format:

$ INLIB path name

Pathname must be the name of an object file created by a compiler or the qinder. Don't be fooled by the
term itinstalled library"; pathname cannot be the name of a library file created by the librarian. See Ap
pendix D for an example demonstrating the INLIB utility.

4-1 Installed Libraries

A user-defined installed library exists only within the process that invoked INLIB. That is, your program
cannot successfully access an installed library from another shell process. When you terminate the shell
process (with CTRL/Z), the installed library becomes uninstalled. You can use INLIB more than once in
the same shell process to install more object files as installed libraries.

If the object file contains a "main program" (Le., if it defines a start address), then INLIB executes the
object file at installation time. This allows the installed object file to initialize static data. If the object file
does not contain a "main program," then INLIB does not execute the object file at installation time.

NOTE: If you used a compiler to create the object file you are installing, then all global
symbols in the user-defined installed library are automatically accessible to run
ning programs. However, if you used the binder to create the object file you are
installing, then by default the global symbols in the installed library are inaccessi
ble to running programs. To make these global symbols accessible to running
programs, you must use the -MARK, -ALLMARK, or -ALLKEEPMARK op
tion when you bind. See Chapter 2 for full details on these important binder op
tions.

4.2 System-Defined Installed Libraries
System-defined installed libraries function identically to user-defined installed libraries; the only differ
ence is that we write them, not you. You install them with the INLIB utility. After you install a system
defined installed library, you can only access it in the shell process in which you installed it.

Two examples of system-defined installed libraries are /lib/gmrlib and /lib/d3mlib. For example,
to install /lib/gmrlib, you would issue the following command:

$ inlib /lib/gmrlib

4.3 System-Defined Global Libraries
When you boot a DOMAIN workstation, the DOMAIN system automatically generates installed libraries,
called global libraries. As long as the software is installed, any program running on your workstation can
access them. The installation of these global libraries is automatic and beyond user control.

An example of a system-defined global library is /lib/ftnlib.

4.4 The User-Defined Global Library
A user-defined global library is a hybrid of the other types of installed libraries. Like a system-defined
global library, it is available to any program running in any shell at any time. But like a user-defined
installed library, you, the user, write it and control it.

To create a user-defined global library, simply copy an object file to pathname /lib/userlib. pri
va te. Then exit from the Display Manager (DM) with the DM command EX. When you restart your
workstation, the operating system generates a global library (Le., an installed library automatically accessi
ble to every process). If you find that you don't like this installed library, then you must remove it, shut
down the DM, and restart. You can remove it by issuing the following command:

$ dlf /lib/userlib.private -du -f

When you create a process, the loader automatically executes the main program of the object file stored in
/lib/userlib.private if there is one. This can slow down the creation of processes, so we recom
mend that your object file not contain a main program unless absolutely necessary.

4.4.1 Initializing Static Data in The User-Defined Global Library
The loader automatically initializes static data in the user-defined global library. However, the method of
initialization depends on what section the static data is stored in.

Installed Libraries 4-2

C,
/'

o

o

o

o

o

If the static data is stored in the da ta$ section, then the system initializes it to the specified values when
you boot the workstation or restart the DM. The loader initializes the data the same way it would initialize
static data for a running program. However, after initialization, the da ta$ section (which normally has
the read/write attribute) becomes a read-only section to prevent data corruption.

If the static data is stored in a section other than data$, then the loader ignores the values specified in
source code. Instead, when you boot your workstation or create a process, the loader automatically sets
the value of all static data in the section to zero. Each process has its own private copy of this section,
and the virtual addresses the section occupies are the same for every process. Most importantly, the
loader gives this section the read/write attribute. Therefore, although you cannot force the loader to in
itialize this section at process creation, you can initialize the data the first time that a running program ac
cesses the installed library. To accomplish this, your source code should declare a Boolean variable that
will only be false the first time that a running program attempts to access it. When it is false, the installed
library can call an initialization routine.

Global symbols in /1 i b/user 1 i b . pr i va te should not duplicate names defined in other installed librar
ies.

In summary, the system initializes static data in the da ta$ section once, but after initialization, the static
data becomes read-only. All variables in other data sections are initialized to zero unless the variable has
other data initialization from the source.

NOTE: If you used a compiler to create the object module in
/lib/userlib. pri vate, then all global symbols in the installed library are
automatically accessible to running programs. However, if you used the binder to
create the object module in /lib/userlib.private, then by default the
global symbols in the installed library are inaccessible to running programs. To
make these global symbols accessible to running programs, you must use the
-MARK or -ALLMARK option when you bind. See Chapter 2 for full details
on these important binder options.

4.5 Object Files Installed With the -IN LIB Binder Option
As of SR9.5, you can use the binder's -INLIB option to request that certain libraries be automatically
installed at execution time. This alleviates much of the need for manually issuing the INLIB command
prior to executing the program. It is also more flexible and efficient than the user-defined global library.
There can only be one user-defined global library on a workstation, and it is installed in every new
process, whether or not it's needed. This can significantly degrade the performance of process creation.
The -INLIB binder option, on the other hand, only installs those libraries that are needed by the program
being executed, and there is no real limit on the number of different libraries that can be handled in this
way.

See Chapter 2 for details on the -INLIB option.

4.6 Multiple Global Definitions in Installed Libraries
Sometimes, you install an object file that defines global symbols that have already been defined by another
active installed library. In such a case, the new definition overrides the old one. The loader reinstates the
old definition if the new installed library becomes uninstalled. For example, suppose a global library de
fines a global symbol called pas_$wri teo If you install an object file that also defines a global symbol
called pas_$wri te, then external references to pas_$wri te will be resolved by the user-defined in
stalled library. If you close the shell in which you installed the object file, then external references to
pas_$wri te will be resolved by the global library.

In order to ensure reliable program execution, the loader does not re-evaluate external references re
solved at runtime if you install a new installed library while the program is executing. In other words, once
a running program accesses a particular global symbol from an installed library, then that symbol cannot
be overridden while ·the program is running. For example, suppose you install object file j 1 as an in-

4-3 Installed Libraries

stalled library. Further suppose that you are executing an object file which makes an external reference to
symbol lunar, and that j 1 defines lunar as a global symbol. Also, assume that after your object file
accesses lunar, you install object file j 2 (which defines lunar as a global symbol) as an installed li- C
brary. During the execution of your object file, the loader will always access j l's lunar rather than j 2's .
lunar. When your object file stops running, j2's lunar will override jl's lunar for future program
execution.

To reduce the possibility of multiple global definitions, all DOMAIN symbols contain the phrase "_$"
(e.g., pas_$wri te, stream_$get_rec). To avoid accidentally duplicating a global symbol in a DO
MAIN installed library, mak~ sure your symbol names don't include "_$".

Installed Libraries 4-4

C~

c

c

o

o

o

o

o

Appendix

[8iUi)(O~elr Errlror 8Uild WarrIrDirng
Messcages

A

This appendix contains a listing of the errors and warning messages that you may encounter during bind
ing. Each message is classified as either an error or a warning. Warning-level messages indicate condi
tions that do not prevent the binder from producing an output file. However, warning-level messages may
mean that the file's contents are not what you expect. Error-level messages are fatal conditions that pre
vent the binder from producing an output file.

