
DSM-00040-10

AMOS®

Monitor Calls

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

$/3+$$/3+$

0,&526<67(060,&526<67(06
5,*+7�)5207+(67$57�

© 1998 Alpha Microsystems

REVISIONS INCORPORATED

REVISION DATE

00 March 1988
01 December 1988
02 September 1989
03 April 1991
05 May 1997
06 December 1997
07 May 1998
08 June 1998
09 October 1999
10 April 2000

AMOS Monitor Calls
To re-order this document, request part number DSO-00040-00.

This document applies to AMOS versions 2.3A, PR 10/99, AlphaTCP 1.5A and later

The information contained in this manual is believed to be accurate and reliable. However, no
responsibility for the accuracy, completeness or use of this information is assumed by Alpha
Microsystems.

The following are registered trademarks of Alpha Microsystems, Santa Ana, CA 92799:

AMIGOS AMOS Alpha Micro AlphaACCOUNTING
AlphaBASIC AlphaCALC AlphaCOBOL AlphaDDE
AlphaFORTRAN 77 AlphaLAN AlphaLEDGER AlphaMAIL
AlphaMATE AlphaNET AlphaPASCAL AlphaRJE
AlphaWRITE CASELODE OmniBASIC VIDEOTRAX

The following are trademarks of Alpha Microsystems, Santa Ana, CA 92799:

AlphaBASIC PLUS AlphaVUE AM-PC AMTEC
AlphaDDE AlphaConnect DART inSight/am
inFront/am ESP MULTI

All other copyrights and trademarks are the property of their respective holders.

ALPHA MICROSYSTEMS
2722 S. Fairview St.

 Santa Ana, CA 92799

AMOS Monitor Calls Manual, Rev. 10

Summarized Table of Contents
PREFACE

CHAPTER 1 COMMUNICATING WITH AMOS 1-1

CHAPTER 2 JOB SCHEDULING AND CONTROL SYSTEM 2-1

CHAPTER 3 MEMORY CONTROL SYSTEM CALLS 3-1

CHAPTER 4 ALLOCATING AND USING MEMORY 4-1

CHAPTER 5 MONITOR QUEUE SYSTEM CALLS 5-1

CHAPTER 6 THE FILE SERVICE SYSTEM 6-1

CHAPTER 7 TERMINAL SERVICE SYSTEM 7-1

CHAPTER 8 CONVERSION MONITOR CALLS 8-1

CHAPTER 9 INPUT LINE PROCESSING CALLS 9-1

CHAPTER 10 DATE AND TIME CONVERSION CALLS 10-1

CHAPTER 11 FLOATING POINT MONITOR CALLS 11-1

Page iv Table of Contents

AMOS Monitor Calls Manual, Rev. 10

CHAPTER 12 GENERALIZED OUTPUT MONITOR CALLS 12-1

CHAPTER 13 MISCELLANEOUS MONITOR CALLS 13-1

CHAPTER 14 SOFTWARE INTERRUPT SYSTEM 14-1

CHAPTER 15 THE INTER-TASK COMMUNICATION SYSTEM 15-1

CHAPTER 16 SERIAL COMMUNICATIONS SYSTEM 16-1

CHAPTER 17 INTERNATIONAL LANGUAGE SUPPORT MONITOR CALLS 17-1

CHAPTER 18 DIRECTORY HANDLING SYSTEM 18-1

CHAPTER 19 SYSTEM DISK CACHE CALLS 19-1

CHAPTER 20 ALPHATCP PROGRAMMING INTERFACE 20-1

APPENDIX A DISK STRUCTURE FORMAT A-1

APPENDIX B TERMINAL SERVICE SYSTEM B-1

APPENDIX C SYSTEM COMMUNICATION AREA C-1

APPENDIX D STANDARD SYSTEM LIBRARY ROUTINES D-1

Table of Contents Page v

AMOS Monitor Calls Manual, Rev. 10

APPENDIX E ALPHABETIC LISTING OF AMOS MONITOR CALLS E-1

APPENDIX F CHARACTER SETS F-1

APPENDIX G RAD50 CONVERSION TABLE G-1

APPENDIX H USER DESCRIPTION SYMBOLS H-1

APPENDIX I EIGHT-BIT CHARACTER SUPPORT I-1

APPENDIX J USING AMSORT.SYS J-1

AMOS Monitor Calls Manual, Rev. 10

Table of Contents

PREFACE

CHAPTER 1 COMMUNICATING WITH AMOS 1-1

COMPATIBILITY ISSUES 1-1
MONITOR CALL CALLING FORMAT 1-3

Arguments 1-3
Address Pointers 1-3
Source Operands 1-4
Destination Operands 1-4

USE OF MONITOR CALL REGISTERS 1-4
MONITOR CALL SYMBOLS (SPECIAL .UNV FILES) 1-4

CHAPTER 2 JOB SCHEDULING AND CONTROL SYSTEM 2-1

THE JOB SCHEDULER 2-1
THE JOB CONTROL BLOCK (JCB) 2-2

Example - Scanning the Job Control Area 2-3
ACCESSING YOUR JCB 2-3
ACCESSING ANOTHER JOB'S JCB 2-3
JOB SCHEDULING CALLS 2-4

SLEEP - Put Job to Sleep 2-4
WAKE - Wake Up Job 2-5

JOB CONTROL BLOCK FORMAT 2-5
JOBSTS - The Job Status Word 2-5
JOBTYP - The Job Type 2-6
JOBTY2 - More Job Type Flags 2-6
JOBSPR - The Stack Pointer Reset Address 2-7
JOBNAM - The Job Name 2-7
JOBBAS - The Memory Base Address 2-7
JOBSIZ - The Memory Partition Size 2-7
JOBUSR - The Current PPN 2-7
JOBPRV - The Privilege Word 2-8
JOBEXI - Job Exit-Trap Stack Pointer 2-8
JOBPRG - The Current Program Name 2-8
JOBCMZ - The Command File Size 2-8
JOBCMS - The Command File Status 2-9
JOBERC - The Error Control Address 2-9
JOBWAT - Semaphore Wait Chain Link 2-12
JOBBPT - The Breakpoint Address 2-12

Page viii Table of Contents

AMOS Monitor Calls Manual, Rev. 10

JOBATT - The Parent Job Index 2-12
JOBDEV - The Default Device 2-12
JOBDRV - The Default Drive 2-12
JOBTRM - The Terminal Block Pointer 2-12
JOBRBK - The Run Control Block 2-13
JOBFPE - The Floating-Point Trap Address 2-13
JOBRNQ - The Scheduling Area 2-13
JOBCPU - The Job's CPU Time Counter 2-13
JOBCON - The Time and Date the Job Logged-In 2-14
JOBDSR - The Number of Disk Reads Performed 2-14
JOBDSW - The Number of Disk Writes Performed 2-14
JOBTRC - The Job's Trace Mode Trap Vector 2-14
JOBMSR - Reserved 2-14
JOBFPC - Current Context, Sky Floating Point Board 2-15
JOBLNG - Point to Current Language Definition Table 2-15
JOBUSN - Current User Name 2-15
JOBRTP - Current Root PPN 2-15
JOBRTD - Current Root Device 2-15
JOBRTU - Current Device Unit Number 2-15
JOBLVL - User Level 2-15
JOBEXP - User Experience Level 2-16
JOBPRM - Current AMOS Command Prompt 2-16
JOBCMD - Default Command Line 2-17
JOBDSC - The Job's DSECT Pointer 2-17
JOBERR - Job Error Value 2-18
JOBDFP - Default File Protection 2-20
JOBFCB - Floating Point Coprocessor Control Block 2-20
JOBFCP - Floating Point Coprocessor Context Pointer 2-20
JOBSIV - Software Interrupt Vector Table Pointer 2-20
JOBSIM - Software Interrupt Enable Mask 2-20
JOBSIP - Software Interrupt Pending Mask 2-21
JOBSIT - Software Interrupt Timer Pointer 2-21
JOBERS - Error Context Save Area 2-21
JOBPLK - PLOCK Nesting Count 2-21
JOBIEE - IEEE Floating Point Error Vector 2-21
JOBESP - Pointer for Screen Processor 2-21
JOBRFU - VDK/USAM Impure Pointer 2-21
JOBCOF - Current Open Object File Pointer 2-22
JOBROF - Root Object File Handle 2-22
JOBRMF - Network List 2-22
JOBNTB - RPC Buffer Pointer 2-22
JOBRES - Resource Manager Queue Pointer 2-22
JOBTSP - Network Transport Service Buffer Pointer 2-22
JOBFCB - Hardware Floating Point Context 2-22
JOBSIS - Terminal Output Software Interrupt Structure 2-22
JOBSSP - The Job's Supervisor Stack Area 2-23
JOBUSP - The Job's User Stack Area 2-23

Table of Contents Page ix

AMOS Monitor Calls Manual, Rev. 10

CHAPTER 3 MEMORY CONTROL SYSTEM CALLS 3-1

MEMORY PARTITION FORMAT 3-1
MEMORY MODULE FORMAT 3-3
MANIPULATING MEMORY MODULES 3-5

Allocating a Memory Module 3-6
Changing a Memory Module 3-6
Deleting a Memory Module 3-6

PERMANENT AND TEMPORARY MODULES 3-6
ALLOCATING MODULES WITH GETIMP 3-7

CHAPTER 4 ALLOCATING AND USING MEMORY 4-1

MEMORY MODULES - SRCH AND FETCH CALLS 4-1
Specifying the Module Name 4-1
The Module Address 4-1
Flags 4-2
Completion Codes 4-3
Examples 4-3

SHARED MEMORY FACILITY 4-4
GETSHM - Get/Search Shared Memory 4-4
DELSHM - Release Shared Memory 4-6
LOKSHM and UNLKSHM - Lock and Unlock Shared Memory 4-7

CHAPTER 5 MONITOR QUEUE SYSTEM CALLS 5-1

INCREASING THE AVAILABLE QUEUE LIST SIZE 5-1
QUEUE BLOCK USAGE BY THE SYSTEM 5-2
QUEUE SYSTEM MONITOR CALLS 5-2

QGET - Obtain a Free Queue Block 5-3
QRET - Return a Queue Block 5-3
QADD, QINS - Manipulating Queue Blocks 5-3
QADDL, QINSL, QUNL - Link/Unlink Queue Block 5-4

CHAPTER 6 THE FILE SERVICE SYSTEM 6-1

THE DATASET DRIVER BLOCK 6-1
DDB Format 6-2

Error Code (D.ERR) 6-4
Flags (D.FLG) 6-4
Device (D.DEV) 6-5
Drive (D.DRV) 6-5
Filename and Extension (D.FIL and D.EXT) 6-5
PPN (D.PPN) 6-5
Block Number (D.REC) 6-5
Buffer Address (D.BUF) 6-6

Page x Table of Contents

AMOS Monitor Calls Manual, Rev. 10

Buffer Size (D.SIZ) 6-6
Buffer Index (D.IDX) 6-6
Open Code (D.OPN) 6-6
Call Level (D.LVL) 6-7
User Argument (D.ARG) 6-7
Device Driver Address (D.DVR) 6-7
CPU Specification (D.CPU) 6-7
Device Format (D.FMT) 6-7
Directory Marker (D.DIR) 6-8
Auxiliary Storage (D.AUX) 6-8
Creation Date and Time (D.CDT) 6-8
Update Date and Time (D.UDT) 6-8
Backup Date and Time (D.BDT) 6-8
Record Size (D.RSZ) 6-9
File Size (D.FSZ) 6-9
Last Block Size (D.LSZ) 6-9
Base Block Number (D.BAS) 6-9
Type Code (D.TYP) 6-9
Protection (D.PRT) 6-10
File Locking ID (D.FID) 6-11
Driver Work Area (D.WRK) 6-11

Device Transfer Buffers 6-11
Error Handling 6-11

Error Codes 6-11
FILE SERVICE MONITOR CALLS 6-14

FSPEC - Process an ASCII Filespec 6-14
INIT - Initialize the DDB 6-16
Find the File 6-16
OPENI - Open a File for Input 6-17
OPENO - Open a File for Output 6-17
OPENS - Open a File for Output, Superseding Any Existing File 6-18
OPENA - Open and Append to Existing File 6-18
OPENR - Open a File for Random Processing 6-19
OPENIO - Open a File for Record IO 6-19
CLOSE - Close a File 6-20
CLOSEK - Close a File and Keep Locked 6-20
READ - Perform a Physical Transfer 6-21

Sequential Access Devices 6-21
Random Access Devices 6-22
Interrupt Structure 6-22

WRITE - Perform a Physical Write 6-22
Sequential Devices 6-22
Random Devices 6-22
Interrupt Structure 6-22

INPUT - Perform a Logical Read 6-23
Sequential File Processing 6-23
Random File Processing 6-23
Special Devices 6-24

INPUTL - Perform a Logical Read with Locking 6-24

Table of Contents Page xi

AMOS Monitor Calls Manual, Rev. 10

Sequential File Processing 6-24
Random File Processing 6-24
Special Devices 6-25

INPUTX - Perform a Logical Read Without Regard to Locking 6-25
OUTPUT - Perform a Logical Write 6-25

Sequential File Processing 6-25
Random File Processing 6-26
Special Devices 6-26

OUTPTL - Perform a Logical Write With Locking 6-26
Sequential File Processing 6-26
Random File Processing 6-26
Special Devices 6-27

GET - Perform a Logical Record Read 6-27
Sequential File Processing 6-27
Random File Processing 6-27
Special Devices 6-28

GETL - Perform a Logical Record Read with Locking 6-28
Sequential File Processing 6-28
Random File Processing 6-28
Special Devices 6-29

GETX - Perform a Logical Record Read Without Regard to Locking 6-29
PUT - Perform a Logical Record Write 6-29

Sequential File Processing 6-29
Random File Processing 6-30
Special Devices 6-30

PUTL - Perform a Logical Record Write with Locking 6-30
Sequential File Processing 6-31
Random File Processing 6-31
Special Devices 6-31

FILINB, FILINL, FILINW - Input from a Device 6-31
FILOTB, FILOTL, FILOTW - Output to a Device 6-32
LOCKF - Lock a File 6-32
UNLOKF - Unlock a File 6-32
UNLOKR - Unlock a Record 6-33
DSKDEL - Delete a File 6-33
DSKREN - Rename a File 6-33
CHPROT - Change the Protection of a File 6-34
DSKCTG - Allocate a Contiguous File 6-34
ASSIGN - Assign a Device 6-35
DEASGN - De-assign a Device 6-35
DSKMNT - Mount a Disk Device 6-35
DSKUMT - Unmount a Disk Device 6-36

DISK SERVICE MONITOR CALLS 6-36
Calling Sequence 6-37
The Bitmap 6-37
DSKALC - Allocate a Block 6-37
DSKDEA - De-allocate a Block 6-38
DSKDRL - Lock the Directory 6-38
DSKDRU - Unlock the Directory 6-38

Page xii Table of Contents

AMOS Monitor Calls Manual, Rev. 10

MAGNETIC TAPE DRIVE MONITOR CALLS 6-39
REWIND 6-39
WRTFM 6-39
FMARK 6-39
FMARKR 6-40
BACKSP 6-40
TAPSKP 6-40
TAPERS 6-40
UNLOAD 6-41
RETNSN 6-41
TAPST 6-41
TAPTYP 6-42
TAPDEN 6-43
TAPSPD 6-43

CHAPTER 7 TERMINAL SERVICE SYSTEM 7-1

TERMINOLOGY 7-1
THE TERMINAL CONTROL BLOCK 7-1
THE TERMINAL SERVICE CALLS 7-2

KBD - Fetch a Line of Data 7-2
TTY - Output One Character 7-2
TIN - Get an Input Character 7-3
TOUT - Output One Character 7-3
TAB - Output One Tab 7-3
CRLF - Output a Carriage-Return/Line-Feed 7-3
TTYI - Output a String of Characters 7-3
TTYL - Output a String of Characters Indexed 7-4
TCRT - Call Special Terminal Driver Routines 7-4

Standard Functions 7-4
Color 7-8
Additional Features 7-9

RTCRT - Perform a Remote TCRT Call 7-9
TCKI - Check for Input 7-10
TRMCHR - Get Terminal Characteristics 7-10
Message Calls 7-13
TRMRST - Read Terminal Status 7-13
TRMWST - Write Terminal Status 7-14
TTYIN - Fetch Another Job's Input 7-15
TTYOUT - Place a Character in Another Job's Output 7-15
TRMICP - Process Input Character Within Interface Driver 7-15
TRMOCP - Process Output Character Within Interface Driver 7-16
TRMBFQ - Process Output Characters Within Terminal Driver 7-16
TBUF - Output Large Amounts of Data 7-17
TCBIDX - Index a Terminal Control Block 7-17

Table of Contents Page xiii

AMOS Monitor Calls Manual, Rev. 10

CHAPTER 8 CONVERSION MONITOR CALLS 8-1

NUMERIC CONVERSION CALLS 8-1
Calling Format 8-1

Size Byte 8-1
Flags 8-1

RAD50 CONVERSION MONITOR CALLS 8-2
RAD50 Packing Algorithm 8-3
Packing and Unpacking Calls 8-3

PACK - Pack Three ASCII Characters into RAD50 8-3
UNPACK - Unpack Three RAD50 Characters into ASCII 8-3

PRINTING CONVERSION CALLS 8-4
PFILE - Type a Filespec from a DDB to the Terminal 8-4
OFILE - Output a File Specification 8-4
PRNAM - Output a Filename 8-5
PRPPN - Output a PPN 8-5
VCVT - Output a Version Number 8-5

CASE CONVERSION CALLS 8-6
UCS - Convert Lower to Upper Case 8-6
LCS - Convert Upper to Lower Case 8-6

CHAPTER 9 INPUT LINE PROCESSING CALLS 9-1

ALF - TEST A CHARACTER FOR ALPHABETIC 9-1
NUM - TEST A CHARACTER FOR NUMERIC 9-1
TRM - TEST A CHARACTER FOR TERMINATOR 9-2
LIN - TEST A CHARACTER FOR LINE TERMINATOR 9-2
BYP - BYPASS BLANKS 9-2
GTDEC - INPUT A DECIMAL NUMBER 9-2
GTOCT - INPUT AN OCTAL NUMBER 9-2
GTPPN - INPUT A PROJECT-PROGRAMMER NUMBER 9-3
FILNAM - INPUT A FILENAME 9-3

CHAPTER 10 DATE AND TIME CONVERSION CALLS 10-1

GDATES - GET DATE IN SEPARATED FORMAT 10-1
GDATEI - GET DATE IN INTERNAL FORMAT 10-1
GTIMES - GET TIME IN SEPARATED FORMAT 10-2
GTIMEI - GET TIME IN INTERNAL FORMAT 10-2
SDATES - SET SYSTEM DATE FROM SEPARATED FORMAT 10-2
STIMES - SET SYSTEM TIME FROM SEPARATED FORMAT 10-3
YEAR 2000 ISSUES 10-3

AMOS Date Formats 10-3
AMOS Date Conversion Routines 10-4
Setting the System's Clock/Calendar 10-4

Page xiv Table of Contents

AMOS Monitor Calls Manual, Rev. 10

CHAPTER 11 FLOATING POINT MONITOR CALLS 11-1

ALPHA MICRO 48-BIT FLOATING POINT FORMAT 11-1
Floating Point Arithmetic 11-2

FADD - Floating Point Add 11-2
FSUB - Floating Point Subtract 11-3
FMUL - Floating Point Multiply 11-3
FDIV - Floating Point Divide 11-3

Floating Point Conversion 11-4
FFTOL - Floating Point to Longword Conversion 11-4
FLTOF - Longword to Floating Point Conversion 11-4
FFTOX - Floating Point to Extended Conversion 11-4
FXTOF - Extended to Floating Point Conversion 11-4
FFTOA - Floating Point to ASCII Conversion 11-5
FFTOAX - Floating Point to ASCII Extended Conversion 11-5

Floating Point Input/Output Calls 11-6
GTFLT - Get a Floating Point Number 11-6
GTFLTF - Get a Floating Point Number from a File 11-6
FCVT - Output a Floating Point Number 11-7

Miscellaneous Floating Point Calls 11-8
FCMP - Floating Point Compare 11-8
FPWR - Floating Point Multiply by a Power of Ten 11-8

Floating Point Error Trapping 11-8
IEEE 32- AND 64-BIT FLOATING POINT FORMAT 11-9

IEEE Format Floating Point Arithmetic 11-10
Supported 68881 Floating Point Instructions 11-10

IEEE Format Floating Point Conversion 11-12
FATOIS - Convert 48-bit Format to IEEE 32-bit Format 11-12
FATOID - Convert 48-bit Format to IEEE 64-bit Format 11-12
FISTOA - Convert IEEE 32-bit Format to 48-bit Format 11-13
FIDTOA - Convert IEEE 64-bit Format to 48-bit Format 11-13

IEEE Format Floating Point Input/Output Calls 11-13
GTFLTS - Get a Single Precision Floating Point Number 11-13
GTFLTD - Get a Double Precision Floating Point Number 11-14
GTFLFS - Get a Single Precision Floating Point Number from a File 11-14
GTFLFD - Get a Double Precision Floating Point Number from a File 11-15
FCVTS, FCVTD - Output an IEEE Format Floating Point Number 11-15

IEEE Format Floating Point Error Trapping 11-16

CHAPTER 12 GENERALIZED OUTPUT MONITOR CALLS 12-1

OUTPUT FLAGS 12-1
OUT - OUTPUT ONE CHARACTER 12-1
OUTI - OUTPUT A STRING OF CHARACTERS 12-2
OUTL - OUTPUT A STRING OF CHARACTERS INDEXED 12-2
MESSAGE OUTPUT CALLS 12-2
SMSG - OUTPUT A SYSTEM MESSAGE 12-2

Table of Contents Page xv

AMOS Monitor Calls Manual, Rev. 10

CHAPTER 13 MISCELLANEOUS MONITOR CALLS 13-1

EXIT - RETURN TO AMOS COMMAND LEVEL 13-1
CTRLC - BRANCH ON CONTROL-C 13-1
JLOCK AND JUNLOK - PREVENT CONTEXT SWITCHING 13-1
JLOCKI - WAIT FOR I/O, THEN PREVENT CONTEXT SWITCHING 13-2
PLOCK AND PUNLOK - PREVENT PROCESS CONTEXT SWITCHING 13-2
RSTCON - RESTORE CONTEXT 13-3
RQST - REQUEST CONTROL OF A SEMAPHORE 13-3
RLSE - RELEASE CONTROL OF A SEMAPHORE 13-4
PCALL - INVOKE PROGRAM AS SUBROUTINE 13-4
AMOS - EXECUTE AMOS COMMAND AS SUBROUTINE 13-4
TIMER - ENTER ITEM INTO TIMER QUEUE 13-5
DQTIMR - REMOVE ITEM FROM TIMER QUEUE 13-6
ERRMSG - OUTPUT STANDARD ERROR MESSAGE 13-6
SMSG - OUTPUT SYSTEM MESSAGE 13-7
STDERR - PERFORM STANDARD ERROR PROCESSING 13-8
SVLOK - DISABLE INTERRUPTS 13-8
SVUNLK - ENABLE INTERRUPTS 13-9
SUPVR - ENTER SUPERVISOR MODE 13-9
DEVCHR - DETERMINE DEVICE CHARACTERISTICS 13-10
DSKFRE - DETERMINE NUMBER OF FREE DISK BLOCKS 13-11
TDVCNG - CHANGE TERMINAL DRIVERS 13-11
LEVEL7 - TRANSFER CONTROL TO LEVEL7 DEBUGGER 13-13
ICOFF - TURN INSTRUCTION CACHE OFF 13-13
ICON - TURN INSTRUCTION CACHE ON 13-13
SYNC - FLUSH WRITE CACHE BLOCKS 13-14
SPAWN - SPAWN A NEW JOB 13-14
GETVTI - IDENTIFY VIRTUAL TERMINAL SOURCE 13-16

CHAPTER 14 SOFTWARE INTERRUPT SYSTEM 14-1

OVERVIEW OF THE SOFTWARE INTERRUPT SYSTEM 14-1
SOFTWARE INTERRUPT MONITOR CALLS 14-2

SIMSK - Set Software Interrupt Enable Mask 14-2
SIRTN - Return from Software Interrupt 14-3
SIWAIT - Wait for Software Interrupt 14-3
SITIMR - Enable Software Interrupt Timer 14-3
SISET - Set Software Interrupt Request On 14-4
SICLR - Clear Software Interrupt 14-4
SISTS - Get Software Interrupt Enable Status 14-5
SIDIS - Disable Software Interrupts 14-5

SAMPLE PROGRAM 14-5

CHAPTER 15 THE INTER-TASK COMMUNICATION SYSTEM 15-1

WHAT IS INTER-TASK COMMUNICATION? 15-1

Page xvi Table of Contents

AMOS Monitor Calls Manual, Rev. 10

GENERAL CONCEPTS 15-1
TRANSPORT REQUIREMENTS 15-2
MESSAGE FORMAT 15-2

Message Flags 15-3
Source and Destination Addresses 15-3
Message Length 15-4
PPN of Sender 15-5
Privileges of Sender 15-5
Message Codes 15-5
Data Area 15-5

MESSAGE SYSTEM MONITOR CALLS 15-5
OPNMSG - Open a Message Socket 15-5

OPNMSG Flags 15-6
Maximum Message Length 15-6
Maximum Number of Pending Messages Allowed 15-6

CLSMSG - Close a Message Socket 15-6
SNDMSG - Send a Message 15-6
RCVMSG - Receive a Message 15-7
CHKMSG - Check for Received Messages 15-7
WTMSG - Wait for Receipt of Message 15-8
SETMSS - Set MSQ/MSR Status 15-8
Status Return Codes 15-8

NETWORK DRIVERS 15-9
THE NETWORK DEFINITION TABLE 15-9

Pointer to Next Table Entry 15-10
The Network Address Field 15-10
The Flags Longword 15-10
The Network Driver Name 15-11
The Pointer to the Network Driver 15-11
The Pointer to the Node List 15-11
Gateway Forwarding Address 15-11
Network Symbolic Name 15-11

THE NODE LIST STRUCTURE 15-11
The Pointer to the Next Entry 15-12
The Network Address Field 15-12
The Flags Word 15-12
The Node Entry Data Area 15-12

THE NETWORK DRIVER STRUCTURE 15-12
The Flags Longword 15-13
The Initialization Entry 15-13
The Send Message Entry 15-14
The Special Function Routine Entry 15-14
The Hardware Address 15-15
The Interrupt Vector Address 15-15
The Node Entry Data Size 15-15

Table of Contents Page xvii

AMOS Monitor Calls Manual, Rev. 10

CHAPTER 16 SERIAL COMMUNICATIONS SYSTEM 16-1

COMSET - SET COMMUNICATIONS PORT PARAMETERS 16-1
COMINT - SET INTERRUPT SERVICE VECTORS 16-3

The Input Character Routine 16-5
The Output Character Routine 16-5
The Status Change Routine 16-6
Initializing Terminal Output (TINIT) 16-6

COMRST - READ COMMUNICATIONS STATUS LINES 16-7
COMWST - WRITE COMMUNICATIONS STATUS LINES 16-7
MDREQ - REQUEST A MODEM 16-8
MDRTN - RETURN A MODEM 16-8
MDSET - SET MODEM COMMUNICATIONS PARAMETERS 16-9
MDDIAL - DIAL A MODEM 16-10
MDON - ENABLING A MODEM 16-11
MDOFF - DISABLING A MODEM 16-11
MODEM DRIVER FORMAT 16-12

CHAPTER 17 INTERNATIONAL LANGUAGE SUPPORT MONITOR CALLS 17-1

THE LANGUAGE DEFINITION TABLE 17-1
Contents of the Language Definition Table 17-1

USING THE GTLANG MONITOR CALL 17-5
DEFINING YOUR OWN LANGUAGE DEFINITION FILE 17-5

CHAPTER 18 DIRECTORY HANDLING SYSTEM 18-1

DSKINI - INITIALIZE A LOGICAL DISK 18-1
DSKACC - ACQUIRE DIRECTORY ACCESS 18-1
DIRSCH - SEARCH A DIRECTORY 18-2
DIRREP - REPLACE A DIRECTORY ENTRY 18-2
DIRDEL - REMOVE A DIRECTORY ENTRY 18-3
DIRALC - ALLOCATE A NEW DIRECTORY LEVEL 18-3
SAMPLE USAGE OF DIRECTORY HANDLING CALLS 18-3

CHAPTER 19 SYSTEM DISK CACHE CALLS 19-1

STRUCTURE OF CALLS TO THE DISK CACHE SYSTEM 19-1
Cache Function Codes 19-1
Error Codes 19-2

CHAPTER 20 ALPHATCP PROGRAMMING INTERFACE 20-1

COMPATIBILITY 20-1
TCP PROGRAMMING OVERVIEW 20-1

Page xviii Table of Contents

AMOS Monitor Calls Manual, Rev. 10

Client/Server Paradigm 20-1
IP Addresses and Port Numbers 20-2
Service Names 20-2
Host and Domain Names 20-3

TAME PROGRAMMING OVERVIEW 20-3
Procedural Versus Event-Driven 20-3
Features 20-4
Program Operation 20-4
Client Operation 20-5
Server Operation 20-5
Making Requests 20-6
Handling Events 20-6

MONITOR CALL SUMMARY 20-7
EVENT SUMMARY 20-8

Global Events 20-8
Session Events 20-9

THE EVENT HANDLER 20-9
Setting Up 20-9
Accepting Events 20-10
Servicing Events 20-10

MONITOR CALLS 20-12
Establish a Connection 20-12
Listen for Connections 20-13
Accept a Connection 20-14
Terminate a Session 20-14
Read Data Stream 20-15
Read Data Record 20-15
Read a Line 20-15
Write Data 20-16
Query Events 20-16
Query Multiple Events 20-17
Completing Event Processing 20-17
Getting Process ID Information 20-18
Setting an Attention Event 20-18
Querying for Attention Event Information 20-18
Getting Connection Information 20-18
Spawning Jobs 20-19
Terminating Spawned Jobs 20-20
Spawned Job Cleanup 20-20
Requesting a Session 20-20
Releasing a Session 20-21
Standard Filename Conversion 20-21
Hostname and Address Conversion 20-21

EVENTS 20-22
Global Events 20-22
Session Events 20-23

QUICK REFERENCE LIST OF CALLS 20-24
TAME ERROR CODES 20-24

General Error Codes 20-25

Table of Contents Page xix

AMOS Monitor Calls Manual, Rev. 10

Socket Errors 20-25
Name (DNS Resolver) Errors 20-26

EXAMPLES 20-26

APPENDIX A DISK STRUCTURE FORMAT A-1

PHYSICAL BLOCK FORMAT A-1
DISK BLOCK TYPES A-1

The Disk Label Block A-2
The Bitmap A-3
Directory Blocks A-3
Extended Format Directory Blocks A-3
Sequential File Data Blocks A-4
Contiguous File Data Blocks A-4

TRADITIONAL FORMAT FILE STRUCTURE A-4
MFD Item Format A-4
UFD Item Format A-5

EXTENDED FORMAT FILE STRUCTURE A-7
Directory Block Format A-8

PROGRAM HEADER FORMAT A-10
Defining the Program Header A-12

APPENDIX B TERMINAL SERVICE SYSTEM B-1

GENERAL STRUCTURE B-1
INTERFACE DRIVERS B-1

Interface Driver Format B-2
TERMINAL DRIVERS B-3
INTERSYSTEM DRIVER LINKS B-3

Terminal Input Characters B-4
Terminal Output Characters B-5

USING TERMINALS AS I/O DEVICES B-5
THE TERMINAL CONTROL BLOCK B-6

T.STS - The Terminal Status Word B-7
T.IDV - Pointer to Interface Driver B-8
T.IHW - Interface Hardware Address B-8
T.IHM - Interface Hardware Address Modifier B-8
T.TDV - Pointer to Terminal Driver B-8
T.ICC - Input Character Count B-8
T.ECC - Echo Character Count B-8
T.BCC - Break Character Count B-8
T.IBF - Input Buffer Address B-9
T.IBS - Input Buffer Size B-9
T.OQX - Output Queue Index B-9
T.OBX - Output Buffer Index B-9
T.OBF - Output Buffer Address B-9
T.OBS - Output Buffer Size B-9

Page xx Table of Contents

AMOS Monitor Calls Manual, Rev. 10

T.OBD - Output Buffer XOR Difference B-9
T.POB - Beginning Output Position B-10
T.POO - Current Output Position B-10
T.LCH - Last Character Input B-10
T.JLK - Attached JCB Pointer B-10
T.ILB - Input Line Buffer Address B-10
T.ILS - Input Line Buffer Size B-10
T.IMP - Pointer to Terminal Driver Impure Area B-10
T.BAU - Selected Baud Rate B-11
T.MLT - Multiple Character Queue Link B-11
T.SEM - Multi-processor Interlock Semaphore B-11
T.MRP - Modem Command Response B-11
T.LED - Line Editor Dispatch B-12
T.FXT - Function Key Translation Pointer B-12
T.INC - Input Character Routine Address B-12
T.OTC - Output Character Routine Address B-12
T.EXC - Exception Routine Address B-12
T.MDV - Modem Driver Pointer B-13
T.ASJ - Pointer to Assigning Job B-13
T.TCX - Pointer to TCRT Translation Table B-13
T.MBF - Pointer to Modem Driver Impure Area B-13
T.OBE - End of Current Output Buffer B-14
T.OWAT - Output Wait Chain B-14
T.SIS - Software Interrupt Structure B-14
T.SIV - Software Interrupt Vector B-14
T.STSZ - Second Terminal Status Word B-14

APPENDIX C SYSTEM COMMUNICATION AREA C-1

SYSTEM - SYSTEM ATTRIBUTES WORD C-1
DEVTBL - ADDRESS OF THE DEVICE TABLE C-2
DDBCHN - ACTIVE DDB CHAIN C-2
MEMBAS & MEMEND - USER MEMORY POINTERS C-2
SYSBAS - BASE OF SYSTEM MEMORY C-3
JOBTBL - ADDRESS OF THE JOB TABLE C-3
JOBCUR - JCB ADDRESS OF THE CURRENT JOB C-3
JOBESZ - JOB TABLE ENTRY SIZE C-3
LOKSEM - RECORD LOCKING SEMAPHORE C-3
TIMQUE - THE TIMER QUEUE C-3
WEREUP - SYSTEM BOOT INDICATOR C-3
SPXSAV - STACK POINTER SAVE LOCATION C-4
SPXINT - INTERNAL STACK C-4
LPTQUE - LINE PRINTER SPOOLER QUEUE C-4
TRMDFC - BASE OF TERMINAL DEFINITION TABLE C-4
TRMIDC - ADDRESS OF FIRST INTERFACE DRIVER C-4
TRMTDC - ADDRESS OF FIRST TERMINAL DRIVER C-4
LOKADR - LOKSER ADDRESS C-4
UPTIME - TIME AND DATE OF LAST SYSTEM RESET C-4

Table of Contents Page xxi

AMOS Monitor Calls Manual, Rev. 10

JLKCNT - THE JLOCK NESTING COUNTER C-5
WHYBOT - REASON FOR LAST SYSTEM REBOOT C-5
NETTBL - POINTER TO NETWORK LIST C-5
NETBUF - POINTER TO NETWORK BUFFER AREA C-5
DCACHE - DISK CACHE DISPATCH POINTER C-5
SYSLNG - DEFAULT SYSTEM LANGUAGE C-5
HLDADR - HEAD LOAD TIMER ADDRESS C-6
TMRLOK - TIMER INTERRUPT FLAG C-6
DRVTRK - THE DRIVE/TRACK TABLE C-6
HLDTIM - HEAD LOAD TIMER COUNT C-6
SCKTLS - POINTER TO LIST OF ASSIGNED SOCKETS C-6
ZSYDSK - ADDRESS OF SYSTEM DISK DRIVER C-6
SYSLNK - SYSTEM LINK COMMUNICATIONS C-6
SCLKON - SCHEDULER CLOCK ENABLED FLAG C-6
QFREE - QUEUE SYSTEM CONTROL C-7
MEMQUE - SYSTEM MEMORY QUEUE POINTER C-7
SYSUFD - SYS: UFD POINTER C-7
DVRUFD - DVR: UFD POINTER C-7
CMDUFD - CMD: UFD POINTER C-7
BASUFD - BAS: UFD POINTER C-7
ERSATZ - ACCESSES ERSATZ DEVICE TABLE C-7
SYSNAM - NAME OF SYSTEM MONITOR C-8
AMGDSP - AMIGOS DISPATCH VECTOR C-8
SCHSEM - SCHEDULER SEMAPHORE C-8
QUESEM - QUEUE SYSTEM SEMAPHORE C-8
RIOQUE - RECORD IO QUEUE C-8
LEDDSP - LINE EDITOR DISPATCH VECTOR C-8
TRMFXC - FUNCTION KEY TRANSLATION TABLE CHAIN C-9
TRMMDC - MODEM DRIVER CHAIN C-9
HRBCMD - HERBIE COMMAND BLOCK POINTER C-9
PRESEM - SEMAPHORE TO PROTECT SCHEDULER FIELDS C-9
PREFLG - SCHEDULER FLAGS C-9
PREJCB - SCHEDULER JCB ADDRESS C-9
NULTMR - NULL TIMER ROUTINE POINTER C-9
FPNPTR - POINTER TO ISAM FILE TABLE C-9
HRBERR - POINTER TO HERBIE ERROR HANDLER C-10
MTSRES - MONTST RESET CHAIN C-10
LOKFLH - RECORD LOCK STRUCTURE POINTER C-10
USMEXT - USAM EXIT HANDLER DISPATCH VECTOR C-10
SVCPTR - POINTER TO SUPERVISOR CALL DISPATCH TABLE C-10
RFDVEC - VDK VECTOR C-10
RFDPTR - POINTER TO VDK IMPURE SPACE C-10
PLKJCB - POINTER TO PARENT JOB OWNING PLOCK RESOURCE C-11
PLKCNT - PLOCK NESTING COUNT C-11
TIMIDX - POINTER TO INTERNAL TIMER ROUTINES C-11
ESPVEC - POINTER TO ESP ROUTINES C-11
DDBSEM - DDBCHN ACCESS SEMAPHORE C-11
DDBSM2 - DDBCHN ACCESS SEMAPHORE C-11
HCFLAG - ENABLE HERBIE CACHING C-11

Page xxii Table of Contents

AMOS Monitor Calls Manual, Rev. 10

SYSCOF - POINTER TO LIST OF CURRENTLY OPEN OBJECT FILES C-11
TBXDSP - TOOLBOX DISPATCH VECTOR C-12
RPCDSP - RPC DISPATCH VECTOR C-12
EXTDSP - EXTENSION DISPATCH VECTOR C-12
QXFRAD - PHYSICAL DISK TRANSFER SYSTEM C-12
SCHEDW - FOR WATCHR PROGRAM C-12
VTJOBT - VTSER SPAWNED JOBS C-12
ETHZON - ETHERNET COMMUNICATIONS AREA C-12
TTYPTR - TTYSI POINTER C-12
XTABLE - X.25 TABLE POINTER C-12
UNXVEC - UNIX ACCESS VECTOR C-13
OSI4VC - OSI LEVEL 4 VECTOR C-13
NETVEC - NETFAM VECTOR TABLE POINTER C-13
SEM522 - AM-522 INTERRUPT PENDING SEMAPHORE C-13
VEC522 - AM-522 INTERRUPT SERVICE VECTOR C-13
FLEVEL - SYSTEM FEATURE LEVEL C-13
SYSTEM1 - SYSTEM1 ATTRIBUTE WORD C-13
MSGBFE - MSGINI BUFFER C-13
CPUTYP - CPU TYPE C-13
SCZDSP C-14
DIAG 01 C-14
DIAG 02 C-14
DIAG 03 C-14
EMAILV C-14
JRC.ADDR C-14
RTCIDX C-14
UMEMIDX C-14
TAMEV C-14
RSCPM C-14
FP060 C-15

APPENDIX D STANDARD SYSTEM LIBRARY ROUTINES D-1

APPENDIX E ALPHABETIC LISTING OF AMOS MONITOR CALLS E-1

APPENDIX F CHARACTER SETS F-1

A SHORT HISTORY OF CHARACTER SETS F-1
THE ISO 8859 FAMILY OF STANDARDS AND AMOS F-1

APPENDIX G RAD50 CONVERSION TABLE G-1

THE RAD50 ALGORITHM G-1
USING THE CONVERSION CHART G-2

Table of Contents Page xxiii

AMOS Monitor Calls Manual, Rev. 10

THE CONVERSION CHART G-4

APPENDIX H USER DESCRIPTION SYMBOLS H-1

APPENDIX I EIGHT-BIT CHARACTER SUPPORT I-1

COMPATIBILITY I-2
UPGRADING AN APPLICATION I-2

Upgrading a Terminal Driver I-3

APPENDIX J USING AMSORT.SYS J-1

LOCATING AND VERIFYING AMSORT.SYS J-2
THE IMPURE AREA J-2
SETTING THE RECORD SIZE J-3
SETTING FLAGS J-3
INPUT AND OUTPUT ROUTINES J-3
EXAMPLE PROGRAM J-3

DOCUMENT HISTORY

INDEX

AMOS Monitor Calls Manual, Rev. 10

Preface
One of the major features of the AMOS operating system is the large number of monitor calls available
to the assembly language programmer. By making most common routines available in the monitor,
AMOS frees the programmer from having to repetitively write the same routine. Perhaps even more
important is the level of compatibility to be gained by having all AMOS software use the same central
collection of routines. By having all software perform the same operation the same way, a high degree of
compatibility is built into all software with virtually no extra effort on the part of the programmer. This
manual describes the monitor calls provided by AMOS.

We assume that the reader of this manual is familiar with assembly language programming and the
M68000 family instruction set as it is described in the Alpha Micro Instruction Set Manual. We also
assume that the reader is familiar with the AMOS macro assembly system described in the AMOS
Assembly Language Programmer’s Manual.

This reference manual is most emphatically not a tutorial on assembly language programming. Many
such tutorials exist; if you are just learning assembly language, you should consult such a book before
reading this manual.

AMOS Monitor Calls Manual, Rev. 10

Chapter 1
Communicating with AMOS

One of the primary functions of any operating system is to provide services to the processes running on
the system. The AMOS monitor contains hundreds of such service routines available for use by assembly
language programs.

Your assembly language programs make use of these routines by using monitor calls. Other languages
provide access to these monitor calls through subroutines and functions which themselves make use of
the monitor calls. AMOS monitor calls are defined in the form of macros so they are easy to incorporate
into your assembly language programs. The monitor call macros are in the system library file SYS.M68
(and its related universal file SYS.UNV) in account [7,7] of the system disk.

The following chapters group monitor calls by the functions they perform. For example, Chapter 8
discusses all monitor calls that do data conversion. For an alphabetical list of all monitor calls see
Appendix E.

COMPATIBILITY ISSUES

One of the major benefits of encapsulating commonly performed functions within monitor calls—other
than simply saving programming time—is it hides many of the details of the system from you. By doing
so, it helps make sure future changes and enhancements made within AMOS do not adversely affect your
programs.

This can be very important when you wish to upgrade to the latest version of AMOS to take advantage of
the latest whiz-bang feature. If your program is sensitive to every little change, chances are good it won't
work after changing versions of AMOS. But, because AMOS hides most of its internal workings within
monitor calls, and assuming your program follows the rules, major changes internal to AMOS have no
affect on your programs.

So what do we mean by "follows the rules?" Well, we mean it uses the monitor calls outlined within this
manual, exactly as defined here, and it follows all the other rules, guidelines, and hints contained in the
other several thousand pages of documentation available describing AMOS.

Obviously it is a rather ambitious undertaking to read all that information, commit it to memory, and
never deviate from it. Of course there will be times when you didn't read something, forgot it along the
way, or simply choose to ignore a rule. As long as your software works, who cares? If you are
programming for a single customer—such as yourself—don't ever plan on changing versions of AMOS,
don't plan to add software from other sources, and don't ever change your hardware configuration, there is
absolutely nothing wrong. If you do want to do some of that, and the rule you didn't read/forgot/ignored
turns out not to be important in your case, you are still OK. But somewhere down the line, when you can
least afford it, that minor little violation if going to turn around and bite you.

Page 1-2 Chapter One
Compatibility Issues

AMOS Monitor Calls Manual, Rev. 10

Still, you say, how can you possibly learn every rule and never make a single mistake? Simple, you
can't. Virtually every piece of software will end up breaking some rule or other, and in most cases it
makes no difference. No team of "code inspectors" is going to arrive on your doorstep to scrutinize every
line of code, writing you up for any violations found. It is simply in your best economic interest to try to
follow the rules the best you can. Time spent on the rules during the development phase will more than
be returned in time saved during debugging, installation, and customer support.

Fortunately, the rules are pretty static. Even as AMOS has moved from processor to processor, the rules
have stayed the same. What has changed is what you can get away with. Rule violations that have not
been a problem for years may suddenly rear their heads when a new version of AMOS relies on the rule
being followed. Alpha Micro goes to great lengths to make sure each new release of AMOS is upwardly
compatible. Any software that follows the rules and runs under a prior release should run under the latest
release without change. Despite our efforts this may not always be the case (we make mistakes too), but
what it does mean is that if your software does not follow the rules, Alpha Micro will not worry about
whether it might get broken or not.

At the assembly language level, there are several rules that are particularly important. These are not the
only rules, of course, but they are the ones that, when broken, cause the greatest levels of incompatibility.
Please read these and treat them as words to live—and program—by!

• Don't rely on timing loops for fixed delays. In these days of different relative processor speeds
within otherwise compatible systems, using timing loops to generate delays simply will not
work. Some processors load small loops into internal cache memory, making timing loops
execute very quickly. Use the TIMER or SLEEP monitor call to generate fixed delays.

• Never access hardware directly. Unless you are writing a device driver, your software should
never access Input/Output addresses. Remember AMOS is a multi-user system so device
accesses must be coordinated through the AMOS IO system. Do all IO through standard device
drivers, writing one yourself if you need to.

• Don't use any field referred to in this manual as "reserved," "spare," or "undefined." All
of these words mean the same thing: we may not use it now, but we will as soon as you start to
rely on it. In many cases internal data structures are defined with extra space reserved for
forthcoming features. If your software makes use of these fields it will fail as soon as AMOS
starts to use the same locations. Load a small module into system memory and locate it with a
SRCH call if you need a centralized, shared memory resource, or use the monitor calls described
in Chapter 4.

• Don't rely on stack frame sizes. Particularly within interrupt routines you must be aware of the
differences between the members of the 68000 family. Each of these processors uses a slightly
different stack frame format. Failure to allow for this will cause your software to fail when
moved to different processor types.

• Don't use self-modifying code. Some members of the 68000 family perform instruction caching
but not data caching. This means any self-modifying code, including the loading of program code
into memory, will not properly update the cache, causing your program to execute the wrong
instructions.

Remember, it is up to you to decide to follow the rules or not. You may in fact come up with a good
reason for deciding not to, but remember one of the main reasons people choose to use an AMOS system
is because of the high degree of compatibility shown by different software packages on a system, and by

Communicating with AMOS Page 1-3
Monitor Call Calling Format

AMOS Monitor Calls Manual, Rev. 10

all of those packages over time. If your package requires constant updating and changing, just to work
with the latest version of everyone else's software, your software may not be viewed favorably.

MONITOR CALL CALLING FORMAT

Now let's move on to how to use monitor calls. The general format used with all monitor calls is:

{Label:} Opcode {Arguments} {; Comments}

As the format shows, the only required item in all of the calls is opcode, which is the name of the
monitor call. You may optionally specify label, in which case the assembler assigns the label the address
of the first instruction of the monitor call sequence.

Some calls generate several words of code to perform their function. The total number of words a
monitor call generates depends on the call itself as well as the addressing modes of any arguments you
specify. Those calls which incorporate an ASCII message (e.g., the TYPE call) generate a string of bytes
whose length depends on the message involved. As in machine instructions, you may also place
comments at the end of the line. Each line of comments must begin with a semi-colon.

Arguments

Some calls require one or more arguments to specify parameters for the execution of the monitor call
function and where to return the results of the call. These arguments are of three types:

• Address Pointers (adr) that point to the data item on which to operate

• Source Operands (src) that supply data to the monitor call directly

• Destination Operands (dst) that specify where to place data after the monitor call is finished.

Address Pointers

An address pointer, as used in a monitor call, is an expression that evaluates to a pointer to the data item
you are supplying to the monitor call. You can use any valid control effective address to specify an
address pointer, including:

@An Register indirect
x(An) Register indirect with offset
x(An)[Rn] Indexed register indirect with offset
x PC-relative
x[Rn] PC-relative with index and offset
x Absolute (word or longword)

The monitor call format descriptions show address pointers as adr.

Typically, you will use an address pointer to specify the location of a DDB, a queue block, or an ASCII
string. You will find more information on these data structures in the chapters that follow.

Note that, while the monitor call may modify the data structure being pointed to, it will never modify the
address pointer itself.

Page 1-4 Chapter One
Use of Monitor Call Registers

AMOS Monitor Calls Manual, Rev. 10

Source Operands

A source operand, as used in monitor calls, specifies the data item that contains the argument you are
passing to the monitor call. You may use any of the addressing modes to specify a source operand. The
monitor call format descriptions show a source operand as src.

For some calls, one argument serves as both source and destination operands; in this case, the source
operand is restricted to those addressing modes which are valid when specifying destination operands.
The monitor call format descriptions show this case as src/dst.

Destination Operands

A destination operand, as used in monitor calls, specifies the data item in which the call will return data.
You may use any of the alterable addressing modes to specify destination operands, including:

Dn Data register direct
An Address register direct
@An Register indirect
(An)+ Post-increment register indirect
-(An) Pre-decrement register indirect
x(An) Register indirect with offset
x(An)[Rn] Indexed register indirect with offset
x Absolute (word or longword)

The monitor call format descriptions show destination operands as dst.

As before, one argument may serve as both source and destination operands for some calls; in this case,
the source operand is restricted to those addressing modes which are valid when specifying destination
operands. This case is shown as src/dst in the monitor call format descriptions.

USE OF MONITOR CALL REGISTERS

The assembler uses the temporary registers as part of the operand processing of the monitor calls. For this
reason, we do not guarantee the contents of the temporary registers A6, D6, and D7 will be preserved
after monitor call use; in fact, these registers are rarely left unmodified.

MONITOR CALL SYMBOLS (SPECIAL .UNV FILES)

In addition to the monitor call definitions and symbols defined in SYS.M68 (and its related universal file
SYS.UNV), there are two additional files that contain definitions of symbols and macros useful to the
assembly language programmer. These two files are SYSSYM.UNV and TRM.UNV, both on
DSK0:[7,7].

SYSSYM contains definitions for many of the data structures AMOS uses. TRM contains definitions of
symbols for the terminal control data structures within AMOS. Because the symbols SYS and SYSSYM
contain are used in almost every program, every source program typically uses the SEARCH pseudo
opcode to access them.

Communicating with AMOS Page 1-5
Monitor Call Symbols (Special .UNV files)

AMOS Monitor Calls Manual, Rev. 10

The examples in this book assume you have used the SEARCH pseudo opcode within your source
program to access SYS.UNV, SYSSYM.UNV, and TRM.UNV.

AMOS Monitor Calls Manual, Rev. 10

Chapter 2
Job Scheduling and Control

System
The AMOS timesharing operating system allocates jobs and schedules CPU time and resources for them
based on their processing requirements. In order to write assembly language programs which make use of
some of the more complex features of the system, you should have a basic understanding of how AMOS
schedules and controls jobs. The theory behind job-handling is more complex than we can cover in one
section of this manual, but we can explain the fundamentals of job control by user programs.

Each job running in the system has three dedicated components which are not shared by any other job in
the system: a job table entry, a job control block, and a user memory partition. The job table in the
monitor memory area contains one entry for each job allocated on the system. Each entry in this job table
is a longword, and points to a job control block (JCB) created for each job assigned on the system.

In the system initialization command file, the JOBS command allocates the number of jobs on the
system, and the JOBALC command assigns names to them. The entry for each job contains specific
information about that job. Note it is possible for you to allocate more jobs on the system than you
assign.

For example, you may want to allocate 50 jobs in the JOBS command but only assign job names to 30 of
them in the JOBALC command. Thus, the job table may contain empty entries which do not point to a
JCB.

THE JOB SCHEDULER

At the heart of AMOS is the system job scheduler. Its task is to allocate time to the various jobs running
on the system. To do this, it makes use of two different real-time clocks: one to schedule jobs (the
scheduler clock) and the other to act as a system timer (the timer clock).

The scheduler clock runs at an effective rate of 200 kHz, giving a clock period of five microseconds.
Each clock period is called a jtick. These jticks are grouped into jiffies of 257 jticks or 1.285
milliseconds. These jiffies are the basis of job scheduling.

At the standard job priority of 13, the system job scheduler allows each job to run for a maximum of 13
jiffies or 16.7 milliseconds. Each group of 13 jiffies is known as a quanta. The number of jiffies per
quanta is selectable on a job-by-job basis as the job priority. Thus, we have the following values:

Page 2-2 Chapter Two
The Job Control Block (JCB)

AMOS Monitor Calls Manual, Rev. 10

1 jtick = 5 µs
1 jiffy = 257 jticks = 1.285 ms
1 quanta (default) = 13 jiffies = 16.7 ms
1 second = 778.21 jiffies
1 minute = 46,692.6 jiffies
1 hour = 2,801,556.4 jiffies
1 day = 67,237,353.6 jiffies
1 longword = 63.9 days worth of jiffies

The timer clock runs at a frequency of 10 kHz, giving a clock period of 100 microseconds. Each clock
period is called a tick.

AMOS’s dynamic job priority scheduling feature can adjust the priority for each job as it is run, based on
the number of jobs in the run queue. A table contains the priority to give each job based on the current
size of the run queue. Thus, a job will get a higher priority (more CPU time) when there are fewer jobs
waiting to run.

You can turn dynamic scheduling on and off using the SET DYN option. You can adjust the dynamic job
priority table using ADJIT.LIT. See the sheets on these commands in the AMOS System Commands
Reference Manual.

THE JOB CONTROL BLOCK (JCB)

The format of the JCB is a series of equate statements in the system library file SYS.M68 on DSK0:[7,7].
Each equate statement has the name JOBxxx, where xxx is a 3-character code for the specific item of the
JCB being defined. The value of this symbol is actually the offset in bytes from the base of the JCB to
the item itself. You may, during the course of your program, wish to read the current data in your own
JCB or, in some instances, modify it. You should make references to the JCB items by indexing your
JCB by using the JOBIDX monitor call, and then referencing all JCB items by using JOBxxx(An).

Three entries in the system communication area define the job control system during timesharing
operation. These three entries are not part of the JCB areas, but rather are non-sharable parameters set up
during system initialization; they are not part of any one job. We point this out because the names of
these three words are JOBTBL, JOBCUR, and JOBESZ. Their names would indicate they are part of a
user JCB but they are not.

JOBTBL is a longword that contains the base of the job table, which contains a list of the allocated JCBs.
This address is set up at system initialization time and is never changed. The job table itself is an array,
each element being a longword. The possible values of each element are:

Value Meaning
0 There is no JCB corresponding to this entry
-1 Marks the end of the job table

Other values Address of a JCB

JOBCUR, a longword, always contains the address of the JCB which has control of the CPU, and is
updated to point to the new JCB each time the job scheduler switches to a different job. Therefore,
JOBCUR always points to your JCB if you reference it, because the reference is only executed while you
have control of the CPU. Note, however, you should always locate your own JCB through use of the

Job Scheduling and Control System Page 2-3
Accessing Your JCB

AMOS Monitor Calls Manual, Rev. 10

JOBIDX monitor call rather than by referencing JOBCUR. Future versions of AMOS will not allow
direct reference to JOBCUR.

JOBESZ, a word, contains the size of the JCB in bytes and is used by the system during system
initialization.

Example - Scanning the Job Control Area

There are times (such as in a system status report) when you want to scan down the job table and process
each JCB. The following example illustrates this process:

MOV JOBTBL,A0 ; index job table with A0
; loop for each entry in job table:

LOOP1: MOV (A0)+,D7 ; get pointer to JCB
 BEQ LOOP1 ; no job allocated here, get another
 CMP D7,#-1 ; end of job table?

BEQ ENDTBL ; yes -
 MOV D7,A1 ; no - put index to JCB in A1

; come here to process each JCB
; references to JCB items are by JOBxxx (A1)

LOOP: ; process JCB indexed by A1

... ...
BR LOOP1 ; go try another

; at this point we have finished
; the job table scan

ENDTBL: ...
... ...

ACCESSING YOUR JCB

You can gain access to your own JCB through use of the JOBIDX monitor call. JOBIDX returns a
pointer to the base of your job's JCB in the specified destination. Further access to your JCB should be
done by using this base address as an index. The calling format is:

JOBIDX dst ; sets absolute address of JCB into dst

A typical use of JOBIDX, loading your job's terminal definition pointer into A5, would look like this:

JOBIDX A6 ; get JCB address into A6
MOV JOBTRM(A6),A5 ; get terminal definition pointer

ACCESSING ANOTHER JOB'S JCB

When you need to gain access to another job's JCB, you can use the JCBIDX monitor call to locate that
JCB. You specify the job whose JCB you wish to index by supplying JCBIDX with an ASCII string
giving the job name. The JCBIDX call returns the base address of the JCB in the destination argument
you provide. Further access to the JCB should be done by using this base address as an index.

If the specified job is located successfully, the Z-bit will be set upon completion of the call. If no job
with the specified name can be located, the call returns with the Z-bit reset. Note this assumes the use of
an address register as the destination argument. Use of memory as the destination will corrupt the return
flags. The calling format is:

Page 2-4 Chapter Two
Job Scheduling Calls

AMOS Monitor Calls Manual, Rev. 10

JCBIDX string,dst
BNE job-not-found

A typical use of JCBIDX, getting the amount of CPU time used by a job into D1, would look like this:

JCBIDX NAME,A6 ; get JCB address into A6
 BNE NOTFND ; error - job not found
 MOV JOBCPU(A6),D1 ; get amount of CPU time used

...

...
NAME: ASCIZ /PRTSPL/ ; name of job to locate
 EVEN

JOB SCHEDULING CALLS

Various routines within AMOS use two calls, JWAIT and JRUN, for controlling the job scheduling
processes. JWAIT sets your job into the wait state, and JRUN re-activates it to the run state. If your
program specifies the J.NXT flag, AMOS places your job at the beginning of the run queue; when your
program does not specify J.NXT along with other JRUN flags, AMOS places your job at the end of the
run queue.

JRUN requires the job being controlled be indexed by A0 (which must point to the base of the JCB for
that job), and the argument specify one of the status control bits (in JOBSTS) to be used as the control
flag.

The section on JOBSTS, below, contains the flags used in these calls. The call formats for JWAIT and
JRUN are:

JWAIT flags
JRUN flags

SLEEP - Put Job to Sleep

SLEEP is a simple call that puts a user's job to sleep for the number of clock ticks you specify in the
argument. After the specified amount of time has elapsed, the job automatically awakens and execution
continues with the instruction following the SLEEP call. AMOS sets the Z-flag if the job slept for the
specified number of clock ticks; AMOS resets the Z-flag if the job woke up prematurely because another
job used the WAKE call. The calling sequence is:

SLEEP src ; put job to sleep
BNE wokeup ; branch if we were aWAKEned

A sleep call with an argument of zero clock ticks puts the job to sleep for approximately 4.97
days (4,294,967,295 clock ticks).

The central processor runs with a timer clock frequency of 10 kHz; each clock tick, therefore, has a value
of 100 microseconds. Thus, to sleep for one second, you would specify a value of 1000010 to the SLEEP
call.

Job Scheduling and Control System Page 2-5
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

Remember SLEEP takes a standard source argument. Therefore, to cause the job to sleep for one minute,
you would execute:

SLEEP #600000.

not:
SLEEP 600000.

Leaving off the pound sign (#) is a frequent coding error.

WAKE - Wake Up Job

This call wakes the specified job from a SLEEP call. A0 must point to the base of the JCB of the job you
want to wake out of the sleep state. AMOS sets the Z-flag if the call is successful. If the specified job
was already awake, AMOS resets the Z-flag. The call format is:

MOV jcb address,A0 ; index the job to awaken
WAKE ; wake job
BNE already awake ; branch if already awake

JOB CONTROL BLOCK FORMAT

The following paragraphs describe the entries contained in your JCB. Your programs may access each of
these entries by first setting an index to your JCB using the JOBIDX call, and then indexing into the JCB
with the symbols shown below.

JOBSTS - The Job Status Word

The first word in each JCB is the job status flag word. Each bit in this word indicates a particular
condition that applies to the job. Some legitimate conditions are indicated by more than one bit being on
at a time. The system and some of the system programs set and reset these bits as the current status of the
job changes, so do not alter this word without exercising extreme caution. The following list describes
briefly what each bit indicates when it is set.

Symbol
Octal
Value

Hex
Value

Meaning

J.TIW 2 2 Job is in terminal input wait state
J.TOW 4 4 Job is in terminal output wait state
J.SLP 10 8 Job is in sleep state
J.IOW 20 10 Job is in I/O wait state
J.EXW 40 20 Job is in external event wait state
J.SMW 100 40 Job is waiting on a semaphore
J.CCC 200 80 A Control-C abort is waiting to be processed
J.MSG 400 100 Job is waiting for a message
J.MON 1000 200 Job is in AMOS command mode (no program

active)
J.SIW 2000 400 Job is in software interrupt wait state
J.PLK 4000 800 Job is locked out by another job's PLOCK
J.SUS 10000 1000 Job is in suspended state
J.LOK 20000 2000 Job has CPU locked (via the JLOCK monitor call)
J.FIL 40000 4000 Job is waiting for a file or record lock

Page 2-6 Chapter Two
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

If any flag other than J.CCC or J.MON is set, the job will not be scheduled for CPU time until those
flags have been cleared.

JOBTYP - The Job Type

JOBTYP, one word, specifies the type of processing assigned to the current job. The list below indicates
what these flags mean when they are set:

Symbo
l

Octal
Value

Hex
Value

Meaning

J.USR 1 1 Job is a user partition
J.NUL 2 2 Job is currently running the null subroutine
J.NEW 4 4 Job is processing a new memory allocation
J.LPT 10 8 Job is running the line-printer spooler (LPTSPL)
J.HEX 20 10 Binary inputs and outputs are in hex (not octal)
J.DER 40 20 Print disk error retry messages
J.VER 100 40 Activate auto-verify mode for disk writes
J.CCA 200 80 Control-C interrupts are enabled (via SET CTRLC)
J.GRD 400 100 Terminal is guarded against SEND and FORCE commands
J.TSK 1000 200 Job is running as a slave task
J.CAB 2000 400 Control-C abort is enabled (reserved for future use)
J.PRE 4000 800 Job was preempted last time it was scheduled
J.PRO 10000 1000 Job preempted another job last time it was scheduled
J.SRQ 20000 2000 Job should save remaining quanta next time it is descheduled
J.PRM 40000 4000 Job is a permanent subtask (do not delete job when parent job exits)
J.NLK 100000 8000 Job has file locking turned off

JOBTY2 - More Job Type Flags

JOBTY2, one longword, specifies the type of processing assigned to the current job. The list below
indicates what these flags mean when they are set:

Symbol
Octal
Value

Hex
Valu

e

Meaning

J2$REM 1 1 Job is a remote connection from another system
J2$AGT 2 2 Job is acting as an agent for a remote task
J2$BTG 4 4 Job is boot job, and system is still booting. (Reset

when MEMORY 0 in system initialization file is
processed.)

J2$SAP 100 40 Suppress AMOS prompt
J2$TST 400 100 Job is in "test" mode

JOBSPR - The Stack Pointer Reset Address

One longword, JOBSPR, is used to store the user stack pointer reset address which is calculated when the
system is initialized. This address is then used to reset the user stack pointer each time the job exits back
to AMOS command mode. If you must reset SP yourself, such as within an error recovery routine, you
should simply move the contents of JOBSPR to SP. Never modify JOBSPR itself.

Job Scheduling and Control System Page 2-7
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

JOBNAM - The Job Name

JOBNAM, one longword, contain the 6-character job name packed RAD50. This name is set up by the
JOBALC command in the system initialization command file. If a user program alters this word, it
effectively alters the name of the job.

JOBBAS - The Memory Base Address

JOBBAS, one longword, contains the base address of the user memory partition if one has been allocated
for this job. This address is altered only by the MEMORY program which allocates and de-allocates user
memory partitions. We advise against altering this address unless you thoroughly understand the
memory allocation process.

JOBSIZ - The Memory Partition Size

JOBSIZ, one longword, contains the size of the user memory partition in bytes, if one has been allocated
for this job. This size word together with the above JOBBAS address word defines the current user
memory partition. JOBSIZ is altered only by the MEMORY program and the AMOS command
processor.

JOBUSR - The Current PPN

JOBUSR, one word, contains the current PPN (account number) if the user is logged in. Zero indicates
the job is currently logged off. JOBUSR is modified by the LOG and LOGOFF programs and is tested
by various protection schemes in the system to allow user access to files, etc.

JOBPRV - The Privilege Word

JOBPRV, one word, is used to store the privileges associated with the job. This word is set by the LOG
and LOGON programs and may be modified, providing the job has the privilege of doing so, by the SET
program.

Each bit in this word corresponds to a particular privilege granted to the job. These bits may be checked
by individual programs before proceeding with a privileged operation. In addition, AMOS matches these
privilege bits against the privilege bits in the program header of any program the job tries to run. If the
program requires privileges the job does not currently have, the program will not be run and an error
message will be displayed.

The privilege bits are defined as follows:

Page 2-8 Chapter Two
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

Symbol
Octal
Value

Hex
Value

Meaning

PV$RSM 1 1 Job is allowed to read system memory
PV$WSM 2 2 Job is allowed to write system memory
PV$RPD 4 4 Job is allowed to read physical disk blocks
PV$WPD 10 8 Job is allowed to write physical disk blocks
PV$DIA 20 10 Job is allowed to run diagnostic programs
PV$PRV 100000 8000 Job is allowed to change its own privileges

JOBEXI - Job Exit-Trap Stack Pointer

This field contains the value of the stack pointer the last time you executed an AMOS or PCALL monitor
call. It is reset to the previous value each time you go through the exit-trap system.

JOBPRG - The Current Program Name

JOBPRG, one longword, contains the 6-character name, packed RAD50, of the program which is
currently running, or which was the last job run if you're in AMOS command mode. JOBPRG is loaded
by the command processor when the program is loaded or located for execution.

JOBCMZ - The Command File Size

JOBCMZ is one word containing the size of the current command file area in the user memory partition,
if a command file is being processed. If this word is zero, no command file is currently in effect. AMOS
sets this word to the initial size of a command file when that file is loaded into the top of the user
partition and decreases it as each line is extracted from the area and sent to the AMOS command
processor. When it gets to zero, the command file is finished, and the system returns to normal command
mode input from the user terminal. Do not alter this word.

JOBCMS - The Command File Status

JOBCMS is one word containing flags used by the command file processor in the low byte and the last
character seen by the command file processor in the upper byte. The flags are defined as follows:

Symbol
Octal
Value

Hex
Value

Meaning

C.MON 1 1 Command file is at AMOS command level
C.SIL 2 2 Command file is in silence (:S) mode
C.TRC 4 4 Command file is in trace (:T) mode
C.KIN 10 8 Command file is in keyboard input (:K) mode
C.PTL 20 10 Command file is in partial input (:P) mode

JOBCMS works in conjunction with JOBCMZ during command file processing.

JOBERC - The Error Control Address

JOBERC, one longword, controls the handling processor exceptions (address errors, privilege violations,
bus errors, etc.) as described in the AM-100/L Instruction Set Manual. If JOBERC is zero, a processor

Job Scheduling and Control System Page 2-9
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

exception causes a message appropriate to the error to be printed on the user's terminal, and aborts the
job. If JOBERC is non-zero, the program jumps to the address specified in JOBERC, which should
contain a valid routine for shutting down the program. Note the processor exceptions discontinue the user
program only and do not abort the whole timesharing system.

AMOS provides a method for intercepting and handling these processor exception errors. To use this
feature, your program must place the address of an error handling routine in the JOBERC longword
within the controlling job's Job Control Block. When error handling is not in effect (the default
condition), JOBERC must be set to zero.

When a system error occurs, control will be transferred to the error handling routine. The processor will
be in supervisor mode. The word at the top of the supervisor stack indicates the type of error which
occurred. The remainder of the stack contents varies according to the type of error which occurred, as
described below. All registers are exactly as they were at the time the error occurred.

The error handling routine must determine what action to take based on the type of error that occurred.
Note many of the most common errors (address error, parity error) cannot be re-started on 68000
processors, although they may be restartable on 68010 and later processors. That is, the processor does
not save enough information for your error handling routine to correct the error condition and resume
execution. In most cases, it is expected the error handling routine will simply perform clean-up
operations appropriate to the application, then perform an EXIT to return control to AMOS.

If after entering your error routine you decide not to handle the error, but wish the system to take its
normal exception processing, you can issue the STDERR monitor call to cause the system to resume
default error processing. Since the default error processing results in an EXIT call being performed, there
is no return from the STDERR call. More detail on the STDERR call may be found in Chapter 13.

If your application requires you to try to resume execution, your routine is responsible for properly
saving and restoring all registers, re-setting the stack contents as necessary, and any other required
operations. Your routine may then resume execution by using a RTE instruction. You must be extremely
careful, as errors within errors typically cause the processor itself to halt, requiring a hardware reset to
reboot the system.

The general format of the stack upon entering the error handling routine is:

@SP Error trap type

2(SP) CPU status register

4(SP) Program counter

6(SP)

10(SP)
Other information depending

onexception type

The error trap types are defined as follows:

Page 2-10 Chapter Two
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

Octal
Value

Hex
Value

Symbol Note Meaning

1 1 EX$BER * Bus error
2 2 EX$PAR * Memory parity error
3 3 EX$ADR * Address error
4 EX$IIN Illegal instruction
5 5 EX$DIV Divide by zero
6 6 EX$CHK CHK instruction trap
7 7 EX$TRP TRAPV instruction trap

10 8 EX$PRV Privilege violation
11 9 EX$TRC Trace trap (only if JOBTRC is zero)
12 A EX$EM1 EM1111 instruction trap
13 B EX$MSC Miscellaneous exception
14 C EX$II0 Illegal interrupt on level 0
15 D EX$II1 Illegal interrupt on level 1
16 E EX$II2 Illegal interrupt on level 2
17 F EX$II3 Illegal interrupt on level 3
20 10 EX$II4 Illegal interrupt on level 4
21 11 EX$II5 Illegal interrupt on level 5
22 12 EX$II6 Illegal interrupt on level 6
23 13 EX$II7 Illegal interrupt on level 7
24 14 EX$BTO * Bus time-out error
25 15 EX$MMU MMU error
26 16 EX$PPV * Coprocessor protocol violation
27 17 EX$FUB * Floating point coprocessor branch/set on

unordered condition
30 18 EX$FIR * Floating point coprocessor inexact result
31 19 EX$FDZ * Floating point coprocessor divide by zero
32 1A EX$FUN * Floating point coprocessor underflow
33 1B EX$FOE * Floating point coprocessor operand error
34 1C EX$FOV * Floating point coprocessor overflow
35 1D EX$FSN * Floating point coprocessor signaling NAN
36 1E EX$MCE * MMU configuration error
37 1F EX$MIO * MMU illegal operation
40 20 EX$MLV * MMU access level violation
41 21 EX$FUD * Floating point coprocessor unimplemented

data type

For the error types flagged with an asterisk, additional information is contained on the stack when the
error routine is entered. Otherwise, the stack contains only the status register and PC. Those error types
marked with an asterisk format the stack as follows:

@SP Error trap type

2(SP) Special status word

4(SP) Access address

6(SP)

10(SP) Instruction register

12(SP)

14(SP) Program counter

The "Miscellaneous Exception" error type includes all exception traps currently reserved but
unimplemented within the processor itself, unused autovector interrupt vectors, spurious interrupts, and
unused TRAP instructions. TRAP15, the breakpoint trap, is also considered a miscellaneous error if the
JOBBPT vector contains zero.

Job Scheduling and Control System Page 2-11
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

Remember on an AM-1000/1200, an access to non-existent memory will be trapped as a parity error,
while on VMEbus systems it will be trapped as a bus time-out error. AM-100/L systems ignore accesses
to non-existent memory.

JOBWAT - Semaphore Wait Chain Link

RQST and RLSE use this longword field to maintain a chain of JCBs waiting on a particular semaphore.
This field contains the JCB address of the next job in this wait chain. Do not modify this field directly.

JOBBPT - The Breakpoint Address

JOBBPT is one longword specifying the address to jump to if a breakpoint (TRAP15 instruction) is
encountered during the execution of a user program. The AlphaFIX debugging program uses JOBBPT
for breakpoint handling. It is not normally used by other programs.

JOBATT - The Parent Job Index

If the current job is a spawned task, this field points to the JCB of the parent job. Otherwise this field
contains zero. Note that the parent job may itself have a parent (and so on), indicated by its JOBATT
field being non-zero.

JOBDEV - The Default Device

JOBDEV, one word, contains the RAD50 device code for the default device to be used if the file
specification being processed by the FSPEC call does not explicitly specify a device. This default device
is the device your job is currently logged into.

JOBDRV - The Default Drive

JOBDRV, one word, contains the drive number in binary for the default drive number to be used if the
file specification being processed by the FSPEC call does not explicitly specify a drive number. This
word is used only if the device code matches the code in JOBDEV or if the device code is left to default
also. JOBDEV and JOBDRV normally contain the device and drive number set by the LOG program
when a user logs in. They specify the disk device and drive which you usually use for processing.

JOBTRM - The Terminal Block Pointer

JOBTRM is one longword containing a pointer to the terminal definition block for the terminal which is
currently attached to this job. If no terminal is currently attached, this word contains a zero. The first
word in the terminal definition block is the terminal status word, which is available to you for
modification to set various terminal parameters such as echo control, image mode and lower-case
processing. The terminal service routine is described further in Chapter 7 and Appendix B.

Page 2-12 Chapter Two
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

JOBRBK - The Run Control Block

JOBRBK, a 28-word area, is the run control block for the job. It is used for the loading of programs and
overlays during job execution and is set up by the user program with the parameters needed to fetch the
next program or overlay segment prior to the execution of a FETCH call. See the description of the
FETCH monitor call in Chapter 4 for more information.

Because the job run block is only a partial DDB, special handling is required inside AMOS each
time it is used, making for inefficient operation. Use of the job run block in new software is
therefore not recommended.

JOBFPE - The Floating-Point Trap Address

JOBFPE, one longword, contains the address to jump to if an AMOS format floating point error, such as
a divide by zero, is executed. A user program which executes AMOS format floating point instructions
may enter its error trap address into JOBFPE, or it may use the default error routines which simply
display an error message on the user's terminal and exit.

Note this field is only used by the AMOS format (48-bit) floating point routines. IEEE format floating
point calls (32-bit and 64-bit) have a different mechanism for error handling. See Chapter 11 for more
information.

JOBRNQ - The Scheduling Area

JOBRNQ, a 28-byte area, maintains the parameters for job scheduling and context switching of this job,
organized as seven longword pointers and values. The JOBRNQ area is organized as follows:

Octal Location Hex Location Mea ning
JOBRNQ JOBRNQ Link to next runnable job
JOBRNQ+4 JOBRNQ+4 Saved user stack pointer
JOBRNQ+10 JOBRNQ+8 Saved system stack pointer
JOBRNQ+14 JOBRNQ+C Contains a -1 if job is in run queue, 0 otherwise
JOBRNQ+20 JOBRNQ+10 Job priority (number of jiffies per quanta)
JOBRNQ+24 JOBRNQ+14 Number of jiffies to credit job for next quanta
JOBRNQ+30 JOBRNQ+18 Number of jiffies to charge job for this quanta

Great caution should be used when modifying the JOBRNQ area as any errors made here will most likely
cause failure of the whole system.

JOBCPU - The Job's CPU Time Counter

JOBCPU, one longword, contains the number of jiffies the job has spent running. This time does not
include IO wait time or other periods when the job is not running, nor does it include time the job was
runnable but waiting to be scheduled. See Section 2.1 for information on jiffies and other scheduling
information. This field may be used for accounting purposes. Your program can unpack and display this
field by using the $OTCPU subroutine described in Appendix D.

Job Scheduling and Control System Page 2-13
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

JOBCON - The Time and Date the Job Logged-In

One packed longword containing both the time and date the job logged in. This quantity is used to
calculate the length of time a job has been logged into the system. This field may be used for accounting
purposes.

By subtracting the relevant fields from the current time and date, you can determine the length of time
the job has been logged in. Bits 0-16 contain the time of day (in internal format) the job logged in. Bits
17-31 contain the date the job logged in, where the date is stored as the number of days since January 1,
1980. You can convert the packed date to standard internal date format by adding 244424010. And you
can use the $OTCON subroutine described in Appendix D to unpack and display this field.

JOBDSR - The Number of Disk Reads Performed

One longword containing the number of disk reads the job has done since it logged in. The field is
incremented by one for every 512-byte disk block requested by a program. Therefore, this field is
incremented even if the disk block is returned from DCACHE or Write Cache and not via a physical
transfer from the disk. If a request for a logical record spans multiple 512-byte blocks, this field is
incremented for every block involved in the transfer. This field may be used for accounting purposes.

JOBDSW - The Number of Disk Writes Performed

One longword containing the number of disk writes the job has done since it logged in. It follows the
same rules of incrementing as explained in the JOBDSR section. This field may be used for accounting
purposes.

JOBTRC - The Job's Trace Mode Trap Vector

This longword contains the address of a routine to handle traps when executing with the trace bit set in
the processor status register. If JOBTRC is zero, the system will display an error message and exit when
a trace trap occurs; otherwise, control is transferred to the specified routine. The AlphaFIX debugging
program uses JOBTRC; it is not normally used by other programs.

JOBMSR - Reserved

This longword is used internally by the AlphaNET messaging system to track pending messages. Do not
modify this field.

JOBFPC - Current Context, Sky Floating Point Board

A 36-byte area used to store the current context of the Sky Fast Floating Point board when it is in use.
This area should never be modified, as it may cause the FFP processor to halt the system.

Page 2-14 Chapter Two
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

JOBLNG - Point to Current Language Definition Table

This longword contains a pointer to the current language definition table in use by the job. When a job is
first created, this field will point to the default language table MONGENed into the system monitor. This
field should never be accessed directly. Instead, use the GTLANG monitor call to index the appropriate
language definition table for your job, or use SET LANG from AMOS monitor level.

JOBUSN - Current User Name

This twenty byte field contains the current user name for the job. The user name is stored as ASCII
characters, terminated by a null, giving a maximum user name length of 19 characters. This field should
not be modified. To do so may prevent certain programs and other operating system features from
executing properly.

JOBRTP - Current Root PPN

This word field contains the root project-programmer number for the current job. The root PPN is used
by various system utilities and should never be modified.

JOBRTD - Current Root Device

This word field contains the root device, packed in RAD50 format, for the current job. The root device is
used by various system utilities and should never be modified.

JOBRTU - Current Device Unit Number

This word field contains the device unit number for the current job. The root device is used by various
system utilities and should never be modified.

JOBLVL - User Level

This one-byte field contains the "user level" of the user currently associated with this job. The user level,
which ranges in value from 0 to 10010, defines the type of functions the user is allowed to perform. A user
level of 0 denotes a user with minimum access; 100 denotes a user with no restrictions.

JOBEXP - User Experience Level

This one-byte field contains the "user experience level" of the user currently associated with this job. The
experience level, which ranges from 0 to 10010, defines the amount of "help" the user is likely to need. An
experience level of 0 assumes a rank beginner, and experience level of 100 assumes an expert.

This field is intended to be used as a guide for how much explanatory information a program gives to the
user. For example, in the case of an error message, a user with a lower expertise level might receive a
lengthy, detailed explanation of the error and its causes, while an experienced user might just get a
notification of the error.

Job Scheduling and Control System Page 2-15
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

JOBPRM - Current AMOS Command Prompt

This twenty-byte field contains the current AMOS command level prompt associated with the job. The
prompt consists of up to 19 ASCII characters terminated by a null byte. This field may be set by the SET
PROMPT command from AMOS command level.

For interpreted prompts on systems with PROMPT.SYS installed in system memory, you cannot
determine the length of the displayed prompt by counting the characters in JOBPRM. To
determine prompt length, follow these steps:

1. There is a longword called RSCPM in the system communications area. If RSCPM is null,
PROMPT.SYS is not installed, and you can determine prompt length by scanning JOBPRM.

If you want your programs to be backwards compatible, you should check the AMOS version
(at absolute address 2) for AMOS 2.3(479)-7 or later before interrogating RSCPM.

2. If RSCPM is non-null, call the routine at PH.SIZ+8. offset from the value in RSCPM. On
return, register D7 will contain the number of printable characters in the prompt. The routine
assumes that dim/bright and foreground color calls do not take up any screen positions.

Programs that use $CMDER to display a caret as a command line error locator should be recompiled
with the SYSLIB.LIB file that comes with AMOS 2.3(479)-7 or later. That version of $CMDER is
backwards compatible with previous AMOS releases.

For more information about interpreted prompts, see the SET reference sheet in the AMOS System
Commands Reference Manual.

Example code - you may need to modify this - :
MOV 2, d1 ; check for 2.3(479)-7 or later
MOV d1, d7 ;
AND #^H0FF000000, d7 ; check VMAJOR \
CMP d7, #2_24. ;
BHI 10$;
BLO 20$;
MOV d1, d7 ;
AND #^H0F0000, d7 ; check VMINOR
CMP d7, #3_16. ;
BHI 10$;
BLO 20$;
MOV d1, d7 ;
AND #^H0FFF, d7 ; check VEDIT
CMP d7, #479. ;
BHI 10$;
BLO 20$;
MOV d1, d7 ;
AND #^H0F00000, d7 ; check VWHO
CMP d7, #7_20. ;
BLO 20$;

10$: MOV RSCPM, d7 ; get prompt install vector
BEQ 20$; not there, br
MOV d7, a6 ;
CALL PH.SIZ+8.(a6) ; call length function, len into d7
BR 40$;

20$: JOBIDX a6 ; index jcb
CLR d7 ; clear length count
LEA a6, JOBPRM(a6) ; index the job prompt.

30$: TSTB (a6)+ ; Null yet ?
BEQ 40$; Yes.
INC d7 ; No. Bump counter.
BR 30$; Again.

40$: ; length of prompt in d7

Page 2-16 Chapter Two
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

JOBCMD - Default Command Line

This thirty-byte field contains the default command line executed whenever the job returns to AMOS
command level. The field can contain up to 29 ASCII characters, terminated by a null byte.

When a job is first created, this field contains a null, meaning no command is forced, but instead AMOS
waits for the user to enter a command from the terminal keyboard. This is the normal mode of operation.

In certain applications, however, it is useful to be able to force a user to stay within a specific program.
To do this, enter the name of the program, or any other valid AMOS command line of 29 or fewer
characters, into the JOBCMD field. Once this has been done, any time the job reaches AMOS command
level, the command within JOBCMD is automatically executed, just as if it had been entered from the
keyboard. This technique forces a user to remain within the program, regardless of what action might be
taken. For example, the following code would force the user to stay within the AlphaMENU shell:

JOBIDX A0 ; index our JCB
LEA A6,JOBCMD(A0) ; index the command buffer
MOVB #'S,(A6)+ ; transfer the command name
MOVB #'H,(A6)+
MOVB #'E,(A6)+
MOVB #'L,(A6)+
MOVB #'L,(A6)+
CLRB @A6 ; terminate the command

To once again allow the user to return to AMOS command level and stay there, simply clear the first byte
of the JOBCMD field. For example:

JOBIDX A0 ; index the JCB
CLRB JOBCMD(A0) ; return to null command mode

JOBDSC - The Job's DSECT Pointer

This entry is used to index the job's currently active DSECT area. This pointer is used by various
language processors (such as AlphaC) to keep track of the data area and to allow that data area to be
located by other programs and subroutines.

JOBERR - Job Error Value

This 16-bit field is used to record the result of the previously executed program. By examining this field,
a program can determine whether or not the previous program ran to successful completion, or was
aborted due to an error. It is this field the IF program looks at to check for execution errors.

The JOBERR field is itself broken down into two separate fields of three and ten bits. The remaining
three bits are reserved for future expansion. The first group of three bits is used for a severity code. The
ten bit field is used to contain the error specific code. The JOBERR word looks like:

Job Scheduling and Control System Page 2-17
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Severity Reserved Error code

The severity field contains a value describing the severity of the error, ranging from 0 to 17 octal where
the lower the number the more severe the error. The SEVERITY function in the IF program returns a
logically inverted value allowing simpler numeric comparison of the severity field (higher number
indicates greater severity).

The assigned severity values are as follows:

Value Meaning
0 If error code is nonzero AND severity code is zero, fatal error:

operation aborted due to severe error.
0 If error code is zero AND severity code is zero, operation completed

with no errors or warnings.
2 Operation aborted due to error or ^C.
4 Operation completed with error(s).
6 Operation completed with warning(s).

If the entire word is 0—both the severity and the error code fields—the job completed with no errors or
warnings. If the severity value is 0 and the error code is non-zero, it indicates a fatal error. Note it is
possible to have a non-zero severity field with a zero error code, such as when only warnings were
issued. The defined error status values are:

Page 2-18 Chapter Two
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

Octal Value Hex Value Symbol Mea ning
000000 0 No error has been detected

000001 thru
000377

1 – FF Standard DDB error codes. See Chapter 6

000400 100 JE$MSC Miscellaneous error (catch-all error number)
000401 101 JE$MAP Memory map destroyed
000402 102 JE$IPR Insufficient privileges to run program
000403 103 JE$L12 Must be logged into [1,2] to run program
000404 104 JE$OPR Must be logged into DSK0:[1,2] to run program
000405 105 JE$M20 Program requires 68020 processor
000406 106 JE$LOG Must be logged in to run program
000407 107 JE$BER Bus error
000410 108 JE$PAR Memory parity error
000411 109 JE$ADR Address error
000412 10A JE$IIN Illegal instruction
000413 10B JE$DIV Divide by zero
000414 10C JE$CHK CHK instruction trap
000415 10D JE$TRP TRAPV instruction trap
000416 10E JE$PRI Privilege violation
000417 10F JE$TRC Trace trap return
000420 110 JE$EM1 EM1111 instruction trap
000421 111 JE$MEX Miscellaneous exceptions
000422 112 JE$II0 Illegal interrupt on level 0
000423 113 JE$II1 Illegal interrupt on level 1
000424 114 JE$II2 Illegal interrupt on level 2
000425 115 JE$II3 Illegal interrupt on level 3
000426 116 JE$II4 Illegal interrupt on level 4
000427 117 JE$II5 Illegal interrupt on level 5
000430 118 JE$II6 Illegal interrupt on level 6
000431 119 JE$II7 Illegal interrupt on level 7
000432 11A JE$BTO Bus time-out error
000433 11B JE$MMU MMU error
000444 124 JE$PPV Coprocessor protocol violation
000445 125 JE$FUB Floating point coprocessor branch/set on unordered condition
000446 126 JE$FIR Floating point coprocessor inexact result
000447 127 JE$FDZ Floating point coprocessor divide by zero
000450 128 JE$FUN Floating point coprocessor underflow
000451 129 JE$FOE Floating point coprocessor operand error
000452 12A JE$FOV Floating point coprocessor overflow
000453 12B JE$FSN Floating point coprocessor signaling NAN
000454 12C JE$MCE MMU configuration error
000455 12D JE$MIO MMU illegal operation
000456 12E JE$MLV MMU access level violation
000457 12F JE$FUD Floating point coprocessor unimplemented data type
000600 180 JE$LPA Language processor aborted
040601 4181 JE$LAE Language processor aborted with errors
100602 8192 JE$LCE Language processor completed with errors
100603 8193 JE$UND Undefined identifier in input
100604 8194 JE$RIE Runtime interpreter error
100605 8195 JE$SYN Syntax error in input
100606 8196 JE$AEL Assembly error in linkage
041000 4200 JE$CTC Process aborted by operator (^C)
001001 201 JE$CLF Command line format error
001002 202 JE$CLS Command line switch error
001003 203 JE$SSD Bad SSD
001004 204 JE$ONF Overlay not found
140000 C000 JE$WRN Warnings were issued

Normally AMOS clears the JOBERR status word before executing a program, thus obliterating the status
returned by the previous program in a command file. To allow a program to have access to the error

Job Scheduling and Control System Page 2-19
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

status word left over from the previous program, a bit in the program header word must be set. By setting
PH$ERR within the program header (PHDR), a program may tell AMOS to leave the error status word
intact. Any program wishing to examine the status word must have this bit set.

Once the PH$ERR bit is set, a program may simply access the JOBERR word within the job control
block and take appropriate action based on its value. See the section on Program Header Format in
Appendix A for further details.

JOBDFP - Default File Protection

This 32-bit field contains the file protection to be assigned to any new files created by this job. This field
is set up by LOG or LOGON, both of which read the desired setting for the default file protection from
the USER.SYS file. The values in this field correspond to the values defined in the D.PROT field
described in Chapter 6.

This field should not be changed directly. If a user wants to set a different default file protection, the
USER.SYS entry for that user should be changed by using the MUSER program.

JOBFCB - Floating Point Coprocessor Control Block

This field is used to store the current state of the floating point co-processor during job scheduling
context switches. Because its contents vary depending on the specific hardware (or software) in use, it
contents should never be relied upon.

JOBFCP - Floating Point Coprocessor Context Pointer

This longword contains a pointer into the JOBFCB area, allowing the job scheduler to keep track of the
size of the currently stored floating point co-processor context.

JOBSIV - Software Interrupt Vector Table Pointer

This longword contains a pointer to the currently active software interrupt vector table. If no software
interrupts are enabled, this field will be zero.

This field should never be manipulated directly. Instead, use the software interrupt monitor calls
described in Chapter 14.