Attempt to respecify, start addr
(warning)

More than one input object module specified a start address. Therefore, the binder sets the start
address of the output object module to the first possible start address encountered. For example,
suppose that object modules c. bin and e. bin each define a start address. If you issue the
following command line:

$ bind a.bin b.bin c.bin d.bin e.bin -binary levI

then the binder sets the start address of levI to the start address of c. bin. (See Section 3.4 for
details on start addresses.)

Bad obj: Duplicate ill number
(error)

The input object module has been corrupted. You should recompile the source code to create a new
object file. If the error persists, contact your software support representative.

Bad obj: Missing ill number
(error)

(See note under 'Bad obj: Duplicate ID number'.)

Bad obj: No global base for reI
(error)

(See note under 'Bad obj: Duplicate ID number'.)

Bad ob}: No section base for reI
(error)

(See note under 'Bad obj: Duplicate ID number'.)

A-1 Binder Errors and Warnings

Bad obj: No text for reloc rcrd
(error)

(See note under 'Bad obj: Duplicate ID number'.)

Bad obj: Reloc of odd addr
(error)

(See note under 'Bad obj: Duplicate ID number'.)

Bad obj: Reloc outside text
(error)

(See note under 'Bad obj: Duplicate ID number'.)

Bad obj: Text overflow section
(error)

(See note under 'Bad obj: Duplicate ID number'.)

Binary file already open
(warning)

You specified the -BINARY option more than once in the same command. The binder writes the
output object module to the file specified as an argument to the first -BINARY option.

Binary file name cannot start with "-"
(error)

The keyword -BINARY must be followed by a pathname; however, you have mistakenly followed
-BINARY with an option.

Cannot close binary output
(error)

The binder cannot close the file you specified with the -BINARY option. This error probably

c;

indicates that the output file is unusable and that you should re-execute the bind command to create ~

(.. " another output file. "-

Cannot close input file
(error)

The binder could not close one of the input object files. The probable cause of this error is some sort
of network problem. The output object module created by the binder is probably usable.

Cannot close map file
(warning)

You used the -MAP option and tried to redirect standard output to a file, but the operating system
could not close this file. Possibly there were network problems when you executed the binder.

Cannot open XREF output file
(warning)

You used the -XREF option and tried to redirect standard output to a file, but the operating system
could not open this file. Possibly there were network problems when you executed the binder.

Binder Errors and Warnings A-2

('
'-_ ..

o

o

o

o

o

Cannot open file
(error)

This pathname exists, but the operating system cannot open it. Possibly there were network problems
when you executed the binder.

Conflicting object system types
(error)

The binder prohibits you from specifying input object files having different systypes. For example,
suppose that the compiler stamped a.bin with a systype of "sys5", but b.bin has a systype of
"bsd4.2". In this case, the following bind command line will trigger the error:

bind a.bin b.bin -binary myprog

All input object files must be stamped with the same systype. Don't forget that the system always
stamps an object file with a systype even if you didn't specify one. For more information on systype,
see the "-SYSTYPE" listing of Chapter 2.

Could not open Binary output
(error)

The filename you specified after the -BINARY option exists, but the operating system cannot open
it. Possibly, the file was already open or perhaps the operating system could not delete the old . BAK
file because of improper ACLs.

File not found
(warning in interactive mode)
(error in noninteractive mode)

The operating system could not find the specified file. Perhaps you misspelled a pathname, or
perhaps network problems prevented the operating system from finding the file.

File skipped - not an object module or a library
(error)

The binder was expecting a file containing either an object module or a library file. However, the file
you 'specified was neither.

Global not defined
(error)

The global symbol you specified as an argument to -MARK or -UNMARK has not been defined yet
by an input object module. To correct this error, put the option after an object module that defines
it.

Inquire about STDIN
(warning)

The binder made an operating system inquire call, but the operating system detected an error. If the
problem persists after recompiling your source files, you should contact your software support
representative.

Invalid alignment type for -ALIGN command
(warning)

You specified something other than LONG, QUAD, or PAGE as an argument to the -ALIGN
option. Therefore, by default, the binder will align the section on a LONG boundary.

A-3 Binder Errors and Warnings

Invalid global name
(error)

You tried to specify a global symbol as an argument to -MARK or -UNMARK, but the name you
entered contained some illegal characters.

Invalid module name
(error)

You tried to specify an object module as an argument to -INCLUDE or -MODULE, but the
argument you entered contained some illegal characters.

Invalid section name
(error)

You tried to specify a section as an argument to -ALIGN, -LOOKSECTION, -NOLOOKSECTION,
-MARKSECTION, -UNMARKSECTION, or -READONL YSECTION, but the name you entered
contained some illegal characters.

Invalid start address ignored
(warning)

The binder encountered a possible start address in one of the input object modules that referred to
an unknown section. This warning could indicate a compiler error or that one of the input object
files has been corrupted.

Invalid system type
(error)

The system name that you requested when you used the -SYSTYPE option was not a valid name or
was entered incorrectly. Enter a valid system name. Also, correct any format errors or typos.

Last file known is not a library file, no include done
(error)

The pathname that most closely precedes the -INCLUDE option was not a library file. To correct
this error, just change the order of your binder command so that -INCLUDE comes after the library
file it refers to.

Library object not an object module
(error)

You used the -INCLUDE option to name an object module from a library, but one of two things
went wrong~ Either the object module you specified was not actually stored in the library, or there
was an object module with this name, but it has somehow become corrupted.

Mixed overlay/concat allocation
(warning)

Your input object modules defined two sections with the same name, but one of these sections had
the overlay attrib1::lte and the other section had the concatenated attribute. For consistency, the
binder assumes that both sections have the overlay attribute.

Mixed RIO and RIW in section
(error)

Two input object modules defined a section witl~ the same name. However, one of these sections
had the read-only attribute and the other had the read/write attribute.

Binder Errors and Warnings A-4

c

c

C"

o

o

o

o

o

Module to include cannot be found in library
(warning)

The object module you specified as an argument to -INCLUDE is not stored in the library file
preceding the option. Therefore, the binder ignores this -INCLUDE option.

Multiple resolutions are possible for implicitly resolved symbol
(error)

The named global exists in more than one module within the library. The binder reports this error if
you use the -MULTIRES option.

Multiply defined global
(warning)

Two object modules are both trying to define a global symbol with the same name. The binder takes
the first one it encounters.

No alignment type for -ALIGN command
(warning)

You forgot to specify LONG, QUAD, or PAGE as an argument to the -ALIGN option. Therefore,
by default, the binder aligns the section on a LONG boundary.

No global name to mark
(warning)

You forgot to specify a global symbol as an argument to the -MARK option.

No global to unmark
(warning)

You forgot to specify a global symbol as an argument to the -UNMARK option.

No input
(fatal error)

You supplied no input object files. Therefore, the binder won't generate any error messages, warning
messages, or map files.

No input provided to XREF
(warning)

The binder found no sections or global symbols to cross-reference. Perhaps you mistakenly placed
the -XREF option at the end of the binder command. -XREF only affects the object files and
library files that come after it in the command.

No module name to include
(warning)

You forgot to specify an argument (either an object module name or the keyword -ALL) to the
-INCLUDE option.

No name for Binary output
(warning)

You forgot to specify an argument (a pathname) to the -BINARY option.

A-5 Binder Errors and Warnings

No name for -MODULE command
(error)

You forgot to specify an argument (the name of the output object module) to the -MODULE option.

No section name for -ALIGN command
(warning)

You forgot to specify a section name as an argument to the -ALIGN command.

No section name for LOOKS
(warning)

You forgot to specify an argument (either a section name or the keyword -ALL) to the
-LOOKSECTION option.