JOBSIM - Software Interrupt Enable Mask

This 32-bit field contains a bit mask defining the currently enabled software interrupt levels. If no
software interrupts are enabled, this field will be zero.

This field should never be manipulated directly. Instead, use the software interrupt monitor calls
described in Chapter 14.

Page 2-20 Chapter Two
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

JOBSIP - Software Interrupt Pending Mask

This 32-bit field contains a bit mask defining any pending software interrupts. If no software interrupts
are pending, this field will be zero.

This field should never be manipulated directly. Instead, use the software interrupt monitor calls
described in Chapter 14.

JOBSIT - Software Interrupt Timer Pointer

This longword contains a pointer to the software interrupt timer data structure.

This field should never be manipulated directly. Instead, use the software interrupt monitor calls
described in Chapter 14.

JOBERS - Error Context Save Area

This longword contains a pointer the job's previous error context. Used by the STDERR monitor call.
This field should never be directly accessed or modified.

JOBPLK - PLOCK Nesting Count

This longword contains a count of the number of times this job has executed a PLOCK monitor call
without a corresponding PUNLOK. This count is used to maintain the nesting capability of PLOCK. This
field should never be modified directly; the EXIT monitor call will clear this field if proper nesting is not
performed.

JOBIEE - IEEE Floating Point Error Vector

This longword contains a pointer to the job's error handling routine for IEEE floating point arithmetic.
When a floating point error occurs, control will be transferred to this routine, as described in Chapter 11.

JOBESP - Pointer for Screen Processor

This longword contains a pointer used by the ESP screen processor software. This field should never be
manipulated directly.

JOBRFU - VDK/USAM Impure Pointer

This longword contains a pointer to the job's impure area used by the VDK virtual disk and the USAM
access method. This field should never be manipulated directly.

Job Scheduling and Control System Page 2-21
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

JOBCOF - Current Open Object File Pointer

This longword contains a pointer to a data structure defining the currently open object files for this job.
This field should never be manipulated directly.

JOBROF - Root Object File Handle

This longword contains the handle of the root object file for this job. This field should never be
manipulated directly.

JOBRMF - Network List

This longword contains a pointer to a linked list containing all surrogate networks. This field is used
internally by AlphaNET and should not be modified.

JOBNTB - RPC Buffer Pointer

This longword contains a pointer to the buffer used by the Remote Procedure Call service of AlphaNET.
This field is used internally by AMOS and should not be modified.

JOBRES - Resource Manager Queue Pointer

This longword contains a pointer to a queue used by AMOS' resource manager. This field is used
internally by AMOS and should not be modified.

JOBTSP - Network Transport Service Buffer Pointer

This longword contains a pointer to the buffer used by the Transport Layer service of AlphaNET. This
field is used internally by AlphaNET and should not be modified.

JOBFCB - Hardware Floating Point Context

This field is used to store the current context of the floating point coprocessor (68881 or 68882) during
job context switching. It should never be modified.

JOBSIS - Terminal Output Software Interrupt Structure

This longword contains a pointer to the software interrupt structure used by this job for terminal output
buffering. This field is used internally by AMOS and should never be modified.

Page 2-22 Chapter Two
Job Control Block Format

AMOS Monitor Calls Manual, Rev. 10

JOBSSP - The Job's Supervisor Stack Area

JOBSSP is a 600-word area that acts as the supervisor stack for this job. SP is set to the top of this area
when the job is initialized. The job scheduler saves all user registers and processor status on the
supervisor stack during job context switching, monitor calls, and interrupts.

JOBUSP - The Job's User Stack Area

JOBUSP is a 400-word area that acts as the user stack for this job. SP is set to the top of this area when a
new program is initiated. You may set your stack pointer to use an area other than JOBUSP by moving
the address of a larger area within your own partition to SP, if the program needs more stack area.

AMOS Monitor Calls Manual, Rev. 10

Chapter 3
Memory Control System Calls

To optimally use the memory resources available on the Alpha Micro computer and minimize system
problems due to memory access violations, the assembly language programmer should understand how
AMOS allocates memory and the rules for accessing memory. This section describes the memory
allocation scheme and the monitor calls that assist you in using memory in the proper way.

The MC68000- and MC68010-based Alpha Micro computer systems can address up to a total of 16
megabytes of memory. The MC68020-based and later systems can address as much as four gigabytes.
The AMOS monitor resides in low memory beginning at location zero and extending upward as far as the
monitor requires (typically around 120K bytes). The remaining memory above the monitor up to the end
of the total amount of memory in your system is available for assignment as system resources and user
memory partitions for each of the jobs.

You may allocate all of the user memory to one job, or split it up into several partitions of varying sizes
allocating one partition to each job. The amount of memory a user program has available is, therefore,
defined as the single contiguous memory partition assigned to a job by the MEMORY command.

AMOS then allocates this memory partition block into smaller defined blocks called "modules" which
you and the system can use to contain programs and data areas. There are monitor calls that allow your
programs to locate the absolute boundaries of its own memory partition and also to allocate, change, and
delete memory segments in the form of defined modules. You can name these modules just like files
(filename.extension), so you can locate them by that name. Any program loaded for execution will be in
the form of a module. During execution, some programs create other modules for device buffers, data
tables, etc.

MEMORY PARTITION FORMAT

The memory partition assigned to a job may be located anywhere in memory depending on the memory
available when the job assigned memory to itself using the MEMORY command. Your programs should
not try to anticipate any specific location for this partition. Within the partition, AMOS allocates memory
modules beginning at the base of the defined partition and building modules upward on top of each other
as far as space permits. The system will not build modules that extend past the top boundary of the
partition. As modules are deleted from memory, all modules above them automatically shift downward to
fill up the space the deleted module left. Also, when the size of any module changes, the modules above
it shift in position accordingly. This practice insures all available memory is always at the top of your
partition in one contiguous block. And because the system uses the first portion of free memory for
loading a program, you must write all your programs in totally relocatable code.

Figure 3-1 shows a typical memory layout for three users operating in a 4MB system. The free memory
at the 3600K boundary could be used by a fourth job or by the third job if its partition were expanded.

Page 3-2 Chapter Three
Memory Partition Format

AMOS Monitor Calls Manual, Rev. 10

4MB Free Memory

3600KB User 3(500KB)

3100KB
2400KB

User 2(700KB)

2MB User 1(400KB) (Memory sizes are for example
only)

0KB AMOS Monitor and System
Resident Programs (2MB)

Figure 3-1: Memory Map for a Typical 4MB System

Three monitor calls return information about your memory partition as it happens to be allocated. These
three calls all take a single standard argument into which is delivered the absolute address of the base,
end, or free base of the user memory partition. The three calls and the addresses they return are listed
below:

Call Meaning
USRBAS arg Absolute base of user memory partition (first word)
USREND arg Absolute end of user memory partition (last word)
USRFRE arg Current base of remaining free memory (end of last module+2)

Since modules must always occupy an even number of bytes, the above calls always return an even
address. If no modules are allocated in the current partition, the USRFRE address equals the USRBAS
address. Otherwise, the USRFRE address is the word following the last currently allocated module in the
memory partition. You can calculate the remaining free user memory module which it may use for
storage of symbols or some similar function. Then it opens two I/O files on disk which causes the
operating system file service routine to allocate the two disk buffer modules. The remaining memory in
the partition has not yet been allocated in our example.

Note the USREND call does not actually return the absolute end of the partition, but rather the end of the
available free memory at the time of the call. If a command file is being processed, it occupies the upper
part of the partition which we do not wish to alter during the execution of a program. In fact, the program
should not have to take into consideration whether or not it was called by direct command or from a
command file. Using the USREND call insures the program will use the free memory without having to
compensate for the remaining part of any command file module.

Memory Control System Calls Page 3-3
Memory Module Format

AMOS Monitor Calls Manual, Rev. 10

High Address
Command File (if in use)

USRBAS + JOBSIZ (in JCB)
gives top of memory partition

USREND

Free Memory Area
(available to this user only)

USRFRE

Disk Buffer

Disk Buffer These modules allocated by

Data Table
GETMEM calls during
execution of the program

Low Address

Currently Running User Program

User program module loaded by
operating system when the
program name was entered as a
user command

USRBAS

Figure 3-2: Memory Map for a Typical User Job Partition

The standard use of memory by the operating system is through the use of the memory management
system calls, to be described in the next section. However, it is theoretically possible to use free memory
without regard to module boundaries, especially for use in variable length tables or hashing techniques.
For this reason, the free memory space is always defined as the area between the addresses returned by
the USRFRE and USREND calls. However, we do not recommend using this technique due to its
potential incompatibility with other software on the system. In particular, note that initializing files
normally results in the allocation of a buffer module; the operating system allocates this buffer at the
current setting of the USRFRE address, then updates that USRFRE address.

Therefore, you must be sure all I/O buffers and any work modules are allocated before freely using the
memory above the USRFRE address. The INIT and FETCH calls both cause the indirect allocation of a
memory module in addition to the direct allocation or alteration of modules by the GETMEM,
CHGMEM, and DELMEM calls.

MEMORY MODULE FORMAT

Memory modules are the basic unit of formal data structure within the user memory partition. They are
always allocated on word boundaries and must contain an even number of bytes to maintain this format.
The monitor calls automatically pad an odd-sized module with a null byte to even it up. All modules
contain six housekeeping entries followed by any number of data words from zero to the maximum size
left in the user memory partition. The six housekeeping words are always allocated, so a single-word
module really takes up eight words of memory. The size of the housekeeping area has been given the
symbol ZID in SYS.UNV.

Page 3-4 Chapter Three
Memory Module Format

AMOS Monitor Calls Manual, Rev. 10

The module format is as follows:

Word Offset From Start Meaning
1-2 Total module size in bytes including housekeeping words
3 Module flag word

4-5 Module filename packed RAD50
6 Module extension packed RAD50

7 thru n Module data area

Figure 3-3 illustrates this standard module format from another perspective. The data area is usually the
only area that concerns the user, and so all references are made from the base of this area. The SRCH and
FETCH calls, described in section 4.1, return this absolute address when locating or loading the
requested module, instead of the address of the base of the housekeeping words. References to the
housekeeping words should, therefore, be made by negative offsets relative to the data base address.

When scanning for a specific module or locating the end of the current module string, you may set your
index using the USRBAS call, which returns the address of the size longword of the first allocated
module. You can then merely check the housekeeping words for the correct module name or other
determining parameters and, if the module is to be bypassed, add the size longword to the index. This
bumps the index to the next module allocated. The last module always has a zero longword following it,
and you must be careful not to destroy this zero longword if you are manipulating free memory directly
without allocating it using the memory calls.

+n

User program or data Data area size as specified
in GETMEM calls

+4

+2

Base: SRCH, FETCH, and
-2 Module Extension (RAD40) GETMEM calls return

-4 Module this address
-6 Filename (RAD50)

-10 Module Flags
-12 Module
-14 Size

Figure 3-3: Standard Memory Module Format

Memory Control System Calls Page 3-5
Manipulating Memory Modules

AMOS Monitor Calls Manual, Rev. 10

The module filename and extension follow the same format as the filenames on disk if the module in
memory is named. The name is optional and need only be used if the module is to be located by name at
a later time.

Modules may be either temporary or permanent depending on the method used to load them into
memory. A module is made permanent by setting the file bit on in the housekeeping flag word when the
module is allocated. The monitor automatically deletes temporary modules when the program finishes
and executes the EXIT call. Permanent modules are not automatically deleted but may be deleted by
either the operator DELETE command or the monitor DELMEM call. Forcing a zero into the size word
of the module is another way of deleting it, but this is not the recommended way since it also deletes all
modules above it (zero is the module area termination longword word).

The module flags word is defined as follows:

Symbo
l

Octal
Value

Hex
Value

Meaning

FIL 2 2 This module is permanent. Don't delete it when an EXIT call is executed.

FGD 4 4 This is a foreground module. This flag is reserved for future use.

OBM 10 8 This module has an odd byte count. The file on disk from which the module was
loaded was an odd number of bytes in size. The memory module size is rounded
up to the next even number.

LOK 20 10 This module is locked in memory. Don't allow it to be deleted via the DELMEM call
or the DELETE program

MANIPULATING MEMORY MODULES

Three monitor calls create, alter and delete memory modules. All three calls take a single standard
argument which must be the address of a 4-word block called a memory control block (MCB). The first
longword of this MCB contains the absolute memory address of the data area in the allocated module
(past the housekeeping words). The second longword contains the size of the data area in bytes (twelve
bytes less than the total module size since the housekeeping words are not included). The MCB therefore
is the user's block, which defines a contiguous area in memory by its base address and size in bytes. You
need not be concerned with the housekeeping words unless you need to access them directly. While the
MCB can be allocated as a fixed set of memory locations, it is usually more convenient to allocate them
temporarily on the stack, as shown below.

The following three calls manipulate memory modules:

Call Purpose
GETMEM adr Allocates a new memory module at current USRFRE, returns address in adr .
CHGMEM adr Changes the size of the module defined by MCB indexed by adr .
DELMEM adr Deletes the memory module defined by MCB indexed by adr .

The Z-flag is reset if GETMEM and/or CHGMEM fail (i.e., there is insufficient memory). It is vital that
this flag be checked after every call, as ignoring a failing memory allocation may cause your program
to use memory already allocated to another job, potentially causing system failure.

Page 3-6 Chapter Three
Permanent and Temporary Modules

AMOS Monitor Calls Manual, Rev. 10

Allocating a Memory Module

The following example shows the allocation of a 100-byte module:

PUSH #100. ; set module size as 100 (decimal) bytes
PUSH ; reserve space for module address
GETMEM @SP ; allocate module (@SP gets its address)
BNE NOMEM ; no memory available -
POP index ; remove address of allocated module
POP ; remove module size
...

 ...
NOMEM: EXIT

Changing a Memory Module

You may increase the size of the same module by:

PUSH #120. ; change size to 120 (decimal) bytes
 PUSH index ; store the address of the module
 CHGMEM @SP ; change its size
 BNE NOMEM ; not enough memory available -
 POP ; remove the temporary MCB from the stack
 POP

The above code causes the monitor to adjust the module housekeeping size word to reflect the new size.
The address of the module does not change.

However, note the USRFRE address advances by 20 bytes and any modules allocated after the
one at MCB shift up in memory; but the monitor does not adjust their corresponding addresses in
their MCB. I/O buffers allocated after the MCB module will, therefore, be erroneously addressed
after the change, so use the CHGMEM call with care.

Deleting a Memory Module

To delete the above module, we use the code:

PUSH ; push dummy size onto stack
PUSH index ; push address of module onto stack
DELMEM @SP ; delete the module
BNE NOMEM ; failure -
POP ; remove temporary MCB from stack
POP

PERMANENT AND TEMPORARY MODULES

Recall that all temporary modules are automatically deleted by the monitor when the program exits. You
may force the module to be permanently left in memory by giving it a name and setting the file bit
(defined in SYS.UNV as "FIL") in the flag word. The following example illustrates the allocation of a
200-byte module which is made permanent with the name "TABLE1.DAT":

Memory Control System Calls Page 3-7
Allocating Modules with GETIMP

AMOS Monitor Calls Manual, Rev. 10

PUSH #200. ; set size as 200 bytes
PUSH ; reserve space for index
GETMEM @SP ; allocate the module
BNE NOMEM ; no memory available -
POP A5 ; A5 will index the module
POP ; remove size
MOV A5,A0 ; set A0 to index the data area base
MOVW #[DAT],-(A0) ; set module name and extension (RAD50)
MOVW #[LE1],-(A0) ; into the housekeeping words
MOVW #[TAB],-(A0) ; in reverse for efficient use of A0
ORW #FIL,-(A0) ; set permanent file bit on in flag word

You may save permanent memory modules onto disk using the operator SAVE command, or you may
delete them from memory when done with the operator DEL command. See the System Commands
Reference Manual for details on these commands.

ALLOCATING MODULES WITH GETIMP

One of the most frequent uses of the memory module allocating calls is allocating a memory area for
impure storage. The GETIMP macro makes this and other simple memory allocation operations easier.
To use GETIMP simply specify:

GETIMP size, index, {error-routine}

In this example, size specifies the number of bytes to be allocated, index is any valid destination
argument that specifies where the base of the new memory module is to be placed, and error-routine is
an optional argument that specifies the routine to execute if there is not enough memory available for the
requested allocation. If you don't specify error-routine, the operating system simply prints an error
message and aborts.

For example, to allocate a 100 (decimal) byte impure module and index it with A5, using the default
error routine, you would enter:

GETIMP 100.,A5

AMOS Monitor Calls Manual, Rev. 10

Chapter 4
Allocating and Using Memory

This chapter discusses how to allocate and use memory modules, and also discusses the Shared Memory
Facility, which allows multiple jobs and programs to share a memory pool allocated at bootup time.

MEMORY MODULES - SRCH AND FETCH CALLS

Memory modules may contain an optional filename and extension, which you can use to locate them,
both in memory and on the disk. This chapter explains locating and loading modules using these optional
filenames and extensions. Normally, when you enter a command from the terminal, AMOS first searches
for the requested program in the resident system memory area, then in your own memory partition. If the
program is resident in either of these places, it does not need to be loaded in from disk, and execution
begins immediately.

You may use two monitor calls, FETCH and SRCH, for locating and loading modules in memory by
name. Actually, the SRCH call is a specialized version of the FETCH call and is included only for
convenience. Basically, the SRCH call only locates a module if it is already in memory, while the
FETCH call automatically loads a module into memory from the disk if it is not found in memory. Both
calls have the same basic format:

SRCH nameblock adr,index dst,control-flags src
FETCH nameblock adr,index dst,control-flags src

Specifying the Module Name

nameblock is a standard argument used in the SRCH and FETCH calls to specify the name of the desired
module. The format of nameblock referenced is different in each case, however. In the case of the SRCH
call, nameblock refers to a 3-word block of memory containing the filename and extension of the module
you want in RAD50 packed form. For the FETCH call, nameblock refers to a Dataset Driver Block
(DDB) which allows you to specify a full disk file specification to use in loading the module from disk in
case it is not already in memory. In brief, the DDB is an area in memory which contains all the
information and work areas to define and manipulate a specific disk file in any area on any defined disk
device. The DDB is normally set up by processing an ASCII file specification with the FSPEC call. See
Chapter 6 for more information.

The Module Address

The second argument is the index which is to receive the absolute memory address of the located (or
loaded) memory module data area. See Figure 3-3 in the preceding chapter for the layout of the memory
module and the place this index is set to. Index is a standard argument, although the normal mode is to
receive the module address in an address register (A0-A6).

Page 4-2 Chapter Four
Memory Modules - SRCH and FETCH Calls

AMOS Monitor Calls Manual, Rev. 10

Flags

The third argument is the optional control flags, which you may use to control the operation of the SRCH
and FETCH calls. This argument is any valid expression with a value in the range of 0-17 (octal). Only
the low order five bits are significant, and they have the following mnemonic definitions in the system
library SYS.UNV:

Symbol
Octal
Value

Hex
Value

Meaning

F.FCH 1 1 Fetch module from disk if not in memory
F.USR 2 2 Search user memory only
F.ABS 4 4 Load absolute segment from disk
F.FIL 10 8 Set module permanent file flag after load from disk
F.NFCH 20 10 Force "no fetch from disk," overrides F.FCH

Note that if the index destination (the second argument) is not an address register, these flags will NOT
be set properly.

F.FCH - Fetch Module From Disk

F.FCH is the flag that actually differentiates the SRCH call from the FETCH call, since they both
technically are the same monitor call. The SRCH call forces this bit off while the FETCH call
forces this bit on. When set, the F.FCH bit causes the program to interpret nameblock as a full
file DDB and to load the module from disk if it cannot be located in memory first. Since the use
of this bit is controlled by specifying either SRCH or FETCH as the calling opcode, you should
not include this bit in the control-flags argument of your call.

F.USR - Search User Memory Only

F.USR tells SRCH and FETCH to bypass searching the resident system memory area for the
module and proceed directly to searching the user area only. This allows the program to load and
use specific versions of its modules even though they may be duplicated in the system memory
area. Normally, only system software uses this flag.

F.ABS - Bypass Memory Search

When set, F.ABS forces a direct search to the disk for the requested module, bypassing all
memory searches that would normally occur. The module then loads into memory at the absolute
address by the buffer address (D.BUF) in the specified DDB. It allocates no housekeeping words,
and the first word of the module gets loaded into the first word specified by the buffer address.
You can use the F.ABS form of the FETCH call to load program segment overlays.

F.FIL - Mark Module as Permanent

F.FIL is used to force the permanent file flag bit on in the module flag word after the module has
been loaded from disk. Do not use this option if you specify F.ABS. The FETCH call always
places the filename and extension into the housekeeping words; so even if the module is only
temporary, it can still be located by name, as long as the program that loaded it is still active.
This is useful for dynamic loading of subprograms and/or data modules. Setting the F.FIL flag
on in the control-flags argument means the operating system will not delete the module from
memory when the program exits. The LOAD program uses this method to load a program into
memory and leave it there after execution is completed.

Allocating and Using Memory Page 4-3
Memory Modules - SRCH and FETCH Calls

AMOS Monitor Calls Manual, Rev. 10

Completion Codes

When the SRCH or FETCH call returns, your program must test the status of the Z-bit to see if the
module was located or loaded successfully. If the Z-bit is set (tested by BEQ), the operation was
successful. If the Z-bit is not set (tested by BNE), the module was either not located or would not fit into
the remaining free memory within the user's partition.

In addition to the Z-bit being reset in case of an error, the DDB used by a FETCH call will contain the
error code in the D.ERR status byte.

Examples

The following examples illustrate the use of the SRCH and FETCH monitor calls.

Locating a Memory Module

The code shown below searches the system resident area and then the user's memory partition for the
module named "TABLE.DAT." If it finds the module, it returns the address in A1. If not, it displays an
error message.

SRCH NAMSTR,A1 ; try to find TABLE.DAT
BNE ERROR ; not found - process error

; Address of TABLE.DAT is now in A1
...

ERROR: TYPECR <?TABLE.DAT not found in memory>
 EXIT
NAMSTR: RAD50 /TABLE DAT/

Loading an Overlay

The program segment shown below loads a program overlay into memory. It uses the job run block
(JOBRBK) to load the overlay module from disk. This example assumes the symbol OVRBAS has been
defined as the base of the overlay area through use of the OVRLAY pseudo-op within the source
program. The example tries to load the overlay module "OVRMOD.OVR" into memory. If it can't find
the module, it displays an error message.

JOBIDX A0 ; index our own JCB
LEA A0,JOBRBK(A0) ; index our job run block
CLRW D.DEV(A0) ; set for default drive
MOVW #-1, D.DRV(A0)
MOVW #[OVR],D.FIL(A0) ; set filename to OVRMOD.OVR
MOVW #[MOD],D.FIL+2(A0)
MOVW #[OVR],D.EXT(A0)
CLRW D.PPN(A0)
LEA A1,OVRBAS ; index the overlay area
MOV A1,D.BUF(A0) ; store in buffer address
FETCH @A0,A6,F.ABS ; load it in (note use of F.ABS)
BEQ OVRBAS ; loaded ok - go execute overlay
TYPE <?> ; not found - display error
PFILE D.FIL(A0) ; display filename
TYPECR < not found>
EXIT

For more information on overlays, see the AMOS Assembly Language Programmer's Manual.

Page 4-4 Chapter Four
Shared Memory Facility

AMOS Monitor Calls Manual, Rev. 10

SHARED MEMORY FACILITY

The AMOS Shared Memory Facility allows you to define a memory pool at bootup time via the SMEM
command in the system initialization command file. Multiple jobs and programs can then make use of
this memory pool, allocating and using blocks of memory. Use of these blocks of memory can be
coordinated by locking and unlocking them.

GETSHM - Get/Search Shared Memory

GETSHM gets a block of shared memory. The format of the call is:

GETSHM {name},{size},{adr},{shmid},{SM$PRM}

name is the address of a six-character/RAD50 name by which to identify the memory
block.

Size is the size of memory desired, in bytes.

Adr is where the address of the memory block will be stored.

Shmid is where the shared memory ID is to be stored.

SM$PRM indicates that this memory block is to be allocated permanently to the requester.

The call returns:

A6 Address of the memory block.

Adr If specified, stored in A6.

D6 Actual size allocated/found.

D1 Shared Memory ID.

Shmid If specified, stored in D1.

D7 Destroyed.

Condition codes are:

Z 1 for successful operations (use BEQ).

C 1 if already defined (use BCS).

Z 0 for unsuccessful operations (use BNE).

GETSHM is used to get a block of shared memory. Name is the address of a six-character, RAD50 name
used to identify the memory block.

If name is specified and the block already exists, its address will be returned, its use-count will be
incremented, the actual size of the block will be returned in D6, and both the Z and C flags will be set. If
the block does not exist, it will be allocated and given name specified.

Name may also be used in subsequent DELSHM calls to identify the memory block to delete.

Allocating and Using Memory Page 4-5
Shared Memory Facility

AMOS Monitor Calls Manual, Rev. 10

If name is not specified, the memory block allocated will be unnamed.

Memory allocated to a job will be recorded in the shared memory queue and on exit, any unreleased
memory blocks will be returned by the operating system to free memory. A Shared Memory ID (Shmid)
is also returned for use with the LOKSHM and UNLKSHM calls.

If size is not available, the operation will be considered unsuccessful, and the Z flag will be reset (set to
zero). If the memory block already exists, but its size is larger than that which was allocated, the actual
size will be returned in D6 and the C flag will be set, and the Z flag will be reset. If size is omitted, it is
assumed that your program has set the size in D6.

Adr represents the location at which to store the address of the shared memory block. If omitted, the
address will simply be left in A6.

shmid represents the location at which to store the Shared Memory ID of the memory block. This ID is
used to identify the shared memory block in subsequent LOKSHM and UNLKSHM calls. If omitted, the
ID will simply be left in D1.

SH$PRM indicates that the request is allocating shared memory on a more or less permanent basis, that a
"job context" may not be present, and that the requester will insure that the memory block is returned to
free memory, if desired, via the DELSHM call.

See the sections on the DELSHM, LOKSHM, and UNLKSHM calls for more information on the Shared
Memory Facility.

Since shared memory is global by nature, there is nothing to keep your program from trashing the
system, since all references are to pointers.

You can allocate shared memory at any time a monitor call is issued.

EXAMPLE:

Allocate a 1024-byte block of shared memory permanently, with the name FLPBUF and store its address
in A1. Store the Shared Memory ID in the location called SID.

10$: LEA A5,START ; Start of program
; Allocate memory.

GETSHM NAM,#1024.,A1,SID(A5),SM$PRM
BEQ OK ; Branch if OK.
SLEEP #10. ; -- error, sleep a bit.
BR 10$; go try again.
...

OK: ... ; OK, A1 has memory address.
...

NAM: RAD50 /FLPBUF/
SID: LWORD 0

DELSHM - Release Shared Memory

DELSHM releases a block of shared memory. The format of the call is:

Page 4-6 Chapter Four
Shared Memory Facility

AMOS Monitor Calls Manual, Rev. 10

DELSHM {name},{adr},{SM$ALL}

name is the address of a six-character/RAD50 name used to identify the memory
block.

Adr is the address of the shared memory block being released.

SM$ALL means "return all memory allocated."

Condition codes are:

Z 1 for successful operations (use BEQ).

Z 0 for unsuccessful operations (use BNE).

DELSHM releases a block of shared memory obtained via GETSHM.

name is the address of a six-character RAD50 name used in the GETSHM call to identify the memory
block. If the name is omitted, the memory block must be specified by adr, unless SM$ALL is specified,
in which case the address parameter is ignored.

adr is the address of the shared memory block to release. If omitted, the address is assumed to be in A6,
unless name is specified, in which case adr will be ignored. If SM$ALL is specified, however, the
address parameter is ignored.

SM$ALL indicates that your program wants to release all shared memory thus far allocated. This option
is only meaningful if there is a job context under which shared memory was previously allocated (i.e., the
SM$PRM option was not specified in the GETSHM calls).

An error will be returned if the shared memory block specified does not exist. If several requests have
used the GETSHM call to access the block, only the last DELSHM call will actually deallocate the
specified block. When a job exits, any unreleased memory blocks will be returned by the operating
system back to the free pool, unless the SM$PRM flag is set (see the section on GETSHM, above).

For more information on the Shared Memory Facility, see the sections in this chapter on GETSHM,
LOKSHM, and UNLKSHM.

EXAMPLE:

Release the 1024-byte block of shared memory allocated in the example in "GETSHM," above.

10$: DELSHM NAM ; Release the block named FLPBUF.
BEQ OK ; Branch if OK.
... ; -- error.

OK: ...
...

NAM: RAD50 /FLPBUF/

Allocating and Using Memory Page 4-7
Shared Memory Facility

AMOS Monitor Calls Manual, Rev. 10

LOKSHM and UNLKSHM - Lock and Unlock Shared Memory

LOKSHM and UNLOKSHM are used to coordinate use of shared memory by locking and unlocking a
specific shared memory block.

The call format is:

LOKSHM {shmid}{,NOWAIT}

and:
UNLKSHM {shmid}

shmid is the address of the Shared Memory ID to lock or unlock.

NOWAIT means "don't wait if I cannot get the memory block."

Condition codes are:

Z 1 for successful operations (use BEQ).
Z 0 for unsuccessful operations (use BNE).

LOKSHM sets a semaphore located in the Shared Memory ID, and UNLKSHM clears it. With the
LOKSHM call, a parameter NOWAIT may be specified and LOKSHM will return immediately,
regardless of whether or not the semaphore was successfully obtained. Your program can test success by
a BEQ; if Z is zero, the semaphore was not obtained.

shmid is the address of the Shared Memory ID obtained with the GETSHM call. If omitted, it is assumed
your program pre-loaded it into A6.

NOWAIT indicates your program will test the success of the semaphore access. If omitted, LOKSHM
will wait until the semaphore is granted. This parameter is only used with LOKSHM. Also, there is no
significance to the value put in this parameter position; if it is non-blank, NOWAIT is assumed. There is
no WAIT keyword; if the NOWAIT position is blank, WAIT is implied.

See the sections on GETSHM and DELSHM in this chapter for more information on the Shared Memory
Facility.

GETSHM and DELSHM do not check the semaphore used by LOKSHM and UNLKSHM.
LOKSHM and UNLKSHM are simply for your program's convenience.

EXAMPLE:

Lock the previously allocated block of memory whose Shared Memory ID is in SID. Sleep for awhile if
the semaphore cannot be granted.

10$: LOKSHM SID(A5),NOWAIT ; Try to get the semaphore.
BEQ OK ; Branch if OK.
SLEEP #10. ; -- Couldn't get it, so sleep.
BR 10$; Go try again.

OK: ... ; OK.
...

SID: LWORD 0

AMOS Monitor Calls Manual, Rev. 10

Chapter 5
Monitor Queue System Calls

AMOS provides a general purpose queue system that is used by various internal monitor routines and
some system programs. Because the queue system is an integral part of AMOS, and because the system
cannot run without sufficient queue blocks, we don’t recommend using the queue system within user
programs. However, we document it here to give you an understanding of the way the queue system
functions.

The queue is a list of data blocks linked to each other in a forward linked list. The base of this list, and
the count of the blocks in the list, are contained in the QFREE monitor communications words (see
Appendix C).

Each queue block in the list links to the next one by storing the address of the next block in the first
longword of the queue block. The last queue block in the chain contains a zero link word to flag it as the
end. Each queue block is 9 longwords (36 bytes) in size. The monitor initially contains a small number
of blocks in the available queue list, sufficient to boot the system and start processing the system
initialization command file. Additional queue blocks may be reserved by using the QUEUE initialization
command (see the section on queue block use, below).

During normal monitor operation, various functions use these queue blocks to do certain tasks. When a
routine needs a queue block, it issues a QGET monitor call, which delivers the first available queue block
by returning its base address. The routine then uses this area to temporarily store information during
processing. When the routine no longer requires the block, it issues a QRET monitor call, which returns
the queue block to the available list for later use.

The monitor queue system is used to provide storage for interrupt-driven hardware, such as disk and
terminal controllers, and for storage during job scheduling operations. The queue system is also used
extensively by the record locking system.

INCREASING THE AVAILABLE QUEUE LIST SIZE

The number of queue blocks in use at any one time varies with system loading, number of users, and the
kinds of tasks being performed. Some applications may demand a larger available list of queue blocks to
insure safe system operation. A check is performed to see if the available queue is exhausted, and most
operations wait for a queue block to become available. However, some critical operations cause a system
halt if no queue blocks are available, because they cannot wait (for instance, an interrupt routine that, to
free a queue block, must be dismissed before others can run). But, you can increase the size of the
available queue list during system startup time.

The monitor is initially generated with enough queue blocks to boot the system and start processing the
system command initialization file. Anywhere in the system initialization command file prior to the first
SYSTEM command, you may execute the QUEUE nnn command which allocates nnn more queue

Page 5-2 Chapter Five
Queue Block Usage by the System

AMOS Monitor Calls Manual, Rev. 10

blocks for general use. A typical increase for a large system with several users running extensive
applications might be 5000 more blocks.

Once the system is up and running, you cannot add any more queue blocks to the list, so you must give
your best estimate at your total requirements. The QUEUE command functions differently once the
system is running. If you type the QUEUE command, the system responds by displaying the current
number of free queue blocks in the available queue list. It is by this method, and by checking QFREE,
that you may keep a close eye on the relationship between system operation and queue block usage.

QUEUE BLOCK USAGE BY THE SYSTEM

This section lists the areas of the monitor which currently make use of the queue system, to give you a
better idea on how to estimate your particular needs. Remember, this list will probably expand in future
releases of the monitor. Also, add to this any programs you might have which include the QGET and
QRET calls (described in the next section).

The SCSI dispatcher uses a large number of queue blocks to hold write-caching and SCSI command
information.

The terminal service system makes frequent use of the queue system during output operations. A typical
terminal driver may have up to four or five queue blocks in use at any one time, for linking buffers and
storing immediate data values.

The I/O system uses the queue system to queue jobs waiting for access to a sharable device.

The record locking function of the record IO system uses queue blocks to keep track of what files are
open, who they are open by, and what records are locked. One queue block is used for each job that has a
file open. An additional queue block is used for each file that is open, regardless of how many jobs have
it open. One queue block is used for each record that is locked within a file.

The monitor SLEEP call uses one queue block during the time the job is asleep.

The XLOCK AlphaBASIC subroutine uses one queue block for each separate system lock currently
active by any job. This block is not returned to the available list until the lock is released by the job that
has it locked.

QUEUE SYSTEM MONITOR CALLS

You can use the monitor queue system by using one of the four monitor queue management calls: QGET,
QRET, QADD, and QINS. These calls are designed to be very fast so they can be used in interrupt level
routines. The queue calls all perform an SVLOK to disable interrupts during their manipulation of the
queue.

All calls require one argument which identifies the place to store the queue block address. Typically, this
argument is an address register.

Monitor Queue System Calls Page 5-3
Queue System Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

QGET - Obtain a Free Queue Block

This call obtains the first free queue block from the available list and returns its base address in the
specified argument. It sets the Z-flag if the queue block was available, and resets it if no queue blocks
were available. QGET removes the queue block from the available list, and then clears all words in the
block to zeros. The call format is:

QGET dst ; dst gets address of queue block
BNE error ; check for no queue blocks avail.

QRET - Return a Queue Block

This call returns a queue block to the available queue list in the monitor. It returns the address which was
in the first word of the block (usually a link to the next block in your chain) in the argument after it links
the block back into the available queue list. The call format is:

MOV address,src ; get address of queue block to be returned
QRET src ; return the queue block

All queue blocks you have allocated by QGET, QADD, or QINS should eventually be returned to the
monitor by the QRET call when they are no longer needed.

QADD, QINS - Manipulating Queue Blocks

Similar to the QGET call, these two calls obtain the first free queue block from the available list. They
set the Z-flag if the queue block was available, and reset it if no queue blocks were available. If the queue
block is available, they link it into your own specific list whose address is in the specified argument. This
is because most system calls use queue blocks as elements of some specific list, depending on the
application. The XLOCK subroutine, for instance, maintains a list of all active system locks and adds or
deletes queue blocks from this list as locks are set and reset.

The standard format of these individual lists follows the format of the free list. Each block links to its
successor by storing its address in the first longword of the block. All other words in the queue block are
available for the storage of specific data. The last block in the list contains a zero in longword 1 to mark
the end of the list. The QADD call scans down the chain marked by the address in the argument, and then
inserts the new queue block at the end of the existing list. The QINS call inserts the new queue block in
the chain after the point indexed by the argument, and links the remaining list elements (if any) to the
newly inserted block. Both calls then return the address of the second longword of the new queue block
in the argument. This is the base of the data area of the queue block where you may store the data. The
QADD call format is:

MOV address,src/dst ; get address of start of queue
QADD src/dst ; add block to end of queue
BNE error ; error if no more queue blocks

; src/dst now contains pointer to
; new queue block

Page 5-4 Chapter Five
Queue System Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

The QINS call has the following format:

MOV address,src/dst ; get address of place to insert new queue
; block

QINS src/dst ; insert a new queue block
BNE error ; error if no more queue blocks

; src/dst now contains pointer to new queue
; block

Remember, the current size of each queue block is 36 bytes in length. The QADD and QINS calls place a
link in the first four bytes, leaving 32 bytes of data storage for your application.

The QRET call always requires the address of the first word when returning the queue block to the
available list, regardless of the call used to obtain the block.

QADDL, QINSL, QUNL - Link/Unlink Queue Block

These calls are similar to QADD and QINS, but differ in important ways. While QADD and QINS first
allocate a queue block, and then link it into a specified queue, QADDL and QINSL assume the queue
block has already been allocated by QGET, and handle linking only. For this reason, QADD and QINS
return the address of long word 1 of the newly allocated queue block, assuming that the caller will then
fill the queue block in; since QADDL and QINSL assume the block has already been allocated, and thus
that the user has already filled the block in, QADDL and QINSL require the address of word zero of the
block.

The call format is:

QADDL queue,block
QINSL queue,block
QUNL queue,block

queue is the long word address of the queue. For the QADDL and QUNL calls, this is the base address;
for QINSL, this is the insert position. The argument block is the longword address of longword 0 of the
queue block to link; this address is allocated via QGET. Register or memory address format may be used
for these arguments.

QADDL adds the specified block to the end of the specified queue. This operation is performed by
scanning from the current position specified by the address in queue to its end and then linking in block.

QINSL inserts the block into the queue at the current position specified by the address in queue.

QUNL unlinks the block from queue by scanning from the current position looking for the address
specified in block. QUNL does not deallocate the block.

These calls set the Z flag if the operation is successful, and clears it if the action is unsuccessful. The
only unsuccessful operation recognized is an attempt to unlink a block from a queue to which it is not
linked.

Monitor Queue System Calls Page 5-5
Queue System Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

The current implementation of all of the queue management calls require that your program return
to the pool all queue blocks allocated via QGET, QINS, and QADD before exiting. If this is not
done, the queue block becomes unavailable until the computer is next rebooted.

Below is a sample program making use of the QADDL and QUNL calls. The program uses the stack to
hold a queue block.

SEARCH SYS
SEARCH SYSSYM

MAIN: LEA A5,MAIN
LEA A4,BASE ; Get base address of local queue.
PUSH ; Provide place for queue block.
QGET @SP ; Allocate a free queue block.
QADDL A4,@SP ; Add the new block to the queue.
QUNL A4,@SP ; Unlink the block just allocated
QRET @SP ; and return it to the free pool.
POP ; Release the stack.
BR MAIN

BASE: LWORD 0 ; Base address of local queue.
END

For more information on the queue system, see the sections in this chapter on QGET, QRET, QINS, and
QADD.

AMOS Monitor Calls Manual, Rev. 10

Chapter 6
The File Service System

AMOS has a simple yet powerful device-independent file service system which relieves the programmer
of the task of IO coding for each device with which he wishes his program to interface. In addition to this
device independence, AMOS contains all the necessary routines to manage the disk file system on a
logical-call basis. The programmer does not need to be concerned with the exact physical placement of
files on the disk except in rare instances when developing or testing system software. AMOS also
contains an efficient means for developing new device drivers the programmer can incorporate into the
system when it becomes necessary to interface with unsupported devices. This section gives a general
overview of the file service system and describes the Dataset Driver Block (DDB) which is the descriptor
link for all IO and file calls to the monitor.

AMOS supports two different file systems. The traditional file system is the one used by AMOS since
the very first version. This traditional file system, however, imposes a limitation of 32 MB on the size of
a single file. It also does not keep track of file protection or time and date stamps on an individual file
basis. To support these features, AMOS also supports the extended file system. A single AMOS system
can contain a mixture of both file systems, although doing so is intended primarily as a conversion aid
rather than a permanent situation. This chapter assumes you will be using the extended file system,
although it does point out where differences are visible to the programmer.

AMOS contains an integrated File/Record/Stream Locking Service which prevents two or more users
from updating a file or record at the same time, or from encountering a deadlock situation when they each
try to access a file or record the other has reserved. This service can lock entire files, single blocks, single
records within files, or streams of bytes within USAM files. Locks are of two types: shared or exclusive.
Shared locks permit multiple users to access a particular file or record, while exclusive locks allow only
one user at a time to access that file or record. Record locks are used for random files shared with
multiple users, while file locks are used to protect entire files of any type.

The various monitor calls that allow you to read and write files provide ways of letting you specify
whether you want shared or exclusive access. They also allow you to specify whether you wish to wait
for your request to be satisfied (i.e., until no other user has it locked), or if you wish control to be
returned to your program immediately with a "resource in use" error.

By having a fully integrated locking service, AMOS makes it easy for you to generate multi-user
software, without forcing you to implement your own multi-user protection.

THE DATASET DRIVER BLOCK

Monitor calls perform all IO operations and file operations by referring to a DDB which defines the
device or file being operated upon. Whether the operation is performed on a unit-record device such as a
printer, or on a specific file within a file structured device such as a disk, depends on the parameters
passed to the monitor through the DDB. There is no limit to the number of devices or files that may be
active at any given time, but there must be one separate DDB for each device or file in use. There are no

Page 6-2 Chapter Six
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

internal channel numbers or device numbers to limit the number of concurrently active devices or files.
We can sum up the general sequence of events for the complete processing of a device or file operation
like this:

1. The DDB contains the defining parameters such as device name, drive number, filename and
extension, project-programmer number, etc. This data normally comes from the processing of an
ASCII file specification, such as DSK1:FILTST.M68[101,1], by an FSPEC call.

2. The IO buffers are allocated either directly by the user program or by an INIT call referencing the
DDB in use.

3. The logical opening processes for the device or file are performed, normally by an OPEN call
referencing the DDB.

4. Data transfers to or from the device are performed by either READ and WRITE calls for physical
transfers or INPUT and OUTPUT calls for logical transfers.

5. The logical closing processes for the device or file are performed, normally by a CLOSE call
referencing the DDB.

AMOS contains complete error processing routines which allow you to specify (by flags in word 1 of the
DDB) whether any uncorrectable errors will cause an automatic error message to the operator on his
terminal, an aborting of the program and return to monitor, or both. You may also elect to process the
errors yourself by checking the error code returned in word 1 of the DDB.

DDB Format

Figure 6-1 shows the format of the DDB, which must be allocated within the user program area and set
up by the user before any IO operations can take place. The size of a DDB is defined by the symbol
D.DDB. You can assign any label you wish to the DDB. This label then becomes the reference label for
all subsequent operations to that dataset. You must set up some of the items in the DDB before certain
operations may be called for, while other items are set up and used by the monitor file service routines.

We have assigned each of these entries a symbolic offset of the form D.xxx, which is defined in
SYS.UNV. You should use these symbolic offsets at all times, as the actual positions of the various
fields within the DDB are subject to change. The following descriptions explain the use of each item.

The File Service System Page 6-3
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

0 Flags Error code D.FLG / D.ERR

2 Device name D.DEV

4 Device unit number D.DRV

6

10
Filename D.FIL

12 Extension D.EXT

14 Project/programmer number D.PPN

16

20
Block number D.REC

22

24
Buffer address D.BUF

26

30
Buffer size D.SIZ

32

34
Buffer index D.IDX

36 Call level Open code D.LVL / D.OPN

40

42
User argument D.ARG

44

46
Device driver address D.DVR

50

52
CPU specification D.CPU

54 Device format flags D.FMT

56
60 Directory D.DIR

62 marker

64

66

70
Auxiliary storage D.AUX

72

74
Creation date/time D.CDT

76

100
Update date/time D.UDT

Figure 6-1: Dataset Driver Block (DDB) Format

Page 6-4 Chapter Six
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

102

104
Backup date/time D.BDT

106 Record size D.RSZ

110

112
Number of blocks in file D.FSZ and D.WRK

114

116
Bytes in last block D.LSZ

120

122
Block number of first block in file D.BAS

124

126
Type Code D.TYP

130

132
Protection D.PRT

134

136
File ID D.FID

140

142
Reserved

144

146
Reserved

Figure 6-1: DDB Format (continued)

Error Code (D.ERR)

This byte is set to a non-zero code at the completion of an IO operation that was unsuccessful for various
reasons. A zero indicates the operation was successful. You need to test this byte only if the error control
flag in the flags byte (DDB+D.ERR) specifies returning to the user on an error condition, or if the
operation allowed a non-fatal error condition to occur. The error codes are listed at the end of this section.