No section name for MARKS
(warning)

You forgot to specify an argument (either a section name or the keyword -ALL) to the
-MARKSECTION option.

No section name for -NOLO OKS
(error)

You forgot to specify an argument (the name of a section or the keyword -ALL) to the
-NOLOOKSECTION option.

No section name for READONLY
(warning)

You forgot to specify an argument (a section name) to the -READONLYSECTION option.

No section name to UNMARK
(warning)

You forgot to specify an argument (either a section name or the keyword -ALL) to the
-UNMARKSECTION option.

Not all globals were resolved
(error)

You used the -ALLRES option and forgot to include a module in the bind command line.
-ALLRES causes the binder to exit in an error if it finds an undefined global.

Relocation record for section changed to RIO
(error)

The section you specified as an argument to -READONLYSECTION contains relocation information
and must, therefore, have the read/write attribute. In other words, you should not attempt to change C'
the attributes of this section. Relocation information consists of addresses to other external objects "
which must be adjusted by the loader at runtime. You can only make a section read-only if it
contains compile-time constants.

Binder Errors and Warnings A-6

o

o

Section is already read-only
(error)

You tried to use the -READONLYSECTION option, but the section you specified as an argument
already has the read-only attribute. You can only specify as an argument a section with the
read/write attribute.

Section must be overlay
(error)

You specified a section as an argument to -LOOKSECTION, -NOLOOKSECTION,
-MARKSECTION, -UNMARKSECTION, or -READONL YSECTION, but this section has the
concatenated attribute. You can only specify a section that has the overlay attribute.

Section must be read/write
(error)

You specified a section as an argument to -LOOKSECTION, -NOLOOKSECTION,
-MARKSECTION, -UNMARKSECTION, or -READONLYSECTION, but this section has the
read-only attribute. You can only specify a section that has the read/write attribute.

Section not data
(error)

You specified a section as an argument to -LOOKSECTION, -NOLOOKSECTION,
-MARKSECTION, -UNMARKSECTION, or -READONL YSECTION, but this section has the code
attribute. You can only specify a section that has the data attribute.

o Section not defined

o

o

(error)
You specified a section as an argument to -LOOKSECTION, -NOLOOKSECTION,
-MARKSECTION, -UNMARKSECTION, or -READONLYSECTION, but no input object module
has yet defined this section. Try putting the option later in the binder command line. If that doesn't
work, make sure you have entered all the necessary object modules.

Section not defined for -ALIGN command
(error)

You specified a section as an argument to -ALIGN, but no input object module has yet defined this
sect jon. Try putting -ALIGN later in the binder command line. If that doesn't work, make sure you
have entered all the necessary object modules.

Section table overflow
(error)

The binder attempted to create more than 2,048 sections in the output object module. If you are
programming in the C language, note that the compiler assigns each global variable to a separate
section. Thus, you may have to reduce the number of global variables in your C source code .

. Too many sections in input file
(error)

One of your input object modules has more than 2,048 sections. If you are programming in the C
language, note that the compiler assigns each global variable to a separate section. Thus, you may
have to reduce the number of global variables in your C source code.

A-7 Binder Errors and Warnings

Unknown command ignored
(warning in interactive mode)
(error in noninteractive mode)

You specified an option that the binder doesn't recognize.

Wrong version of object format
(error)

One of your input object modules has an invalid format. Possibly, you are binding with an earlier
version of the binder, or possibly you inadvertently modified the input object module.

Wrong version of library format
(error)

One of your input library files has an invalid format. Possibly, you are binding with an earlier version
of the binder, or possibly you inadvertently modified the input library.

Wrong version of library object module format
(error)

One of your input library files has an invalid format. Possibly, you are binding with an earlier version
of the binder, or possibly you inadvertently modified the input library.

Binder Errors and Warnings A-a

c

... ---_.- ------------

o

o

o

o

o

Appendb(B

l~brr~rr~a({1 lEU-WOIr SlU1d W talrrril~U19J
MeSSC019)8§)

This appendix contains a listing of the errors and warning messages that you may encounter while using
the librarian. Each message is classified as either an error or a warning.

An error message indicates that the librarian could not perform the requested operation or that some er
ror condition arose while the librarian was trying to perform the operation. In either case, the result is
probably an unusable library file.

A warning message indicates that one of the following is true:

o The librarian could perform the requested operation, but the contents of the library file may not
be what you were expecting.

o The librarian could not perform the operation, but the library file was not corrupted. Therefore,
you can issue a corrected command on the original library file.

Here now is a list of all the error and warning messages produced by the librarian:

Cannot close library output
(error)

The librarian encountered an error when it tried to close the library file. This error sometimes indi
cates that the library has been corrupted; therefore, you should try to recreate the library, if possible.

Cannot close map file
(warning)

The map file is the file that the librarian generates in response to the -LIST option. This warning in
dicates that the librarian encountered a problem when it tried to close this map file. This warning has
no affect on the library itself.

Cannot close object output file
(error)

You tried to use the -OUTPUT option to copy an extracted object module to an output file, but the
librarian could not close the output file. Therefore, the output file is unusable. You have to delete it
and. try the librarian command over again.

Cannot open file
(error)

You specified an object file or library file to be added to the library, but the librarian could not open
the specified file. Operating system or network problems are responsible for this error. This error
will not corrupt the library file and the librarian will probably have correctly executed everything pre
ceding the error.

8-1 Librarian Errors and Warnings

Cannot open file, no update done
(error)

You specified a file as an argument to -REPLACE, but the librarian could not open this file. This er
ror will not corrupt the library file. The librarian will have processed commands up until this point.

Could not open library file
(error)

The librarian could not open the named libraryfile. Perhaps this file was being used by some other
process. Also, it is possible that there was no disk space or virtual address space available. Or, per
haps there was a network problem when you tried to open the library file. Probably, the library file is
uncorrupted.

Could not open object output file, no extract done
(error)

When you used the -OUTPUT option, you specified a pathname that the librarian could not open.
Perhaps the error was caused by network problems. The output library file will probably not be cor- ('
rupted by this error. ~-- /

CREATE option must be followed by new library pathname
(warning)

You entered the command LBR -CREATE, but you did not specify the pathname of the library to be
created. The pathname must be on the same line as -CREATE.

CREATE option specified but named file already exists, can't create
(error)

The librarian interprets the first character string after -CREATE as the filename of the new library.
The librarian signals this error if you've entered a filename that already exists. This ensures that you
don't overwrite an existing file. Usually, you get this error when you type in the names of the con
tributing object files and forget to enter the name of the library. This error will not change the exist
ing library file in any way.

File not found
(warning)

You specified that object modules from a certain file should be added to the library file, but the li
brarian could not find this file. Perhaps you misspelled the filename, or perhaps network problems
prevented the librarian from accessing the file.

File not found, no update done
(warning)

You specified a file with the -REPLACE option, but the librarian could not find this file. Perhaps
you misspelled the filename, or perhaps network problems prevented the librarian from accessing it.

File specified is not a valid library file
(error)

You specified a file immediately after -UPDATE, but this file does not contain a valid library. Re
member that a library is a file created by the librarian. The librarian will not alter the specified file.

Binder Errors and Warnings B-2

c

o

o

o

o

o

Invalid module name, no delete done
(warning)

You entered a module name after -DELETE that does not follow the syntax rules for valid module
names. Perhaps it begins with a digit or contains invalid characters.