Flags (D.FLG)

This byte is used to control the flow of the IO operation and the handling of error codes by the file
service routines. The following functions are controlled by the eight flag bits:

The File Service System Page 6-5
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

Symbol
Octal
Value

Hex
Value

Meaning

D$ERC 1 1 Set by user to force a return on error condition (abort to the
monitor if this flag is zero).

D$BYP 2 2 Set by user to bypass printing of error messages on error
conditions

D$UPD 4 4 File has been updated (internal file service use only)

D$RFD 10 8 This file has been "translated" by the VDK software

D$XFI 20 10 Transfer initiated (internal file service use only)

D$RWF 40 20 Read if zero or write if one (used by device drivers)

D$INI 100 40 Device is INITed—set by the INIT call or by the user if an
explicitly defined buffer is in use.

D$DSB 200 80 DDB is busy (transfer has been initiated or queued)

Device (D.DEV)

Before any IO operations may be performed, either an FSPEC call or your program itself must set the 3-
character device code (packed RAD50). A zero in this field causes the monitor to use the default (login)
device.

Drive (D.DRV)

This word specifies the drive to be used for the transfer (only drivers for devices with multiple drives use
this word). If the device is DSK, the default drive is the one you are currently logged into. Other devices
may have different defaults. You may use a -1 (octal 177777) to indicate the current default drive
number.

Filename and Extension (D.FIL and D.EXT)

These three words contain the RAD50 packed filename and extension for file structured devices. Drivers
for devices which are not file structured ignore these words. However, if an error occurs with a non-file-
structured device, you may receive inaccurate error messages if these three words are not set to zero
values.

PPN (D.PPN)

The next word contains the octal project-programmer number for the area to be used to locate the file. It
is used only on file structured devices which are multi-user based (such as disks). A zero causes the
default value to be the current PPN the job is logged in under. To prevent inaccurate error messages, this
word should be zero if not used.

Block Number (D.REC)

You must set this 32-bit block number to read or write a specific random block from a random access
device such as disk. When performing physical IO by using the READ and WRITE calls, this block
number is the absolute block number expressed as an offset from the start of the device. The first block
on the device is considered block zero, and the block numbers increment sequentially from there.

Page 6-6 Chapter Six
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

When performing logical record IO on a file open for random processing (via OPENR), this field
contains the relative block number within the file. Each block within a random file is 512 bytes long,
with the first block being block number zero, with subsequent block numbers being numbered
sequentially.

When performing logical record IO on a file open for record processing (via OPENIO), this field contains
the relative record number within the file. The record size is defined on a file basis (the size of the record
being stored in D.RSZ), with the first record being record number zero.

Most non-disk devices are not random access, in which case the respective drivers ignore this block
number.

Buffer Address (D.BUF)

This is the 32-bit absolute address of the base of the buffer to use for all dataset transfers (read and write).
It is set by the INIT call which allocates a buffer, or by the user program if it is allocating its own buffer
and not using the INIT call. This address is used in conjunction with the D$INI flag in DDB+D.FLG
which indicates a buffer has been allocated either by the INIT call or directly by your program. No
transfers can take place without a buffer.

Buffer Size (D.SIZ)

This is the size in bytes used for the physical transfer operation. The READ call transfers this number of
bytes from the device to the user buffer beginning with the address in DDB+D.BUF. The WRITE call
transfers this number of bytes from the user buffer to the user device. The INIT call sets this size to the
standard buffer size, or you can set the size yourself if you are doing your own buffering. You may
modify the size if you need to transfer blocks of variable sizes. Various logical file service routines set
this size word during processing, such as the OPEN call for the disk which must perform directory
operations on a 512-byte buffer at all times.

Buffer Index (D.IDX)

This is a 32-bit counter which is used by logical routines (INPUT and OUTPUT calls) for keeping track
of bytes transferred into and out of the buffer. Various calls reset this value, and you can then use it and
increment it as bytes are transferred into and out of the buffer. Later sections describing these calls give
more complete details. This buffer index word is normally not a true buffer pointer, but rather an offset
from the buffer base (per DDB+D.BUF) to the current byte being manipulated.

Open Code (D.OPN)

The OPEN call sets this byte to indicate the mode of the open statement for future processing operations.
It is normally ignored by drivers for devices which are not file structured. It is for internal use only and
you should not modify it. The following open codes are in use:

The File Service System Page 6-7
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

Symbol
Octal
Value

Hex
Value

Meaning

D$OPNN 0 0 File is not open
D$OPNI 1 1 File is open for sequential input (OPENI call)
D$OPNO 2 2 File is open for sequential output (OPENO call)
D$OPNR 4 4 File is open for random input/output (OPENR

call)
D$OPNA 10 8 File is open for appending (OPENA call)
D$OPNS 22 12 File is open for superseding (OPENS call)
D$OPNC 44 24 File is open for record IO (OPENIO call)

Call Level (D.LVL)

This byte is for internal use only; it is used to keep track of the level of nesting of the file service calls for
proper error recovery handling. This byte must be zero before the first file call is executed.

User Argument (D.ARG)

Some of the logical file calls use this 32-bit field to pass an argument to the call. For example, the
DSKCTG call, which allocates a contiguous data file, expects the size of the desired file to be passed in
D.ARG. You can find details on the requirements for the argument in this field under the individual calls
in Section 6.2.

If LOKSER rejects an I/O request (for example, if you try to write a record someone else has locked), the
JCB of the job holding the record lock is returned in D.ARG of the DDB.

Device Driver Address (D.DVR)

This longword contains the address of the device driver being used to access the device.

If a DDB is to be used for handling different files, this field must be cleared each time the DDB is set up
to refer to a different device. Failure to do so will result in data corruption. To avoid this problem, the
best course is to clear the entire DDB to zero each time it is to be re-used.

CPU Specification (D.CPU)

When accessing devices on different CPUs (via AlphaNET), this longword will contain the CPU ID of
the system being accessed. It must be set to zero when accessing devices on the local system.

Device Format (D.FMT)

This 16-bit field is used by the AMOS file system to keep track of the format of the directory being
accessed. It is normally used by user programs only to check to see if the file being accessed is in a
traditional or extended format directory. The field will contain a zero for traditional format directories
and a 2 for extended format.

Page 6-8 Chapter Six
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

Directory Marker (D.DIR)

This field is made up of two 16-bit fields and one 32-bit field. It is used by the AMOS file system to
keep track of the current position within a directory being accessed. This field is for internal use and it is
not expected it will be accessed by user programs.

Auxiliary Storage (D.AUX)

This field is reserved by the AMOS file system for internal use.

Creation Date and Time (D.CDT)

This 32-bit field contains the date and time the file was created, in a packed format. This packed format
may be unpacked with the $UNPDT subroutine, discussed in Appendix D.

This field is not used by the traditional file system and will be zero when that file system is in use.

Update Date and Time (D.UDT)

This 32-bit field contains the date and time the file was last modified, in a packed format. This packed
format may be unpacked with the $UNPDT subroutine, discussed in Appendix D.

Sequential files are considered modified if they have been opened and written to in append mode.
Random files are considered to be modified any time they have been opened and written to. This field is
updated at the time the file is closed.

This field is not used by the traditional file system and will be zero when that file system is in use.

Backup Date and Time (D.BDT)

This 32-bit field contains the date and time the file was last backed up, in a packed format. This packed
format may be unpacked with the $UNPDT subroutine, discussed in Appendix D.

The backup date and time are set by the various backup utility programs. This field is normally used to
determine if a file has been modified since the last time it was backed up, thereby determining whether or
not the file needs to be backed up again.

This field is not used by the traditional file system and will be zero when that file system is in use.

Record Size (D.RSZ)

This 16-bit field contains the default record size associated with this random file. This field will be valid
after a LOOKUP call, and is used by the DSKCTG call to select the default record size.

The default record size is used when opening a file for record IO via the OPENIO call. While you must
always specify the record size when opening a file for record IO, this field provides a method of checking
to make sure the correct record size is being provided.

The File Service System Page 6-9
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

If this field contains a zero, no default record size has been set for this file, and no check for record size
validity will be made.

This field is not used by the traditional file system and will be zero when that file system is in use.

File Size (D.FSZ)

This 32-bit field contains the number of disk blocks occupied by the file. This field is valid after a
LOOKUP or OPENx call.

Last Block Size (D.LSZ)

This 32-bit field contains the number of bytes contained in the last block of a sequential (linked) file. If
the file is a random (contiguous) file, this field will have a -1 placed in the low-order word. This field is
valid after a LOOKUP or OPENx call.

Base Block Number (D.BAS)

This 32-bit field contains the block number of the first disk block occupied by this file. This field is valid
after a LOOKUP or OPENx call.

Type Code (D.TYP)

This 32-bit field is used to store special attributes about the file when the extended file system is in use.
This field is valid after a LOOKUP or OPENx call. This field is also used by the directory access monitor
calls described in Chapter 18.

The high-order word of this field contains a series of flags used to describe the attributes of this file. The
flags are:

Octal
Value

Hex
Value

Meaning

0 0 End of directory
1 1 Current item is a system entry
2 2 Current item is a directory entry
4 4 Current item is a data file

20 10 This is a USAM file that has been initialized
100000 8000 Current item has been deleted

The low-order word of this field contains the size of the filename for this entry. If the entire longword
field is zero, this item signifies the end of the directory. This field is not used by the traditional file
system.

Protection (D.PRT)

This 32-bit field is used to store the protection level associated with this file when the extended directory
structure is in use. This field is valid after a LOOKUP or OPENx call.

Page 6-10 Chapter Six
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

The protection field is broken into five six-bit fields. Each six-bit field specifies the protection level
which applies to a given class of user attempting to access the file. On each file access, AMOS
determines the class of user making the access, accesses the proper six-bit field, and uses that value to
determine whether access is allowed. The five groups (and their associated bit fields) are defined as
follows:

Group Number Bit Numbers Meaning
1 0 - 5 Users within the same directory (PPN)
2 6 - 11 Users at the same directory level (same project number)
3 12 - 17 Users at a different directory level (different project number)
4 18 - 23 Users within the same network group
5 24 - 29 All other users not included in groups 1-4

30 - 31 Reserved

Each six-bit field is encoded as a binary number, with each bit having a distinct characteristic. The bits
are defined as follows:

Bit Number Meaning
0 File may be read
1 File may be written
2 File may be executed (FETCHed)
3 File may be deleted, renamed, or have its protection changed
4 Reserved for future use
5 Reserved for future use

Certain combinations of these bits imply various capabilities. If a file does not have the READ bit set, it
is "invisible," that is, it does not appear in directory listings or via the directory access calls.

Protection bit 3 (delete, rename) is overridden by logging in to OPR:, allowing the system operator to
delete (or re-protect) files that otherwise would be inaccessible.

Bit 30 of D.PRT is used to flag the file should be zeroed before it is deleted. For additional data security,
you may wish to have all blocks of a file overwritten with zeros prior to the file being deleted and having
its data blocks returned to the pool of free blocks.

Bit 31 of D.PRT is reserved for future use.

When a file is created (via OPENO, OPENS, or DSKCTG), it is given the protection specified by the
JOBDFP field of the creating job's JCB, allowing each job to have a different default protection.

The D.PRT field is always displayed as either an octal number (never hex or decimal), or as a descriptive
textual listing of capabilities. This field is not used by the traditional file system.

File Locking ID (D.FID)

This longword field is used by the file and record locking system to store a unique file ID assigned to the
file while it is open. This field is not used by non-file structured devices.

The File Service System Page 6-11
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

Driver Work Area (D.WRK)

The seven longwords starting at D.FSZ are considered to be the driver work area. This area is available
for use by non-file structured device drivers as impure storage space during execution of the driver.

Device Transfer Buffers

Each DDB must have an associated transfer buffer to handle input and output operations. This buffer
must be allocated either directly or through use of the INIT call which allocates the buffer as a memory
module by using a GETMEM call. The INIT call allocates a standard size buffer for the device being
used (the size of the buffer is defined within the driver itself). If you do not wish to use the INIT call, you
may allocate any size buffer—as long as it is large enough for any logical calls to be performed—and
then set its address in DDB+D.BUF. See Section 6.2 which discusses the IO calls themselves for more
details on using these buffers.

Error Handling

When an error occurs during any file service call, the file service routines normally perform typical error
correction procedures. If the error is fatal (uncorrectable), two operations may or may not take place
depending on the setting of the D$ERC flag and the D$BYP flag in the flags byte at DDB+D.FLG.

1. D$BYP is tested and if it is not set, the monitor outputs a standard error message to the user
terminal, giving the type of call that failed, the file specification for the device the error occurred
on, and the reason for the error. The appropriate error code is also placed in the error byte at
DDB+D.ERR for later testing by the user.

2. D$ERC of the flags byte is tested; if it is not set, the user program is aborted by the file service
system, and you are returned to monitor mode. You normally set these flags on before any IO
calls are made, if you wish to process the errors within the user program itself.

Error Codes

The following list gives the error code (in octal) returned in the DDB error byte by the file service
system, along with the reason for the error, and the symbol assigned to the particular error number (in
SYS.UNV):

Page 6-12 Chapter Six
The Dataset Driver Block

AMOS Monitor Calls Manual, Rev. 10

Symbol
Octal
Value

Hex
Value

Meaning

D$ESPC 1 1 File specification error (FSPEC)
D$EMEM 2 2 Insufficient free memory for buffer allocation (INIT)
D$EFNF 3 3 File not found (OPENI, OPENR, OPENA, DSKDEL,

DSKREN)
D$EFAX 4 4 File already exists (OPENO)
D$ERDY 5 5 Device not ready (all calls)
D$EFUL 6 6 Device full (OUTPUT, DSKCTG, CLOSE, DSKALC)
D$EERR 7 7 Device error (all calls)
D$EUSE 10 8 Device in use (ASSIGN)
D$EILC 11 9 PPN does not exist (all file calls)
D$EPRV 12 A Protection violation (OPENO, OPENR, DSKDEL, DSKREN)
D$EWRT 13 B Write protected (all output calls)
D$ETYP 14 C File type mismatch
D$EDNX 15 D Device does not exist (all calls)
D$EIBN 16 E Illegal block number (READ, WRITE)
D$EINI 17 F Buffer not INITed (all calls except INIT)
D$EFNO 20 10 File not open (READ, WRITE, INPUT, OUTPUT, CLOSE)
D$EFAO 21 11 File already open (all OPEN calls)
D$EKPT 22 12 Bitmap kaput (all disk bitmap calls)
D$EMNT 23 13 Device not mounted (all calls)
D$EIFL 24 14 Invalid filename (OPENO, FSPEC, DSKCTG)
D$EBBH 25 15 BADBLK.SYS has a bad hash total (DSKMNT)
D$EBBW 26 16 BADBLK.SYS is in wrong (unsupported) format (DSKMNT)
D$EBBN 27 17 BADBLK.SYS not found (DSKMNT)
D$ENOQ 30 18 Insufficient queue blocks (all calls)
D$EMFD 31 19 MFD is damaged (all file calls)
D$ELNM 32 1A First logical unit is not mounted
D$ERNR 33 1B Remote is not responding (reserved for future use)
D$EFIU 34 1C File in use
D$ERIU 35 1D Record (or stream) in use
D$EEMB 36 1E Deadly embrace possible
D$EDEL 37 1F File cannot be deleted (obsolete)
D$EREN 40 20 File cannot be renamed (obsolete)
D$ERNL 41 21 Record (or stream) not locked
D$ERNO 42 22 Record not locked for output
D$ELQF 43 23 LOKSER queue is full
D$ENFS 44 24 Device is not file structured
D$EIRS 45 25 Illegal record size
D$EBLK 46 26 Block allocate/de-allocate error
D$EIAA 47 27 Invalid argument address
D$EARG 50 28 Invalid argument
D$ENBA 51 29 No blocks allocated, cannot open for append
D$EUFD 52 2A UFD is damaged
D$EFSZ 53 2B Illegal file name size in DDB (reserved)

You may convert a DDB error code to its text message through the use of the ERRMSG monitor call (see
Chapter 13).

At the conclusion of every file service monitor call, the monitor tests the error byte at the base of the
DDB for the convenience of your program. This allows you to test for an error status directly after the
call with a BNE instruction without having to first explicitly test the byte with a TSTB instruction. This,
of course, only applies if you have the error trapping bit set in the DDB status word to prevent the job
from being aborted on a file error.

The File Service System Page 6-13
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

FILE SERVICE MONITOR CALLS

 This section describes the file service calls which are available to your programs for both logical and
physical IO operations. All calls have the same general format, which uses a single argument
representing the dataset driver block (DDB) to be used for the operation. See the preceding section for a
complete description of the DDB format. In brief, the calls described in this section are:

Call Purpose
FSPEC Process a device specification
INIT Initialize a dataset driver block buffer
LOOKUP Look up a file to see if it exists
OPENI Open a file for sequential input
OPENO Open a file for sequential output
OPENA Open a file for appending
OPENS Open a file for sequential output, superseding current file
OPENR Open a file for random input/output
OPENIO Open a random file for record IO
CLOSE Close a file to further processing
CLOSEK Close a file but keep it locked
READ Read a physical block
WRITE Write a physical block
INPUT Read a logical block
INPUTL Read a logical block with locking
INPUTX Read a logical block without regard to locking
OUTPUT Write a logical block
OUTPTL Write a logical block with locking
FILINx Input a byte, word, or longword
FILOTx Output a byte, word, or longword
LOCKF Lock a file
UNLOKF Unlock a file
UNLOKR Unlock a record
DSKDEL Delete a file
DSKREN Rename a file
CHPROT Change a file's protection
DSKCTG Create a contiguous file
ASSIGN Assign a device to a job
DEASGN De-assign a device from a job
DSKMNT Mount a device
DSKUMT Unmount a device

FSPEC - Process an ASCII Filespec

FSPEC processes an ASCII file specification from a command line (or any other ASCII buffer) and sets
up the parameters in the DDB according to the results of the processing. The file specification must be
indexed by A2 and be in the standard format of:

cpu-devn:{devn:}filnam.ext[p,pn]

or:
cpu-devn:{devn:}[p,pn]filnam.ext

with a valid termination character, if you use a short default specification.

More than one device specification is allowed so you can specify ersatz names or network device names
in the filespec. If more than one device specification is present, the "last" or rightmost is the one that will
be present in the DDB.

Page 6-14 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

The FSPEC call is slightly different from the rest of the IO calls in that it allows you to use a second
argument if you wish. This argument must be the default extension for the filename parameter to be used
if the file specification does not contain an explicit extension (identified by a period after the filename). If
the second argument does not exist, the FSPEC processor uses the contents of D6 as the default file
extension. If D6 contains a -1, the FSPEC processor stops scanning as soon as it has found a device
specification, ignoring any following filename. The general calling sequence is:

FSPEC adr{,ext} ; load DDB at adr with filespec

FSPEC recognizes ersatz devices by scanning the filespec for device specifications that could be ersatz
devices. If it finds some, it checks the names against the ersatz device table—if it does not find a match
there, it assumes it to be a device name, and processes it accordingly.

If the file specification contains a device code (marked by a terminating colon), the first three characters
are packed RAD50 and stored in DDB+D.DEV. The drive number, if specified, is stored in
DDB+D.DRV. If the device code is not specified, a zero is stored in DDB+D.DRV. If the drive number
is not in the input specification, an octal 177777 is stored in DDB+D.DRV to flag the default drive
number to the device driver. The operating system treats these default values as the current logged in
device (stored in the job's JCB items JOBDEV and JOBDRV).

FSPEC then processes the filename and extension. If the call contained no default extension as its second
argument, the FSPEC processor returns to your program at this point. Otherwise, the filename and
extension are packed RAD50 and stored in the three words at DDB+D.FIL and DDB+D.EXT. If no
filename is entered in the input specification, the word at DDB+D.FIL is cleared to zero to flag the
absence of the filename parameter. If a filename is entered without an extension, the default extension
specified in the second argument of the FSPEC call is stored as the extension in DDB+D.EXT.

If a project-programmer number is in the file specification (marked by a left square bracket "["), it is
processed and stored in DDB+D.PPN. If no PPN is entered, DDB+D.PPN is cleared to zero to flag its
absence.

At the conclusion of the processing of the input file specification, the index A2 is pointing to the
termination character (the first character following the file specification string). If an error in the input
string is detected, the monitor displays the "?File specification error" message (unless suppressed by the
D$BYP flag in DDB+D.FLG), and the program is aborted (unless suppressed by the D$ERC flag in
DDB+D.FLG). The error code 01 is also set in the DDB+D.ERR error code byte.

No other modifications to the DDB area take place, except the error byte at DDB+D.ERR is cleared at
the start of the FSPEC processing. If you do not use the FSPEC call to set up your DDB, you must use
some other form of explicit code to insure the DDB is set up properly to define the device and file for any
subsequent IO operations.

The PPN specification allows "errors" in the form of substituting a "." or "m" for the comma. This is
compatible with the LOG program.

The File Service System Page 6-15
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

INIT - Initialize the DDB

The INIT call is the normal means for allocating the dataset buffer and initializing the DDB for
processing. The INIT call locates the device driver (searching [1,6] on DSK0: if not in memory), then
allocates a standard size buffer based on the buffer size specified in the driver. The D$INI flag in
DDB+D.FLG is set to indicate initialization has been performed. INIT sets the address of the buffer into
DDB+D.BUF, and sets the size in bytes into DDB+D.SIZ. If you do not use the INIT call and perform
the buffer set-up yourself, DDB+D.DVR must be set to zero before you perform any file calls. Setting
DDB+D.DVR to zero forces the device driver to be located (and if necessary, loaded) by the next file
call. The calling sequence for INIT is:

INIT adr ; initialize DDB at adr

No calls de-allocate the buffer once it has been allocated by the INIT call. Multiple OPEN-CLOSE
processes may be performed on the DDB once the INIT has been done. The buffer is temporary and is
de-allocated automatically when the program exits to the monitor, or it can be explicitly de-allocated by
using the DELMEM call with the address stored in DDB+D.BUF. Recall that the buffer is allocated as a
standard memory module with a GETMEM call.

All file service calls with the exception of the FSPEC call require the use of a disk buffer, and
therefore must be preceded by the INIT call or equivalent code for processing.

If the D$INI flag in DDB+D.FLG is already set when an INIT call is performed, INIT ignores the flag
and allocates another buffer.

Find the File

This is a form of the OPEN calls which does nothing except search for the file and return an error code if
it is not found. The file is not actually opened for processing; you must use an OPENI call if you decide
to read from the file later on. The LOOKUP call is useful for determining if a file you want to create
already exists, so you can delete it first by the DSKDEL call. The LOOKUP call is ignored for devices
which are not file structured.

LOOKUP returns any of the standard error codes (e.g., protection violation, file not found, etc.).
However, note the byte returned is negative. Before comparing it to the standard error codes, remember
to negate the number first. The calling sequence for LOOKUP is:

LOOKUP adr ; see if file exists
BNE not found ; branch if not found

The LOOKUP call is also useful for some system programming techniques, since it returns parameters
about the file in the DDB work area. If LOOKUP finds the file, it loads the last three words of the user
file directory (UFD) item into the three longwords of the DDB work area. These three longwords are the
number of blocks in the file, the number of active data bytes in the last block, and the block number of
the first data block in the file. See Appendix A for complete details on the directory format.

Page 6-16 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

OPENI - Open a File for Input

The OPENI call locates a file in a file structured device and sets up the DDB parameters (work area) for
subsequent INPUT processing. An error results if OPENI cannot find the file. It places the code D$OPNI
into DDB+D.OPN to flag the OPENI operation. The OPENI call is normally followed by a series of
INPUT calls which deliver sequential blocks from the device to the file buffer. The calling sequence is:

OPENI adr{,flags} ; open file for sequential input

adr references a DDB specifying the file to be opened, and flags is an optional argument which can
contain the following bits:

Symbol Meaning
F.WAT User will wait for access to the file
F.EXC Request exclusive use of file
F.NEX Bypass nolock options

The OPENI call defaults to shared access to the file, with no waiting, if no flags are specified. If a file has
already been opened with the OPENA or OPENO monitor calls, and any OPEN call is used to open it
again without closing it first, you get a D$EFIU (?File in use) error. (See the AMOS File Locking
Manual for information on the different file locking modes.)

The OPENI call is ignored for devices which are not file structured.

OPENO - Open a File for Output

The OPENO call first searches the specified device in the specified user area and returns an error if the
file already exists. If the file does not exist, OPENO sets up the DDB for OUTPUT processing. It places
the code D$OPNO into DDB+D.OPN to flag the OPENO operation. The OPENO call is normally
followed by a series of OUTPUT or FILOTx calls which transfer data from the buffer to sequential
blocks in the file. The calling sequence is:

OPENO adr{,flags} ; open file for sequential output

adr references a DDB specifying the file to be opened, and flags is an optional argument which can
contain the following bits:

Symbol Meaning
F.WAT User will wait for access to the file
F.NEX Bypass nolock options

The OPENO call defaults to exclusive access to the file, without waiting, if no flags are specified. If a
file has already been opened with the OPENA or OPENO monitor calls, and any OPEN call is used to
open it again without closing it first, you get a D$EFIU (?File in use) error. (See the AMOS File Locking
Manual for information on the different file locking modes.)

The OPENO call is ignored for devices which are not file structured.

The File Service System Page 6-17
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

OPENS - Open a File for Output, Superseding Any Existing File

The OPENS call first searches the specified device in the specified user area and deletes any already
existing file with the same name. OPENS then sets up the DDB for OUTPUT processing, just as with the
OPENO call, and places the code D$OPNS into DDB+D.OPN to flag the OPENS operation. The calling
sequence is:

OPENS adr{,flags} ; open file for sequential output

adr references a DDB specifying the file to be opened, and flags is an optional argument which can
contain the following bits:

Symbol Meaning
F.WAT User will wait for access to the file
F.NEX Bypass nolock options

The OPENS call defaults to exclusive access to the file, without waiting, if no flags are specified. If a
file has already been opened with the OPENA or OPENO monitor calls, and any OPEN call is used to
open it again without closing it first, you get a D$EFIU (?File in use) error. (See the AMOS File Locking
Manual for information on the different file locking modes.)

The OPENS call is ignored for devices which are not file structured.

OPENA - Open and Append to Existing File

The OPENA call is similar to OPENO, except it allows you to append data to an existing file. It places
the code D$OPNA into DDB+D.OPN to flag the OPENA operation. The OPENA call is normally
followed by a series of OUTPUT calls which transfer data from the buffer to the end of the existing file.
The calling sequence is:

OPENA adr{,flags} ; open file for sequential append

adr references a DDB specifying the file to be opened, and flags is an optional argument which can
contain the following bits:

Symbol Meaning
F.WAT User will wait for access to the file
F.NEX Bypass nolock options

The OPENA call defaults to exclusive access to the file, with no waiting, if no flags are specified. If a
file has already been opened with the OPENA or OPENO monitor calls, and any OPEN call is used to
open it again without closing it first, you get a D$EFIU (?File in use) error. (See the AMOS File Locking
Manual for information on the different file locking modes.)

This call is ignored for devices which are not file structured.

Page 6-18 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

OPENR - Open a File for Random Processing

The OPENR executes basically the same as the OPENI call, but the code stored in DDB+D.OPN is
D$OPNR to flag random processing. The file located for random processing must be a contiguous file.
The OPENR call is normally followed by a series of INPUT and OUTPUT calls which transfer data
between specific blocks in the file and the buffer in both directions. The calling sequence for OPENR is:

OPENR adr{,flags} ; open file for random processing

adr references a DDB specifying the file to be opened, and flags is an optional argument which can
contain the following bits:

Symbol Meaning
F.WAT User will wait for access to the file
F.EXC Request exclusive use of file
F.RON Read-only mode
F.NEX Bypass nolock options

The OPENR call defaults to shared access to the file, with no waiting, if no flags are specified. The file
being used in read only mode can also be opened by another user for exclusive access. When exclusive
access is granted, the read only user is marked so that the next time the read only program tries to access
the file, the D$EFIU "?File in use" error is returned in D.ERR of the DDB. Read only mode does not
allow creating or updating records; INPUT, INPUTL, INPUTX, and UNLOKR operations are allowed.
(See the AMOS File Locking Manual for information on the different file locking modes.)

The OPENR call is ignored for devices which are not file structured.

OPENIO - Open a File for Record IO

The OPENIO opens a file for record IO processing, placing the code D$OPNC in DDB+D.OPN to flag
the operation. Rather than doing your own blocking and deblocking, as you must with a file opened via
OPENR, a file opened for record IO allows AMOS to perform all blocking functions for you. In addition,
because AMOS is dealing with records not blocks, it is able to perform multi-user locking at the record
level.

Files opened for record IO must be contiguous files, just as with OPENR. After opening a file via
OPENIO, you will perform PUT and GET calls (or PUTL and GETL calls) to perform the actual IO. The
calling sequence for OPENIO is:

OPENIO adr,flags,size ; open file for record processing

adr references a DDB specifying the file to be opened, flags contains flag bits described below, and size
specifies the logical record size to be used.

The File Service System Page 6-19
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Symbol Meaning
F.WAT User will wait for access to the file
F.EXC Request exclusive use of file
F.BIG Span records across blocks and allow

records larger than 512 bytes.
F.RON Read-only mode
F.NEX Bypass nolock options

If the file being opened is within an extended directory structure, and a logical record size was specified
when the file was created, the OPENIO call validates the record size specified in the OPENIO call and
returns an error (D$EIRS) if it does not match. If the file being opened is within a traditional directory
structure, or if no record size was specified when the file was created, no validation of record size occurs,
and the record IO system simply uses the value you supply in the OPENIO call.

The AMOS record IO system supports two methods of calculating logical records. The first, which is
compatible with AlphaBASIC, limits all records to 512 bytes or less, and aligns the records so they never
span a block boundary. The other method, which is compatible with AlphaCOBOL, allows records larger
than 512 bytes (up to 65535 bytes) and does not pay attention to block boundaries, spanning them as
necessary. The OPENIO call defaults to the smaller, AlphaBASIC compatible mode. If you wish to use
the other mode, you must specify the F.BIG flag in the OPENIO call, and with all subsequent IO
operations.

The OPENIO call defaults to shared access to the file, with no waiting, if no flags are specified.

The file being used in read only mode can also be opened by another user for exclusive access. When
exclusive access is granted, the read only user is marked so that the next time the read only program tries
to access the file, the D$EFIU "?File in use" error is returned in D.ERR of the DDB. Read only mode
does not allow creating or updating records; INPUT, INPUTL, INPUTX, and UNLOKR operations are
allowed. (See the AMOS File Locking Manual for information on the different file locking modes.)

The OPENIO call is ignored for devices which are not file structured.

CLOSE - Close a File

The CLOSE call finishes up logical processing of a file and clears the open code in DDB+D.OPN. No
further INPUT or OUTPUT operation may occur once a file has been closed. No action is normally taken
on a file which is open for input. For files open for output, the final block is written out and the file is
added to the directory system on the specific device. For files open for appending, the final block is
written out and the directory information is updated. The calling sequence is:

CLOSE adr ; close the file

The CLOSE call is ignored for devices which are not file structured.

CLOSEK - Close a File and Keep Locked

CLOSEK is identical to CLOSE except that, unlike CLOSE, it does not unlock the file being closed. The
CLOSEK call finishes up logical processing of a file and clears the open code in DDB+D.OPN. No
further INPUT or OUTPUT operation may occur once a file has been closed. No action is normally taken

Page 6-20 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

on a file which is open for input. For files open for output, the final block is written out and the file is
added to the directory system on the specific device. For files open for appending, the final block is
written out and the directory information is updated. The calling sequence is:

CLOSEK adr ; close the file

CLOSEK closes the specified file, but also causes it to remain locked until the job that opened the file re-
opens the file or explicitly unlocks it, or until LOKUTL is used to unlock it. Using CLOSEK causes the
file to be closed in FILSER, but inside LOKSER, the file and its locked records will remain locked (with
a "keep" flag set), even after the program exits. When the file is opened again later by the same job that
originally opened it, the "keep" flag will be reset, and the locked records, if any, will be released. The
locking status (exclusive, shared, or read only) of the file will be as defined by the new open call.

If the file was opened for exclusive use by the open call before CLOSEK, the only job that can access it
after CLOSEK is the job that first opened it. If the file was opened for shared use, other jobs can access it
for shared use after the CLOSEK but, again, only the job that originally opened it can unlock it so it can
be used in exclusive mode.

A file can remain permanently locked if the program that opened it aborts after the CLOSEK and
before re-opening it. In this case, the System Operator must use the LOKUTL utility to unlock
the file.

If a file was opened for shared use and closed by CLOSEK, the job that opened it will not be able to open
it again for exclusive use if some other job has opened it for shared use. But, in this situation, the original
job will have no problem re-opening the file for shared use. See the AMOS File Locking Manual for
information on the different file locking modes.

The CLOSEK call is ignored for devices which are not file structured.

READ - Perform a Physical Transfer

This is the physical transfer call for reading input data from a device. No check is made for file open
status since READ is not a logical file call. The calling sequence is:

READ adr ; read block from device

Sequential Access Devices

For sequential access devices such as a paper tape reader, the READ call delivers one block from the
device to the user buffer. The size of this block is normally the number of bytes specified in
DDB+D.SIZ, but this may not necessarily be true if the driver does not transfer under the rules of the
system. If the device is not capable of generating the requested number of bytes per DDB+D.SIZ (such as
a tape reader which runs out of tape), a lesser number may be transferred, in which case the count in
DDB+D.SIZ is adjusted to reflect the true number actually transferred to the user buffer.

Random A ccess Devices

For random access devices such as a disk, you must specify the block number to be located and read by
placing that number into DDB+D.REC before executing the READ call. Most random access devices

The File Service System Page 6-21
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

always transfer the requested number of bytes per DDB+D.SIZ into the user buffer. (If the buffer is larger
than the physical block, the system reads multiple contiguous blocks to fill up the buffer.) An error
results if the block number is not within the range of the specific device. For example, the standard
AMOS floppy disk is structured as 500 (decimal) blocks of 512 bytes each. The legal block numbers,
therefore, range from 0 through 499, decimal. Similar range restrictions apply for each random device.

Interrupt Structure

The system allows certain interrupt driven devices to overlap their IO with the processing of other jobs.
Normally, the execution of a READ (or WRITE) call results in the driver waiting for execution to be
complete before returning to the user or allowing other users to run. With some devices, usually disks,
the execution of a READ call suspends the running of the user program until the transfer has been
completed, at which time the user job re-activates. During the time your job is suspended, other jobs are
allowed to run, increasing the total system throughput.

WRITE - Perform a Physical Write

This is the physical transfer call for writing data to a device. No check is made for file open status, since
the WRITE call is not a logical file call. The calling sequence for WRITE is:

WRITE adr ; write a block to the device

Sequential Devices

For sequential access devices, such as a printer, the WRITE call delivers one block to the device from the
user buffer. The size of this block is the number of bytes specified in DDB+D.SIZ. The driver is
responsible for the correct transfer count, and you may alter the number in DDB+D.SIZ for each new
WRITE call to the same device for the writing of variable length records.

Random Devices

For random access devices, such as disks, you must specify the block number to be located and written,
by placing that number into DDB+D.REC before executing the WRITE call. Most random access devices
always transfer the requested number of bytes per DDB+D.SIZ from the user buffer. An error results if
the block number is not within the range of the specific device.

Interrupt Structure

The interrupt structure of the WRITE call functions the same as that of the READ call discussed above.

INPUT - Perform a Logical Read

The INPUT call is the logical equivalent of the READ call for logical processing of datasets. The INPUT
call reads a logical record within a file or device dataset under the control of the specific driver in use. A
dataset must be opened for input (OPENI) or random access (OPENR) before INPUT calls are
performed. The calling sequence is:

Page 6-22 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

INPUT adr{,flags} ; get block from input device

The INPUT call first sets the standard buffer size into DDB+D.SIZ, so you may not use this call to
transfer non-standard record sizes. The number of bytes actually read may be less than the standard block
size due to the driver processing or due to an end-of-file condition. The actual number of bytes
transferred is set into DDB+D.SIZ by the driver routine.

Sequential File Processing

The INPUT call is mainly used in logical sequential file processing; it sets up the buffer index value in
DDB+D.IDX to direct the processing of the data by the user routines. This index value is actually the
offset to the first byte of valid data within the user buffer, whose base address is at DDB+D.IDX. For
unit record devices, the value is zero since all data within the buffer is user data. For sequential disk files,
however, the first part of each block within the file is a link to the next block. Therefore, the disk driver
sets the value in DDB+D.IDX so processing starts with the byte after the link in the user buffer.

The optional flags argument is not used for sequential file processing.

Since you will usually process sequential input files to read a byte, word, or longword, you will almost
always access these files using the FILINx calls (which use INPUT), rather than by direct use of the
INPUT call. (See the Section "FILINB, FILINL, FILINW - Input from a Device," below.)

Random File Pro cessing

A special situation arises for files opened for random access by the OPENR call. Instead of reading the
next sequential block, INPUT reads the specific relative block whose number is in DDB+D.REC into the
user buffer.

You first set this number up and then execute the INPUT call. The block number is actually relative to
the base of the file and has no direct relationship to the physical block on the device as would be returned
by a READ call.

The INPUT call reads the requested file block but does not leave it locked, making the INPUT call the
one to use when reading data that will not be updated. If you wish to update and rewrite the block you are
reading, use the INPUTL call, which locks the block for exclusive use, allowing subsequent updates.

The flags argument allows you to specify whether or not you wish your program to wait for access to the
block, which may be locked by another user. This optional argument can contain the following flag bit:

Symbol Meaning
F.WAT User will wait for access to the block

The INPUT call defaults to not waiting if no flags are specified.

Special Devices

For devices that do not implement special processing of logical calls, the INPUT call performs a READ
call instead.

The File Service System Page 6-23
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

INPUTL - Perform a Logical Read with Locking

The INPUTL call is identical to the INPUT call, except that when used with files open for random access
(OPENR), it leaves the requested block locked for exclusive use, allowing for subsequent update. The
calling sequence is:

INPUTL adr{,flags} ; get block from input device

Sequential File Processing

For sequential files, the INPUTL call is identical to the INPUT call.

Random File Pro cessing

Like the INPUT call, INPUTL reads the specific relative block whose number is in DDB+D.REC into
the user buffer.

You first set this number up and then execute the INPUTL call. The block number is actually relative to
the base of the file and has no direct relationship to the physical block on the device as would be returned
by a READ call.

The INPUTL call reads the requested file block and leaves it locked for exclusive use, allowing you to
rewrite the block (via OUTPUT) or unlock it (via UNLOKR). If you do not wish to update and rewrite
the block you are reading, use the INPUT call, which does not leave the block locked.

The flags argument allows you to specify whether or not you wish your program to wait for access to the
block, which may be locked by another user. This optional argument can contain the following flag bit:

Symbol Meaning
F.WAT User will wait for access to the block

The INPUTL call defaults to not waiting if no flags are specified.

Special Devices

For devices that do not implement special processing of logical calls, the INPUTL call performs a READ
call instead.

INPUTX - Perform a Logical Read Without Regard to Locking

The INPUTX call is identical to the INPUTL call, except that it returns a record even if the record is
currently locked and even if it is being updated. INPUTX doesn't lock the record, and doesn't use the file
locking flags. The calling sequence is:

INPUTX adr{,flags} ; get block from input device

adr references a DDB specifying the file being accessed and flags are ignored. See the description of
INPUTL above for more information on using INPUTX.

Page 6-24 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

OUTPUT - Perform a Logical Write

The OUTPUT call is the logical equivalent of the WRITE call for logical processing of datasets. The
OUTPUT call writes a logical record to a file or device dataset under the control of the specific driver in
use. A dataset must be opened for output (OPENO, OPENS, or OPENA) or random access (OPENR)
before OUTPUT calls are performed. The calling sequence is:

OUTPUT adr{,flags} ; output block to output device

The OUTPUT call transfers the number of bytes in DDB+D.SIZ, but it normally does it as a standard
block (depending on the driver in use). We discourage attempts to use the OUTPUT call for transferring
non-standard record sizes.

Sequential File Processing

The main use of the OUTPUT call is in logical sequential file processing. The OUTPUT call starts its
output based on the buffer index value in DDB+D.IDX. This index value is actually the offset to the first
byte position for valid data within the user buffer whose base address is at DDB+D.BUF. For unit record
devices this value is zero, since all data within the buffer is user data. For sequential disk files, however,
the first part of each block within the file is a link to the next block; therefore, the value that should be in
DDB+D.IDX is the size (in bytes) of the link, so output starts with the first non-link byte in the user
buffer.

Since most output to sequential files and devices will be based on outputting bytes, words, or longwords,
the usual method is to use the FILOTx calls (which use OUTPUT), rather than using OUTPUT directly.
(See the Section "FILOTB, FILOTL, FILOTW - Output to a Device," below.)

Random File Pro cessing

A special situation arises for files opened for random access by the OPENR call. Instead of writing the
next sequential block, OUTPUT writes the specific relative block whose number is in DDB+D.REC from
the user buffer.

You first set this number up and then execute the OUTPUT call. The block number is actually relative to
the base of the file and has no direct relationship to the physical block on the device as would be written
by a WRITE call.

The OUTPUT call requires the block being written previously was locked for exclusive use by an
INPUTL call. If you are creating a new record that has not been read by an INPUTL call, use the
OUTPTL call to write the block.

The optional flags argument can contain the following flag bit:

The File Service System Page 6-25
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Symbol Meaning
F.LOK Output without unlocking

Special Devices

For devices that do not implement special processing of logical calls, the OUTPUT call performs a
WRITE call instead.

OUTPTL - Perform a Logical Write With Locking

Except when used with files open for random access (OPENR), the OUTPTL call behaves exactly the
same as the OUTPUT call. The calling sequence is:

OUTPTL adr{,flags} ; output block to output device

Sequential File Processing

The OUTPTL call works exactly like OUTPUT when used with sequential files.

Random File Pro cessing

Like the OUTPUT call, OUTPTL writes the specific relative block whose number is in DDB+D.REC
from the user buffer. The difference is that while the OUTPUT call requires the block in question was
previously locked, OUTPTL does not require such a lock. OUTPTL is intended for use when creating
new blocks and writing them for the first time.

The IODJV argument allows you to specify whether or not you wish your program to wait for access to
the block, which may be locked by another user, or whether you want to write without unlocking the
block. This optional argument can contain the following flag bits:

Symbol Meaning
F.WAT User will wait for access to the

block
F.LOK Output without unlocking

The OUTPTL call defaults to not waiting if no flags are specified.

Special Devices

For devices that do not implement special processing of logical calls, the OUTPUT call performs a
WRITE call instead.

GET - Perform a Logical Record Read

The GET call allows you to read a single record from a file. Using the GET call on a file open for input
by an OPENI call allows you to read sequential records, each terminated by a line-feed character. Using

Page 6-26 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

the GET call on a file open for record IO by an OPENIO call allows you to read random records within
the file. The calling sequence is:

GET adr,flags,buff{,size} ; get record from input device

Sequential File Processing

The GET call allows you to read a single record (line) from a sequential input file. The file you specify
must be open for input (via OPENI) at the time you make the GET call.

The flags argument is not used for sequential file processing and should be omitted.

The buff argument must specify the address of a buffer into which the record will be read. This must not
be the same as the buffer specified in D.BUF. A separate buffer must be supplied to hold the record.

The optional size argument allows you to specify a field into which the size of the record actually read
will be placed. If you do not specify a size argument, the size will be returned in D6.

Prior to making the GET call, you must put the maximum allowable record size (i.e., the size of the
buffer you specified) into D.RSZ. If the size of the record being read exceeds this maximum record size,
the record will be truncated, with only as much data as will fit in the buffer being returned to the user.
The next GET call will return the remainder of the record.

Sequential file records are considered to be any arbitrary sequence of ASCII characters up to and
including a line feed character. These characters, including the line feed and a terminating null byte, are
stored in the specified record buffer.

Random File Pro cessing

For random files, which have been opened via an OPENIO call, the GET call behaves much like an
INPUT call, except records are read instead of blocks. As with INPUT, you place the record number into
D.REC prior to performing the GET call.

The GET call reads the requested file record but does not leave it locked, making the GET call the one to
use when reading data that will not be updated. If you wish to update and rewrite the record you are
reading, use the GETL call, which locks the record for exclusive use, allowing subsequent updates.

The flags argument allows you to specify whether or not you wish your program to wait for access to the
record, which may be locked by another user, and what type of record blocking you are using, or whether
you want to write without unlocking the record. The flags are described later in this section.

The buff argument must specify the address of a buffer into which the record will be read. This must not
be the same as the buffer specified in D.BUF. A separate buffer must be supplied to hold the record.

The size argument is not used with random files record IO.

The flags argument can contain the following flag bits:

The File Service System Page 6-27
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Symbol Meaning
F.WAT User will wait for access to the block
F.BIG File uses records larger than 512 bytes

and spans block boundaries
F.LOK Write without unlocking

The GET call defaults to not waiting and AlphaBASIC compatible records if no flags are specified.