Invalid module name, no extract done
(warning)

You entered a module name after -EXTRACT that does not follow the syntax rules for valid module
names. Perhaps it begins with a digit or contains invalid characters.

Module already exists and replacement was not specified, old module kept
(warning)

You tried to add a module to a library (as opposed to trying to replace the module with the -RE
PLACE option), but the named module already exists in the library file. Instead of trying to add this
object module to the library file, you should try to replace it with the -REPLACE option.

Module does not exist in library, no delete done
(warning)

When you used the -DELETE option, you specified an object module that was not part of the library
file. (Note that the librarian is case-sensitive to object module names.) To get a listing of the names
of all object modules in the library file, use the -LIST option.

Module name does not exist in library, no extract done
(warning)

When you used the -EXTRACT option, you specified an object module that was not part of the li
brary file. To get a listing of the names of all object modules in the library file, use the -LIST option.
Remember that the librarian is case-sensitive to object module names.

Module name is not between 1 and 32 characters in length, no delete done
(warning)

You must supply a module name immediately after the -DELETE option, and that name must be less
than 33 characters in length. You probably forgot to specify an object module, or if you did specify
an object module, you may have misspelled it.

Module name is not between 1 and 32 characters in length, no extract done
(warning)

You must supply the name of an object module immediately after -EXTRACT, and that name must
be less than 33 characters in length. You probably forgot to specify an object module, or if you did
specify an object module, you probably misspelled it.

No library specified, no add done
(error)

You forgot to specify -CREATE or -UPDATE. Therefore, the librarian will not be able to perform
your request to add new object modules.

No library specified, no replace done
(error)

You forgot to specify -CREATE or -UPDATE. Therefore, the librarian will not be able to perform
your request to replace object modules.

8-3 Librarian Errors and Warnings

No path name specified, no replace done
(warning)

You forgot to put a pathname immediately after -REPLACE. The pathname must be on the same
line as the -REPLACE.

Object found in library is not a valid object module, no add done
(warning)

You specified a library file to be added to an existing library, but the library file you wanted to add
contains one or more invalid object modules. Perhaps you entered the wrong filename.

Object found was not a valid object module or library, no add done
(warning)

You tried to add object module(s) to a library file, but you didn't enter the name of a valid library or
object file. Probably, you entered the wrong filename; for example, you entered my _prog instead of
my_prog.bin.

Object found was not a valid program or library module, no replace done
(warning)

You specified a file after -REPLACE, but this file is neither a valid object file (a compiled program)
nor a valid library (a special file created by the librarian). Perhaps you misspelled the pathname.

Open error or named file already exists for output file, no extract done
(error)

There are two possible causes for this error. Perhaps the pathname you specified as an argument to
the -OUTPUT (-0) option already exists. (You must specify a pathname that does not currently ex
ist.) The existing file probably will not be corrupted by this error. Another possibility is that you
specified a file that did not exist, but the binder could not create it. Perhaps the disk is full, or there
are network problems, or the pathname you specified was illegal.

-OUTPUT must be followed by a single valid pathname, no extract done
(warning)

When you used the -OUTPUT option, you forgot to put a single valid pathname immediately after
-OUTPUT. This pathname must be on the same line as -OUTPUT.

Previous CREATE option specified, this create option ignored
(warning)

You entered -CREATE more than once in the same LBR command. You cannot create or update
more than one library file during a single execution of the librarian. If you enter -CREATE twice,
the librarian ignores any filename that comes immediately after the second -CREATE.

Previous CREATE option specified, update not allowed
(error)

c

c

You entered -UPDATE in a command containing a previous valid -CREATE option. You cannot C'\
update a library in the same command in which you create a library. The librarian executes every-
thing in the command up until the -UPDATE (at which point, it aborts execution). This error will
not corrupt the library file.

Binder Errors and Warnings 8-4

o

o

o

o

o

Previous UPDATE option specified, CREATE not allowed
(error)

You entered -CREATE in a command that contains a previous valid -UPDATE command. A librar
ian command cannot contain both -CREATE and -UPDATE. If this is the only error, then the li
brarian probably correctly executed everything up until the -CREATE.

Previous UPDATE option specified, this update option ignored
(warning)

You entered -UPDATE more than once. If this is the only error, then the librarian probably exe
cuted everything up until the second - UPDATE.

-REPLACE is followed by an option instead of a pathname, no replace done.
-REPLACE is followed by an option instead of a pathname, option ignored.
(warning)

This double line warning message indicates that the argument after -REPLACE begins with a hyphen
(-) and thus cannot be a pathname. (The librarian assumes that arguments beginning with a hyphen
are options.) The librarian performs neither the replace nor the option immediately after it. Prob
ably, you forgot to specify a pathname after -REPLACE, or you accidentally put a hyphen before the
pathname argument.

Replace of module which is not in library, module is added
(warning)

You used the -REPLACE option, but the named object module does not exist in the library. This is
a harmless warning that the librarian issues to inform you that a replace was unnecessary (an add
would have sufficed). This lets you double check that you really gave the correct filename.

Unknown Command Ignored
(warning)

You entered a string of characters preceded by a hyphen (-) somewhere in the command line, but
the characters do not represent a valid librarian option. Perhaps you misspelled a librarian option, or
perhaps you accidentally put a hyphen in front of a filename. To let you know where you went
wrong, the librarian prints the faulty string of characters just after this warning.

UPDATE option must be followed by new library pathname
(warning)

You entered the command LBR -UPDATE, but you did not specify the pathname of the library file
to be updated. You must enter the pathname on the same line as -UPDATE.

UPDATE option specified but named file does not exists, can't update
(error)

The librarian interprets the first character string after -UPDATE as the filename of an existing li
brary. The librarian signals this error if you've entered a pathname that doesn't exist. Usually, you
get this error when you type in the names of some contributing object files and forget to enter the
name of the library file they affect.

8-5 Librarian Errors and Warnings

c

o

o

o

o

o

Appendb(c

This appendix contains a list of the attributes that can characterize a section. This list should help you in
terpret the maps produced by the librarian -LIST option or the binder -MAP option. The boldfaced
portion of the attribute is the abbreviation that you see in the librarian and binder maps. For example,
the expression" Abs" appearing in a binder map refers to the Absolute attribute.

Absolute Attribute

A section mayor may not have the absolute attribute. The absolute attribute tells the loader to begin
this section at a fixed virtual address. If you are programming in a high-level language, you have no
control over this attribute.

Data and Instruction Attributes
A section must have either the data attribute or the instruction attribute. The data attribute means
that the section contains program data only. The instruction attribute means that the section contains
machine code instructions only. Users cannot control these attributes.

Installed (or MARKSECTION) Attribute
A section mayor may not have the installed attribute (also called the MARKSECTION attribute). If
an installed library contains a section with the installed attribute, then that section can share data
with a section of the same name in an installed library or executing noninstalled object file. You con
trol the installed attribute with the -MARKSECTION and -NOMARKSECTION binder options de
scribed in Chapter 2.

Long-Aligned, Quad-Aligned, and Page-Aligned Attributes
A section must have the long-aligned attribute, the quad-aligned attribute, or the page-aligned at
tribute. A long-aligned attribute means that the loader must install the section beginning on a virtual
address that is a multiple of four bytes. A quad-aligned attribute means that the loader must install
the section beginning on a virtual address that is a multiple of eight bytes. A page-aligned attribute
means that the loader must install the section beginning on a virtual address that is a multiple of
1,024 bytes. You can control these attributes through the -ALIGN binder option described in Chap
ter 2.