Special Devices

For devices that do not implement special processing of logical calls, the GET call performs a READ call
instead.

GETL - Perform a Logical Record Read with Locking

The GETL call is identical to the GET call, except that when used with files open for record access
(OPENIO), it leaves the requested record locked for exclusive use, allowing for subsequent update. The
calling sequence is:

GETL adr,flags,buff ; get record from input device

Sequential File Processing

For sequential files, the GETL call is identical to the GET call.

Random File Pro cessing

Like the GET call, GETL reads the specific relative record whose number is in D.REC into the user
specified buffer.

The GETL call reads the requested file record and leaves it locked for exclusive use, allowing you to
rewrite the record (via PUT) or unlock it (via UNLOKR). If you do not wish to update and rewrite the
record you are reading, use the GET call, which does not leave the record locked.

The flags argument allows you to specify whether or not you wish your program to wait for access to the
record, which may be locked by another user, and what type of record blocking you are using. The flags
are described later in this section.

The buff argument must specify the address of a buffer into which the record will be read. This must not
be the same as the buffer specified in D.BUF. A separate buffer must be supplied to hold the record.

The flags argument can contain the following flag bits:

Symbol Meaning
F.WAT User will wait for access to the block
F.BIG File uses records larger than 512 bytes

and spans block boundaries

The GETL call defaults to not waiting and AlphaBASIC compatible records if no flags are specified.

Page 6-28 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Special Devices

For devices that do not implement special processing of logical calls, the GETL call performs a READ
call instead.

GETX - Perform a Logical Record Read Without Regard to Locking

The GETX call is identical to the GETL call, except that it returns a record even if the record is currently
locked and even if it is being updated. GETX doesn't lock the record, and doesn't use the file locking
flags. The calling sequence is:

GETX adr,flags,buff ; get record from input device

adr references the DDB under which the file was opened, and flags are ignored. See the description of
GETL for more information on using GETX.

PUT - Perform a Logical Record Write

The PUT call allows you to write a single record to a file. Using the PUT call on a file open for output
via an OPENO call allows you to write sequential records, each terminated by a line-feed character.
Using the PUT call on a file open for record IO via an OPENIO call allows you to write random records
within the file. The calling sequence is:

PUT adr,flags,buff ; put record out to device

Sequential File Processing

The PUT call allows you to write a single record (line) to a sequential output file. The file you specify
must be open for output (via OPENO) at the time you make the PUT call.

The flags argument is not used for sequential file processing and should be omitted.

The buff argument must specify the address of a buffer from which the record will be written. This must
not be the same as the buffer specified in D.BUF. A separate buffer must be supplied to hold the record.

Any size record may be written via the PUT call; however, to be able to read the record back from the file
via a GET call, the record size must be restricted to 65535 bytes or less, including the line feed.

Sequential file records are considered to be any arbitrary sequence of ASCII characters up to and
including a line feed character. These characters, including the line feed, are written to the output file.

Random File Pro cessing

For random files, which have been opened via an OPENIO call, the PUT call behaves much like an
OUTPUT call, except that records are written instead of blocks. As with OUTPUT, you place the record
number into D.REC prior to performing the PUT call.

The File Service System Page 6-29
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

The PUT call writes a file record that has already been locked via a previous GETL call. Attempting to
do a PUT to a record which is not locked will return an error. If you wish to write a record without
having previously locked it, such as when creating a new file, use the PUTL call.

The flags argument allows you to specify whether or not you wish your program to wait for access to the
record, which may be locked by another user, and what type of record blocking you are using. The flags
are described later in this section.

The buff argument must specify the address of a buffer into which the record will be read. This must not
be the same as the buffer specified in D.BUF. A separate buffer must be supplied to hold the record.

The flags argument can contain the following flag bits:

Symbol Meaning
F.WAT User will wait for access to the block
F.BIG File uses records larger than 512 bytes

and spans block boundaries

The PUT call defaults to not waiting and AlphaBASIC compatible records if no flags are specified.

Special Devices

For devices that do not implement special processing of logical calls, the PUT call performs a WRITE
call instead.

PUTL - Perform a Logical Record Write with Locking

Except when used with files open for record access (OPENIO), the OUTL call behaves exactly the same
as the PUT call. The calling sequence is:

PUTL adr,flags,buff ; output record to output device

Sequential File Processing

The PUTL call behaves exactly like an PUT call when used with sequential files.

Random File Pro cessing

Like the PUT call, PUTL writes the specific relative record whose number is in D.REC from the
specified buffer. The difference is that while PUT requires the block in question was previously locked,
PUTL does not require such a lock. PUTL is intended for use when creating new blocks and writing them
for the first time.

The flags argument allows you to specify whether or not you wish your program to wait for access to the
record, which may be locked by another user, and what type of record blocking you are using, or whether
you want to write the record without unlocking it. The flags are described later in this section.

Page 6-30 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

The buff argument must specify the address of a buffer into which the record will be read. This must not
be the same as the buffer specified in D.BUF. A separate buffer must be supplied to hold the record.

The flags argument can contain the following flag bits:

Symbol Meaning
F.WAT User will wait for access to the block
F.BIG File uses records larger than 512 bytes

and spans block boundaries
F.LOK Write without unlocking

The PUTL call defaults to not waiting and AlphaBASIC compatible records if no flags are specified.

Special Devices

For devices that do not implement special processing of logical calls, the PUTL call performs a WRITE
call instead.

FILINB, FILINL, FILINW - Input from a Device

The FILINB, FILINL, and FILINW read a byte, a longword, and a word (respectively) from a file. These
calls are the normal ones to use when handling sequential input files. All three calls take the address of a
DDB as their argument, and return the result in D1.

The end-of-file condition may be tested for by seeing if DDB+D.SIZ is zero. The calling sequence is:

FILINx adr ; input from file
TST adr+D.SIZ ; end of file?
BEQ eof ; branch if yes -

Your program may perform FILINW and FILINL on any byte boundary (that is, the buffer index does
not need to be even). They read data from the file most significant byte first.

The unused high-order portion of D1 (on FILINB and FILINW) is cleared to zero.

FILOTB, FILOTL, FILOTW - Output to a Device

The FILOTB, FILOTL, and FILOTW write a byte, a longword, and a word (respectively) to a file. These
calls are the normal ones to use when handling sequential output files. All three calls take the address of a
DDB as their argument, and expect to find the item to be written in D1. The calling sequence is:

MOV item,D1 ; get item to be output
FILOTx adr ; output to file

Your programs may perform FILOTW and FILOTL on any byte boundary (that is, the buffer index does
not need to be even). They write data to the file most significant byte first.

In addition to the FILOTx calls, several other monitor calls perform file output, such as OUT, DCVT,
OCVT, ERRMSG, and several others.

The File Service System Page 6-31
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

LOCKF - Lock a File

Use this command to relock a file which has already been OPENed. There are no defaults. This call is
used by ISAM to lock index files. The calling sequence is:

LOCKF adr,flags ; lock the file

adr specifies a DDB specifying the file to be locked, and the flags argument can contain the following
flag bits:

Symbol Meaning
F.WAT User will wait for access to the file
F.BIG File uses records larger than 512 bytes

and spans block boundaries
F.RON Access in read only mode

(See the AMOS File Locking Manual for information on the different file locking modes.)

UNLOKF - Unlock a File

This command has the same format as CLOSE and is used to unlock a file without CLOSEing it.
UNLOCKF is used by ISAM to unlock index files. The calling sequence is:

UNLOKF adr,flags ; unlock the file

adr specifies a DDB specifying the file to be unlocked and the flags argument can contain the following
flag bits:

Symbol Meaning
F.BIG File uses records larger than 512 bytes and spans block boundaries

UNLOKR - Unlock a Record

This call unlocks a block record that was read with an INPUTL or GETL call but not yet written with an
OUTPUT or PUT call. The calling sequence is:

UNLOKR adr,flags ; unlock the record

adr specifies a DDB specifying the file in which the record is to be unlocked and the flags argument can
contain the following flag bits:

Symbol Meaning
F.BIG File uses records larger than 512 bytes and spans block boundaries

The D.REC field must contain the record or block number which is to be unlocked. For files open via
OPENR, specify a block number; for files open via OPENIO, specify a record number.

Page 6-32 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

DSKDEL - Delete a File

The DSKDEL call deletes a specific file from a file structured device. It takes the address of a DDB as its
argument. The DDB must contain the filename, extension and PPN (if used) before executing the call.
An error results if the file is not found. The calling sequence is:

DSKDEL adr{,flags} ; delete the file

adr references a DDB specifying the file to be deleted, and flags is an optional argument which can
contain the following bits:

Symbol Meaning
F.WAT User will wait for access to the file

The DSKDEL call requires exclusive access to the file. It will default to not waiting for access if no flags
are specified. DSKDEL closes the file before deleting it except for files opened with OPENI.

The DSKDEL call is ignored for devices which are not file structured.

DSKREN - Rename a File

The DSKREN call renames a specific file on a file structured device. It takes the address of a DDB as its
argument. The DDB must contain the filename, extension and PPN (if used) before executing the call.
The new filename and extension must be packed RAD50 into the three words immediately following the
DDB in memory. The DSKREN call merely locates the directory item for the file and replaces the three
words which store the filename and extension. The calling sequence is:

DSKREN adr{,flags} ; rename the file

adr references a DDB specifying the file to be renamed, and flags is an optional argument which can
contain the following bits:

Symbol Meaning
F.WAT User will wait for access to the file

The DSKREN call requires exclusive access to the file. It will default to not waiting if no flags are
specified. The DSKREN call is ignored for devices which are not file structured.

CHPROT - Change the Protection of a File

The CHPROT call changes the protection level of a specific file on a file structured device. It takes the
address of a DDB as its argument. The DDB must contain the filename, extension and PPN (if used)
before executing the call. The new protection must be placed in D.ARG prior to making the CHPROT
call. The CHPROT call locates the directory item for the file and replaces the protection with the new one
you specify.

The definition of how file protection is encoded may be found in the discussion of the D.PRT field found
later in this chapter. The calling sequence is:

The File Service System Page 6-33
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

CHPROT adr{,flags} ; change the file protection

adr references a DDB specifying the file to be changed, and flags is an optional argument which can
contain the following bits:

Symbol Meaning
F.WAT User will wait for access to the file

The CHPROT call requires exclusive access to the file. It will default to not waiting if no flags are
specified.

The CHPROT call is ignored for traditional file structures. It is also ignored for devices which are not file
structured.

DSKCTG - Allocate a Contiguous File

The DSKCTG call is used to allocate a contiguous file on a random access device. It takes the address of
a DDB as its primary argument. DSKCTG requires a second argument which represents the number of
blocks to be allocated in the file. This second argument is passed in DDB+D.ARG. The calling sequence
is:

MOV number of blocks,adr+D.ARG ; set size into D.ARG
DSKCTG adr ; try to allocate file

DSKCTG searches to find the first available area on the device which can fully contain the requested
number of blocks. It marks these blocks as in use in the allocation bitmap, and adds a file descriptor item
to the user directory. The word which gives the number of bytes in the last block is set negative to flag
this file as contiguous, distinguishing it from the normal sequential files. A device full error results
if no area on the device is large enough to contain the file.

If the devices are not file structured and random access, DSKCTG is ignored.

ASSIGN - Assign a Device

The ASSIGN call is used to assign a non-sharable device (such as a printer) to the current user's job by
setting a flag in the device's entry in the device table in monitor memory. It takes the address of a DDB
as its argument. Once a device has been assigned by this call, any attempt by another job to assign it
results in an error. The device stays assigned to this job until de-assigned by the DEASGN call.

The calling format is:

ASSIGN adr ; assign the device

The OPEN call automatically does an ASSIGN call, and the CLOSE call automatically does a DEASGN.

The ASSIGN call performs no action if the specified device is sharable, such as a disk.

Page 6-34 Chapter Six
File Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

DEASGN - De-assign a Device

The DEASGN call is used to de-assign a device which has been assigned to the user's job by the
ASSIGN call. Once de-assigned, the device becomes available for assignment by other jobs. It takes the
address of a DDB as its argument. The calling sequence is:

DEASGN adr ; de-assign the device

The DEASGN call performs no action if the specified device is sharable or if it is not currently assigned
to the user's job. All devices are de-assigned when the program exits to the monitor. A CLOSE call also
performs a DEASGN.

DSKMNT - Mount a Disk Device

The DSKMNT call mounts a new disk device. Disk devices must be mounted before they can be
accessed, and whenever a removable disk structure (floppy disk, disk cartridge, etc.) is changed. This
mounting process is necessary for the system to make sure it is using the correct bitmap and other
information pertaining to a particular device. In addition, many devices must be initialized before they
can be used (such as when microcode must be loaded into the device controlled). Mounting the device
signals it should be initialized.

DSKMNT accepts as arguments the address of a DDB which references the device you wish to mount
and an optional flags argument. The DDB must have been previously INITed. The calling sequence is:

DSKMNT adr{,arg} ; mount the disk

If MT$PHY is specified as the optional argument, a physical mount will be performed. If necessary, a
physical mount call will "spin up" the disk drive.

On those devices that have alternate track allocation tables, a physical mount call also updates the
alternate track table in memory. During this update process, DSKMNT checks the hash total of the
BADBLK.SYS file. If this hash total is incorrect an error code is returned in D.ERR.

If MT$PHY is not specified, neither spin-up nor alternate track table updating is performed. A typical
DSKMNT call might look like this:

DSKMNT @A5,#MT$PHY

Do NOT perform a DSKMNT call on a device other users are accessing. Doing so damages
the disk's bitmap and can destroy the disk's files.

DSKUMT - Unmount a Disk Device

The DSKUMT call unmounts a disk device. Disk devices are unmounted to prevent further access to
them, and before changing a removable disk and mounting a new one.

DSKUMT accepts as an argument the address of a DDB which references the device you wish to
unmount. The DDB must have been previously INITed. A physical unmount call will "spin down" the

The File Service System Page 6-35
Disk Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

disk drive if the specified device is the first logical unit of a physical Winchester disk drive. The calling
sequence is:

DSKUMT adr ; unmount the disk

Do NOT perform a DSKUMT call on a device other users are accessing. Doing so damages
the disk's bitmap and can destroy the disk's files.

DISK SERVICE MONITOR CALLS

In the previous sections we covered the file-oriented monitor calls. Those calls allow you to access data
files without regard to the actual structure of the data on the device. Internally, of course, AMOS does
have to consider the structure of the data. This section deals with the monitor calls used to manipulate
that structure. You can find a description of the data structures used to maintain files on a device in
Appendix A.

The disk presents special problems which require the use of special monitor calls to control the accessing
of the directory and bitmap blocks. These blocks have a non-sharable attribute associated with them, even
though the disk in general is a sharable device. For instance, two user programs may not both be updating
the same directory blocks at the same time. The same holds true for the bitmap blocks. The following
monitor calls are used to control the access to these non-sharable blocks:

Call Meaning
DSKALC Allocates the next available block on disk
DSKDEA De-allocates a specific block on disk
DSKDRL Sets re-entrant directory lock for a specific user
DSKDRU Clears re-entrant directory lock for a specific user

The monitor routines normally access these blocks as a direct result of normal IO processing by file
service calls. The process is somewhat tricky, and you should use the disk calls only with extreme
caution, since misuse could violate the integrity of the file structure on the disk. The following
descriptions are directed at those system programmers who are familiar with shared file techniques.

Calling Sequence

All calls use the address of the relevant DDB as the standard argument. In addition to the first argument
which is always the address of the DDB, some calls use an optional second argument for processing,
which is passed in DDB+D.ARG. The second argument is detailed in the description of the individual
call.

The Bitmap

 Each file structured device uses a bitmap to perform its block allocation. This bitmap is stored on the
device in a standard format, described in Appendix A. The structure in memory can take either of two
forms: paged, where only the portion of the bitmap being accessed is stored in memory, or non-paged
where the entire bitmap is stored in memory. Paged bitmaps are more efficient for large devices where
the overhead of reading and writing the entire bitmap would be too great. Non-paged bitmaps are ideal

Page 6-36 Chapter Six
Disk Service Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

for small devices (such as floppy disks) where the overhead of setting up for paging is greater than the
reading and writing saved via paging.

Although the format of the bitmap in memory differs between paged and non-paged bitmaps, the format
of the bitmap on the disk itself is always the same. The bitmap contains one bit for each logical block on
the disk structure. This bit is off (0) if the block is free, and on (1) if the block is in use by anyone,
including the system structure blocks themselves. Each word in the bitmap can define up to 16 blocks.

The first word in the bitmap defines blocks 0 through 17 (octal) with bit 0 defining block 0 and
proceeding upward throughout the word. The second word defines blocks 20 through 37, and so on. To
define the 500 decimal blocks in a standard IBM-compatible AMOS floppy disk, you need 32 words (32
times 16 = 512) with the last word not being totally used.

Following the allocation words in the bitmap are two words of hash total used for integrity validation.
The bitmap for this device, therefore, takes up 34 words, including the two hash total words.

DSKALC - Allocate a Block

The DSKALC call allocates one block for use by the current user as a directory block or as a file block.
You must specify as the argument the address of a DDB set up to reference the device on which you wish
to allocate a block. DSKALC returns the block number of the allocated block in DDB+D.ARG. An error
results if there are no free blocks left on the specified disk. The calling sequence for DSKALC is:

DSKALC adr ; allocate the disk block

DSKALC performs a DSKBMR call first to insure the current job has access to the bitmap. The
DSKALC call then locates the first free block and marks it in use. DSKALC flags the bitmap block as
modified, causing it to be rewritten either at the next DSKBMW call or, if it must be swapped out to
make room for another bitmap, sharing the same area in memory.

DSKDEA - De-allocate a Block

The DSKDEA call de-allocates a specific block on a disk and makes it immediately available for use by
another user (or the same user). You must specify as the argument the address of a DDB set up to
reference the device on which you wish to de-allocate a block. You must place the block number of the
block you wish to de-allocate in DDB+D.ARG. The calling sequence is:

DSKDEA adr ; de-allocate the disk block

The DSKDEA call does not check to see if this block is allocated to either the current user or any other
user. First, DSKDEA performs a DSKBMR call to insure the current job has access to the bitmap, then it
sets the specified block's bit to zero to indicate the block is free. Then it flags the bitmap block as
modified to force a re-write.

DSKDRL - Lock the Directory

The DSKDRL call locks the directory for the specified drive for modification by the user program. It is
used by such file service routines as CLOSE (for output files), DSKDEL, and for DSKREN calls. If the

The File Service System Page 6-37
Magnetic Tape Drive Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

directory is already locked by another job, DSKDRL stalls until it is released. You must specify, as the
argument, the address of a DDB referencing the device you wish to lock. The format is:

DSKDRL adr ; lock the directory

The calling program or routine must unlock the directory via the DSKDRU call after the modifications
have been made.

When performing directory accesses, you can alternately lock the directory through the use of the
DIRACC call, discussed in Chapter 18.

DSKDRU - Unlock the Directory

The DSKDRU call unlocks the directory for the specified drive after it has been locked by the DSKDRL
call for modification. You must specify, as the argument, the address of a DDB which references the
device you wish to unlock. The calling sequence is:

DSKDRU adr ; unlock the directory

Nothing happens if the directory is not locked by the current job.

MAGNETIC TAPE DRIVE MONITOR CALLS

There is a group of monitor calls designed to allow your assembly language program to access the
various magnetic tape subsystems, including 1/2" 9-track tape drives, 1/4" cartridge streaming tape
drives, and video cassette tape drives. Information on the software used with the 1/2" 9-track tape drives,
VCRs, and streaming tapes, see your System Commands Reference Manual.

In addition to the magnetic tape monitor calls detailed below, you can use the READ and WRITE calls to
input and output data to and from the tape units, in the same way you would perform physical disk I/0.

REWIND

This call issues a rewind command to the tape drive specified in the DDB. REWIND accepts an address
that references a DDB on which you have already performed an FSPEC, an INIT, and an OPEN monitor
call. The calling sequence is:

REWIND adr ; rewind the tape

The DDB selects the device to which you want to issue a REWIND command. If an error results from
this call, you may see the standard system file operation error messages.

If your VCR does not have computer control capability, The Video Cassette Recorder driver ignores this
call.

Page 6-38 Chapter Six
Magnetic Tape Drive Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

WRTFM

This call issues a write-file-mark command to the specified tape unit. WRTFM accepts an argument that
references a DDB on which you have already performed an FSPEC, an INIT, and an OPEN monitor call.
The calling sequence is:

WRTFM adr ; write a file mark

The DDB selects the device to which you want to write a file mark. If an error results from this call, you
may see the standard system file operation error messages.

FMARK

This call issues a find-file-mark command to the specified tape unit. FMARK will search for the file
mark in a forward direction. FMARK accepts an address that references a DDB on which you have
already performed an FSPEC, an INIT, and an OPEN monitor call. The calling sequence is:

FMARK adr ; find a file mark, forward

The DDB selects the device to which you want to issue a find-file-mark command. If an error results
from this call, you may see the standard system file operation error messages.

FMARKR

This call issues a find-file-mark command to the specified tape unit. FMARKR will search for the file
mark in the reverse direction. FMARKR accepts an address that references a DDB on which you have
already performed an FSPEC, an INIT, and an OPEN monitor call. The calling sequence is:

FMARKR adr ; find a file mark, reverse

The DDB selects the device to which you want to issue a find-file-mark in reverse command. If an error
results from this call, you may see the standard system file operation error messages.

BACKSP

This call issues a backspace command to the specified tape unit. BACKSP will back up over a single
record on the tape. BACKSP accepts an address that references a DDB on which you have already
performed an FSPEC, an INIT, and an OPEN monitor call. The calling sequence is:

BACKSP adr ; move back one record

The DDB selects the device to which you want to issue a backspace command. If an error results from
this call, you may see the standard system file operation error messages.

TAPSKP

This call will skip over multiple tape records on the specified tape unit. Not all tape drive/controller
combinations support this call; those that don't ignore it. TAPSKP allows you to specify the number of

The File Service System Page 6-39
Magnetic Tape Drive Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

records to skip, up to a maximum of 65535. TAPSKP accepts an address that references a DDB on which
you have already performed an FSPEC, an INIT, and an OPEN monitor call. The calling sequence is:

TAPSKP adr ; skip over some records

The DDB selects the device you want to issue a skip record command to. The number of records you
wish to skip (up to 65535) is placed in the D.ARG field of the specified DDB. If an error results from
this call, you may see the standard system file operation error messages.

TAPERS

This call performs an erase function. Not all tape drive/controller combinations support this operation;
those that don't ignore this call. The call accepts an address that references a DDB on which you have
already performed an FSPEC, an INIT, and an OPEN monitor call. It takes an additional argument in the
D.SIZ field to specify the type of erase to be performed. The calling sequence is:

TAPERS adr ; perform erase function

The DDB selects the device to which you want to issue an erase function to. The D.SIZ field specifies the
type of erase function to be performed. If D.SIZ contains a zero, a fixed erase function will be performed.
If D.SIZ contains a -1, a security erase of the entire tape will be performed (note this is a lengthy
operation). Any other value in D.SIZ will cause that number of bytes to be erased on the tape, up to a
maximum of 65535 bytes.

If an error results from this call, you may see the standard system file operation error messages.

UNLOAD

This call issues an unload command to the tape drive specified in the DDB. Not all tape drive/controller
combinations recognize the UNLOAD call; those that don't ignore the call. UNLOAD accepts an address
that references a DDB on which you have already performed an FSPEC, an INIT, and an OPEN monitor
call. The calling sequence is:

UNLOAD adr ; unload the tape

The DDB selects the device to which you want to issue an UNLOAD command. If an error results from
this call, you may see the standard system file operation error messages.

RETNSN

This call issues a retention command to the tape drive specified in the DDB. Only the 1/4" Streaming
Tape Drive driver recognizes RETNSN; all other magnetic tape drivers ignore it. RETNSN accepts an
address that references a DDB on which you have already performed an FSPEC, an INIT, and an OPEN
monitor call. The calling sequence is:

RETNSN adr ; retention the streaming tape

The DDB selects the device to which you want to issue a retention command. If an error results from this
call, you may see the standard system file operation error messages.

Page 6-40 Chapter Six
Magnetic Tape Drive Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

TAPST

This call issues a read-tape-status command to the specified tape unit. TAPST accepts an address that
references a DDB on which you have already performed an FSPEC, an INIT, and an OPEN monitor call.
The DDB selects the device to which you want to issue a read-tape-status command. TAPST accepts a
second argument which must be a register to which the tape status will be returned. The calling sequence
is:

TAPST adr, reg ; get tape status into register

The low-order 16 bits of the register will contain the tape status on completion of this call. The status
symbols are defined as:

Symbol
Octal
Value

Hex
Value

Meaning

TP$7TK 1 1 Tape unit is a 7-track unit (1/2" 9-track magtape only).
TP$NRZ 2 2 Unit is in NRZI recording mode (1/2" 9-track magtape only).
TP$EOT 4 4 Unit has detected the end of the tape (1/2" 9-track magtape

only).
TP$BOT 10 8 Tape is at the beginning of the tape.

20 10 Tape unit is file protected (e.g., write ring is not installed).
TP$REW 40 20 Tape is currently rewinding.

100 40 Tape unit is on-line.
200 80 Tape unit is ready for a command.

ST$RDY 400 100 Tape unit is ready for a command (1/4" streamer and 1/2" 9-
track magtape).

VC$DRR 400 100 VCR has data ready to be read (VCR interface only).
ST$EXC 1000 200 Tape unit has detected an exception (1/4" streamer tape only).
VC$DRW 1000 200 VCR is ready for a write command (VCR interface only).
ST$QIC 2000 400 Streamer supports QIC11/QIC24 commands

In addition to the symbols above, the upper five bits of the status word define the type of magnetic tape
device. These five bits may be masked out using the value TP$DEV:

Symbol
Octal
Value

Hex
Value

Meaning

TY$MTU 0 0 Device is a 9-track magnetic tape drive.
TY$STR 20000 2000 Device is a 1/4" streaming cartridge tape drive.
TY$VCR 40000 4000 Device is a video cassette backup device.

Note many of these values are returned directly from the hardware interface. While all drivers make an
attempt at maintaining device independence, some interfaces do not allow this because of the way in
which they assert some of these signals. In particular, many 1/2" tape drives use the TP$7TK flag for
purposes other than flagging 7-track operation, which is a very rare item today. Because the true meaning
of this flag may be valuable, the tape drivers allow this bit to come through to the user issuing a TAPST
call, even though the meaning is not device independent. Please consult the documentation for your
particular tape device for a precise definition of the meaning of each of these bits.

TAPTYP

This call allows you to both select and inquire on the type of tape drive connected to the system. By
selecting the drive type to match your hardware configuration, you allow the tape drive interface to

The File Service System Page 6-41
Magnetic Tape Drive Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

optimize tape operations. TAPTYP accepts an address that references a DDB on which you have already
performed an FSPEC, an INIT, and an OPEN monitor call. The calling sequence is:

TAPTYP adr ; select tape type

The DDB selects the device on which you want to select or inquire on the tape driver type. To select a
tape type, place the drive type code in D.ARG. To inquire as to which type is currently selected, place a -
1 in D.ARG; the tape drive type will be in D.ARG after completion of the call. If after completion of the
TAPTYP call D.ARG contains a -1, the TAPTYP call is not supported on the particular tape drive
interface in use.

If an error results from this call, you may see the standard system file operation error messages.

TAPDEN

This call allows you to both select and inquire on the current recording density on a tape drive connected
to the system. Most tape drives support multiple recording densities. TAPDEN accepts an address that
references a DDB on which you have already performed an FSPEC, an INIT, and an OPEN monitor call.
The calling sequence is:

TAPDEN adr ; select recording density

The DDB selects the device on which you want to select or inquire on the tape density. To select a
density, place the desired density (as bits per inch) in D.ARG. To select the default density (often
selectable from the front panel of the tape drive itself) place a zero in D.ARG. After completion of the
TAPTYP call, the actual density selected (which will be the closest available density to the value you
supplied) will be in D.ARG.

To inquire as to the currently selected density, place a -1 in D.ARG; the current density will be in
D.ARG after completion of the call. A zero returned in D.ARG indicates the default density. A -1
returned in D.ARG indicates this call is not available on the specified tape drive.

If an error results from this call, you may see the standard system file operation error messages.

TAPSPD

This call allows you to both select and inquire on the current transport speed on a tape drive connected to
the system. Some tape drives support multiple transport speeds. TAPSPD accepts an address that
references a DDB on which you have already performed an FSPEC, an INIT, and an OPEN monitor call.
The calling sequence is:

TAPSPD adr ; select transport speed

The DDB selects the device on which you want to select or inquire on the tape speed. To select a speed,
place the desired speed (as inches per second) in D.ARG. To select the default speed (sometimes
selectable from the front panel of the tape drive itself) place a zero in D.ARG. After completion of the
TAPSPD call, the actual speed selected (which will be the closest available speed to the value you
supplied) will be in D.ARG.

Page 6-42 Chapter Six
Magnetic Tape Drive Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

To inquire as to the currently selected speed, place a -1 in D.ARG; the current speed will be in D.ARG
after completion of the call. A zero returned in D.ARG indicates the default speed. A -1 returned in
D.ARG indicates this call is not available on the specified tape drive.

If an error results from this call, you may see the standard system file operation error messages.

AMOS Monitor Calls Manual, Rev. 10

Chapter 7
Terminal Service System

The Terminal Services (TRMSER) portion of the AMOS monitor has several calls which deliver data to
and from both the user's terminal and other terminals connected to the system. Appendix B contains more
information on the TRMSER routine itself and the various types of driver programs it uses to
communicate with different types of terminals.

A terminal is defined as an ASCII character oriented device capable of both input and output. This is the
formal definition and does not preclude the use of output only devices, such as printers, or input only
devices, such as digitizing devices on terminal-designated I/O ports. Also, the system includes software
terminals known as pseudo terminals which can be used to control jobs not actually associated with a
hardware interface on a designated port address. The calls listed here normally input from or output to the
terminal which is controlling the job executing the call. Some calls (as specified) will input from or
output to another terminal not connected to the current job or to a pseudo terminal controlling another
job.

Programs which make use of the standard terminal service calls that communicate with the user's
terminal can be run without modification in a job controlled by a pseudo terminal. Keyboard input calls
and terminal output calls always go to the controlling terminal, regardless of which job they are running
in. Therefore, you need not be concerned with the physical port address or attributes of the terminal
which is controlling the job. The monitor routines handle all this automatically.

The symbols used in this chapter are defined in TRM.UNV which is in DSK0:[7,7].

TERMINOLOGY

During the infancy of the computer industry, the most prevalent forms of terminals were teletype devices.
Because of this, most terminal output calls reference the device name "TTY," a carry-over from those
early days. And since the input device of the teletype was the keyboard, the input calls reference the
device name of "KBD." These are strictly mnemonics and do not necessarily reflect the physical
attributes of the terminals, which now are more commonly high-speed video display terminals.

THE TERMINAL CONTROL BLOCK

Each terminal has a terminal control block (TCB) associated with it in monitor memory. This table
contains the parameters and work areas associated with the control of the terminal device. Most of the
items in this TCB are for internal use only, and you need not be concerned with them. In fact, because the
TCB is used to control the real time processing of terminal IO, modifying the contents of a TCB can have
disastrous results.

The contents of the TCB, and the correct methods for use in accessing it, are described in Appendix B.

Page 7-2 Chapter Seven
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

THE TERMINAL SERVICE CALLS

AMOS includes numerous monitor calls to perform input and output between the system and any of its
connected terminals.

KBD - Fetch a Line of Data

The KBD call accepts one full line of input from the user terminal into a monitor line buffer, then sets
index A2 to the base of that buffer for your reference. During the entry of the line, your job is set into the
terminal input wait state, thereby consuming no CPU time until the line is finished. All normal line
editing features are active (rubout, Control-U, tab, etc.).

Enter a carriage-return, line-feed, or Control-C to terminate the line. The monitor automatically appends
a line-feed to the carriage-return, and a null byte is set after the line-feed character. If you press
CTRL / C , and the optional "label" has been specified, the program jumps to the specified label.

If the echo suppress flag is set in the terminal status word, it suppresses the normal echoing of the input
characters, such as when the password is being entered for the LOG command.

For this form of KBD, the calling sequence is:

KBD {label} ; get string; branch to label on Control-C

or:
KBD ; get string
{CTRLC label} ; branch to label on Control-C

If the image mode input flag is set, the KBD command has a different effect. It performs no editing, and
instead of accepting one line, it only accepts one character; that character is returned in register D1.
(Register A2 is not set to the base of the monitor line buffer.) Image-mode input echoing is still under
control of the echo suppress flag as in normal line mode.

In image mode, the calling sequence is the same as shown above.

TTY - Output One Character

The TTY call outputs one character from register D1 to the controlling terminal and then returns. Tabs
are echoed as spaces up to the next modulo-8 carriage position, unless the data mode flag (T$DAT) is set
in the terminal status word. If the job is running under the control of a command file, the character is
only output to the terminal if the output suppress command is in the normal state (:R revives it, :S
silences it). The calling sequence is:

MOVB char,D1 ; get character to type
TTY ; type it

TIN - Get an Input Character

TIN gets the next input character from the terminal input buffer, and returns it in D1. Unlike the KBD
call, TIN will not fetch input from a command file. This call is normally used only within the operating
system itself and not by user programs. The calling sequence is:

Terminal Service System Page 7-3
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

TIN ; D1 gets character

TOUT - Output One Character

TOUT outputs one character from D1 to the controlling terminal of the job. This call differs from the
general TTY call in that the TOUT call does not check the command file status. The TOUT call, like the
TIN call, is normally only used within the operating system itself. The calling sequence for TOUT is:

MOVB char,D1 ; get character to output
TOUT ; type it

TAB - Output One Tab

This convenience call outputs a single tab character to the user terminal. The calling sequence is simply:

TAB ; display a tab

CRLF - Output a Carriage-Return/Line-Feed

This convenience call outputs a carriage-return and line-feed pair to the user terminal. The calling
sequence is:

CRLF ; display carriage-return/line-feed

TTYI - Output a String of Characters

The TTYI call outputs a string of characters which follows the call itself up to but not including a null
byte. For example, you could use the following code to output two lines of data to the terminal:

TTYI
ASCII /line 1 data/
BYTE 15
ASCII /line 2 data/
BYTE 15,0
EVEN

The TTYI call also automatically appends a line-feed to all carriage-returns included in the string.

TTYL - Output a String of Characters Indexed

The TTYL call is similar to the TTYI call in that it outputs a string of ASCII characters up to a null byte.
The string of characters for the TTYL call may be anywhere in memory and not in line with the call itself
in the program flow. TTYL takes one standard argument: the address of the message to be output. It is
therefore useful for outputting from a table of messages by setting an index to the specific message
within the table (per some numeric director code), and then using that register as the argument to the
TTYL call. The TTYL call appends a line-feed to each carriage-return contained in the string. The
calling sequence is:

MOV ptr to string,adr ; get pointer to string to output

Page 7-4 Chapter Seven
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

TTYL adr ; type the string

TCRT - Call Special Terminal Driver Routines

The TCRT call is the linkage into the special processing routine portion of a terminal driver. D1 usually
contains a 2-byte code which is interpreted by the terminal driver routine as a special function, such as
cursor positioning or special editing action. The only actions the TCRT call actually performs within
TRMSER are locating the terminal driver for the attached terminal and calling the driver control routine
within it. You must refer to the actual driver listing to determine the action performed in relation to the
code passed to the driver in D1.

Standard Functions

The TCRT call is most commonly used for controlling such special CRT functions as cursor addressing
and screen clearing. To maintain compatibility between terminal drivers, Alpha Micro has defined the
following functions within the terminal drivers it supports.

Cursor Addressing
To perform cursor addressing, load D1 with a 2-byte argument defining the screen row and column to
which the cursor is to be moved. The high-order byte should contain the row, and the low-order byte
should contain the column. The uppermost-leftmost (home) position is row 1, column 1. The calling
sequence for TCRT when used for cursor addressing is:

MOVB row,D1 ; get the row
LSLW D1,#8. ; shift up to high order
MOVB column,D1 ; move in column
TCRT ; position the cursor

Other Functions
To perform other special CRT functions, bits 8-15 of D1 should be loaded with a negative number,
usually a -1. The negative number in this field informs the terminal driver that a special terminal function
is to be performed.

Most of the special terminal functions you will use require a -1 in bit 8-15. A wide variety of different
functions are available, ranging from clearing the terminal screen to drawing special characters and
shapes. The list given below is not complete, but is provided here for easy reference. See the AMOS
Terminal Service System User's Guide for a complete and up-to-date listing of available functions, as
well as a complete description of each call's behavior.

The calling sequence for TCRT when used for the functions listed below is:

MOVW #<-1_8.>+func,D1 ; move function & flag to D1
TCRT ; execute the function

Then load the low-order byte with one of these special decimal function codes. Calls marked with an
asterisk (*) are either obsolete calls, or calls for special purposes. We recommend they not be used, as
they may change in the future.

Terminal Service System Page 7-5
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

Low-byte
Value

(Decimal)
Meaning

0 Clear screen and set normal intensity
1 Cursor home (move to 1,1)
2 Cursor return (move to column 1 without line-feed)
3 Cursor up one row
4 Cursor down one row
5 Cursor left one column
6 Cursor right one column
7 Lock keyboard
8 Unlock keyboard
9 Erase to end of line
10 Erase to end of screen
11 Enter background display mode (reduced

intensity)
12 Enter foreground display mode (normal intensity)
13 Enable protected fields
14 Disable protected fields
15 Delete line
16 Insert line
17 Delete character
18 Insert character
19 Read cursor address
20 Read character at current cursor address
21 Start blinking field
22 End blinking field
23 Start line drawing mode (enable alternate

character set)
24 End line drawing mode (disable alternate

character set)
25 * Set horizontal position
26 * Set vertical position
27 Set terminal Attributes
28 Cursor on
29 Cursor off
30 Start underscore
31 End underscore
32 Start reverse video
33 End reverse video
34 Start reverse blink
35 End reverse blink
36 Turn off screen display
37 Turn on screen display
38 Top left corner
39 Top right corner
40 Bottom left corner
41 Bottom right corner
42 Top intersect
43 Right intersect
44 Left intersect
45 Bottom intersect
46 Horizontal line
47 Vertical line
48 Intersection
49 Solid block
50 Slant block
51 Cross-hatch block
52 Double line horizontal
53 Double line vertical

Page 7-6 Chapter Seven
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

Low-byte
Value

(Decimal)
Meaning

54 Send message to function key line
55 Send message to shifted function key line
56 Set normal display format
57 Set horizontal split (follow with row code)

58 * Set vertical split (39-character columns)
59 * Set vertical split (40-character columns)
60 * Set vertical split column to next character
61 Activate split segment 0
62 Activate split segment 1
63 Send message to host message field
64 Up arrow
65 Down arrow
66 Raised dot
67 End of line marker
68 Horizontal tab symbol
69 Paragraph
70 Dagger
71 Section
72 Cent Sign
73 One-Quarter
74 One-Half
75 Degree
76 Trademark
77 Copyright
78 Registered
79 Print screen
80 Set to wide (132 column) mode
81 Set to normal (80 column) mode
82 Enter transparent print mode
83 Exit transparent print mode
84 Begin writing to alternate page
85 End writing to alternate page
86 Toggle page
87 Copy to alternate page
88 Insert column
89 Delete column
90 Block fill with attribute
91 Block fill with character
92 Draw a box
93 Scroll box up one line
94 Scroll box down one line
95 Select jump scroll
96 Select fast smooth scroll
97 Select medium-fast smooth scroll
98 Select medium-slow smooth scroll
99 Select slow smooth scroll

100 Start underscored, blinking field
101 End underscored, blinking field
102 Start underscored, reverse field
103 End underscored, reverse field
104 Start underscored, reverse, blinking field
105 End underscored, reverse, blinking field
106 Start underscored text without space
107 End underscored text without space
108 Start reverse text without space
109 End reverse text without space
110 Start reverse blinking text without space

Terminal Service System Page 7-7
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

Low-byte
Value

(Decimal)
Meaning

111 End reverse blinking text without space
112 Start underscored blinking text without space
113 End underscored blinking text without space
114 Start underscored reverse text without space
115 End underscored reverse text without space
116 Start underscored reverse blinking text without

space
117 End underscored reverse blinking text without

space
118 Start blink without space
119 End blink without space
120 Set cursor to blinking block
121 Set cursor to steady block
122 Set cursor to blinking underline
123 Set cursor to steady underline
124 Reserved
125 Reserved
126 Reserved
127 Reserved
128 Select top status line without address
129 End status line (all kinds)
130 Select unshifted status line without address
131 Select shifted status line without address

132 * Select black text
133 * Select white text
134 * Select blue text
135 * Select magenta text
136 * Select red text
137 * Select yellow text
138 * Select green text
139 * Select cyan text
140 * Select black reverse text
141 * Select white reverse text
142 * Select blue reverse text
143 * Select magenta reverse text
144 * Select red reverse text
145 * Select yellow reverse text
146 * Select green reverse text
147 * Select cyan reverse text
148 Save a rectangular area
149 Restore a rectangular area
150 Enable full graphics mode
151 Disable full graphics mode
152 Draw box with rounded corner
153 Draw "window" style box
154 Draw double-line box
155 Enable proportionally spaced text
156 Disable proportionally spaced text
157 Select color palette
158 Enable graphics cursor
159 Disable graphics cursor
160 Select graphics cursor style
161 Inquire graphics cursor position
162 Define graphics cursor region
163 Form feed symbol
164 Line feed symbol
165 New line symbol

Page 7-8 Chapter Seven
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

Low-byte
Value

(Decimal)
Meaning

166 Vertical tab symbol
167 Plus-or-minus symbol
168 Greater-than-or-equal symbol
169 Less-than-or-equal symbol
170 Not-equal symbol
171 British pound sign
172 Pi character

173-255 Reserved

Not all terminal drivers have all of the above functions, simply because not all terminals have all of these
features. Be sure to check the availability of a call (by using TRMCHR) before using the TCRT call.

All TCRT codes are reserved for future expansion by Alpha Micro. If you have a specific need
for a new TCRT function, you may contact Alpha Micro Software Development to reserve a
TCRT code number. Using this reservation process avoids problems of conflicting and
incompatible TCRT functions.

Color

TCRT codes with the high order byte set to -2 or -3 are used for color control on terminals that support
color. To select a foreground color, a TCRT call should be executed with the high order byte set to -2,
and the low order byte selecting the desired color from the list below. To select a background color, use
a high-order byte of -3 and a low-order byte of the desired color.

The colors that may be used in the low-order byte are listed below. Note that while only eight colors are
currently defined, all 8 bits of the low order byte are reserved for color definition, allowing up to 256
colors. The first 8 colors are the primary colors, and the remaining colors will have reduced saturation
and lightness as appropriate, according to the HLS (Hue, Lightness, Saturation) color model. Details on
the assignment of colors can be found in the AMOS Terminal Service System User's Guide.

Low-byte Value
(Decimal)

Color

0 Black
1 White
2 Blue
3 Magenta
4 Red
5 Yellow
6 Green
7 Cyan

This will allow a program to be written for a 256 color terminal that could be made to work on an 8 color
terminal by reducing the requested color back to the closest primary color in the terminal driver, probably
by setting the Lightness to 50%, the Saturation to 100%, and rounding the Hue to the closest color.

As an example of setting the color, the following code will select yellow text on a blue background:

MOVW #<-2_8.>+5,D1 ; select FOREGROUND + YELLOW
TCRT ; send the command
MOVW #<-3_8.>+2,D1 ; select BACKGROUND + BLUE

Terminal Service System Page 7-9
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

TCRT ; send the command

Terminals which do not support color will ignore all TCRT calls with the high-order byte set to -2 or -3,
allowing programs which use color commands to also work on monochrome terminals without
modification.

On terminals which support it, the color palette (the selection of available colors) can be changed through
the use of the TCRT -1,157 call.

Additional Features

Many terminals contain additional features, such as proportionally spaced text and variable numbers of
rows and columns, which can also be accessed through the TCRT monitor call. These additional features
use TCRT calls with a negative high-order byte.

Details on these additional features can be found in the AMOS Terminal Service System User's Guide.

RTCRT - Perform a Remote TCRT Call

The TCRT monitor call (described above) provides a terminal independent method of accessing terminal
control functions within the terminal attached to the job issuing the TCRT call. Certain applications,
however, need the ability to perform terminal control functions on terminals not directly attached to the
job. The RTCRT monitor call described in this section provides a method for issuing such remote
terminal control functions.

As with the TCRT call, D1 is loaded with the TCRT function number prior to issuing the call. The
function numbers used by RTCRT are identical to those used by TCRT.

The calling sequence for RTCRT is:

MOVW function,D1 ; select function to perform
RTCRT port ; send the command

The port argument specifies the address of the TCB associated with the terminal on which the terminal
control function is to be performed. You may locate this address by using the TCBIDX monitor call.

TCKI - Check for Input

This call checks to see if there are any characters waiting in the user's terminal input buffer. If there is at
least one character, the Z-bit is set; if not, the Z-bit is cleared. The calling sequence is:

TCKI ; is there any input waiting?
BEQ input ; yes - there is at least one

TRMCHR - Get Terminal Characteristics

This call returns a brief description of the terminal attached to your job in a standardized form. Different
terminals have widely varying characteristics, requiring each program to adapt itself to the particular

Page 7-10 Chapter Seven
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

terminal in use. The ability to use a wide variety of terminals is an important feature of AMOS based
software.

While most of the various terminal functions are entirely independent of a particular terminal's features,
there are times when it is desirable for a program to find out details about the terminal, such as the width
or height of the screen.

The format for calling TRMCHR is:

TRMCHR adr,flags

adr points to an argument formatted as described below, and flags is a combination of bit flags which
affect the operation of the TRMCHR call (also described below).

The argument block pointed to by adr is formatted:

0

2
Terminal flags TC.FLG

4 Number of rows on screen TC.ROW

6 Number of columns on screen TC.COL

10 Number of available colors TC.CLR

12 Current foreground color TC.FGC

14 Current background color TC.BCG

16 Number of rows in window TC.WNR

20 Number of columns in window TC.WNC

22 Length of top status line TC.TSL

24 Length of unshifted bottom status line TC.USL

26 Length of shifted bottom status line TC.SSL

30 Maximum number of characters in
saved area

TC.SVA

32 TC.BMP

Feature bitmap

TC.FLG is a 32-bit field containing flags describing the various characteristics and features of the
terminal. These are the same flags used in the terminal driver and are defined in SYSSYM. It is the
responsibility of each program to check for the availability of a terminal feature before using it. Failure to
do so will result in unpredictable results.

Terminal Service System Page 7-11
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

The list below is only a partial listing of the flags in use. See the AMOS Terminal Service System User's
Manual for a complete and up-to-date list of the flags, as well as the precise meaning of each flag.

Symbol Meaning
TD$ALP Has alternate page
TD$AMS Is an Alpha Micro terminal
TD$BLF Has block fill
TD$BLN Has blink
TD$BOX Has "box" commands
TD$CID Has character insert/delete
TD$CLR Has color capability
TD$DIM Has dim
TD$EOL Has erase to end of line
TD$EOS Has erase to end of screen
TD$EXT Has support for 8-bit extended character sets
TD$KID Has column insert/delete
TD$LID Has line insert/delete
TD$MOD Is a "mode" terminal, rather than a "field" terminal

(displays attributes only when written)
TD$MLT Has multi-key (function key) translation
TD$NSP Has "no space" attribute commands (TCRT -1,106-119)
TD$PHR Has AM-70 color commands (TCRT -1,132-147)
TD$PRT Has printer support
TD$RVA Has reverse video
TD$SMT Has smooth scroll
TD$SPL Has horizontal split screen
TD$STS Has status line
TD$UND Has underscore
TD$132 Has 80/132 column support
TD$GRA Has full graphics capability
TD$VRC Has variable number of rows and/or columns
TD$PRO Has proportionally spaced text capability
TD$GRY Has monochrome gray-scale capability

The flags allowed on the TRMCHR call are:

Symbol Meaning
TC$BMP The TRMCHR call will return a bitmap describing the TCRT functions available on

the terminal, in addition to other information returned. The bitmap contains a single
bit for each TCRT function. If a bit is set to 1, that TCRT function is available. If set
to 0, it is not. Bits are numbered starting with the low-order bit of the first word being
0, corresponding to the TCRT -1,0 function. The bitmap is returned in an area
corresponding to TC.BMP. It contains 256 bits.

TC$CMP The TRMCHR call will return the current contents of the color map. If this flag is not
specified, no color map will be returned. Reserved for future use.

To make it easy to allocate the space required to hold the returned arguments, three symbols have been
defined:

• The first, TC.SIZ, defines the number of bytes returned by TRMCHR without the optional color
map or optional "bitmap."

• The second, TC.SZC, defines the number of bytes returned by TRMCHR with the optional color
map.

• The third, TC.SZB, defines the number of bytes returned by TRMCHR with the optional
"bitmap."

Page 7-12 Chapter Seven
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

Here is an example that uses the TRMCHR call to retrieve all of the available terminal information (both
the standard information and the bitmap):

GETIMP TC.SZB,A5 ; get impure area for returned info
TRMCHR @A5,TC$BMP ; get the information
LEA A1,TC.BMP(A5) ; A1 now indexes the bitmap

Message Calls

Three calls have been defined in SYS.UNV as macros using the TTYI call. These calls are for your
convenience and make your the programs easier to understand. They all take a single argument which is
an ASCII message string to be output to the user terminal. Due to the way macro arguments are
processed, if the message has leading or trailing spaces, or if it has embedded commas, you must enclose
it with angle brackets or part of it will be lost. The three calls are:

TYPE msg ; types message on the user terminal, as is
TYPESP msg ; types message and appends one space to it
TYPECR msg ; types message and appends CRLF to it

Note the message may not contain any slashes (/), since these are used as delimiters for the ASCII
statement in the macros.

TRMRST - Read Terminal Status

This monitor call allows you to read the terminal status word associated with a terminal. This 16-bit field
has certain flags in it you may modify to alter the operation of your terminal calls. The terminal status
word has the following flag positions defined:

Symbol
Octal
Value

Hex
Value

Meaning

T$IMI 1 1 Set to force image mode input (see KBD call)
T$ECS 2 2 Set to suppress echoing of input characters
T$LCL 4 4 Set if terminal has local echoing (half-duplex)
T$DAT 10 8 Set to engage data mode to allow complete data

transparency on input and output (^C, nulls, and 8-bit
characters are all passed through)

T$ILC 20 10 Set to allow lower-case input (disables conversion)
T$XLT 40 20 Set to allow multi-key sequences for function key translation
T$NFK 100 40 Disables all function key processing—overrides T$XLT
T$OIP 200 80 Set if output is in progress (internal flag only)
T$LED 400 100 Set if monitor line editor is in use by this terminal
T$ASN 1000 200 Set if this terminal port is assigned
T$DIS 2000 400 Set if this terminal port is disabled
T$VLD 4000 800 Set if T.POO field contains a valid value
T$LDT 10000 1000 Set if in special line editor mode
T$EXT 20000 2000 Enable 8-bit extended character sets
T$OSP 40000 4000 Output has been suspended (XOFF)
T$JLVL 100000 8000 Output data processing to be done at job level

Because the terminal status word is a resource that must be shared among multiple processors, it is
important you use the TRMRST and TRMWST calls to access it. Direct access to this field (or any other

Terminal Service System Page 7-13
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

field with the TCB) can cause interprocessor deadlock, leading to system failure. The calling sequence
for TRMRST is:

TRMRST dst{,port}

The dst argument receives the 16-bit terminal status word. The optional port argument allows you to
specify the address of a TCB whose status word you wish to read. If you do not specify a second
argument, TRMRST will return the status of the terminal attached to the executing job. You can
determine a terminal's TCB address via the TCBIDX monitor call.

TRMWST - Write Terminal Status

This monitor call allows you to write the terminal status word associated with a terminal. This 16-bit
field has certain flags in it you may modify to affect the operation of various terminal functions. A
description of the contents of the terminal status word is given in the previous section. The calling
sequence is:

TRMWST src{,port}

The src argument provides the 16-bit value you wish written to the terminal status word. The optional
port argument allows you to specify the address of a TCB whose status word you wish to write. You can
determine a terminal's TCB address via the TCBIDX monitor call. If you do not specify a second
argument, TRMWST will write the status to the terminal attached to the executing job.

The TRMWST call will most frequently be used immediately after a TRMRST call, as the most common
operation is to read the current status, update one or more bits, and then to write it back to the terminal
status word. To simplify this process, and to eliminate a common error in software which must
manipulate the terminal status word, the TRMWST call does not allow the setting or resetting of the
T$OIP flag. The T$OIP flag can only be manipulated by using the TINIT monitor call.

The monitor resets the TIMI, TECS, T$DAT, and T$ILC bits in the terminal status word each time
your program exits back to AMOS command mode, thereby restoring normal terminal operation
regardless of what your program may set the terminal status flags to.

TTYIN - Fetch Another Job's Input

The TTYIN call allows one job to get waiting input data from the terminal input buffer of another job.
The character is returned in D1; A5 must index the TCB for the terminal you wish to fetch data from.
The calling sequence is:

MOV tcb ptr,A5 ; get pointer to other jobs terminal
; ; definition table entry

TTYIN ; get character into D1

TTYOUT - Place a Character in Another Job's Output

The TTYOUT call allows one job to put data into another job's terminal output buffer. It is used by the
TRM device driver to perform the output function.

Page 7-14 Chapter Seven
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

The character you wish to output must be in D1; A5 must index the TCB for the terminal you wish to
output to. The calling sequence is:

MOV tcb ptr,A5 ; get pointer to other job's terminal
MOVB #character,D1 ; get character to output
TTYOUT ; send the character

The terminal you output to does not have to be attached to a job for this call to work.

TRMICP - Process Input Character Within Interface Driver

The TRMICP call is executed from within a terminal interface driver to process one character which the
hardware interface has just received from the terminal. D1 must contain the input character to be
processed, and A5 must index the TCB for the specific terminal being serviced. TRMSER then takes the
character and passes it to the terminal driver input routine for pre-processing if desired.

When the terminal driver passes it back, TRMSER edits the character for control codes and other special
characters, then adds it to the terminal input buffer. All the pertinent flags are set automatically to
indicate actions to be taken by the application program when it requests the input data. If the input
character is a break character (line-feed), or if image mode is active, the associated job is awakened to
process the available data. Register D1 is modified.

The calling sequence is:

MOV tcb ptr,A5 ; get pointer to our TCB into A5
MOVB char,D1 ; get character into D1
TRMICP ; hand character to TRMSER

Note TRMICP is also used to implement the FORCE program. If A5 is set to index the TCB of another
job's terminal, TRMICP will cause the character in D1 to be placed in that terminal's input buffer.

TRMOCP - Process Output Character Within Interface Driver

The TRMOCP call is executed from within a terminal interface driver to get the next output character
from TRMSER to be sent to the terminal. This is usually in response to an interrupt from the interface
board, indicating the prior character has been fully output and the board is ready to transmit the next
character. Register A5 must index the TCB for the specific terminal being serviced, and D1 gets the next
available character upon return from TRMSER processing of the call. If there is no more output available
in the output buffer, D1 is set to -1 as a flag, and the associated job is awakened to fill the output buffer
again.

The calling sequence is:

MOV tcb ptr,A5 ; get pointer to our TCB into A5
TRMOCP ; get character into D1
TSTW D1 ; any characters available?
BMI none ; no-

You can also use TRMOCP to get the output characters from a job whose terminal interface driver and
terminal driver have both been defined as PSEUDO. This can be done by pointing A5 to the other job's

Terminal Service System Page 7-15
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

terminal's TCB. Note this use of TRMOCP will only function correctly if the other job's interface driver
(.IDV) is PSEUDO, and the terminal driver (.TDV) is not NULL.

TRMBFQ - Process Output Characters Within Terminal Driver

The TRMBFQ call is a physical output call usually executed from within a terminal driver or a monitor
routine. There are, however, times when it can be used by an assembly language application program.
The TRMBFQ call adds a buffer full of data characters to the output buffering system for a specific
terminal. It does this by linking the buffer into the dynamic output queue list used by TRMSER for this
terminal. When this call is used, D1 must index the buffer to be queued or contain the character to be
output, D3 must contain the number of characters in the buffer, and A5 must index the TCB entry for the
specific terminal. The TRMBFQ call performs the output initiation function if the output system for the
terminal is currently idle.

The calling sequence is:

 MOV tcb ptr,A5 ; index the TCB
 MOV count,D3 ; get character count
 MOV string ptr,D1 ; index output string
 TRMBFQ ; queue up the output

For example, it is often necessary for a terminal driver to output a backspace-space-backspace character
sequence in response to a rubout. The TRMBFQ call should be used to output this sequence. In the
example shown below we assume A5 already indexes the terminal's TCB (as it does within a terminal
driver).

MOV #3,D3 ; get number of characters to output
LEA A6,ERUB ; index the characters to output

 MOV A6,D1 ; get into proper register
TRMBFQ ; queue up the characters
RTN ; return

ERUB: BYTE 10,40,10,0 ; backspace-space-backspace

Another function commonly performed within terminal drivers is the outputting of nulls, used to delay
output during lengthy terminal operations such as clear screen on a CRT, or carriage-return on a
teleprinter.

The example below outputs 20 filler characters (octal 200). This example also assumes A5 has previously
been set up.

MOV #20.,D3 ; output 20 nulls
MOV #200,D1 ; a null is an octal 200
TRMBFQ ; output the characters
RTN ; return to caller

TBUF - Output Large Amounts of Data

TBUF is the normal call your programs can execute to queue up large amounts of data into the terminal
output system of a terminal where the single character calls are considered in-efficient. It is a buffered
call, working through the two output buffers for the terminal, instead of going directly into the output
queue system. If you try to output more data via the TBUF call than there is currently room for in the
output buffers, the job is suspended while the output buffers are unloaded to the terminal. Each time one

Page 7-16 Chapter Seven
The Terminal Service Calls

AMOS Monitor Calls Manual, Rev. 10

of the output buffers empties, the job awakens and the TBUF call proceeds to fill that buffer. This
continues until the original amount of data is exhausted, at which time TBUF returns to the calling
program.

Note this call is efficient only for large amounts of data, not for short strings.

When the call is executed, A2 must index the buffer to be output and D3 must contain the number of
characters to be output (similar to the TRMBFQ call).

The calling sequence is:

MOV char count,D3 ; get number of chars to output
MOV char index,A2 ; index the string to be output
TBUF ; output them

TCBIDX - Index a Terminal Control Block

When you need to gain access to another terminal's TCB, you can use the TCBIDX monitor call to locate
that TCB. You specify the job whose TCB you wish to index by supplying TCBIDX with an ASCII
string giving the terminal name. The TCBIDX call returns the base address of the TCB in the destination
argument you provide. Further access to the TCB should be done by using this base address as an index.

If the specified terminal is located successfully, the Z-bit will be set upon completion of the call. If no
terminal with the specified name can be located, the call returns with the Z-bit reset. Note this assumes
the use of an address register as the destination argument. Use of memory as the destination will corrupt
the return flags.

The calling format is:

TCBIDX string,dst
BNE term-not-found

The following code will locate the TCB for the terminal named TERM1 and display its address on the
terminal.

TCBIDX NAME, A1 ; index TCB with A1
BNE NOTFND ; error - TCB not found
MOV A1,D1 ; get into register to display
OCVT 0,OT$TRM ; display the address
CRLF ; make it pretty

 EXIT ; and return to AMOS

NOTFND: TYPECR <?Unable to locate terminal>
EXIT

NAME: ASCIZ /TERM1/ ; name of terminal to find
EVEN

AMOS Monitor Calls Manual, Rev. 10

Chapter 8
Conversion Monitor Calls

AMOS provides a series of monitor calls devoted to converting data from one format to another.
Included are calls to convert binary to ASCII, ASCII to binary, ASCII to packed RAD50, etc. In
addition to the calls defined in this chapter, Chapter 11 describes additional calls to convert to and from
the various floating point formats.

NUMERIC CONVERSION CALLS

The AMOS monitor contains two calls which perform conversions from a single binary longword value
to an ASCII formatted decimal or octal string. Conversion options allow you to send the string to the
terminal, to an output file, or to a buffer in memory. Options also let you control the format of the result.

Calling Format

Both calls have the same general format and take two arguments, each of which must be an expression
that evaluates to a byte value within the specified range. The two calls are:

DCVT size,flags ; Convert binary number in D1 to decimal
OCVT size,flags ; Convert binary number in D1 to octal

; (hex if J.HEX is set for this job)

Size Byte

The size byte determines the number of digits in the output result. A zero size specifies a floating format
in which the number of digits used is just enough to fully contain the result. A non-zero size specifies a
fixed number of digits for the result with leading zeros being replaced by blanks. In either form, if the D1
value is zero, at least one zero digit will be output as the result.

Flags

The flags byte contains six flags which control the destination of the result string and also some other
formatting options. The following list gives the flag bit positions and the action taken when the flag is
set:

Page 8-2 Chapter Eight
RAD50 Conversion Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Symbol
Octal
Value

Hex
Value

Meaning

OT$ZER 1 1 Disables leading zero blanking
OT$TRM 2 2 Outputs the result to the user terminal
OT$DDB 4 4 Outputs the results to the file whose DDB is

indexed by A2
OT$MEM 10 8 Puts the result in memory at the buffer

indexed by A2 and updates A2
OT$LSP 20 10 Adds one leading space to the result
OT$TSP 40 20 Adds one trailing space to the result

Note that the maximum value you can display using these calls is the maximum value of a 32-bit word.
All numbers are considered unsigned so the largest decimal number is 4,294,967,295; the largest octal
number is 37777777777; and the largest hex number is FFFFFFFF.

If the size byte is non-zero, the effect of the leading-zero blanking flag described above is reversed. That
is, when the size byte is zero, the conversion calls default to leading zero blanking, with OT$ZER turning
that blanking off. When the size byte is non-zero, the calls default to leading zeros, with OT$ZER
specifying that leading zeros are to be blanked.

The following examples may clarify things a bit. All examples assume the value in D1 is 964 (decimal),
and the symbol · in the result field indicates a blank.

Call Displayed Result
DCVT 0,OT$TRM 964
DCVT 0,OT$TRM!OT$LSP · 964
DCVT 0,OT$TRM!OT$TSP 964·
DCVT 5,OT$TRM 00964
DCVT 5,OT$TRM!OT$ZER ·· 964
DCVT 5,OT$TRM!OT$ZER!OT$TSP ·· 964·
DCVT 5,OT$TRM!OT$LSP!OT$TSP · 00964·
DCVT 2,OT$TRM 64 (the 9 is lost)

RAD50 CONVERSION MONITOR CALLS

Radix-50 (RAD50) packing is a system by which three ASCII characters may be packed into a single 16-
bit word using a special algorithm based on the value of octal 50. Radix-50 packing is used throughout
the system where the packing of filenames and other data entities lends itself. The character set that may
be packed RAD50 is limited in scope to the alphanumeric characters, the period, the dollar sign, and the
blank. The following list gives the legal characters that may be packed RAD50 and their equivalent octal
codes:

Conversion Monitor Calls Page 8-3
RAD50 Conversion Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Character RAD50 Code (Octal)
blank 0
A-Z 1-32
a-z 1-32
$ 33

. (period) 34
% 35
0-9 36-47

RAD50 Packing Algorithm

The packing algorithm for a 3-character input to a 16-bit RAD50 result is:

1. The first character code is multiplied by 3100 octal (50 x 50).

2. The second character code is multiplied by 50 and added to the first.

3. The third character code is added to the above to form the result.

The unpacking algorithm merely reverses the above sequence to get the triplet. See Appendix G,
"RAD50 Conversion Table," for information on converting data manually between octal and RAD50.

Packing and Unpacking Calls

There are two monitor calls which perform the above packing and unpacking algorithms. Both calls use
registers A1 and A2 as indexes to the components and require no calling arguments.

PACK - Pack Three ASCII Characters into RAD50

The triplet (three ASCII characters) indexed by A2 is packed into RAD50 form, and the result is left in
the word indexed by A1. A1 is incremented by two to receive the next result word for multiple packing.
A2 is left indexing the first character, which was not included in the packing of this triplet. The PACK
call terminates packing and forces blank fill for any input which does not contain three valid RAD50
characters. For the PACK call, a blank is considered an illegal input character and terminates packing.

The calling sequence for PACK is as follows:

MOV buff addr,A1 ; index the RAD50 buffer
MOV ascii addr,A2 ; index the ASCII string
PACK ; convert ASCII to RAD50

UNPACK - Unp ack Three RAD50 Characters into ASCII

The word in the address indexed by A1 is unpacked, and the triplet is left in the three bytes beginning
with the byte currently indexed by A2. A1 is incremented by two for the next word, and A2 is
incremented by three for the next triplet result. Blanks are legal in unpacking and are placed into the
result if they are decoded from the input word.

MOV rad50 addr,A1 ; index the RAD50 string
MOV buff addr,A2 ; index the ASCII buffer
UNPACK ; convert RAD50 to ASCII

Page 8-4 Chapter Eight
Printing Conversion Calls

AMOS Monitor Calls Manual, Rev. 10

PRINTING CONVERSION CALLS

Three calls in the monitor accept a system unit input and convert the unit to standard printable form and
then output it to the user terminal. These calls are used to print out file specifications, filenames, and
project-programmer numbers. Each call takes one standard argument which addresses the system unit to
be converted and printed.

PFILE - Type a Filespec from a DDB to the Terminal

The argument specifies the address of a file DDB, and the PFILE call extracts the parameters in the file
specification words. It then prints them on the user terminal in the standard format of
dev:filnam.ext[p,pn]. The account is not printed if it is the same as the user's current login. Calling
sequence:

PFILE adr ; print the file specification

OFILE - Output a File Specification

Provides a flexible method for converting full or partial file specifications from internal RAD50 packed
format (from the DDB) to an ASCII character string. Allows you to direct the ASCII output to your
terminal, to memory, or to an output file (by using a DDB). In addition, OFILE allows you to specify
which portions of the file specification you wish to convert, allowing you to output only a device, a
device and PPN, or a full file specification. The format is:

OFILE ddb, flags

ddb points to a standard DDB containing the file specification to be output, and flags contains binary
flags specifying the destination of the ASCII text and the portions of the filespec to be converted:

Symbol
Octal
Value

Hex
Value

Meaning

OT$TRM 2 2 Output the specification to the user's terminal
OT$DDB 4 4 Output the specification to the DDB indexed by A2
OT$MEM 10 8 Output the specification to memory, using the pointer

contained in A2
OT$LSP 20 10 Output a leading space before the filespec
OT$TSP 40 20 Output a trailing space after the filespec
OT$OFD 100 40 Output the device specification
OT$OFN 200 80 Output the file name and extension
OT$OFP 400 100 Output the PPN if not current login

Note that if OTOFD, OTOFN, and OT$OFP are all set to zero (that is, no portion of the file
specification is selected) OFILE will output the entire specification.

However, if the user is logged into the PPN specified in the DDB, the PPN is not displayed unless it is
the only part of the specification to be output. That is, the current PPN is output only if OT$OFP is
specified and OT$OFD and OT$OFN are not specified.

Here is an example of how to use OFILE to output a file specification to the memory buffer BUFF(A5):

Conversion Monitor Calls Page 8-5
Case Conversion Calls

AMOS Monitor Calls Manual, Rev. 10

LEA A2,BUFF(A5) ; Load effective address into A2
OFILE DDB(A4),OT$MEM!OT$OFD!OT$OFN!OT$OFP

PRNAM - Output a Filename

The argument addresses a 3-word filename.extension block (packed RAD50), and the PRNAM call prints
the converted result on the user terminal in the standard format of filnam.ext. Calling sequence:

PRNAM adr ; print the filename

PRPPN - Output a PPN

The argument addresses a 1-word project-programmer code, and the PRPPN call prints the converted
result on the user terminal in the standard format of proj,prog. The p,pn is output in octal, regardless of
the setting of J.HEX. The calling sequence is:

PRPPN adr ; print the ppn

VCVT - Output a Version Number

The VCVT monitor call is provided as a convenient way of unpacking and displaying the version number
contained in the program header area. (The program header area is defined via the PHDR macro,
discussed in Appendix A. Information on the packed format of the version number may also be found
there.) The format is:

VCVT adr,flags ; convert version number at adr
; to a string

adr points to a 32-bit packed version number (see Appendix A for the packed format), and flags are
defined:

Symbol
Octal
Value

Hex
Value

Meaning

OT$TRM 2 2 Outputs the result to the user terminal
OT$DDB 4 4 Outputs the results to the file whose DDB is

indexed by A2
OT$MEM 10 8 Puts the result in memory at the buffer indexed

by A2 and updates A2
OT$LSP 20 10 Adds one leading space to the result
OT$TSP 40 20 Adds one trailing space to the result

These flags are (intentionally) the same as those for DCVT, OCVT, FCVT, and ERRMSG.

For example, to display the version number at address VER on the user's terminal, you would specify:

VCVT VER,OT$TRM ; display version number

CASE CONVERSION CALLS

Two monitor calls are provided for converting from lower to upper case and from upper to lower case.

Page 8-6 Chapter Eight
Case Conversion Calls

AMOS Monitor Calls Manual, Rev. 10

UCS - Convert Lower to Upper Case

This monitor call converts the character in D1 to upper case. Only alphabetic (a-z) characters are affected.
If the conversion resulted in the character changing, the Z-flag is set; otherwise, it is reset. Calling
sequence:

MOVB char,D1 ; get the character
UCS ; convert to upper case

The high-order three bytes are not modified.

LCS - Convert Upper to Lower Case

This monitor call converts the character in D1 to lower case. Only alphabetic (A-Z) characters are
affected. If the conversion resulted in the character changing, the Z-flag is set; otherwise, it is reset.
Calling sequence:

MOVB char,D1 ; get the character
LCS ; convert to lower case

The high-order three bytes of register D1 are not modified.

AMOS Monitor Calls Manual, Rev. 10

Chapter 9
Input Line Processing Calls

When an operator command executes a program, register A2 is left pointing to the first non-blank
character on the command line which follows the command name itself. The command program normally
interprets the remainder of the line and uses it to determine the files to act on, the record number to
dump, the devices to access, etc. For example, the M68 call requires the name of the program and any
switch options to follow the M68 command name on the same line. The macro assembly program then
processes the program name and the switch options by way of the A2 index which indexes the rest of the
command line. This command line is actually the user's terminal input buffer.

Not only does the command input line use A2, the KBD monitor call also leaves A2 set to the input line
buffer which contains the user input data. Also, various translators and file processing programs may read
in a line of data, and then set index A2 to the base of that line for scanning. For this reason, a number of
monitor calls exist which perform scanning and conversion functions based on an input line which is
indexed by A2. Some of the calls merely test the character indexed by A2 for a specific condition and
return with flags set, based on the result of the test. In these instances A2 is not modified. In calls which
perform scan conversions, A2 is updated to point to the character which terminated the conversion. With
the exception of the FILNAM call, none of these calls require any arguments. Conversion results are
always delivered back to the user in register D1.

ALF - TEST A CHARACTER FOR ALPHABETIC

The ALF call tests the character indexed by A2 to determine whether it is alphabetic (A-Z; a-z); the Z-
flag is set if it is, and cleared if it is not. A2 is not changed. Calling sequence:

ALF ; is character alphabetic?
BEQ label ; yes -

NUM - TEST A CHARACTER FOR NUMERIC

The NUM call tests the character indexed by A2 to determine whether it is numeric (0-9); the Z-flag is
set if it is, and cleared if it is not. A2 is not changed. Calling sequence:

NUM ; is character numeric?
BEQ label ; yes -

TRM - TEST A CHARACTER FOR TERMINATOR

The TRM call tests the character indexed by A2 to determine if it is a legal terminator defined as a blank,
tab, comma, semicolon, carriage-return, line-feed, or null. The Z-flag is set if the character is a
terminator, and cleared if it is not. A2 is not changed. Calling sequence:

TRM ; is character a field terminator?
BEQ label ; yes -

Page 9-2 Chapter Nine
LIN - Test a Character for Line Terminator

AMOS Monitor Calls Manual, Rev. 10

LIN - TEST A CHARACTER FOR LINE TERMINATOR

The LIN call tests the character indexed by A2 to determine if it is a legal end-of-line character defined as
a semicolon, carriage-return, line-feed, or null. The Z-flag is set if it is an end-of-line character, and
cleared if it is not. A2 is not changed. Calling sequence:

LIN ; is character a line terminator?
BEQ label ; yes -

BYP - BYPASS BLANKS

The BYP call advances index A2 past all characters which are blanks or tabs, and leaves it indexing the
first non-blank, non-tab character it finds. Calling sequence:

BYP ; skip over blanks

GTDEC - INPUT A DECIMAL NUMBER

The GTDEC call uses index A2 to process a decimal number whose value may be from 0 to
4,294,967,295 in the input line (leading zeros are legal), and to deliver the resulting binary value back in
D1. The N-flag is set if there is an error (i.e., result is greater than 4,294,967,295). GTDEC updates A2 to
point to the character following the decimal input number. In case of an error, A2 is left indexing the
digit that would have caused the overflow past 4,294,967,295 (useful for multiple precision processing
techniques). Calling sequence:

GTDEC ; read in number
BMI error ; error if too large

GTOCT - INPUT AN OCTAL NUMBER

The GTOCT call uses index A2 to process an octal number whose value may be from 0 to 37777777777
in the input line (leading zeros are legal), and to deliver the resulting binary value back in D1. The N-
flag is set if there is an error (i.e., result is greater than 37777777777). GTOCT updates A2 to point to
the character following the octal input number.

If J.HEX is set for this job (via the SET HEX command), this call processes input in hexadecimal instead
of octal (the maximum number then being hex FFFFFFFF). Calling sequence:

GTOCT ; read in number
BMI error ; error if too large

GTPPN - INPUT A PROJECT-PROGRAMMER NUMBER

The GTPPN call uses index A2 to process a project-programmer number in the standard format of
proj,prog, and to deliver the resultant binary code back in D1. The format dictates that project numbers
be octal numbers between 1 and 377, and that programmer numbers be octal numbers between 0 and 377.

Input Line Pro cessing Calls Page 9-3
FILNAM - Input a Filename

AMOS Monitor Calls Manual, Rev. 10

The N-flag is set if the PPN was not in valid format. GTPPN updates A2 to point to the character
following the PPN. Calling sequence:

GTPPN ; read in ppn
BMI error ; error if invalid format

FILNAM - INPUT A FILENAME

The FILNAM call uses index A2 to process a filename.extension input string, leaving the RAD50 packed
3-word result in the three words starting with the address specified as the first argument of the call. In
format, this argument is a standard monitor call argument. The second argument is a 1- to 3-character
extension to be used in case no explicit extension is entered in the input string. FILNAM updates A2 to
index the terminating character. The Z-bit is set if there was no filename to process (i.e., the first
character was not a legal RAD50 character). Calling sequence:

FILNAM adr,default extension ; read in filename to adr
BEQ error ; error if no filename to process

AMOS Monitor Calls Manual, Rev. 10

Chapter 10
Date and Time Conversion Calls

Alpha Micro computer systems contain a battery backed-up clock/calendar, providing the system with an
accurate reading of the current time and date. This clock/calendar is supported through a series of monitor
calls, which isolate the program from the different hardware implementations used to provide the
clock/calendar service. These calls allow you to both read and set the time and date. This chapter
discusses the calls and the data formats used to represent time and date within AMOS.

In addition to the calls discussed below, the system library, SYSLIB.LIB, contains several utility routines
to accept and display dates and times. See Appendix D for further information.

GDATES - GET DATE IN SEPARATED FORMAT

This call returns the current date in separated format (Month-Day-Year) in the specified destination
argument. The calling sequence is:

GDATES dst ; get date

The result is formatted as:

Day Month Day of Week Year

31 24 23 16 15 8 7
0

In this illustration, day is 1-31, month is 1-12 for January to December, day of week is 0-6 for Monday to
Sunday, and year is the year biased by –1900. Therefore 1980 will return 80 (decimal) and 2010 returns
110 (decimal).

GDATEI - GET DATE IN INTERNAL FORMAT

This call returns the current date in internal format in the specified data register. Internal format is a true
Julian date, where the date is a 32-bit integer corresponding to the number of solar days since Greenwich
noon of the last concurrence of:

• The 4-year leap year cycle

• The 7-year solar cycle

• The 19-year Metonic cycle (235 lunations = 19 years—2 hours)

• The 15-year indiction cycle (Roman taxation interval).

Page 10-2 Chapter Ten
GTIMES - Get Time in Separated Format

AMOS Monitor Calls Manual, Rev. 10

Using this format, a value of zero corresponds to January 1, 4713 BC at 12:00 GMT. This format makes
it quite easy to determine the day of the week or the number of days between two dates. It is also useful
for historians as it predates just about all known events to the exact date, making all historical dates
positive Julian dates.

The call accepts a standard destination argument. The format is:

GDATEI dst ; get system date

The date returned by this call may be packed into a 16-bit quantity by converting it to number of days
since January 1, 1900 12:00 GMT. This may be done by simply subtracting 2415021 (decimal) from the
quantity returned by GDATEI.

GTIMES - GET TIME IN SEPARATED FORMAT

This call returns the current time of day in separated format in the specified destination argument. The
calling sequence is:

GTIMES dst ; get system time

The result is formatted as:

Minutes Hours Seconds

31 24 23 16 15 8 7
0

The hours, minutes, and seconds are binary numbers. Hours are in 24-hour format.

GTIMEI - GET TIME IN INTERNAL FORMAT

This call returns the current time of day in internal format (seconds since midnight) in the specified
destination. The calling sequence is:

GTIMEI dst

SDATES - SET SYSTEM DATE FROM SEPARATED FORMAT

The SDATES monitor call allows you to set the system date. The call accepts one argument—the date
you wish to set—in separated format. (Separated format is discussed above, under the GDATES monitor
call.) The calling sequence is:

SDATES src ; set the system date
BNE error ; branch if error

You may set the system date only if you are logged into [1,2]. If you attempt to set the date while logged
into any other PPN, the SDATES call returns with the Z-flag off. If the call successfully sets the system
date, it sets the Z-flag on.

Date and Time Conversion Calls Page 10-3
STIMES - Set System Time from Separated Format

AMOS Monitor Calls Manual, Rev. 10

See the section "Setting the System's Clock/Calendar," below, for more about SDATES.

STIMES - SET SYSTEM TIME FROM SEPARATED FORMAT

The STIMES monitor call allows you to set the system time. The call accepts one argument—the time
you wish to set—in separated format. (Separated format is discussed above, under the GTIMES monitor
call.) The calling sequence is:

STIMES src ; set the system time
BNE error ; branch if error

You may set the system time only if you are logged into [1,2]. If you attempt to set the time while logged
into any other PPN, the STIMES call returns with the Z-flag off. If the call successfully sets the system
time, it sets the Z-flag on.

Note that some systems, in particular the AM-100/L, AM-1000, AM-1200, AM-1500, and AM-2000, do
not allow the seconds field to be set. This is a limitation of the clock/calendar integrated circuit used on
these systems. These systems will use whatever the current value of the seconds field is when executing
an STIMES monitor call.

YEAR 2000 ISSUES

AMOS has a number of features to assist with the changeover from the 20th to the 21st century. The
problem which these features (if they are used correctly in an application) help to solve is the
interpretation of two-digit years when the four-digit year changes from 19xx to 20xx. The AMOS system
is geared to handle this changeover; the date in the system's clock/calendar chip will roll over correctly
from December 31, 1999 to January 1, 2000, and AMOS library routines and monitor calls will reflect
this change.

AMOS Date Formats

AMOS distinguishes between three classes of dates:

• Dates used to set the system's clock/calendar chip

• Extended directory format date information

• All other dates

 AMOS manipulates dates in three formats:

• Internal date format is not affected by the century changeover, as the internal date is held as the
number of days since January 1, 4713 BC on a proleptic calendar.

• Separated date format is defined with the year value being held as one byte, as described earlier
in this chapter. The value in this byte is the number of years since 1900. Therefore, 1996 would
be represented by a decimal year value of (1996 - 1900) = 96, and the year 2010 would be
represented a decimal year value of (2010 - 1900) = 110. With the year held as a single byte, the

Page 10-4 Chapter Ten
Year 2000 Issues

AMOS Monitor Calls Manual, Rev. 10

absolute maximum range of years in separated format is from 1900 to (1900 + 255) = 2155.
Some date manipulation algorithms may handle only a subset of these separated date year values.

• Extended directory format dates use separated date format as a starting point for the packing and
unpacking algorithms implemented in the $PAKDT and $UNPDT library calls, but use only 7
bits to hold the year value. Thus they can hold dates in the range of 1900 to 2027 inclusive.

AMOS Date Conversion Routines

For converting ASCII date representations to separated date format, AMOS supplies two routines:
$IDTIM and $IDTIMX. Both routines deal with two-digit and four-digit year strings, but in different
ways. $IDTIM treats a two-digit year as being in the 20th century (i.e., as a year 19xx). Otherwise it
expects to find a four-digit year value in the range of 1900 through 2155 inclusive. Any other values will
cause the routine to set an error flag. $IDTIMX implements the same rules as setting the system date: a
two-digit year in the range 80 through 99 is treated as the year 1980 through 1999 inclusive, and values
of 0 through 79 are treated as the year 2000 through 2079 inclusive. A four-digit year must be in the
range of 1900 through 2155 inclusive. Like $IDTIM, values outside this range will set an error flag.

For converting separated date representations to ASCII strings, AMOS supplies two routines, $ODTIM
and $ODTM2. Both routines deal with years in the same way. A value of 1900 is added to the year byte.
If a four-digit year is requested, all four digits are displayed. If a two-digit year is requested, only the last
two digits of the result are shown.

Setting the System's Clock/Calendar

The system's clock/calendar chip is set by using the SDATES call, which takes a date in separated format
and sets the system's date appropriately. Due to the design of many calendar chips, especially those made
many years before 2000, there is no place to store the century: the year is stored as two digits. This
means that you cannot set the date to read it back unambiguously: if you read back the system date after
setting it to 1/1/1960 or to 1/1/2060, you get 1/1/60 without any century information. As the system date
is active, being automatically updated at midnight every day, this poses a problem as the year rolls over
from 1999 to 2000. How does AMOS tell programs that the year is now 2000, not 1900?

AMOS 2.3 solves this problem transparently to all programs. AMOS restricts the range of years to which
the system date can be set to the years 1980 through 2079 inclusive. You cannot set the system date to a
date outside this range. To set the system date, you use the SDATES monitor call. Its longword
parameter must have the year byte set to 80. (representing 1980) through 179. (representing 2079)
inclusively. Any other value will produce undefined results. You must set the date explicitly once after
upgrading to AMOS 2.3, or after downgrading to an earlier version of AMOS. After that initial setup of
the calendar chip, AMOS date processing will function correctly.

Retrieving the system date through the GDATES call will return a year byte in the same range of values
(80. through 179. inclusively). If the date was set correctly, no other values can be retrieved.

Note that this restriction in range for setting and retrieving the system date only affects system date
setting and retrieving. Separated date format is still valid over the range 0 (representing 1900) through
255 (representing 2155) inclusively as far as storing values are concerned. Remember that date
manipulation algorithms may have a more restricted range.

AMOS Monitor Calls Manual, Rev. 10

Chapter 11
Floating Point Monitor Calls

AMOS provides a complete set of monitor calls supporting three different floating point data types. Calls
are provided for floating point arithmetic (addition, subtraction, multiplication, and division), for
conversion to and from binary, and for conversion to and from ASCII text. Through the use of these calls
you can avoid needing to know the intricacies of floating point arithmetic and treat floating point as just
another data type available to the assembly language programmer.

AMOS supports the use of three different floating point data types. The first is a 48-bit format unique to
Alpha Micro. This format provides slightly better than 12 digits of accuracy within floating point
operations. AMOS also supports two floating point formats conforming to the IEEE standard format for
floating point numbers. The first, a 32-bit single precision format, provides 8 digits of accuracy. The
second, a 64-bit double precision format, provides 15 digits of accuracy.

The Alpha Micro 48-bit format is compatible with all Alpha Micro computer systems, and is in use
within thousands of existing applications, making it the most common format used in Alpha Micro
software. It is implemented as a series of software routines within AMOS.

The IEEE format 32- and 64-bit formats are compatible with a wide variety of other computer systems.
The availability of greater precision in the 64-bit format also makes it attractive. If floating point
hardware is available on a given system, that hardware will be used for all computation. If such hardware
is not available, AMOS will use software floating point routines to implement the IEEE format support.

ALPHA MICRO 48-BIT FLOATING POINT FORMAT

AMOS supports a 48-bit floating point format consisting of a 40-bit mantissa, 8-bit exponent, and a sign-
bit. Because a normalized mantissa always starts with a binary one in the high-order bit, this bit is not
stored in the floating point number but is always assumed to be present. This allows us to represent the
40-bit mantissa in only 39 bits.

The floating point format supported by AMOS is fully compatible with the floating point representation
used by the AM-100 and AM-100/T processors.

Floating point numbers are represented in three 16-bit words formatted as follows:

Page 11-2 Chapter Eleven
Alpha Micro 48-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s Exponent (x) High mantissa (a)

Middle mantissa(b)

Low mantissa (c)

The values of s, x, a, b, and c (considered as unsigned integer fields) determine a floating point number
"f" according to the following formulas:

if (x > 0) then
 f(s,x,a,b,c) = (if s = 0 then 1 else - 1)
 x (1 + a 2- 7 + b 2- 23 + c 2- 39)
 2x- 129

if (x = 0) and (s, a, b, or c ≠ 0) then f(s,x,a,b,c) is undefined

if (x = 0) and (s, a, b, and c = 0) then f(s,x,a,b,c) is zero

Given the definitions above, note that you can correctly compare a floating point number to zero by
comparing only the first word to zero.

When negating a floating point number: if the number is zero, leave it unchanged; otherwise,
complement the sign bit.

Floating Point Arithmetic

AMOS supports four calls to perform 48-bit format floating point arithmetic: FADD, FSUB, FMUL, and
FDIV, which perform addition, subtraction, multiplication, and division, respectively.

These four calls, and the FCMP call, all have one level of indirection built into the source and destination
operands. Thus, the instruction FADD A3,A5 does not add the numbers in A3 and A5, but rather adds
the two numbers pointed to by A3 and A5 (just as if they had been in an ADD @A3,@A5 instruction).

Because of the way these calls are implemented, you may not use SP as an operand to any of the
floating point monitor calls (e.g., FADD SP,A5 is illegal).

FADD - Floating Point Add

The FADD monitor call performs 48-bit format floating point addition. It adds the floating point number
pointed to by the source operand to the floating point number pointed to by the destination operand and
stores the result in the location pointed to by the destination operand. The overflow condition is cleared,
and other condition codes are set by testing the high word of the result.

Floating Point Monitor Calls Page 11-3
Alpha Micro 48-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

The calling sequence for FADD is:

FADD src,dst

FSUB - Floating Point Subtract

The FSUB monitor call performs 48-bit format floating point subtraction. It subtracts the floating point
number pointed to by the source operand from the floating point number pointed to by the destination
operand and stores the result in the location pointed to by the destination operand. The overflow
condition is cleared, and other condition codes are set by testing the high word of the result.

The calling sequence for FSUB is:

FSUB src,dst

Note that unlike the FSUB instruction on the AM-100 and AM-100/T processors, the AMOS FSUB
monitor call does not negate the source operand in memory.

FMUL - Floating Point Multiply

The FMUL monitor call performs 48-bit format floating point multiplication. It multiplies the floating
point number pointed to by the source operand by the floating point number pointed to by the destination
operand and stores the result in the location pointed to by the destination operand. The overflow
condition is cleared, and other condition codes are set by testing the high word of the result.

The calling sequence for FMUL is:

FMUL src,dst

FDIV - Floating Point Divide

The FDIV monitor call performs 48-bit format floating point division. It divides the floating point
number pointed to by the source operand into the floating point number pointed to by the destination
operand and stores the result in the floating point number pointed to by the destination operand. The
overflow condition is cleared, and other condition codes are set by testing the high word of the result.

The calling sequence for FDIV is:

FDIV src,dst

If the source operand is zero, a divide by zero exception occurs. See Section 11.1.5 for further
information.

Floating Point Conversion

AMOS supports five conversion calls to convert 48-bit format floating point numbers to and from
longwords and extended words, and to ASCII.

Page 11-4 Chapter Eleven
Alpha Micro 48-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

FFTOL - Floating Point to Longword Conversion

The FFTOL monitor call truncates an AMOS format floating point number to a two’s complement 32-bit
integer. If the floating point number is greater than the largest 32-bit integer or less than the smallest 32-
bit integer, the least significant 32 bits of the resulting integer will be returned. The calling format is as
follows:

FFTOL src,dst

Note that only memory effective addresses are valid as source operands.

FLTOF - Longword to Floating Point Conversion

The FLTOF monitor call converts a two's-complement 32-bit integer to 48-bit format floating point. The
calling format is as follows:

FLTOF src,dst

Note that only memory effective addresses are valid as destination operands.

FFTOX - Floating Point to Extended Conversion

The FFTOX monitor call truncates an AMOS format floating point number to a 40-bit two's-complement
integer. If the floating point number is greater than the largest 40-bit integer or less than the smallest 40-
bit integer, the most significant 40 bits of the resulting integer (all 40 bits of the mantissa) are returned.
This call preserves more precision than the FFTOL call. The calling format is as follows:

FFTOX src,dstl,dsth

src points to the floating point number to be converted, dstl specifies where the low-order longword is to
be stored, and dsth specifies where the high-order byte of the result is to be stored.

Note that only memory effective addresses may be used to specify the source operand.

FXTOF - Extended to Floating Point Conversion

The FXTOF monitor call converts a 40-bit two's-complement integer to 48-bit format floating point.
This call preserves more precision than the FLTOF call. The calling format is as follows:

FXTOF srcl,srch,dst

srcl specifies the low-order longword of the source, srch specifies the high-order byte of the source, and
dst specifies where the floating point result is to be stored.