Look_installed (or LOOKSECTION) Attribute
A section mayor may not have the look_installed attribute (also called the LOOKSECTION attrib
ute). At runtime, a section with the look_installed attribute can share data with a section of the same
name in an installed library. You control the look_installed attribute with the -LOOKSECTION and
-NOLOOKSECTION binder options described in Chapter 2.

C-1 Attributes

Overlay and Concatenated Attributes, and the Mixed Message
A section must have either the overlay attribute or the concatenated attribute. Components of a sec-
ti?n

h
WIh'th the overlaYdattri~bute shdare thehsamehaddress sPdadce at runtime. c~mponIents 0df a hsection e,

WIt t e concatenate attn ute 0 not s are t e same a ress space at runtIme. nstea, t ey are
placed one after another. "Mixed" is not an attribute, but merely indicates that an attempt was
made to combine overlay and concatenated components in the same section. When this occurs, the
binder or librarian assumes that the section has the overlay attribute. Users have indirect control of
these attributes through source code.

Read-Only and ReadlWrite Attributes
A section has either the read-only attribute or the read/write attribute. The abbreviation for the
read-only attribute is "R/O". If "R/O" does not appear in the list of attributes, it means that this sec
tion has the read/write attribute. A section with the read-only attribute is write-protected, and a sec
tion with the read/write attribute is not write-protected. Sections with the read-only attribute reduce
system overhead at runtime because the operating system doesn't have to copy the sections out to
disk as part of its virtual memory operations. Users have some control of these attributes through the
-READONLYSECTION binder option described in Chapter 2.

Zero Attribute
A section mayor may not have the zero attribute. If a section has the zero attribute, then the loader
sets all of the section's bytes to zero at runtime. A section with the zero attribute must also have the
read/write attribute. If you are programming in FORTRAN, you can control this attribute with the
-ZERO compiler option. If you are programming in other languages, you have no direct control over
this attribute.

Attributes C-2

-------------- -

o

o

o

o

o

Appendb(

Sam~~e PW(Q)g]U"C8lm
Deve~(Q)~O)meIi1~

D

This appendix provides a basic tutorial for developing programs on the DOMAIN system in FORTRAN,
Pascal, or C.

D.1 Sample Source Code
To help demonstrate program development, we've written a simple sample program in FORTRAN, Pascal,
and C. We divided the FORTRAN and C programs into four files each and the Pascal program into five
files. One file in each language contains the main program and the other files contain subprograms. This
arrangement provides a lot of flexibility for developing the program.

The programs printed in this appendix are available on-line. (See the release notes for Pascal, FOR
TRAN, or C for details on accessing them.)

D.2 Sample FORTRAN Program
Consider a sample FORTRAN program consisting of one "main" program and three subprograms. The
main program is stored in file geoshapes. ftn and is shown in Figure D-1. The three subprograms are
stored in files mathl.ftn, math2.ftn, and math3.ftn and are shown in Figures D-2, D-3, and
D-4.

0-1 Sample Program Development

C

INTEGER*2 CHOICE
REAL HEIGHT, BASE, AREA, LENGTH, RADIUS
EXTERNAL TRIANGLE, SQUARE, CIRCLE

WRITE (*,*) 'To find the area of a'
WRITE (*,*) , triangle (enter 1) ,
WRITE (*,*) , square (enter 2) ,
WRITE (*,*) , circle (enter 3) ,
WRITE (*,90)
READ *, CHOICE
GOTO (1, 2, 3) CHOICE

C TRIANGLE SECTION
1 WRITE (*,100)

READ *, HEIGHT, BASE
CALL TRIANGLE (HEIGHT, BASE, AREA)
GOTO 200

C SQUARE SECTION
2 WRITE (*,110)

READ *, LENGTH
CALL SQUARE (LENGTH, AREA)

C CIRCLE SECTION
3 WRITE (*,120)

READ *,RADIUS
CALL CIRCLE (RADIUS , AREA)

C RESULTS SECTION
200 WRITE (*,80) AREA

80
90
100
110
120

FORMAT('THE AREA IS " F7.2)
FORMAT('What is your choice -- " $)
FORMAT(' Enter the height and base of the triangle -- " $)
FORMAT(' Enter the length of one side of the square --', $)
FORMAT(' Enter the radius of the circle -- " $)
END

Figure 0-1. Code Stored in File GEOSHAPES.FTN

SUBROUTINE TRIANGLE (HEIGHT, BASE, AREA)
REAL HEIGHT, BASE, AREA

AREA = .5 * HEIGHT * BASE
END

Figure 0-2. Code Stored in File MATH 1 . FTN

SUBROUTINE SQUARE (LENGTH, AREA)
REAL LENGTH, AREA

AREA = LENGTH * LENGTH
END

Figure 0-3. Code Stored in File MATH2. FTN

SUBROUTINE CIRCLE (RADIUS , AREA)
REAL RADIUS, AREA

AREA 3.14159 * RADIUS * RADIUS
END

Figure 0-4. Code Stored in File MATH3.FTN

Sample Program Development 0-2

c

c

o

o

o

o

o

0.3 Sample Pascal Program
The following figures show a sample Pascal program consisting of one "main" program and three subpro
grams. The main program is stored in file geoshapes . pas and is shown in Figure D-5. The three sub
programs are stored in files rna th1 . pas, rna th2 . pas, and rna th3 . pas and are shown in Figures D-6,
D-7, and D-8. We stored the definitions of all external routines inside one file named external_rou
tines. pas, and it is shown in Figure D-9.

program geoshapes;
%include 'external_routines.pas'

VAR
height, base, length, radius, area
choice integer;

BEGIN
writeln('To find the area of a');
writeln(' triangle (enter 1) ');
writeln(' square (enter 2) ');
writeln(' circle (enter 3) ');

real;

write('What is your choice '); readln(choice);

case choice of
1 : begin

write('enter the height and base of the triangle -- ');
readln(height, base);

2
end'
begin

triangle(height, base, area);

write('enter the length of one side of the square -- ');
readln(length);

3
end;
begin

square (length, area);

write('enter the radius of the circle -- ');
readln(radius);

END.

circle(radius, area);
end;

otherwise return;
end;
writeln('The area is area: 4: 2) ;

Figure 0-5. Code Stored in File GEOSHAPES.PAS

module math1;
DEFINE triangle;
%include 'external_routines.pas';

PROCEDURE triangle;
BEGIN

area .- (0.5 * height * base);
END;

Figure 0-6. Code Stored in File MATH1.PAS

0-3 Sample Program Development

module math2;
DEFINE square;
%include ~external_routines.pas~;

PROCEDURE square;
BEGIN

area .- length * length;
END;

Figure 0-7. Code Stored in File MATH2.PAS

module math3;
DEFINE circle;
%include ~external_routines.pas~;

PROCEDURE circle;
CONST

pi = 3.14;
BEGIN

area .- pi * radius * radius;
END;

Figure 0-8. Code Stored in File MATH3. PAS

procedure triangle(in height real;
in base real;
out area real); extern;

procedure square(in length real;
out area real) ; extern;

procedure circle(in radius real;
out area real) ; extern;

Figure 0-9. Code Stored in File EXTERNAL_ROUTINES.PAS

0.4 Sample C Program
The following figures show a sample C program consisting of one "main" program and three subprograms.
The main program is stored in file geoshapes. c and is shown in Figure D-l0. The three subprograms
are stored in files math1. c, math2. c, and math3. c and are shown in Figures D-ll, D-12, and
D-13.