Note that only memory effective addresses may be used to specify the destination operand.

Floating Point Monitor Calls Page 11-5
Alpha Micro 48-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

FFTOA - Floating Point to ASCII Conversion

The FFTOA monitor call converts a 48-bit format floating point number to a packed ASCII
representation of that number. FFTOA is intended for use by runtime routines that must perform
formatting and editing before displaying the result. For a more convenient way to display floating point
numbers, see the FCVT monitor call (Section 11.1.3.3).

The calling format of FFTOA is:

FFTOA src,dst

src specifies where to get the floating point number and dst specifies the location of a 14-byte buffer.
This 14-byte buffer is formatted as one 16-bit word containing the decimal exponent, and 12-bytes
containing ASCII characters representing the decimal mantissa.

You may obtain a valid display of the floating point number by displaying the sign of the number, a
decimal point, the characters in the decimal mantissa, an "E," and the signed integer contained in the
decimal exponent.

Note that only memory effective addresses may be used as the source and destination operands.

FFTOAX - Floating Point to ASCII Extended Conversion

The FFTOAX monitor call converts a floating point operand to 13 decimal digits. It operates the same as
the FFTOA Floating Point to ASCII conversion call except that a 15-byte buffer instead of a 14-byte
buffer must be provided by the src pointer, and the dst pointer must point to an area at least 13 bytes
long.

The calling format of FFTOAX is:

FFTOAX src,dst

src specifies where to get the floating point number and dst specifies the location of a destination buffer.

FFTOAX has been provided because the 40-bit mantissa of an AMOS floating point number provides
somewhat more than 12 decimal digits of precision, and being able to convert a 13th decimal digit may
provide a better indication of the value of the number for very precise calculations. The accuracy of the
thirteenth digit will depend on the value of the two most significant digits of the converted number. The
higher the value of these two digits, the less the information contained in the 13th digit. When the first
two digits are "10," the thirteenth digit is fully precise.

Floating Point Input/Output Calls

AMOS supports three floating point input/output calls: one to get a floating point number from a
memory buffer, one to get a floating point number from a I/O device, and one to output floating point
numbers.

Page 11-6 Chapter Eleven
Alpha Micro 48-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

GTFLT - Get a Floating Point Number

The GTFLT monitor call converts an ASCII representation of a 48-bit format floating point number to
internal floating point format. GTFLT uses A2 as a pointer to the ASCII input string, and stores the result
in the specified destination. It updates A2 to point to the character following the floating point number. A
floating point number is terminated by the first character that is not a legal continuation of the number.

The calling format is:

GTFLT dst

Note that only memory effective addresses are valid as the destination operand.

The format of the ASCII input consists of an optional sign ("+" or "-"), up to twelve significant decimal
digits with an optional embedded decimal point ("."), and an optional exponent. If an exponent is
specified, it must consist of an "E" followed by an optional sign ("+" or "-") and the exponent value itself
(in the range ± 38). For example:

1 3.14159265357 1E38
1.0 - 1.123E- 12 +12.4

You may use the OT$NLD flag with GTFLT to disable language definition files, if the characters caused
by the language interfere with the read. The format is:

GTFLT @A5,OT$NLD

GTFLTF - Get a Floating Point Number from a File

The GTFLTF monitor call performs the same function as the GTFLT call, except that it reads its input
string from a file whose DDB is indexed by A2, rather than from a memory buffer.

The calling format (with A2 indexing a DDB), is as follows:

GTFLTF dst

Note that only a memory effective address may be used as the destination operand.

You may use the OT$NLD flag with GTFLTF to disable language definition files, if the characters
caused by the language interfere with the read. The format is:

GTFLTF @A5,OT$NLD

FCVT - Output a Floating Point Number

The FCVT monitor call returns an ASCII representation of a 48-bit format floating point number to
memory, to a file, or to the user's terminal. It outputs the number in the standard format shown below.
For more extensive formatting of floating point numbers, use the FFTOA call described in Section
11.1.2.5.

Floating Point Monitor Calls Page 11-7
Alpha Micro 48-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

FCVT is called in the following format:

FCVT src,size,flags,precision,scale

The operand fields are defined as follows:

src A memory effective address specifying where the floating point number to be
displayed is to be fetched from.

Size Specifies the minimum width of the field to be displayed. The number appears
right justified within the field, padded with leading spaces.

Flags Contains formatting flags defined as follows:

Symbol Meaning
OT$FIX Fixed format. "Precision" actually contains the number of digits to

print after the decimal point.
OT$TRM Output the result to the user's terminal.
OT$DDB Output the result to the file whose DDB is indexed by A2.
OT$MEM Output result to memory buffer indexed by A2 and update A2.
OT$LSP Add one leading space to the result.
OT$TSP Add one trailing space to the result.
OT$NSP Don't replace the leading "-" with a space on positive numbers.
OT$NLD Disable all use of language definition files.
OT$SCI Force output to scientific notation in the same format as used when

the value is too small or large to output in the default format.

Results are undefined when both OT$SCI and OT$FIX are used.

Precision If bit 0 of flags is a zero, then precision specifies how many decimal digits to
round to before displaying the number (the default is 11). If bit 0 of flags is a
one, then precision specifies how many decimal digits to display after the
decimal point (the default is zero).

Scale Specifies a decimal scaling factor. The floating point number is divided by the
scaling factor prior to being output. The default scaling factor is zero.

Three output formats are possible: scientific notation ("sx.xxxEsxx"), decimal notation ("sxxx.xxx" —
variable length fraction), and fixed notation ("sxxx.xxx00" — rounded/zero padded fraction). Scientific
notation is used when the number is too large or too small to be displayed in decimal notation, or too
large to be displayed in fixed notation. When fixed notation is specified, a precision of 11 is used for
scientific notation.

Miscellaneous Floating Point Calls

In addition to the calls described above, AMOS also supports two miscellaneous calls: FCMP and
FPWR, used for comparing two 48-bit format floating point numbers and for scaling floating point
numbers, respectively.

Page 11-8 Chapter Eleven
Alpha Micro 48-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

FCMP - Floating Point Compare

The FCMP call compares two 48-bit format floating point numbers and sets the condition codes
appropriately. Note that the two floating numbers compared are those pointed to by the source and
destination operands, not the operands themselves.

FCMP src,dst

FCMP sets the condition codes for a signed branch.

FPWR - Floating Point Multiply by a Power of Ten

The FPWR call multiplies a 48-bit format floating point number by a power of ten. This operation is
frequently used when performing scaled arithmetic.

The calling format is:

FPWR src,arg

The source argument, which must be a memory effective address, is multiplied by the power of ten
specified by the argument. The power of ten may be either positive or negative.

For example, to multiply the floating point number pointed to by A5 by 1000 (103), you would specify:

FPWR @A5,#3

To multiply the same number by 1/1000 (10- 3):

FPWR @A5,#-3

Floating Point Error Trapping

During certain 48-bit format floating point operations, error conditions can occur. These error conditions
are division by zero, numeric overflow, and numeric underflow. AMOS provides a method of trapping
these errors so that your program can take corrective action.

If you do not specify that these errors are to be trapped, AMOS executes its default error processing
routines which display an appropriate error message on your terminal and abort the program back to
AMOS command level.

If you wish instead to handle these errors yourself, you should place the address of your error processing
routine in JOBFPE in your job's JCB. (Further information on JCBs and how to access them may be
found in Chapter 2.) Then, when an error occurs, AMOS executes your error processing routine.

When your error processing routine is called, the condition codes are set as follows:

Floating Point Monitor Calls Page 11-9
IEEE 32- and 64-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

Condition Meaning
V = 1 and N = 0 Floating underflow has occurred
V = 1 and N = 1 Floating overflow has occurred
V = 0 and N = 1 Divide by zero was attempted

A6 then points to the floating point number that caused the error. Your routine may modify this number
if desired. For example, you might want to handle an underflow condition by returning a zero. Your error
routine must preserve all registers and return with the condition codes set for the returned floating point
result (TSTW @A6 will accomplish this).

If your trap routine simply executes a RTN instruction, default values are used as the result. For
underflow, a value of 0.0 is supplied; for overflow and divide by zero, the largest positive number is used
(approximately 1E38).

IEEE 32- AND 64-BIT FLOATING POINT FORMAT

In addition to the 48-bit format previously discussed, AMOS supports the IEEE format for 32-bit (single
precision) and 64-bit (double precision) floating point numbers. These formats, because they have been
standardized by the IEEE, are compatible across a wide variety of computer systems. This ensures that
floating point data can be transferred between different system types, as well as ensuring a consistent
level of accuracy across different computers.

AMOS implements IEEE format floating point support in two ways: hardware and software. If a 68881
floating point coprocessor is present in your system, all floating point arithmetic is performed directly in
hardware, giving the optimum in calculation performance. Because not all systems are equipped with a
floating point coprocessor—some cannot physically accept the device—AMOS also provides a software
emulation of the most common floating point operations.

What this means to you is complete transparency as to whether a system has hardware floating point or
not. By limiting your use of 68881 instructions to the supported subset, your software runs regardless of
the presence or lack of hardware floating point support.

The single-precision, 32-bit floating point format consists of a 23-bit mantissa, 8-bit biased exponent,
and a sign-bit. The exponent is biased by 127. Single precision numbers are represented in two 16-bit
words formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s Exponent Fraction

Fraction

The double-precision, 64-bit floating point format consists of a 52-bit mantissa, 11-bit biased exponent,
and a sign-bit. The exponent is biased by 1023. Double precision numbers are represented in four 16-bit
words formatted as follows:

Page 11-10 Chapter Eleven
IEEE 32- and 64-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s Exponent Fraction

Fraction

Fraction

Fraction

IEEE Format Floating Point Arithmetic

AMOS implements a subset of the 68881 floating point coprocessor instruction set in software. By
limiting your use of 68881 instructions to the supported subset, your software runs regardless of the
presence or lack of hardware floating point support. This section describes the subset implemented under
AMOS.

If you choose to use 68881 instructions other than those described here, then your software will be
limited to running only on those systems containing the coprocessor.

This section is not meant to be a complete reference to the 68881, but is instead intended to give you an
overview of the supported instructions. For more complete information, please refer to the Motorola
MC68881 Floating Point Coprocessor User's Manual.

Supported 68881 Floating Point Instructions

The following list describes the 68881 floating point coprocessor instructions that are supported by the
AMOS software emulation capability. Also shown are the supported data types and the assembler syntax
used with these instructions.

FABS Data format y: B,W,L,S,D,X,P

 FABSy ea,FPn
 FABSX FPm,FPn
 FABSX FPn

FADD Data format y: B,W,L,S,D,X,P

 FADDy ea,FPn
 FADDX FPm,FPn

FBCC Data format y: W,L

 FBCC label

Floating Point Monitor Calls Page 11-11
IEEE 32- and 64-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

FCMP Data format y: B,W,L,S,D,X,P

 FCMPy ea,FPn
 FCMPX FPm,FPn

FDIV Data format y: B,W,L,S,D,X,P

 FDIVy ea,FPn
 FDIVX FPm,FPn

FINT Data format y: B,W,L,S,D,X,P

 FINTy ea,FPn
 FINTX FPm,FPn
 FINTX FPn

FINTZ Data format y: B,W,L,S,D,X,P

 FINTZy ea,FPn
 FINTZX FPm,FPn
 FINTZX FPn

FMOD Data format y: B,W,L,S,D,X,P

 FMODy ea,FPn
 FMODX FPm,FPn

FMOVE Data format y: B,W,L,S,D,X,P

 FMOVEy ea,FPn
 FMOVEy FPm,ea
 FMOVEP FPm,ea:#k ; k is k-factor
 FMOVEP FPm,ea:Dn ; Dn is dynamic k-factor

FMUL Data format y: B,W,L,S,D,X,P

 FMULy ea,FPn
 FMULX FPm,FPn

FREM Data format y: B,W,L,S,D,X,P

 FREMy ea,FPn
 FREMX FPm,FPn

FSQRT Data format y: B,W,L,S,D,X,P

 FSQRTy ea,FPn
 FSQRTX FPm,FPn
 FABSX FPn

FSUB Data format y: B,W,L,S,D,X,P

 FSUBy ea,FPn
 FSUBX FPm,FPn

Page 11-12 Chapter Eleven
IEEE 32- and 64-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

IEEE Format Floating Point Conversion

AMOS supports calls to convert 48-bit floating point format numbers to and from IEEE format 32- and
64-bit floating point numbers. These calls allow you the freedom to mix floating point formats when
dealing with data from multiple sources. Care must be exercised, however, to ensure that proper accuracy
is maintained across the differing formats.

IEEE format floating point numbers may be converted to and from binary and packed decimal form via
the 68881 floating point instruction FMOVE, discussed in the previous section.

FATOIS - Convert 48-bit Format to IEEE 32-bit Format

The FATOIS monitor call converts a 48-bit format floating point number to an IEEE format 32-bit single
precision floating point number. The calling format is as follows:

FATOIS adr

adr specifies the address from which to select the 48-bit floating point number as well as the address in
which to store the converted result.

Note that only memory effective addresses are valid as operands.

FATOID - Convert 48-bit Format to IEEE 64-bit Format

The FATOID monitor call converts a 48-bit format floating point number to an IEEE format 64-bit
double precision floating point number. The calling format is as follows:

FATOID adr

adr specifies the address from which to select the 48-bit floating point number as well as the address in
which to store the converted result. Be sure to allow sufficient space for the larger result.

Note that only memory effective addresses are valid as operands.

FISTOA - Convert IEEE 32-bit Format to 48-bit Format

The FISTOA monitor call converts an IEEE format 32-bit single precision floating point number to a 48-
bit format floating point number. The calling format is as follows:

FISTOA adr

adr specifies the address from which to select the 32-bit floating point number as well as the address in
which to store the converted result. Be sure to allow sufficient space for the larger result.

Note that only memory effective addresses are valid as operands.

Floating Point Monitor Calls Page 11-13
IEEE 32- and 64-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

FIDTOA - Convert IEEE 64-bit Format to 48-bit Format

The FIDTOA monitor call converts an IEEE format 64-bit single precision floating point number to a 48-
bit format floating point number. The calling format is as follows:

FIDTOA adr

adr specifies the address from which to select the 32-bit floating point number as well as the address in
which to store the converted result.

Note that only memory effective addresses are valid as operands.

IEEE Format Floating Point I nput/Output Calls

AMOS supports three IEEE format floating point input/output calls: one to get a floating point number
from a memory buffer, one to get a floating point number from an IO device, and one to output floating
point numbers. Each of these calls is provided in a single (32-bit) and double (64-bit) precision form.

GTFLTS - Get a Single Precision Floating Point Number

The GTFLTS monitor call converts an ASCII representation of a floating point number to 32-bit IEEE
format single precision floating point format. GTFLTS uses A2 as a pointer to the ASCII input string,
and stores the result in the specified destination. It updates A2 to point to the character following the
floating point number. A floating point number is terminated by the first character that is not a legal
continuation of the number.

The calling format is:

GTFLTS dst

Note that only memory effective addresses are valid as the destination operand.

The format of the ASCII input consists of an optional sign ("+" or "- "), up to twelve significant decimal
digits with an optional embedded decimal point ("."), and an optional exponent. If an exponent is
specified, it must consist of an "E" followed by an optional sign ("+" or "- ") and the exponent value
itself (in the range ±38). For example

1 3.14159265357 1E38
1.0 - 1.123E- 12 +12.4

You may use the OT$NLD flag with GTFLTS to disable language definition files, if the characters
caused by the language interfere with the read. The format is:

GTFLTS @A5,OT$NLD

GTFLTD - Get a Double Precision Floating Point Number

The GTFLTD monitor call converts an ASCII representation of a floating point number to 64-bit IEEE
format double precision floating point format. GTFLTD uses A2 as a pointer to the ASCII input string,

Page 11-14 Chapter Eleven
IEEE 32- and 64-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

and stores the result in the specified destination. It updates A2 to point to the character following the
floating point number. A floating point number is terminated by the first character that is not a legal
continuation of the number.

The calling format is:

GTFLTD dst

Note that only memory effective addresses are valid as the destination operand.

The format of the ASCII input consists of an optional sign ("+" or "- "), up to twelve significant decimal
digits with an optional embedded decimal point ("."), and an optional exponent. If an exponent is
specified, it must consist of an "E" followed by an optional sign ("+" or "- ") and the exponent value
itself (in the range - 308 to +307). For example:

1 3.14159265357 1E38
1.0 - 1.123E- 00 +12.4

You may use the OT$NLD flag with GTFLTD to disable language definition files, if the characters
caused by the language interfere with the read. The format is:

GTFLTD @A5,OT$NLD

GTFLFS - Get a Single Precision Floating Point Number from a File

The GTFLFS monitor call performs the same function as the GTFLTS call, except that it reads its input
string from a file whose DDB is indexed by A2, rather than from a memory buffer.

The calling format (with A2 indexing a DDB), is as follows:

GTFLFS dst

Note that only a memory effective address may be used as the destination operand.

You may use the OT$NLD flag with GTFLFS to disable language definition files, if the characters
caused by the language interfere with the read. The format is:

GTFLFS @A5,OT$NLD

GTFLFD - Get a Double Precision Floating Point Number from a File

The GTFLFD monitor call performs the same function as the GTFLTD call, except that it reads its input
string from a file whose DDB is indexed by A2, rather than from a memory buffer.

The calling format (with A2 indexing a DDB), is as follows:

GTFLFD dst

Note that only a memory effective address may be used as the destination operand.

Floating Point Monitor Calls Page 11-15
IEEE 32- and 64-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

You may use the OT$NLD flag with GTFLFD to disable language definition files, if the characters
caused by the language interfere with the read. The format is:

GTFLFD @A5,OT$NLD

FCVTS, FCVTD - Output an IEEE Format Floating Point Number

The FCVTS and FCVTD monitor calls returns an ASCII representation of an IEEE format single or
double precision floating point number to memory, to a file, or to the user's terminal. It outputs the
number in the standard format shown below.

FCVTx is called in the following format:

FCVTx src,size,flags,precision,scale

x specifies whether a single or double precision source is specified.

The operand fields are defined as follows:

src A memory effective address specifying where the floating point number to be
displayed is to be fetched from.

size Specifies the minimum width of the field to be displayed. The number appears
right justified within the field, padded with leading spaces.

flags Contains formatting flags defined as follows:

Symbol Meaning
OT$FIX Fixed format. "Precision" actually contains the number of digits

to print after the decimal point.
OT$TRM Output the result to the user's terminal.
OT$DDB Output the result to the file whose DDB is indexed by A2.
OT$MEM Output result to memory buffer indexed by A2 and update A2.
OT$LSP Add one leading space to the result.
OT$TSP Add one trailing space to the result.
OT$NSP Don't replace the leading "-" with a space on positive numbers.
OT$NLD Disable all use of language definition files.

precision If bit 0 of flags is a zero, then precision specifies how many decimal digits to
round to before displaying the number (the default is 15). If bit 0 of flags is a
one, then precision specifies how many decimal digits to display after the
decimal point (the default is zero).

scale Specifies a decimal scaling factor. The floating point number is divided by the
scaling factor prior to being output. The default scaling factor is zero.

IEEE Format Floating Point Error Trapping

During certain IEEE format floating point operations, error conditions can occur. These error conditions
are: division by zero, numeric overflow, and numeric underflow. Additionally, if the floating point is
being performed by hardware (as opposed to software simulation), the errors "branch or set on unordered

Page 11-16 Chapter Eleven
IEEE 32- and 64-bit Floating Point Format

AMOS Monitor Calls Manual, Rev. 10

condition," "signaling NAN," "operand error," and "inexact result" can occur. AMOS provides a method
of trapping these errors so that your program can take the appropriate action.

If you do not specify that these errors are to be trapped, AMOS executes its default error processing
routines which display an appropriate error message on your terminal and abort the program back to
AMOS command level.

If you want instead to handle these errors yourself, you should place the address of your error processing
routine in JOBIEE in your job's JCB. Then, when an error occurs, AMOS executes your error processing
routine. Further information on JCBs and how to access them may be found in Chapter 2.

When your error processing routine is called, the cause of the error can be determined by examining
register D0:

Octal
Value

Hex
Value

Meaning

1 1 Inexact result
4 Divide by zero was attempted

10 8 Floating underflow has occurred
20 10 Floating overflow has occurred
40 20 Operand error

100 40 Signaling NAN
200 100 Branch or set on unordered condition

If your trap routine simply executes a RTN instruction, default values are used as the result. For
underflow, a value of 0.0 is supplied; for overflow the largest positive number is used; divide by zero and
other errors are treated as fatal errors, causing the job to abort to AMOS command level.

AMOS Monitor Calls Manual, Rev. 10

Chapter 12
Generalized Output Monitor Calls

AMOS provides a series of monitor calls to use for generalized, destination independent output. These
calls all duplicate functions you can perform with other calls, but are presented here in their general
purpose form. These calls are very useful when doing output you may want to send to either a file or to
the user's terminal. An example of such an application is the DSKANA program, which, at the user's
option, sends its output to either the terminal or to a listing file.

Because the calls described in this chapter are generalized versions of other calls, they are inherently less
efficient than the specific call. For example, the OUT call, when used to place a byte in a memory buffer
can be replaced with a simple MOVB instruction that may be 30-40 times more efficient. For this reason,
you should use these calls only when you do not have a fixed output destination.

OUTPUT FLAGS

All calls described in this chapter take a common set of flags that effect the destination of the output and
specify its formatting. These flags are:

Symbol
Octal
Value

Hex
Value

Meaning

OT$TRM 2 2 Outputs the result to the user terminal
OT$DDB 4 4 Outputs the result to the file whose DDB

is indexed by A2
OT$MEM 10 8 Puts the result in memory at the buffer

indexed by A2 and updates A2

If the call does not specify any flags, the call fetches them from D6. Thus, the following two calls are
equivalent:

OUT OT$TRM

is the same as:

MOV #OT$TRM,D6
OUT

OUT - OUTPUT ONE CHARACTER

The OUT call outputs one character from D1 to the destination specified by the formatting flags.

The calling sequence is:

MOVB char, D1 ; get character to output
OUT flags ; output the character

Page 12-2 Chapter Twelve
OUTI - Output a String of Characters

AMOS Monitor Calls Manual, Rev. 10

OUTI - OUTPUT A STRING OF CHARACTERS

The OUTI call outputs a string of characters that follows the call itself, up to but not including a null
byte. The call could be used as follows to output two lines of data to the terminal:

OUTI OT$TRM
ASCII /line 1 data/
BYTE 15
ASCII /line 2 data/
BYTE 15, 0
EVEN

The OUTI call automatically appends a line-feed to all carriage-returns included in the string.

OUTL - OUTPUT A STRING OF CHARACTERS INDEXED

The OUTL call is similar to the OUTI call in that it outputs a string of characters up to a null byte. But
instead of following the call, the string of characters for the OUTL call may be located anywhere in
memory. OUTL takes two arguments, a memory effective address specifying where the string is located,
and the formatting flags. The OUTL call appends a line-feed to each carriage-return contained in the
output string.

The calling sequence is:

MOV ptr to string,adr ; get pointer to string to output
OUTL adr,flags ; output the string

MESSAGE OUTPUT CALLS

Three calls are defined in SYS.UNV as macros using the OUTI call. These calls are for convenience and
make your program easier to understand. They all take two arguments: the formatting flags and an ASCII
message string that is to be output. Due to the way macro arguments are processed, if the message has
leading or trailing spaces, or if it has embedded commas, it must be enclosed in angle brackets or part of
it will be lost. The three calls are:

OUTS flags,msg ; outputs message as is
OUTSP flags,msg ; outputs message and appends one space
OUTCR flags,msg ; outputs message and appends a CRLF pair

SMSG - OUTPUT A SYSTEM MESSAGE

Outputs a system message from the SYSMSG message definition file to a terminal, memory buffer, or an
output file (by using a DDB). The format is:

SMSG msg #, flags

Generalized Output Monitor Calls Page 12-3
SMSG - Output a System Message

AMOS Monitor Calls Manual, Rev. 10

msg # Is the message number to be output

flags Specifies the destination and format of the ASCII text to be output:

Symbol
Octal
Value

Hex
Value

Meaning

OT$LDQ 1 1 Output a leading question mark before the message
OT$TRM 2 2 Output the specification to the user's terminal
OT$DDB 4 4 Output the specification to the DDB indexed by A2
OT$MEM 10 8 Output the specification to memory, using the pointer

contained in A2
OT$LSP 20 A Output a leading " - " before the message
OT$TSP 40 20 Output a trailing " - " after the message
OT$LPC 200 80 Output a leading percent sign before the message
OT$SPC 400 100 Output a leading space before the message
OT$CR 1000 200 Output a carriage-return line-feed pair after the message
OT$UPC 2000 400 Force the first character of the message to be upper case
OT$NUL 4000 800 Output a null after the message

For example, to output message #43 to the memory buffer BUFF(A5) with a leading question mark:

LEA A2,BUFF(A5)
SMSG #43.,OT$MEM!OT$LDQ

AMOS Monitor Calls Manual, Rev. 10

Chapter 13
Miscellaneous Monitor Calls

The monitor calls discussed in this chapter do not fit into any of the categories treated thus far.

EXIT - RETURN TO AMOS COMMAND LEVEL

This is the normal means that a program uses to terminate processing and return to monitor command
mode. The EXIT call takes no arguments. The monitor, upon executing the EXIT call, deletes all
temporary memory modules in the user partition and resets any parameters that are program dependent
such as JOBBPT, etc. It also releases all assigned devices at this time, and returns the user terminal to the
monitor command mode, ready to process another operator command.

Calling sequence:

EXIT ; back to AMOS

CTRLC - BRANCH ON CONTROL-C

Whenever a Control-C is entered on a terminal keyboard (usually to abort a program), no action takes
place immediately; but the monitor sets a flag in the JCB status word, which the program must test. An
application program can use the CTRLC call to check the status of the Control-C flag (in the JCB status
word) and branch to a specific address if the flag is set. This call is a convenience since the application
program could perform the same task, with a few instructions, by locating its own JCB status word and
checking the J.CCC flag within it. The format of this call is:

CTRLC routine-address

routine-address is the address to branch to within the program if the Control-C flag is set.

The CTRLC call does not reset the J.CCC flag but merely indicates that it is set (this allows nested
routines to unwind themselves correctly). The application program must then reset the flag explicitly by
clearing it in the JCB status word, or implicitly by performing the EXIT call, which kills the program and
returns to monitor mode, clearing J.CCC.

JLOCK AND JUNLOK - PREVENT CONTEXT SWITCHING

The JLOCK call prevents context switches from occurring and allows the current user to run until a
JUNLOK is performed. You can use this call to protect critical sections of code from being executed by
more than one user at a time. A typical example of this would be a routine that sends a command byte to
an I/O device controller and then reads the result. If no JLOCK was used, one user could send a
command byte and then, before that user can read the result, a context switch to another job could occur.
This new job could then execute the same routine, destroying the first job's result. By placing a JLOCK
before the command write, and a JUNLOK after the result is read, you can avoid this problem.

Page 13-2 Chapter Thirteen
JLOCKI - Wait for I/O, Then Prevent Context Switching

AMOS Monitor Calls Manual, Rev. 10

You should only use JLOCKs in situations where they are truly necessary. Excessive or unwise use of
JLOCKs can slow down the performance of your system and/or cause a deadlock situation. In almost all
cases, use of RQST and RLSE is a better way of protecting critical sections of code. Also, don't use
JLOCK and then perform I/O within the locked state—use JLOCKI (discussed below) in that case.

Calling sequence:

JLOCK ; prevent context switching
… ; code to be protected
JUNLOK ; re-enable context switching

JLOCKI - WAIT FOR I/O, THEN PREVENT CONTEXT SWITCHING

The JLOCKI call is similar to the JLOCK call (discussed above) except that it waits for all I/O to be
completed before granting the lock. Like JLOCK, JLOCKI prevents context switches from occurring and
allows the current user to run until a JUNLOK is performed. You can use this call to protect critical
sections of code from being executed by more than one user at a time.

JLOCKI is used exactly like JLOCK in situations where disk I/O is to be performed within the locked
state. It must not be used within drivers or anywhere else where the caller is already inside an I/O
operation, or a deadlock will result.

The same warnings concerning excessive use of the JLOCK call (discussed above) also apply to
JLOCKI.

Calling sequence:

JLOCKI ; wait for I/O before preventing context
… ; switching code to be protected
JUNLOK ; re-enable context switching

PLOCK AND PUNLOK - PREVENT PROCESS CONTEXT SWITCHING

The PLOCK and PUNLOK calls work very much like the JLOCK and JUNLOK calls, except that
instead of locking a single job, they lock the issuing job and any processes it may have spawned.

These calls are particularly useful in multi-tasking application software which must allow all spawned
processes to run, but does not wish other jobs or processes to be able to run.

The first PLOCK call issued by a job prevents any process not related to the issuing job from running.
"Related" means that it is either a parent or child process. The relation can go up or down as many levels
as currently exist.

PLOCK calls may be nested, and multiple PLOCK calls issued by different but related processes are
properly handled.

Calling sequence:

PLOCK ; prevent context switching

Miscellaneous Monitor Calls Page 13-3
RSTCON - Restore Context

AMOS Monitor Calls Manual, Rev. 10

… ; code to be protected
PUNLOK ; re-enable context switching

RSTCON - RESTORE CONTEXT

The RSTCON call resets the stack pointer (SP) to the base of the stack within the current context.
RSTCON is a convenient way to reset the stack pointer without interfering with the operation of the
AMOS or PCALL monitor calls.

The calling format is:

RSTCON ; reset stack point to base of stack

RQST - REQUEST CONTROL OF A SEMAPHORE

A0 points to a 4-word semaphore which may conventionally be associated with any type of resource
(disk, buffer, queue block, etc.). When a job requires access to a resource, it should RQST the semaphore
associated with that resource. RQST decrements the semaphore count (representing the number of
available resources) by 1. If the resulting count is greater than or equal to 0, RQST returns and allows
access to that resource. If the difference is less than 0, RQST places the job in a wait chain until the
resource is available.

To illustrate: suppose a job needs to access one of 20 available queue blocks. A semaphore with an initial
value of 20 (to represent the available queue blocks) could be set up and accessed prior to any attempts to
allocate a queue block. A RQST call decrements the count from 20 to 19, confirms that 19 is greater than
or equal to 0, then returns control of the job so it can get a queue block. If none of the 20 queue blocks
were available (i.e., the semaphore count ≤ 0), the job would be placed in a wait state until a queue block
was identified as freed via a RLSE call. (See Section 13.8.)

Sample calling sequence (based on example above):

LEA A0,SEM ; index the semaphore
RQST ; request the semaphore
...

SEM: LWORD 20. ; count of available blocks
LWORD 0 ; place for wait queue

For additional information on semaphores and their use, consult any one of the many available operating
systems textbooks.

RLSE - RELEASE CONTROL OF A SEMAPHORE

If, upon execution of the RQST call (see the previous section), the semaphore count is less than or equal
to 0 (i.e., none of the resources requested is available), RQST puts the requesting job to sleep in a wait
chain. When one job is finished with one of those resources, a RLSE call on the semaphore associated
with that resource increments the count by 1 and determines if the result is less than or equal to 0. If it is,
RLSE awakens the next job in the wait chain and allows it to finish the RQST.

Page 13-4 Chapter Thirteen
PCALL - Invoke Program as Subroutine

AMOS Monitor Calls Manual, Rev. 10

For example, if none of 20 queue blocks is currently available, the count is less than or equal to 0—let's
say it's 0. Before a job tries to get a queue block, a RQST on the semaphore decrements the count from 0
to -1 and places the job in a wait chain. After a job frees a queue block, it uses the RLSE call on the
semaphore associated with "queue blocks." This call increments the semaphore count by 1, resulting in 0,
and wakes the first job in the wait chain, which allows it to continue and allocate a queue block. The
following diagram illustrates the semaphore:

A0 0

2
Semaphore count

4

6
Wait chain

Figure 13-1: Semaphore Layout

Sample code to release the semaphore we requested in the RQST example above is as follows:

LEA A0, SEM ; index the semaphore
RLSE ; release it

PCALL - INVOKE PROGRAM AS SUBROUTINE

PCALL is similar to the standard machine instruction call (CALL), except return is not done via the RTN
instruction but is accomplished via the EXIT supervisor call. The format is:

PCALL subroutine-address

subroutine-address is the address of the program you wish to call.

AMOS - EXECUTE AMOS COMMAND AS SUBROUTINE

When AMOS is used as a monitor call, it treats the character string pointed to by A2 as a monitor
command line, and it executes the AMOS command in this command line without leaving the current
program. The calling sequence is:

MOV ptr to string, A2 ; index the command string
AMOS

Be sure to terminate the command string properly. Most AMOS programs expect the command
string to end with a CR/LF pair.

Although the AMOS call was intended for use with programs, it can also be used to execute command
files. Since the monitor handles command files differently than programs, the AMOS call acts a little
differently for command files than for programs:

1. Each time the AMOS call is used in your program to invoke a command file, that command file
is queued in memory without being executed.

2. When your program exits, the monitor executes the command files in reverse of the order in
which they were queued in memory.

Miscellaneous Monitor Calls Page 13-5
TIMER - Enter Item Into Timer Queue

AMOS Monitor Calls Manual, Rev. 10

TIMER - ENTER ITEM INTO TIMER QUEUE

The operating system maintains an internal clock-driven queue. The monitor processes the items in this
queue after a specific amount of time has elapsed. The TIMER monitor call allows you to insert items
into this queue. The call format is:

TIMER adr ; insert item into queue

The specified argument must point to a timer block (typically a monitor queue block) formatted as
follows:

A0 0

2
Link to next entry

4

6
Timer count

10

12
Routine address/flag

Figure 13-2: Timer Block

Where the "Link to next entry" is set by the TIMER call, "Timer Count" is the unsigned number of clock
ticks you wish to wait before the queue entry is processed, and "Routine Address/Flag" contains one of
two items:

1. If "Routine Address/Flag" is non-zero, it is treated as the address of a routine to be called when
the specified amount of time has elapsed.

2. If "Routine Address/Flag" is zero, then it will be set non-zero when the specified amount of time
has elapsed.

If you specify that a routine is to be executed, that routine may modify registers A0, A6, D0, D6, and D7.
All other registers must be preserved. Remember that this routine is being called at the interrupt level;
therefore, you should take extreme care to minimize the amount of time spent in the routine.

The timer queue is driven by the system real-time clock, which operates with a precision of 100
microseconds.

When your timer routine is executed, register A0 will be indexing the word immediately following the
routine address/flag word in the timer queue entry. By subtracting 148 from this register, it can be made to
point to the first word of the timer queue entry, easing the task of re-inserting the timer block via another
TIMER call, or returning the queue block via a QRET call.

You may execute a TIMER call from within a routine that is called via the TIMER call to cause
repetitive calls to your timer routine.

Once the specified amount of time has elapsed, and the routine has been called or the flag set, the timer
queue entry is de-queued. If you wish to have a routine called repeatedly, you must re-insert the timer
queue entry via another TIMER call.

Page 13-6 Chapter Thirteen
DQTIMR - Remove Item From Timer Queue

AMOS Monitor Calls Manual, Rev. 10

If a routine is initiated with the TIMER call, then that routine cannot use the SLEEP call.

To remove a timer queue entry that has not yet expired, use the DQTIMR call, described below. You
must use a system queue block as the timer block if you intend to use DQTIMR.

DQTIMR - REMOVE ITEM FROM TIMER QUEUE

When using the timer queue, situations arise where an active timer queue element must be removed from
the queue before it has timed out. The DQTIMR routine provides a standard method for removing such
active elements. The call format for DQTIMR is:

DQTIMR adr ; remove item from queue

The specified argument must point to an active timer block that is currently within the system timer
queue. This entry will be removed from the timer queue, and any other entries in the queue will be
adjusted as necessary.

Note that this call only removes the timer block from the active timer queue. This call assumes the timer
queue entry being de-queued is a system queue block—it won't work if it isn't.

If the address you specify is not an active timer queue block, this call does nothing. To avoid possible
deadlocks, your program should be SVLOKed, or otherwise protected, to prevent a timer block from
expiring prior to attempting to de-queue it.

ERRMSG - OUTPUT STANDARD ERROR MESSAGE

The ERRMSG call provides a standard method of outputting system error messages. ERRMSG accepts
two arguments: the number of the standard system error to be displayed, and flags that specify the output
destination and formatting. You can find a list of the standard system errors that can be displayed with
ERRMSG under Error Codes in Chapter 6.

The flags used with ERRMSG are:

Symbol
Octal
Value

Hex
Value

Meaning

OT$LDQ 1 1 Outputs a leading question mark ("?") and capitalizes
the first character of the error message

OT$TRM 2 2 Outputs the result to the user terminal
OT$DDB 4 4 Outputs the results to the file whose DDB is indexed

by A2
OT$MEM 10 8 Puts the result in memory at the buffer indexed by A2

and updates A2
OT$LSP 20 10 Adds a " - " sequence to the start of the message
OT$TSP 40 20 Adds a " - " at the end of the message

The calling sequence is:

ERRMSG src, flags

Miscellaneous Monitor Calls Page 13-7
SMSG - Output System Message

AMOS Monitor Calls Manual, Rev. 10

For example, if A3 points to a DDB which contains an error code, and you want to display that error on
the user's terminal, with a leading question mark, you would specify:

ERRMSG D.ERR(A3), OT$TRM!OT$LDQ

If the error byte (D.ERR) of the DDB contained a 3 (D$EFNF) error code, the example above would
display "?File not found" on the user's terminal.

SMSG - OUTPUT SYSTEM MESSAGE

The SMSG call provides a method of outputting standard system messages from the system message file
SYSMSG. By using this single, centralized message file, messages can easily be translated into different
languages. Along with the language definition tables, this facility allows a single system to support
multiple languages at the same time.

SMSG accepts two arguments: the number of the system message to be displayed and flags that specify
the output destination and formatting.

Note that SMSG destroys the contents of register D1, overwriting it with the message number you
specify.

The flags used with SMSG are:

Symbol
Octal
Value

Hex
Value

Meaning

OT$LDQ 1 1 Outputs a leading question mark ("?") and capitalizes
the first character of the error message

OT$TRM 2 2 Outputs the result to the user terminal
OT$DDB 4 4 Outputs the results to the file whose DDB is indexed

by A2
OT$MEM 10 8 Puts the result in memory at the buffer indexed by A2

and updates A2
OT$LSP 20 10 Adds a " - " sequence to the start of the message
OT$TSP 40 20 Adds a " - " at the end of the message
OT$LPC 200 80 Precedes the message with a "%"
OT$SPC 400 100 Adds a space to the end of the message
OT$CR 1000 200 Adds a carriage return to the end of the message
OT$UPC 2000 400 Forces the first character of the message to upper

case
OT$NUL 4000 800 Adds a null byte to the end of the message

The calling sequence is:

SMSG message, flags

For example, if you want to output message number 5 on the user's terminal, with a leading question
mark, you would specify:

SMSG #5, OT$TRM!OT$LDQ

Page 13-8 Chapter Thirteen
STDERR - Perform Standard Error Processing

AMOS Monitor Calls Manual, Rev. 10

STDERR - PERFORM STANDARD ERROR PROCESSING

When a program is processing its own exceptions via the JOBERC vector, there are times when it is best
to allow AMOS to perform its own normal exception processing. A typical example would be where a
program wanted to handle one specific type of error, but wanted all others to perform normal exception
processing.

The STDERR monitor call provides a method by which an exception that has caused a trap to a job's
JOBERC vector can abort the JOBERC routine and resume normal exception processing. This call can
only be executed from within a JOBERC exception routine.

The calling format is:

STDERR

This call takes no arguments and does not return to the calling program.

SVLOK - DISABLE INTERRUPTS

The SVLOK monitor call enables certain critical operations to execute as one single unit, without the
possibility of interrupts. SVLOK disables all interrupts until the processor is "unlocked" via an SVUNLK
monitor call.

The calling format is:

SVLOK ; lock out interrupts

Note that SVLOK cannot be nested; that is, no matter how many SVLOK instructions are executed, one
single SVUNLK instruction re-enables interrupts.

The SVLOK call can only be used while in supervisor mode. Any attempt to use SVLOK when in user
mode will result in a "privileged instruction" error trap.

The SVLOK call is intended for use only by operating system routines. Improper use of this monitor call
can cause system failure.

Future versions of AMOS may not support the use of the SVLOK call. For this reason, we
recommend you don't use it.

SVUNLK - ENABLE INTERRUPTS

The SVUNLK monitor call enables processor interrupts that have been disabled by the SVLOK monitor
call.

The calling sequence is:

SVUNLK ; enable interrupts

Miscellaneous Monitor Calls Page 13-9
SUPVR - Enter Supervisor Mode

AMOS Monitor Calls Manual, Rev. 10

The SVUNLK call can only be used while in supervisor mode. Any attempt to use SVUNLK when in
user mode will result in a "privileged instruction" error trap.

The SVUNLK call is intended for use only by operating system routines. Improper use of this monitor
call can cause system failure.

Future versions of AMOS may not support the use of the SVUNLK call. For this reason, we
recommend that you don't use it.

SUPVR - ENTER SUPERVISOR MODE

The 680xx family of processors supports at least two distinct processor modes: Supervisor and User.
Certain machine instructions are not allowed in user mode. The SUPVR monitor call allows a user to
enter supervisor mode to have access to these instructions.

The calling sequence is:

SUPVR ; enter supervisor state

The user may re-enter user mode by use of the LSTS instruction.

The SUPVR call is intended for use only by operating system routines. Improper use of this monitor call
can cause system failure.

Future versions of AMOS may not support the use of the SUPVR call. For this reason, we
recommend that you don't use it.

DEVCHR - DETERMINE DEVICE CHARACTERISTICS

The DEVCHR calls returns characteristics of a given device, allowing the program to tailor its operation
based on the type of device in use. Gives you a brief description of the specified device in a standard
form, so you do not have to search tables and drivers. The format is:

DEVCHR ddb, table

ddb points to a standard DDB containing the specification of the device you want information on. This
DDB must be INITed, and have a buffer allocated for it prior to the DEVCHR call. The parameter table
is a pointer to a table where the information will be placed by the call. The argument block pointed to by
"table" is formatted as:

Page 13-10 Chapter Thirteen
DSKFRE - Determine Number of Free Disk Blocks

AMOS Monitor Calls Manual, Rev. 10

Symbol Meaning
DC.FLG A 32-bit field containing flags that describe device features. The flags are:

DC$FSD Device is file structured
DC$ATT Device uses an alternate track table to track bad areas
DC$LOG Device is a logical unit
DC$SHR Device is sharable
DC$ASN Device is currently assigned to a job
DC$MNT Device is currently mounted
DC$NAC Device is set to "no network access"
DC$14D Device uses extended format directories

DC.BLK 32-bit field containing the number of blocks on the device

DC.ATT 32-bit field containing the number of bytes in the alternate track table associated
with the device. Unless DC$ATT flag is set, this entry is meaningless

DC.BUF 32-bit field containing the standard buffer size used by the device, expressed in
bytes

DC.BMS 32-bit field containing the size of the bitmap used by the device. Meaningless
unless DC$FSD flag is set.

DC.JOB 32-bit field containing a pointer to the JCB of the job the device is assigned to.
Only valid when the device is NOT sharable (DC$SHR = 0) and the device is
assigned DC$ASN = 1)

DC.PHY 16-bit field containing the physical device number of the device

DC.LOG 16-bit field containing the logical unit number, within the physical unit, of the device

DC.SPR 20 bytes reserved for future expansion

To make it easy to allocate the space required to hold the returned arguments, the symbol DC.SIZ defines
the number of bytes returned by DEVCHR.

Here is a sample use of DEVCHR:

FSPEC DDB(A5) ; get the device name
INIT DDB(A5) ; INIT a buffer
DEVCHR DDB(A5),DC(A5) ; get the characteristics
MOV DC+DC.BUF(A5),D1 ; get buffer size

DSKFRE - DETERMINE NUMBER OF FREE DISK BLOCKS

Returns the number of free blocks contained on a file-structured device, as well as the largest contiguous
free space contained on the device. The format is:

DSKFRE ddb, table

ddb points to a standard DDB containing the specification of the device you want information on. This
DDB must be INITed, and have a buffer allocated for it prior to the DSKFRE call.

Miscellaneous Monitor Calls Page 13-11
TDVCNG - Change Terminal Drivers

AMOS Monitor Calls Manual, Rev. 10

The parameter table is a pointer to a 24-byte table where the information will be placed by the call. The
argument block pointed to by table is formatted as:

Symbol Meaning
DF.FRE 32-bit field containing the total number of available blocks.
DF.HOL 32-bit field containing the size of the largest group of

contiguous free blocks.
DF.SPR Reserved for future expansion.

To make it easy to allocate the space required to hold the returned arguments, the symbol DF.SIZ defines
the number of bytes returned by DSKFRE.