Sample Program Development 0-4

c'

c

,

o

o

o

'0

o

extern float
extern float
extern float

triangle () ;
square();
circle () ;

float height, base, length, radius, area;
int choice;

main ()
{

}

printf("To find the area of a \n");
printf(" triangle (enter 1) \n");
printf(" square (enter 2) \n");
printf(" circle (enter 3) \n");
printf("What is your choice -- "); scanf("%d", &choice);

switch (choice)
{

}

case 1: printf("enter the height and base of the triangle -- ");
scanf ("%f%f", &height, &base);
area = triangle (height , base);
break;

case 2 printf("enter the length of one side of the square -- ");
scanf ("%f", &length);
area = square(length);
break;

case 3 printf("enter the radius of the circle -- ");
scanf ("%f", &radi us) ;
area = circle(radius);
break;

default: return;

printf("The area is %5.2f\n", area);

Figure 0-10. Code Stored in File GEOSHAPES.C

float
float

triangle (height , base)
height, base;

{
return(O.5 * height * base);

}

float square (length)
float length;
{

Figure 0-11. Code Stored in File MATH 1 . C

return(length * length);
}

float
float
{

circle(radius)
radius;

#define pi 3.14

Figure 0-12. Code Stored in File MATH2. C

return(pi * radius * radius);
}

Figure 0-13. Code Stored in File MATH3.C

0-5 Sample Program Development

0.5 Compiling
The next step in program developm'ent is to compile the source code . You must compile each file of
source code separately by using the commands shown in Table D-1.

Table D-l. Compiling the Source Code

FORTRAN Pascal C

$ ftn geoshapes $ pas geoshapes $ cc geoshapes
$ ftn mathl $ pas mathl $ cc mathl
$ ftn math2 $ pas math2 $ cc math2
$ ftn math3 $ pas math3 $ cc math3

Whether you used the FORTRAN compiler, the Pascal compiler, or the C compiler, the .results are basi
cally the same. Namely, the compiler creates object files geoshapes.bin, mathl.bin, math2.bin,
and math3. bin.

D.6 Possible Program Development Paths
After compiling the source code, there are many ways in which you can create an executable object file.
We illustrate several methods in this section.

0.6.1 Path 1: Binding
The most straightforward method for creating an executable object file is to bind all four object files into
one executable output object file as follows:

$ bind geoshapes.bin mathl.bin math2.bin math3.bin -binary geo

To execute the output object file, you merely enter its name as a command, for example:

$ geo

0.6.2 Path 2: Creating a Library File, Then Binding
There is nothing wrong with the development shown in path 1; however, it may be advantageous to build a
library file instead as follows:

$ lbr -create mathlib mathl.bin math2.bin math3.bin

Then you can bind the main routine to the library as follows:

$ bind geoshapes.bin mathlib -binary geo

And execute the program as you would execute any program, for example:

$ geo

Why do it this way? Because it might be very helpful for future program development to build a library file
of related mathematical functions. The big advantage of a library file is that you have many object files at
-your disposal, but the binder will only gather the object files required for the binding. Thus, your output
object file won't contain any excess code.

0.6.3 Path 3: Using the INLIB Utility
Here, we will use the INLIB utility to build an installed library. First, we will use the binder to build a
nonexecutable object file named to_be_installed as follows:

$ bind -allmark mathl.bin math2.bin math3.bin -binary to_be_installed

Notice that we had to use the -ALL MARK binder option to make available the global symbols in
mathl.bin, math2.bin, and math3.bin.

Sample Program Development 0-6

-~--------.----- ---------------------

~
I
\ ,.' "'-_./

'"

o

o

o

o

o

Now, we will use the INLIB utility to install this object file as follows:

$ inlib to_be_installed

And finally, we can run the main program without ever running it through the binder as follows:

$ geoshapes.bin

The loader will match the unresolved external symbols of geoshapes. bin with the global symbols in
mathl.bin, math2.bin, and math3.bin.

0-7 Sample Program Development

c

C~

o

o

o

o

o

The letter I means "and the following page"; the letters II mean" and the following pages". Symbols are
listed at the beginning of the index. Entries in color indicates procedural information.

{ } (braces) 2-3
- (hyphen) 2-2f

Symbols

in binder commands 2-12
in librarian commands 3-3

32-bit boundaries 2-7, C-l
64-bit boundaries 2-7, C-l
8192-bit boundaries 2-7, C-l

A

Abs C-l
Absolute attribute C-l
Absolute pathnames 2-9
Adding library files to libraries 3-2
Adding object files to libraries 3-2
Address space

sharing C-2
AEGIS environment 2-44
-ALIGN binder option 2-7, C-l
Aligning sections 2-7
All globals are resolved 2-15f,

2-28f, 2-39
-ALLKEEPMARK binder option

2-30ff
-ALLMARK binder option 2-30ff
-ALLRESOL VED binder option 2-8
-ALL UNMARK binder option

2-30ff
Alphabetical sorting of global

symbols 2-42
Attributes 1-3

complete list of C-H
in library files 3-8f
of sections in programs 2-28f,

2-39f
read/write 2-38
relative advantages 2-38

Audit trails 1-3

8

.BAK filename extension 2-3f
and binding 2-3f

-BDIR binder option 2-9f
.BIN filename extension 1-1
-BINARY binder option 2-2, 2-4,

2-11
/bin/cc section merging 2-33
Binder

Index-1

checking installed libraries 1-4
comments 2-3
crucial option 2-2
errors 2-3
example D-6
how it scans library files 3-4
how to invoke 2-Hf
input library files 2-H
input object files 2-H
installing object files 2-19ff
library files 1-4
listing of all errors and warnings

A-Hf
object modules 1-1
options

summary 2-4ff
use of 2-2ff

overview 1-3f
program development 1-2
quitting 2-37
resolution of global symbols 1-3
role in program development

1-Hf
search order through library files

2-22ff
setting target environment 2-44
spreading command over multiple

lines 2-2f, 2-12
suppressing errors 2-36
using it in steps 2-2
version numbers 2-27, 2-28f
warnings 2-3
when to use 2-1

Binding
efficiently 2-2
multilevel 2-2

Boundaries 2-7
Braces { } 2-3
BSD4.1 environment 2-44
BSD4.2 environment 2-44
BSS$ section 2-33
Building systems 1-3

C

binding 2-1
case-sensitivity 2-14
global symbols 1-3

merging 2-33

c

global variables 2-7, 2-26, 2-38
main function 3-5
on-line examples D-l
program development i-iff
sample programs D-4f

sharing data with installed
libraries 2-26

start address 2-13, 2-29, 3-5
systype 2-44

Case-sensitivity' of binder 2-14

Changing output object module
name 2-35

Characteristics of a section 1-3
CLIB 2-44

Closing a binder session 2-12
Combining object files 1-3f
Combining sections 2-33
Comments

in binder commands 2-3
in librarian commands 3-4

Communicating between different
modules 1-3

Compilers 1-1, 1-3
program development 1-2
version numbers. 2-27

Concat C-2
Concatentated attribute C-2
Conditional loading 1-4
Conflicting object system types A-3
Controlling software 1-3
Copying object modules from library

files 3-7
-CREATE librarian option 3-2

Creating
executable programs 2-if, 2-11
library files 3-2

Cross-reference
of object modules 2-46f

D

D3mlib 4-2
Data attribute 2-26, 2-33, C-l
Data$ section 4-3
Data

sections 2-25f
sharing in sections 2-25f

Date of binding 2-28f
Debugging

object files i-if
-DELETE librarian option 3-6
Deleting object modules from library

files 3-6
Dependency tracking 1-3
Developing programs i-iff
Directories

alternate search 2-9f
Disk I/O

minimizing 2-38
Disk space

conserving 1-5
Documentation control 1-3
DOMAIN environment 2-44
DOMAIN Software Engineering

Environment (DSEE) package 1-3

DSEE (DOMAIN Software
Engineering Environment) package
1-3

E

ECO (Engineering Change Order)
control 1-3

-END binder option 2-2f, 2-12
-END librarian option 3-3
Ending a binder session 2-12
Engineering Change Order (ECO)

control 1-3
-ENTRY binder option 2-13
Errors

Index-2

binder 2-3, A-iff
librarian 3-4, 3-10, B-lff
solved by marking 2-30ff
summary 2-34
suppressing binder 2-34, 2-36

c

o

o

o

o

o

suppressing librarian 3-10
systype A-3
1:lndefined global symbols 2-4

- EXACTCASE binder option 2-14
Examples

program development D-1£f
Executable object file

creating 2-11
Executing

object files 1-1£, D-6f
Exiting

from a binder session 2-37
from a librarian session 3-11

Extensions
.BIN 1-1

External references 1-3
in library files 3-4, 3-8f
reporting 3-:-13
unresolved 2-15f, 2-45

External_routines.pas D-3f
- EXTRACT librarian option 3-7
Extracting object modules from

library files 3-7

F

Files
spreading source code across

multiple 1-1ff, D-1£f
Fixed virtual addresses C-1
Force load library files 2-17f
FORTRAN

binding 2-1
case-sensitivity 2-14
COMMON areas 2-26, 2-38
global symbols 1-3
on-line examples D-1
program development 1-1ff
sample programs D-1£
sharing data with installed

libraries 2-26
start address 2-13, 2-29, 3-5
the main program 3-5
-ZERO compiler option C-2

Ftnlib 4-2

G

Geoshapes.c D-4f
Geoshapes.ftn D-1£
Geoshapes.pas D-3f
Global map 2-15f, 2-28f

Global symbols
-ALLRESOL VED option 2-8
and compilers 1-3
and the binder 1-3f
cross-references 2-46f
error messages 2-43
in installed libraries 4-2ff
in library files 3-4, 3-8f
information on 2-15 f
limits 1-5
marked 1-5
mUltiply defined 2-30ff
primary 1-3
restrictions 1-7
sorting 2-42
undefined 2-4

Global variables
in C 2-7

-GLOBALS binder option 2-15f
Gmrlib 4-2

H

Hyphen (-)
in binder commands 2-2f, 2-12
in librarian commands 3-3

ID number of sections in programs
2-28f, 2-39f

Identifiers 1-5
-INCLUDE binder option 2-17f,

3-4f
Information

on program 2-28f
Informational messages 2-34
Initializing static data in

userlib.private 4-2f
INLIB 4-1f

alternative 2-19ff
and library files 1-4

-INLIB binder option 2-19ff
multiple uses of 2-20
pros and cons 4-3
vs INLIB utility 2-20f

INLIB
example D-6f
object modules 1-1£

Installed attribute C-1
Installed libraries 1-1f, 4-1£f

and start address 4-2
at bind time 1-4

Index-3

benefits 1-5
different kinds of 1-5
examples D-6f
global symbols in 2-15f
marking 2-30ff
primary 1-4f
sharing data 2-25f
unresolved external references

3-13
vs. library files 1-4 f

Installed library
dependencies 2-20

Installing an object file 4-1ff
Installing object files at bindtime

2-19ff
Installing on a per-program basis

2-19
Instr C-l
Instruction attribute C-l
Interaction of utilities 1-2
Intermodular communication 1-3

L

Language libraries 1-3f, 4-1f
ld command (of DOMAIN/IX) 2-33
Librarian

comments 3-4
-CREATE option 3-2
errors and warnings 3-4, B-1ff
how it scans 3-4
how to use 3-1ff
invoking 3-1f
object modules l-1f
order of execution 3-2f
primary 1-4, 3-1ff
program development 1-2
purpose 1-4
quitting 3-11
replacing object modules 3-12
reporting external references

3-13
role in program development 1-3
spreading command over multiple

lines 3-3
summary of options 3-2
suppressing external references

3-13
suppressing messages 3-10
-UPDATE option 3-2
version number 3-8
wildcards 3-2

Libraries
language 1-3f
system 1-2
04-2

Library files 1-4, 3-1ff
and binder 1-4
and INLIB 1-4
attributes in 3-8f
binder's search order 2-22ff
creating 3-2
examples D-6
external references in 3-8f
force loading of 2-17f
global symbols in 3-8f
how the binder scans them 3-4
information on 3-8f
modifying 3-2
start address 3-5
summary of 3-2'
time of creation 3-8
vs. Installed libraries 1-4

Limits
binder 1-5
global symbols 1-5
sections 1-5
variable names 1-5

-LIST librarian option 3-4, 3-8f
attributes C-1f

Listing
binder option 2-28f, 2-39f
librarian information 3-8f

Loader 1-1, 1-5
and -INLIB 2-20
role in program development 1-2

Loading
library files 2-22ff, 3-4
object modules

at runtime 1-4f
from library files 1-4

- LOCALSEARCH binder option
2-22ff

Long boundaries 2-7
Long_Aligned attribute 2-33, C-l
Look_installed attribute 2-33, C-l
LOOKSECTION attribute 2-25f
Looksection attribute C-l
-LOOKSECTION binder option

2-25f, C-l

main function 3-5
Main memory

M

maximizing use of 1-5

Index-4

c

c

c

c

--~~~---------... - ------

o

o

o

o

o

- MAKERS binder option 2-27,
2-29

Managing software 1-3
-MAP binder option 2-28f

attributes C-H
Mapd

global 2-15f
Mapping

library files 3-8f
Maps

librarian 3-8f
load 2-28f
section 2-40f

-MARK binder option 2-30ff
in installed libraries 4-2

Marked global symbols
limits 1-5

Marking
global symbols 2-30ff
object files in installed libraries

4-2f
MARKSECTION attribute 2-25f
Marksection attribute C-l
-MARKSECTION binder option

2-25f, C-l
Math1.c D-4f
Math1.ftn D-H
Math1.pas D-3f
Math2.c D-4f
Math2.ftn D-H
Math2.pas D-3f
Math3.c D-4f
Math3.ftn D-H
Math3.pas D-3f
-MERGEBSS binder option 2-33
Merging sections 2-33
-MES librarian option 3-10
-MESSAGES binder option 2-34
Messages

informational 2-34
-MESSAGES librarian option 3-10
Mixed attribute 2-33
Mixed Message C-2
Modifying a library file 3-2
-MODULE binder option 2-35
Module (see Object modules)
-MSG librarian option 3-10
Multifile programs 1-3
Multilevel binding 2-2

merging sections 2-33
Multiple global definitions in

installed libraries 4-3f

Multiple resolutions error 2-36
-MUL TIRES binder option 2-36

N

Name of all global symbols 2-15f
Names

of modules in programs 2-28f,
2-39

of sections in programs 2-28f,
2-39

Naming output object module 2-35
-NMULTIRES binder option 2-36
-NOEXACTCASE binder option

2-14
-NOINLIB binder option 2-19ff
-NOLOCALSEARCH binder option

2-22ff
-NOLOOKSECTION binder option

2-25f, C-l
-NOMARKSECTION binder option

C-l
-NOMES librarian option 3-10
-NOMESSAGES binder option 2-34
-NOMESSAGES librarian option

3-10
-NOMSGS librarian option 3-10
-NOMUL TIRES binder option 2-36
-NOSYSTEM librarian option 3-13
-NOUNDEFINED binder option

2-45
Numerical sorting of global symbols

2-42
-NUNDEFINED binder option 2-45

Object files 1-1
executing 1-H

o

in multiple directories 2-9f
installed with the - INLIB binder

option 4-H
Object modules 1-1

contributing to program 2-28f,
2-39

cross-references 2-46f
in library files 1-4, 3-8f
naming 2-35
size of 2-28f, 2-39
time of creation 3-8

Offsets
of symbols 2-15 f

One file programs
binding 2-1

Index-5

On-line examples D-1
Operating system

libraries 1-2, 4-2
setting the target 2-44

Optimizing
operating system overhead C-2
performance 2-7
programs 2-38

Options
binder summary 2-4 ff

Order of object modules in library
files 2-22ff

Output object file 1-2, 2-11
-Output option 3-7
Overlay attribute 2-26, 2-33, C-2
Ovly C-2

p

Page boundaries 2-7
Page-Aligned attribute C-1
Pascal

case-sensitivity 2-14
global symbols 1-3
named sections 2-26, 2-38
on-line examples D-l
program development 1-Hf
sample programs D-3f
sharing data with installed

libraries 2-26
start address 2-13, 2-29, 3-5
the keyword PROGRAM 3-5
when to bind 2-1

Passes
over library files 2-22ff, 3-4

Pathnames
absolute vs. relative 2-9

Performance
optimizing 2-7

Physical memory
maximizing use of 1-5

Private installed libraries 4-2
Problems

solved by marking 2-30ff
Programs

creating them 1-2 , 2-H
development 1-1 ff
examples D-Hf
executing them 1-5
start address 2-13, 3-5
optimizing performance 2-7

sharing data with installed
libraries 2-25f

Project histories 1-3

Q

Quad boundaries 2-7
Quad-Aligned attribute C-l
-QUIT binder option 2-37
-QUIT librarian option 3-11
Quitting

a binder session 2-37
a librarian session 3-11

R

r flag (of cc) 2-33
Read-Only attribute 2-38, C-2
-READONL YSECTION binder

option 2-38, C-2
Read/Write attribute 2-26, 2~38,

C-2
in userlib.private 4-3

Redirecting standard output 2-28
Relative pathnames 2-9
Removing object modules from

library files 3-6
-REPLACE librarian option 3-12

wildcards 3-2
Replacing object modules in library

files 3-12
Resolution

bind time 1-3
runtime 1-4 f

Resolving global symbols 2-22ff
error message 2-36
marking 2-30ff

Restarting your workstation 4-2
Revision numbers

reporting by binder 2-27
setting 2-41

Runtime
errors

avoided by marking 2-30ff
loading of programs 1-5
resolution of global symbols 1-4f,

4-1£f

s
Scanning library files 2-22ff, 3-4
Scripts

binder errors 2-8
Search directories 2-9f

Index-6

c~.

c

o

o

o

o

o

Searching library files 2-22ff, 3-4
Section map 2-28f, 2-39f

-SECTIONS binder option 2-39
Sections 1-3

aligning 2-7

data sharing in 2-25f
in C 2-7

information on 2-15f
limits 1-5

listing 2-46f

position in object modules 3-8f

read-only attribute 2-38
read/write attribute 2-38
size of in object files 2-28f, 2-39

size of in library files 3-8f
Setting all bytes to zero C-2
Setting systype 2-44

-SET_VERSION binder option 2-41
Severity Levels 2-8

Sharing data

at runtime 2-33
in sections 2-25f

with installed libraries C-l

Shell scripts 2-8

Shutting down your workstation 4-2
Size

of sections 2-28f, 2-39

of variable names 1-5

Software engineering tools 1-3
Software updates

optimizing 1-5

Sorting global symbols 2-42

-SORTLOCATION binder option
2-42

-SORTNAMES binder option 2-42

Source code 1-1
control 1-3
examples D-l ff

writing 1-1

Standard output
redirecting 2-28

Start address 3-5

-ENTRY option 2-13
in listing 2-28f

Static data

initializing in userlib.private 4-2f
Steps to create a program 1-2

Stopping

a binder session 2-37

a librarian session 3-11

Summary of
binder options 2-4ff
binder errors 2-34, A-Hf
librarian errors 3-1, B-Hf
librarian options 3-2

Support environment tools 1-3
Swapping

minimizing 2-38
SYS3 environment 2-44
SYS5 environment 2-44
-SYSTEM binder option 2-43

affect on -GLOBALS 2-15f
System building 1-3
-SYSTEM librarian option 3-13
System

libraries 1-2, 1-3f, 2-44, 4-H
setting the target 2-44

System-defined
global libraries 4-H
installed libraries 4-H

Systype 2-44, A-3
-SYSTYPE binder option 2-44

T

Terminating a ·binder session 2-12
Time of binding 2-28f
Troubleshooting

binder errors A -Hf
librarian errors B-Hf
solved by marking 2-30ff

Typographical conventions 2-4, iv

u

Unconditional loading 1-4
-UNDEFINED binder option 2-45
Undefined globals 2-45

error message 2-43, 2-4
information on 2-15f

UNIX environment 2-44
- UNMARK binder option 2-30 ff
Unmarking

global symbols 2-30ff
-UNMARKSECTION binder option

2-25f

Unresolved external references
2-45, 3-13

Unresolved global symbols
binding 2-8

-UPDATE librarian option 3-2
Updating object modules in library

files 3-12

Index-7

User-defined
global library 4-iff
installed libraries 4-if

Userlib.private 4-2
global symbols in 4-3

Utilities
interaction 1-2

Variable names
limits 1-5

Version numbers
in listing 2-28f

v

of DOMAIN binder 2-28f
of DOMAIN librarian 3-8
setting 2-41
utilities 2-27

Virtual addresses
absolute C-1

Warnings
binder 2-3, A-iff
count of 2-34

w

librarian 3-4, 3-10, B-iff
suppressing librarian 3-10

Wildcards
librarian inputs 3-2

Write-protection C-2

x

-XREF binder option 2-46f

z
Zero attribute 2-33, C-2
-ZERO FORTRAN compiler option

C-2
Zeroing all bytes C-2,

Index-8

c

o

o

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN Binder and Language Reference
Order No.: 004977 Revision: 02 Date of Publication: February, 1987

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional

__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? ______________________ _

What parts of the manual are especially useful for the job you are doing?

What additional information would you like the manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

0 s
0 ..,

E:
a.
I»
0'
::J
cc
a.
~
CD
a.

::J
ID

FOLD .-----___ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---~
FOLD

C

- ------------------ ------~-------

o

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN Binder and Language Reference
Order No.: 004977 Revision: 02 Date of Publication: February, 1987

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional

__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? ______________________ _

What parts of the manual are especially useful for the job you are doing?

What additional information would you like the manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

0

~
0
~

0'
0::
nJ
0"
::J

(Q

0-
~
iD
0-

::J
CD

FOLD __ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---,
FOLD

(,
"-....-/

(-
'-.