The following code fragment demonstrates the use of DSKFRE:

FSPEC DDB(A5) ; get the device name
INIT DDB(A5) ; INIT a buffer
DSKFRE DDB(A5),DF(A5) ; get the characteristics
MOV DF+DF.FRE(A5),D1 ; get number of free blocks

TDVCNG - CHANGE TERMINAL DRIVERS

The TDVCNG monitor call allows you to change the terminal driver associated with a given terminal
control block. This is particularly useful when a terminal control block may be controlling a dialup
connection, where the type of terminal to be used is not known in advance.

The TDVCNG call is called with A2 indexing an ASCII string specifying the name of the terminal driver
to be selected. The calling sequence is:

TDVCNG flags{, tcb}

flags is a register containing flags which specify actions to be taken when the terminal driver change is
made. After completion of the TDVCNG call, a result code is returned in this register.

The optional tcb argument allows you to specify the TCB address of the terminal whose terminal driver
you wish to change. If this argument is omitted, the terminal attached to the current job will be changed.

The only flag that can be specified is:

Symbol Value Meaning
TN$INI 1 If set, the terminal driver initialization routine

will be called after the change is made

The result codes returned in the flags register are:

Symbol Value Meaning
TN$TNF 1 The specified terminal driver was not found
TN$IMP 2 The available terminal driver impure area is not

large enough to support the new terminal driver

The Z-bit will be set upon return from the TDVCNG call if the change was made successfully.

Page 13-12 Chapter Thirteen
LEVEL7 - Transfer Control to Level7 Debugger

AMOS Monitor Calls Manual, Rev. 10

In order to be selected as a new terminal driver, the terminal driver must have been loaded into the
terminal driver chain by TRMDEF or TDVDEF in the system initialization command file. You can
determine which terminal drivers are available by using the TDVDEF command after system startup.

Because some terminal drivers require differing amounts of impure space, it is not always possible to
change from a terminal driver that uses a small amount of space to one that uses a large amount.
Normally this is not a problem since most terminal drivers use only a small impure area. If a situation
arises that presents a problem with impure space allocation, change your system initialization file to
specify the terminal driver with the large impure requirement within the TRMDEF command, thus
reserving the larger amount of space required. You can then change terminal drivers (via the SET TDV
command) to the driver you actually wish to use.

The terminal driver initialization routine should normally be called whenever the terminal driver is
changed. This ensures that the physical terminal and the new terminal driver agree with each other, as to
currently selected operational modes and settings. However, the terminal driver initialization routine
must perform some output to the screen, potentially causing distracting "flashing" on the terminal. For
those applications where this is not acceptable, you can suppress the calling of the initialization routine
by not including the TN$INI flag.

The following code fragment changes the current job's terminal driver to AM60.TDV, and requests that
the terminal driver initialization be performed.

LEA A2, TDVNAM ; index the new driver name
MOV #TN$INI,D0 ; select initialization
TDVCNG D0 ; change terminal drivers
BEQ ALLOK ; change successful -
CMP D0,#TN$INI ; driver not found?
BEQ NOTFND ; yes -
CMP D0,#TN$IMP ; not enough impure space?
BEQ NOIMP ; yes -
TYPECR <?Unknown error>
EXIT ; return to AMOS

TDVNAM: ASCIZ /AM65AX/ ; new driver name
EVEN

LEVEL7 - TRANSFER CONTROL TO LEVEL7 DEBUGGER

The LEVEL7 monitor call lets you debug a problem more effectively by using the Level7 debugger. If
you encounter a problem which you cannot solve using the system debugger (FIX) or debugging code in
your program, you may want to use LEVEL7.

LEVEL7 locks the system and places you into the Level7 debugger. While in Level7, you can investigate
the system resources. Once you exit Level7, the system returns to its prior state and most other processes
resume running. In some cases, not all other processes may resume; if this happens, you will need to
reboot your computer.

This monitor call should be used only by experienced programmers who are investigating a
problem which they cannot fix any other way. If it is not used properly, it could cause system
damage!

Do not use this monitor call unless you are totally familiar with the system debugger (FIX).

Miscellaneous Monitor Calls Page 13-13
ICOFF - Turn Instruction Cache Off

AMOS Monitor Calls Manual, Rev. 10

The calling sequence is:

LEVEL7 ; Enter Level7 processing

For information about using the Level7 debugger, please see the Level7 User's Guide.

ICOFF - TURN INSTRUCTION CACHE OFF

The ICOFF call checks to see what type of processor it is executing on, then performs the proper
instructions to turn the instruction cache off. The current cache lines are invalidated before the cache is
turned off.

Calling sequence is:

ICOFF

If you do need to use this call to turn off instruction cache for some reason, be sure to turn the
cache back on when you are done. Leaving the instruction cache off can hurt system
performance.

ICON - TURN INSTRUCTION CACHE ON

The ICON call checks to see what type of processor it is executing on, then performs the proper
instructions to turn the instruction cache on. The current cache lines are invalidated before the cache is
turned on.

Calling sequence is:

ICON

SYNC - FLUSH WRITE CACHE BLOCKS

The SYNC call has been added to AMOS 2.3A(485) and later to allow programs to flush the write cache
on demand. The monitor call will allow for specific devices (dsk, sub, …) or all devices to be flushed. In
all cases, all logicals for the specified device will be flushed.

Calling sequence is:

CLR D6 ; flush all write caches
SYNC ; flush write cache blocks

or

MOVW #[DSK],D6 ; flush only dsk device
SYNC ; flush write cache blocks

Use this call prudently, since it can slow the system down and diminish the usefulness of write
caching.

Page 13-14 Chapter Thirteen
SPAWN - Spawn a new job

AMOS Monitor Calls Manual, Rev. 10

SPAWN - SPAWN A NEW JOB

The SPAWN call will allow programs to spawn jobs to perform specific tasks. This will free up the main
job from tasks that can be done in the background. This is seen in the new Task Manager (TASKIT.LIT)
which spawns a job for each printer and batch processing job defined. These SPAWNed jobs do only
one thing - printing files to a specific printer or processing batch request.

The SPAWN monitor call uses one argument, an SCB (Spawn Control Block), which gives the monitor
call all the information it needs to create and support the SPAWNed job. It is the programmer’s
responsibility to clear and fill the SCB with appropriate data. The calling sequence is:

SPAWN SCB(A5) ; spawn a job
BNE ERR01 ; an error has occurred
MOV A0,JCB1(A5) ; save spawned job’s JCB
MOV A1,TCB1(A5) ; save spawned job’s TCB
.

ERR01: . ; what type of error is it?

Miscellaneous Monitor Calls Page 13-15
SPAWN - Spawn a new job

AMOS Monitor Calls Manual, Rev. 10

The SCB is as follows:

SP.FLG: BLKL 1 ; Spawn Flags
SP.RSIZ: BLKL 1 ; Requested Memory Size
SP.NJCB: BLKL 1 ; JCB Name (Create) (RAD50)
SP.NTCB: BLKL 1 ; TCB Name (Create/Use) (RAD50)
SP.NTDV: BLKL 1 ; NOT IMPLEMENTED; TCB's TDV Name to use (RAD50)
SP.NIDV: BLKL 1 ; NOT IMPLEMENTED; TCB's IDV Name to use (RAD50)
SP.NSM: BLKL 1 ; SMEM's name to use (RAD50)
SP.CMD: BLKL 1 ; Program Start/Command Line Index
SP.IBS: BLKL 1 ; TCB's Input Buffer Size
SP.LBS: BLKL 1 ; TCB's Line Buffer Size
SP.OBS: BLKL 1 ; TCB's output Buffer Size
SP.SA0: BLKL 1 ; A0 contents on execution
SP.SA1: BLKL 1 ; A1 contents on execution
SP.SA2: BLKL 1 ; A2 contents on execution
SP.SA3: BLKL 1 ; A3 contents on execution
SP.SA4: BLKL 1 ; A4 contents on execution
SP.SA5: BLKL 1 ; A5 contents on execution
SP.SA6: BLKL 1 ; A6 contents on execution
SP.SD0: BLKL 1 ; D0 contents on execution
SP.SD1: BLKL 1 ; D1 contents on execution
SP.SD2: BLKL 1 ; D2 contents on execution
SP.SD3: BLKL 1 ; D3 contents on execution
SP.SD4: BLKL 1 ; D4 contents on execution
SP.SD5: BLKL 1 ; D5 contents on execution
SP.SD6: BLKL 1 ; D6 contents on execution
SP.SD7: BLKL 1 ; D7 contents on execution
SP.JCB: BLKL 1 ; SPAWNed job's JCB index
SP.MIDX: BLKL 1 ; Memory Index to use for SPAWNing
SP.PRI: BLKB 1 ; Job's Priority to assign
SP.SP2: BLKB 3 ; Spare 3 Bytes not currently used!
SP.SP1: BLKL 3 ; Spares not currently used!
SP.SP0: BLKL 10. ; Spares not currently used!
SP.SIZ: ; SPAWN Control Block (SCB) size

The SPAWN flags (SP.FLG) are as follows:

SPN.JCB = 0001 ; Use JCB's memory
 SPN%JCB = 0. ; BTST SYMBOL
SPN.SM = 0002 ; Use SMEM for memory
 SPN%SM = 1. ; BTST SYMBOL
SPN.BU = 0004 ; Use BOOT up memory
 SPN%BU = 2. ; BTST SYMBOL
SPN.NTCB = 0010 ; Use/Create TCB with Name in SP.NTCB
 SPN%NTCB = 3. ; BTST SYMBOL
SPN.RUN = 0020 ; Run SPAWNed job at SP.CMD index
 SPN%RUN = 4. ; BTST SYMBOL
SPN.CMD = 0040 ; Run SPAWNed job at SP.CMD index
 SPN%CMD = 5. ; BTST SYMBOL
SPN.ALL = 0100 ; Kill all jobs SPAWNed by this job
 SPN%ALL = 6. ; BTST SYMBOL
SPN.NJCB = 0200 ; Create JCB with Name in SP.NJCB
 SPN%NJCB = 7. ; BTST SYMBOL
SPN.ITCB = 0400 ; TCB index exist
 SPN%ITCB = 8. ; BTST SYMBOL
SPN.MIDX = 1000 ; Use the memory indexed by SP.MIDX
 SPN%MIDX = 9. ; BTST SYMBOL
SPN.PERM = 2000 ; Permanent SPAWN Job Flag
 SPN%PERM = 10. ; BTST SYMBOL
SPN.B11 = 4000 ; Not used
 SPN%B11 = 11. ; BTST SYMBOL
SPN.B31 = 20000000000 ; Not used
 SPN%B31 = 31. ; BTST SYMBOL

Page 13-16 Chapter Thirteen
GETVTI - Identify Virtual Terminal Source

AMOS Monitor Calls Manual, Rev. 10

The Error Codes are as follows:

00 SPAWN request was successful
01 Job table is full
02 Unable to locate PSEUDO.IDV
03 Unable to locate PSEUDO.TDV
04 Invalid parameter requested
05 Not used
06 Invalid parameter requested
07 Insufficient memory for request
08 TCB requested is attached to a job
09 System is up and running
10 Must be 68020 or above
11 JCB name exist
12 Invalid SMEM name requested
13 No requested memory size
14 Provided memory index is zero
15 TCB requested not found
16 SMEM requested, but SMEM not defined

When the SPAWN Monitor call is used, AMOS will create the JCB, TCB, get the memory from the
requested area, and return a completion status code in D0. The Z-flag will be set if successful and reset if
not. The SPAWNed job will be put into the run queue to start executing at the spot requested. The
address register and data registers will be set to the values requested in the SCB and the job will continue
to run until it performs an EXIT call or the Parent job performs an EXIT.

Not all combinations have been tested, but the majority of the standard uses have been.

If you create and delete many SPAWNed jobs in a program and the memory is acquired
from the job’s partition, you may run into fragmentation problems or other catastrophic
problems if care is not taken when using this monitor call.

GETVTI - IDENTIFY VIRTUAL TERMINAL SOURCE

The GETVTI call lets you identify the client when running under a virtual terminal session. This works
for both AlphaTCP and AlphaNET.

The call takes four arguments as follows:

GETVTI tcb, host, instance, protocol

The host, instance, and protocol arguments should point to areas capable of holding up to 100
characters. They will be filled in with null terminated ASCII strings.

host receives the remote host identifier: the IP address or the AlphaNET CPU ID of the connecting
system.

instance receives a connection identifier: the remote port number or AlphaNET socket number.

Miscellaneous Monitor Calls Page 13-17
GETVTI - Identify Virtual Terminal Source

AMOS Monitor Calls Manual, Rev. 10

protocol receives a connection type identifier: "TCP/IP" or "ANET"

The GETVTI call requires AMOS 2.3A or later. To determine if AMOS supports GETVTI, check the
SY1$DYNSZ flag in the SYSTEM1 longword in the AMOS communication area.

Here is an example, assumes A4 indexes impure memory:

MOV SYSTEM1,D7 ; get secondary system flags
AND #SY1$DYNSZ,D7 ; support dynamic size tcbs?
BEQ NOTSUP ; no - then no GETVTI either
JOBIDX index this job
MOV JOBTRM(A6),D7 ; have terminal?
BEQ NOTERM ; no -
MOV D7,A5
GETVTI @A5,HOST(A4),INST(A4),PROT(A4)
BMI NOTEXT ; not extended tcb
BCS NOTVTM ; not virtual terminal

AMOS Monitor Calls Manual, Rev. 10

Chapter 14
Software Interrupt System

AMOS provides a software interrupt service through which software can be written to respond to events
in an asynchronous fashion. By allowing you to code your program so it can deal with events as they
arise, the software interrupt system can greatly simplify your design and implementation.

Some of the features offered by the software interrupt system are:

• You can receive software interrupts caused by keyboard input, receipt of ITC messages, and
timer events.

• Each type of software interrupt is separately maskable.

• One program can signal another by generating software interrupts.

• You can put your job into a wait state pending a software interrupt.

OVERVIEW OF THE SOFTWARE INTERRUPT SYSTEM

There are two different levels of software interrupts supported by AMOS: system-level interrupts and
application-level interrupts. Application-level interrupts consist of four different types: keyboard input
interrupts, ITC message interrupts, timer interrupts, and user interrupts. Keyboard input interrupts allow
you to respond to an individual keystroke without having to check to see if characters are available.
Likewise, ITC message interrupts allow you to respond to incoming messages as they arrive regardless of
what else is going on. Timer interrupts allow repetitive actions to be performed on a regular basis without
constant checking of the system clock. User interrupts, of which four different levels are provided, allow
signaling within a job or between jobs.

System-level interrupts are used by the operating system and should not be modified at the
application level.

For a program to use the software interrupt system, it must first set up a software interrupt vector table
containing the address of a routine to handle each software interrupt that will be used. This routine will
automatically be called each time a software interrupt occurs. Once set up, this vector table, along with a
mask specifying which interrupts will be accepted, is passed to AMOS via an SIMSK monitor call. After
the SIMSK is issued, your program will continue to execute normally, except that any incoming
interrupts will be serviced automatically by calling the appropriate interrupt handler routine.

Whenever a software interrupt occurs, (which can be signaled currently at the end of most monitor calls)
control will be transferred to the software interrupt handler you specified for the type of software
interrupt that has occurred. This handler must perform whatever operation is necessary to service the
interrupt and, when done, return control to the main program via an SIRTN call. All registers are
automatically saved before the interrupt handler is called, and are automatically restored by the SIRTN
call. The register contents upon entry into a software interrupt routine are unpredictable.

Page 14-2 Chapter Fourteen
Software Interrupt Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

SOFTWARE INTERRUPT MONITOR CALLS

AMOS provides eight monitor calls to support the software interrupt system.

SIMSK - Set Software Interrupt Enable Mask

The SIMSK call allows you to specify which software interrupts you wish to respond to. By allowing
you to selectively mask which interrupts are active, you need only supply interrupt handlers for those
application-level interrupts you wish to use.

The calling format is:

SIMSK tbl, mask

tbl Points to a table containing the addresses of the software interrupt handler routines. An
address must be specified for all types of interrupts that will be enabled. This table
contains 32 longword addresses.

mask Specifies a longword treated as a bit mask which defines which software interrupt types
are to be enabled. Setting a bit to one enables the interrupt type; for application-level
software interrupts, setting a bit to a zero disables the interrupt type.

The interrupt handler address table is 128 bytes long with the following offsets defined for each interrupt
type:

Symbol
Octal
Value

Hex
Value

Meaning

SI.TIN 0 0 Terminal input interrupt
SI.ITC 4 4 Incoming ITC message interrupt
SI.TIM 10 8 Software interrupt timer interrupt
SI.US1 14 C User interrupt level 1
SI.US2 20 10 User interrupt level 2
SI.US3 24 14 User interrupt level 3
SI.US4 30 18 User interrupt level 4
SI.IPC 34 1C IPC software interrupt
SI.ABT 40 20 Forced abort (reserved, not used)
SI.EXI 44 24 Requested abort
SI.TCP 50 28 Asynchronous AlphaTCP event interrupt
SI.TOP 100 80 System-level interrupt for terminal output buffering

The software interrupt enable mask is a 32-bit field with the following bits defined:

Software Interrupt System Page 14-3
Software Interrupt Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Symbol Octal Value Hex
Value

Meaning

SI$TIN 20000000000 80000000 Terminal input interrupt
SI$ITC 10000000000 40000000 Incoming ITC message interrupt
SI$TIM 4000000000 20000000 Software interrupt timer interrupt
SI$US1 2000000000 10000000 User interrupt level 1
SI$US2 1000000000 8000000 User interrupt level 2
SI$US3 400000000 4000000 User interrupt level 3
SI$US4 200000000 2000000 User interrupt level 4
SI$IPC 100000000 1000000 IPC software interrupt
SI$ABT 40000000 800000 Forced abort (reserved, not used)
SI$EXI 20000000 400000 Requested abort
SI$TCP 10000000 200000 Asynchronous AlphaTCP event interrupt
SI$TOP 100000 8000 System-level interrupt for terminal output

buffering

You can change the types of application-level interrupts that are enabled at any time by issuing another
SIMSK call; there is no need to change the interrupt handler routine table unless one of the routines
moves or you wish to select a different handler.

Setting the interrupt mask to zero disables all application-level software interrupts.

SIRTN - Return from Software Interrupt

The SIRTN call is used to return control to the main program after completion of a software interrupt
service routine. The calling format is:

SIRTN

SIWAIT - Wait for Software Interrupt

The SIWAIT call allows you to suspend the running of your job until a software interrupt occurs. The
calling format is:

SIWAIT

After issuing an SIWAIT call, your job will be placed in a J.SIW wait state until a software interrupt
occurs. Note that if no software interrupts are enabled when you issue an SIWAIT call, your job will be
hung.

SITIMR - Enable Software Interrupt Timer

The SITIMR call allows you to request a software interrupt after a specific period of time has elapsed.
This is particularly useful when a certain operation must be performed on a periodic basis.

The calling format is:

SITIMR value

Value is a 32-bit value that specifies the number of 100 microsecond ticks that should occur before a
software interrupt on the timer channel is requested.

Page 14-4 Chapter Fourteen
Software Interrupt Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

The length of each timer tick is the same as with the TIMER and SLEEP monitor calls.

Because of job scheduling and other system latencies, the actual period of time between issuing an
SITIMR call and the software interrupt will always be some amount of time longer than that specified.
This amount is not predictable and therefore should not be relied upon for critical real time operations.

SISET - Set Software Interrupt Request On

The SISET call allows you to request a software interrupt of a specific type. This can be used with the
user defined software interrupts to perform signaling. When used across jobs, this call provides an inter-
job signaling method.

The calling format is:

SISET mask{, jcb}

mask A 32-bit longword treated as a bitmask to specify the software interrupts that are to
be requested. The bitmask is ORed with the existing value. The possible bits are
defined in the section on SIMSK, above.

jcb This optional argument indexes the JCB of the job for which the interrupt request is
to be set. If no argument is specified, the interrupt is requested for the current job.

In addition to the interrupt types defined in the section on SIMSK, there is an additional type of interrupt
that can be generated via SISET. By selecting the SI$ABT interrupt type, a non-interceptable abort can
be generated. This abort does not go through the normal software interrupt or Control-C handlers, but
instead immediately aborts the job to AMOS command level. When used with the optional JCB
argument of SISET, this can be used to free "stuck" jobs. If issued without a JCB argument, it causes
immediate "suicide" by aborting the current job.

SICLR - Clear Software Interrupt

The SICLR call allows you to clear a pending software interrupt. You can also use it to clear a pending
interrupt on another job.

The calling format is:

SICLR mask{, jcb}

mask A 32-bit longword treated as a bitmask to specify the software interrupts that are to
be cleared. The possible bits are defined in section 14.2.1.

jcb This optional argument indexes the JCB of the job for which the interrupt request is
to be cleared. If no argument is specified, the interrupt is cleared for the current job.

Software Interrupt System Page 14-5
Sample Program

AMOS Monitor Calls Manual, Rev. 10

SISTS - Get Software Interrupt Enable Status

The SISTS call allows you to determine which software interrupts are currently enabled for your job.
This is useful when you wish to issue an SIMSK call which preserves all currently enabled application-
level software interrupts, or when it is not desirable to modify the software interrupt structure for already
enabled types. The enable mask for the current job is returned in register D6.

The calling format is:

SISTS

SIDIS - Disable Software Interrupts

The SIDIS call allows you to disable specific software interrupts.

The calling format is:

SIDIS mask

Mask specifies a 32-bit longword treated as a bit mask which defines which software interrupt types are
to be disabled. Setting a bit to one disables the interrupt type.

SAMPLE PROGRAM

The program below gives an example of how to use software interrupts. This rather simple-minded
program outputs a constantly scrolling pattern of characters out to the terminal. Once per second, the
terminal bell is sounded. During this terminal output, anything entered on the terminal is buffered until a
carriage return is entered, at which time all buffered output is displayed on the terminal. This program
uses both the timer interrupt (for the bell) and keyboard input interrupts (for the keyboard input
buffering).

;SITST Sample Software Interrupt Program
;

SEARCH SYS
SEARCH SYSSYM
SEARCH TRM

VMAJOR = 1.
VMINOR = 0.
VEDIT = 100.

;Main Entry Point
SITST: PHDR -1,0,PH$REU ; program header

TRMRST D1 ; get current terminal status
ORW #T$DAT!T$ECS,D1 ; set data mode w/o echo
TRMWST D1 ; set terminal status
LEA A3,LIN ; index line buffer
LEA A6,IDX ; index place to store pointer
MOV A3,@A6 ; and store it
LEA A6,INT ; index interrupt handler
LEA A1,INTTBL ; index vector table
MOV A6,SI.TIN(A1) ; place routine address into table
LEA A6,TIMINT ; index timer interrupt handler
MOV A6,SI.TIM(A1)
SIMSK INTTBL,#SI$TIN!SI$TIM

; enable term input and timer

Page 14-6 Chapter Fourteen
Sample Program

AMOS Monitor Calls Manual, Rev. 10

SITIMR #10000. ; select interrupt once per second

;Start main loop which just outputs scrolling characters
10$: MOV #^O40,D1
20$: TTY ; display some output

INC D1 ; get next character
CMPB D1,#^O176 ; all out of characters?
BLOS 20$; no - keep looping
BR 10$; yes - go reset it

;Handle incoming keyboard input interrupt
INT: TIN ; get the character

CMPB D1,#3 ; is it a Control-C?
JEQ ABORT ; yes - abort program
LEA A6,IDX ; index current point in line buffer
MOV @A6,A3
MOVB D1,(A3)+ ; store new character in buffer
MOV A3,@A6 ; save pointer for next time
CMPB D1,#^O15 ; was that a carriage return?
BNE 10$; no - all done
CLRB @A3 ; terminate line
LEA A3,LIN ; index the line
CRLF
CRLF
TTYL @A3 ; display the entered data
CRLF
SLEEP #5000 ; wait for user to read it
LEA A6,IDX ; reset line buffer pointer
MOV A3,@A6

10$: SIRTN ; return to main program

;Handle timer interrupt
TIMINT: MOVB #7,D1; ; ring terminal bell

TTY
SITIMR #10000. ; get another interrupt in 1 second
SIRTN ; return from interrupt

;Come here on Control-C
ABORT: CRLF ; be neat

EXIT

;Define interrupt vector table
INTTBL: BLKB SI.SIZ ; interrupt vector table

;Define buffer and pointer for keyboard data
LIN: BLKB 200.
IDX: BLKL 1

END

AMOS Monitor Calls Manual, Rev. 10

Chapter 15
The Inter-Task Communication

System

WHAT IS INTER-TASK COMMUNICATION?

The Inter-Task Communication (ITC) system is designed to provide a standardized and centralized
program to handle all the communication that goes on between tasks. With the advent of networking
software that allows communication between different computers, it is necessary that a standard method
of handling that communication be available—hence the ITC system.

The ITC system provides a simple datagram service both between processes on the same computer and,
via the use of the AlphaNET network software, between different computers. The only visible difference
between sending a message to a process on the same computer and sending a message to another
computer is in the destination address, and possibly in the speed of transmission.

Message delivery is performed on a "best effort" basis; that is, there is no guaranteed delivery of
messages. For this reason, all delivery verification and handshake protocols are left to upper level
software. This method was chosen because of the generally high level of communications reliability
within a single system or on a local network, and because of the many different application that will be
using the message system, each requiring different levels of delivery verification and recovery.

GENERAL CONCEPTS

Before a task can send or receive a message, it must first open a message socket. This socket tells the ITC
system which task is requesting access, and sets up a queue where pending messages can be stored. When
a task requests a socket, it must give information, such as the size of the largest message to be used, and
the maximum number of messages that can be queued for receipt at any one time. The message socket
can be thought of as nothing more than a simple FIFO (first-in, first-out) queue.

A message is placed into a task's socket by AMOS whenever a message is received from some other task.
Each incoming message corresponds to one entry in the socket, with entries being removed as they are
serviced. If there is insufficient room when a message arrives, the request to send the message is denied.

When a task requests to read a message, it receives either the first pending message in the queue, or the
next incoming message (if the queue is empty).

A task can process messages either synchronously or asynchronously. Synchronous processing requires
that a task request each message in its proper turn. In this mode, the task will not know that a message is
available to read unless it explicitly checks for a message.

Page 15-2 Chapter Fifteen
Transport Requirements

AMOS Monitor Calls Manual, Rev. 10

Asynchronous processing involves a software "interrupt" which notifies the task of each incoming
message. In order to process messages in this way, a task must have a Message Service Routine (MSR).
An MSR is part of a task's program code, with its entry point being given to the software interrupt system
via a SIMSK monitor call.

A task's MSR is given control whenever the MSR is enabled and the socket queue is not empty (at least
one message has arrived and not yet been read), and the task is in a runnable state.

When the software interrupt occurs, the current program counter and status are stored, and the MSR is
called. When the MSR is completed, control is returned to the point of task interruption via the SIRTN
instruction.

Both the socket and the MSR can be turned on or off by the task itself. In addition, an MSR is turned off
when the MSR is entered, preventing another message interrupt from occurring during the processing of
the first message.

When a socket is disabled, requests to send a message to that socket are denied, but messages already in
the socket queue remain unaffected. When an MSR is disabled, the MSR will not be called, even when
messages are pending in the queue, although synchronous receipt of messages can still be performed.

More details on the software interrupt system can be found in Chapter 14.

TRANSPORT REQUIREMENTS

The ITC system does not care about the details of the underlying transport hardware and protocols. It is
compatible with point-to-point, broadcast, token-passing, and other means of transport. There must,
however, be some method for broadcasting messages, either by using the broadcast nature of the
hardware (such as with a bus-oriented system), or by forwarding the message to the next node.

MESSAGE FORMAT

All messages have the same general format—a fixed size header followed by a variable length data area.
The data area currently may range from 0 to 64K bytes, even though most messages will be less than 1K
in size. In some cases, the configuration of a network or networks may restrict the data area to less than
64K.

The content of the data area is entirely transparent. This means that you may format it any way you want
within your application programs.

Messages are formatted the same way whether they are being sent or received. This makes it easy to
forward messages.

The Inter-Task Comm unication System Page 15-3
Message Format

AMOS Monitor Calls Manual, Rev. 10

The format of the message header is:

0 Flags MS.FLG

2

4

6

Source address MS.SRC

10

12

14

Destination address MS.DST

16 Message length (including header) MS.SIZ

20 PPN of sender MS.PPN

22 Privileges of sender MS.PRV

24 Message code MS.COD

26 MS.DAT

Message Flags

A 16-bit flags field is present in every message to define the characteristics of the message and to provide
information as to how to best handle the message. The following flags are defined:

Flag Meaning
MS$PRI This is a high-priority message. When a message with this bit set is received, the

message will be placed at the front of the pending message queue. This bit is
intended to be used to flag messages affecting network control. It is not
recommended that this bit be used for any other purpose.

MS$NOJ This message does not require a job context to be sent. Normally, a job must
have a socket opened prior to sending a message. In addition, AMOS
automatically fills in the source address field within the message, guaranteeing
that there is a return address available to the destination node. There are cases,
however, where one or both of the actions is not desirable. Examples are interrupt
service routines which need to send a message, but do not have a job context
which would allow a socket to be opened; or a message forwarding service that
must pass a message on to another destination, but does not wish the original
return address modified.

MS$NTF This message is being transmitted by NETFAM. This flag is for internal use only.

Source and Destination Addresses

Network addresses specify a specific process or group of processes within a group of networks. To do so,
the message must specify the network, group of CPU's within the network, CPU within the group, and
process within the CPU. Network addresses are a 48-bit field, formatted:

Page 15-4 Chapter Fifteen
Message Format

AMOS Monitor Calls Manual, Rev. 10

Decimal Bit
Numbers

Section Notes (Values in Decimal)

40 – 47 NETWORK This 8-bit field specifies the network on which the
address is located. The values are:

0 Source network number assumed
1-254 The specified network
255 Broadcast to all networks

32 – 39 GROUP This 8-bit field specifies the group within the network
that is being addressed. The values are:

0 Source group number assumed

1-254 Specified group
255 Broadcast to all groups

16 – 31 NODE This 16-bit field specifies the node within a given group
that is being addressed. The values are:

0 Source node number assumed
1 -

65519
Specified node

65520 -
65533

Reserved node numbers

65534 Special network server. The process
address field specifies which special
server.

0 – 15 SOCKET This 16-bit field specifies the socket within a given
node that is being addressed. The values are:
0-65519 Specified socket

65520-
65531

Reserved node numbers

65532 Directed to electronic mail (MALSER)
65533 Directed to printer spooler (LPTSPL)
65534 Directed to NETSER
65535 Broadcast to all sockets

If the Node address field contains 65534, then the
socket address field is interpreted as:

1 Network Control Server
2-65535 Reserved

The destination address is broken down into these groups (network, group, node and socket) to provide
information about the destination and to make it easier to send messages to groups of tasks. By using the
individual address fields we can select a given node and broadcast a message to all the tasks on that node.
Or we could broadcast a message to all the nodes within a group by simply specifying the desired
network and node, and using "wildcard" specifications in the remaining address fields.

Broadcasting is not supported under AMOS 2.0 and earlier versions.

Message Length

The 16-bit message length field contains the total length of the message in bytes, including the header.

The Inter-Task Comm unication System Page 15-5
Message System Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

PPN of Sender

The 16-bit word contains the Project-Programmer Number that the sender of the message is logged into,
taken from the JOBUSR word in the sender’s JCB. This field is for the use of protection mechanisms.

Privileges of Sender

The 16-bit word contains the privileges of the sender of the message, taken from the JOBPRV word in
the sender’s JCB. For use in protection mechanisms.

Message Codes

The message codes indicate what type of message this is. This is application dependent, as the ITC
system ignores this field. Intended for communication applications, such as Electronic Mail.

Data Area

This area is entirely user/program definable.

MESSAGE SYSTEM MONITOR CALLS

OPNMSG - Open a Message Socket

Before a task can send or receive messages it must open a message system "socket" to tell AMOS that it
is going to use the message system. A job may execute multiple OPNMSG calls if it needs to. Such an
operation does not actually allocate another socket, but instead simply increments a "nesting count"
allowing multiple OPNMSG and CLSMSG calls to nest properly. The format is:

OPNMSG addr, status

addr is the address of an argument block formatted as described below and status is a register in which
32-bits of status are returned. See the section “Status Return Codes,” below, for a list of status codes.

Message sockets are automatically closed when an EXIT call is executed. The format of the argument
block is:

Page 15-6 Chapter Fifteen
Message System Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

0 flags OM.FLG

2 Maximum message length OM.LEN

4 Maximum number of pending messages OM.MAX

6

10
Reserved OM.MSR

OPNMSG Flags

A 16-bit field treated as a bitmask, with the bits defined as follows:

Symbol Meaning
OM$SKE Enables the socket. If this bit is zero, the socket will

not be enabled until a SETMSS call is executed.
OM$NTF Enable NETFAM mode (internal use only).

Maximum Message Length

The 16-bit maximum message length field specifies the longest message which the task is prepared to
receive. If a message is longer than the maximum length, it is ignored, and an error status is returned to
the sending process.

Maximum Number of Pending Messages Allowed

This 16-bit field specifies the maximum number of messages that may be queued for this task at any
given time. By setting an upper limit, you can avoid buffer overflow problems.

CLSMSG - Close a Message Socket

Once a process is done sending or receiving messages, it should close its message system "socket" to
notify the system that it does not wish to receive any further messages. As multiple OPNMSG and
CLSMSG calls can be executed by a single job, a "nesting count" is needed. This count is incremented
each time an OPNMSG is performed, and decremented each time a CLSMSG call is performed. Only
when this "nesting count" reaches zero is the socket truly closed. The format is:

CLSMSG status

status is a register in which 32 bits of status are returned. Values are defined in the section “Status Return
Codes,” below.

Message sockets are automatically closed when an exit call is executed.

SNDMSG - Send a Message

The format for the SNDMSG call is:

SNDMSG buffer address, status, flags

The Inter-Task Comm unication System Page 15-7
Message System Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

buffer address The address of the buffer that is to send the outgoing message header and data.

status A register in which 32 bits of status are returned (see the section “Status
Return Codes,” below).

flags Flags that affect the sending of the message. Reserved for future expansion.

The message header and data area should be set up prior to using the SNDMSG call. You must supply
data in the flag (MS.FLG), destination address (MS.DST), and message size (MS.SIZ) fields. The
SNDMSG call will automatically fill in (and overwrite) the source address (MS.SRC), source PPN
(MS.PPN), and source privileges (MS.PRV) fields.

The SNDMSG call may be performed from within an interrupt service routine.

RCVMSG - Receive a Message

Used to receive a message or to check for pending messages. The format is:

RCVMSG buffer address, status, flags

buffer address The address of the buffer that is to receive the incoming message header
and data.

status A register in which 32 bits of status are returned (see the section “Status
Return Codes,” below).

flags Flags that affect the receipt of the message:

Symbol Meaning
MS$WA
T

If no messages are available, place the job in a wait
state. If not set, the call will return immediately.

You must supply a buffer area large enough to accept the largest expected message. No checking for
buffer overflow is performed. RCVMSG will return the message with the flag (MS.FLG), source address
(MS.SRC), source PPN (MS.PPN), source privileges (MS.PRV) and message size (MS.SIZ) fields filled
in.

CHKMSG - Check for Received Messages

CHKMSG is used to determine the number of messages the current task has pending. The format is:

CHKMSG arg

Arg is a field to contain the number.

In addition to the number returned, the condition code Z-bit will be set if no messages are pending, and
reset if there are messages pending. This will occur even if arg is not specified in the call.

Page 15-8 Chapter Fifteen
Message System Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

WTMSG - Wait for Receipt of Message

WTMSG allows a task to wait for a message to arrive. provisions are made for allowing escape from the
wait condition if no message is received within a specified period of time. When no MSR is in use, this
call makes it convenient to wait for the next message.

The format is:

WTMSG arg

Arg is the maximum number of 100 microsecond intervals to wait. The call will return when either a
message has been received, or arg intervals have passed. If arg is zero, the call will wait until a message
is received.

Upon the return from the WTMSG call, the Z-bit will be set if the return was caused by the receipt of a
message, and will be reset if the return was caused by a time-out condition.

SETMSS - Set MSQ/MSR Status

Allows a task to set/reset the status of both the socket and the message service routine. Each may be
enabled or disabled. If the socket is disabled, no messages may be received. If the Message Service
Routine (MSR) is disabled, no software interrupts will be generated by the ITC system, and messages
must be received synchronously. The format is:

SETMSS flags

Flags specifies which facilities are to be turned on after the call is executed. Set the flag to 1 to enable or
0 to disable. The flags are:

Symbol Meaning
MS$SKE Enable the socket to receive
MS$MSE Reserved for future use

Status Return Codes

The various message system monitor calls return status codes:

The Inter-Task Comm unication System Page 15-9
Network Drivers

AMOS Monitor Calls Manual, Rev. 10

Symbol
Octal
Value

Hex
Value

Meaning

M$ENSK 1 1 No socket is open (by OPNMSG) for the sending process
M$ENMP 2 2 No messages are pending
M$ENMS 3 3 Operating system does not support the message system
M$EDNN 4 4 Destination network does not exist
M$ENNN 5 5 Destination node does not exist
M$ESNN 6 6 Destination socket does not exist
M$ESAE 7 7 Socket already exists
M$ENMB 10 8 No message buffers are available
M$ENQB 11 9 No queue blocks are available
M$EAOP 12 A Argument address is outside of caller's partition
M$EDSF 13 B Destination socket is full
M$EDSN 14 C Destination socket is not enabled
M$EMTL 15 D Message length is greater than the destination's maximum
M$EATO 16 E ACK time-out

NETWORK DRIVERS

Whenever the ITC system gets a request to send a message to a task not located on the current system
(the network, group, and/or node fields in the destination address are non-zero), the request is forwarded
to a Network Driver (.NDV), providing one is found that matches the network address. It is the NDV's
responsibility to forward the message to the destination over whatever communications link it supports.

Whenever the ITC system receives a request for a remote system, it scans through an internal table (the
Network Definition Table) to determine which Network Driver should receive the request. This internal
table is defined at system initialization by the NETINI program. Each entry in the table describes a
different type of network connection.

Optionally, the ITC system may also scan through an internal list of active nodes to determine if the
destination is currently available. Not all networks can support the node list—it is controlled by the
NODECHECK parameter in the network initialization file (NET.INI).

THE NETWORK DEFINITION TABLE

The Network Definition Table contains one entry for each network available on the system. It is set up by
the NETINI program during system initialization. The format of each definition table is:

Page 15-10 Chapter Fifteen
The Network Definition Table

AMOS Monitor Calls Manual, Rev. 10

0

2
Pointer to next table entry NT.NXT

4

6
Network address field NT.NET

10 Flags NT.FLG

12

14
Network driver name NT.NAM

16

20
Pointer to network driver NT.DVR

22

24
Pointer to node list NT.NLS

26

30
Gateway forwarding address NT.GTW

32 NT.SYM

Symbolic name of network

60

Pointer to Next Table Entry

The Network Definition Table is maintained as a linked list, using this longword entry to link to the next
entry in the table. The list is terminated by a zero entry in this field.

The Network Address Field

The network address field longword contains the network address corresponding to the current node on
this network. The "network" field within this address specifies the network number for this network. The
"group" and "node" fields of this address specify the address by which the current node is known on this
network.

This field is required because a single node will have multiple addresses when it resides on more than
one network.

The Flags Longword

The flags longword contains flags which describe the characteristics of this network. The flags are:

The Inter-Task Comm unication System Page 15-11
The Node List Structure

AMOS Monitor Calls Manual, Rev. 10

Symbol Meaning
NT$NDC This network does not need node validation by scanning

through the node list. The setting is determined by the
NODECHECK parameter in the NETINI initialization file.

NT$GTW This network is a gateway forwarding connection. All messages
for this network should be sent to the gateway address
contained in NT.GTW.

The Network Driver Name

The network driver name longword contains the name of the network driver associated with this network,
packed in RAD50 format.

The Pointer to the Network Driver

The pointer to the network driver is a longword containing a pointer to the network driver associated with
the current network. The format of the network driver is described in “The Network Driver Structure,”
below.

The Pointer to the Node List

The pointer to the node list longword contains a pointer to the Node list associated with the current
network. If no nodes are currently active, the pointer will contain a zero.

Gateway Forwarding Address

For gateway connections, the gateway forwarding address field contains the network address of the node
responsible for forwarding gateway traffic. This field is only present when AlphaNET 2.0 or later is in
use.

Network Symbolic Name

The 22-byte network symbolic name field contains a zero-terminated ASCII string giving a symbolic
name for this network. This name is used only for descriptive purposes, such as when displaying network
status. This field is only present when AlphaNET 2.0 or later is in use.

THE NODE LIST STRUCTURE

The Node list data structure is used to maintain a dynamic list of the nodes currently available on a
network. Not all networks can support this function, however, so this data structure must be treated as an
optional item. No software should ever depend on its presence, or the software will not be network
independent.

The Node list for a given network can be located by using the Node list pointer entry (NT.NLS) in the
Network definition table. Each entry in the Node list is formatted as:

Page 15-12 Chapter Fifteen
The Network Driver Structure

AMOS Monitor Calls Manual, Rev. 10

0

2
Pointer to next table entry NE.NET

4

6
Network address field NE.NET

10

12
Flags NE.FLG

12

14
Node entry data NE.DAT

The Pointer to the Next Entry

The Node list is maintained as a linked list using this longword to point to the next entry in the list. A
zero in this field terminates the list.

The Network Address Field

The network address longword contains the network address, including network, group, and node
numbers that uniquely identify the current node.

The Flags Word

The flags word contains flags which describe the characteristics of this driver. The flag is defined as:

Symbol Meaning
NL$ALC This entry is allocated. This flag must be checked prior to

relying on any of the information in this in this table entry, as
there may be table entries linked into the data structure which
are not currently active. The Node list entry is only valid if this
flag is set.

The Node Entry Data Area

The node entry data area longword can be used to store network dependent information on a node by
node basis. If additional space beyond one longword is needed, additional space can be allocated by
requesting it by using the Node Entry Data Size (ND.NES) parameter of the Network Driver, described
below. Any extra space allocated in this fashion is in addition to the single longword present in all Node
list entries.

THE NETWORK DRIVER STRUCTURE

Each NDV is a simple collection of subroutines packaged into a single file. In this sense it is very similar
to a terminal driver (TDV), or an interface driver (IDV). Like these other drivers, it resides in
DSK0:[1,6]. It is loaded into system memory by the NETINI program, and thus must be re-entrant
(sharable).

The Inter-Task Comm unication System Page 15-13
The Network Driver Structure

AMOS Monitor Calls Manual, Rev. 10

Each of the routines contained in the NDV performs a separate function. In addition to these routines,
each NDV contains descriptive information which other processes may examine to determine some of the
characteristics of the NDV itself. The header block of each NDV contains:

0

2
Flags ND.FLG

4

6
Initialization entry point ND.INI

10

12
Send message entry point ND.WRT

14

16
Special function entry point ND.STS

20

22
Hardware address ND.HWA

24

26
Interrupt vector address ND.INT

30 Node entry data area size ND.NES

The Flags Longword

This longword contains flags which describe the characteristics of this driver. The flags are defined as:

Symbol Meaning
ND$VID This is a VideoNET driver

ND$SLW This is a "slow" driver. This bit is used by the ITC system to
adjust some of its time-out parameters for networks that are
slower than normal. For example, you might have an
asynchronous dial-up network, where the action of dialing the
telephone and waiting for a response could take much longer than
the usual time-out constants would allow. When this flag is set,
the normal 20 second ITC time-out is extended to 60 seconds.

The Initialization Entry

The initialization entry routine is called by the NETINI program immediately after the network has been
defined. It can perform such functions as initializing hardware, notifying other nodes that the current
node is now available, and allocating buffer space. The following registers are set up:

Page 15-14 Chapter Fifteen
The Network Driver Structure

AMOS Monitor Calls Manual, Rev. 10

Register Purpose
D0 Node count. This is the value specified in the NODECOUNT option within the

network initialization file being processed by NETINI.

D2 Contains device address passed by NETINI. This number is the number
immediately following the DEVICE= statement in the network initialization file or
is zero if no DEVICE= statement is in the file.

A3 Points to the network definition block for the network currently being initialized.

A4 Points to the next available word in system memory. To allocate additional
buffer space, start at the word pointed to by this register. After the space has
been allocated, update the MEMBAS pointer.

When the initialization routine returns to the caller (using RTN), the network driver must return the
updated system memory base pointer in A4.

The initialization routine must preserve all registers other than D6, D7, and A6.

The initialization routine will be executed with the booting job's context, in User Mode.

The Send Message Entry

This routine is called whenever a request to send a message to a node on the current network is received.
It is the responsibility of this routine to deliver the message to the specified remote node.

The Send Message routine may do anything, from directly transferring the message to a hardware
interface, to simply forwarding the message to another task for processing. The following registers are set
up:

Register Purpose
D1 Contains the flags from the message to be sent
A3 Points to the network definition block for the network

currently being initialized
A4 Points to the message to be sent

When the Send Message routine returns to the caller (using RTN), the following return code is handled:

Register Purpose
D1 The return code to be returned to the sending process

The routine must preserve the contents of A3, D2, D3, D4, and D5. All other registers may be altered.

The routine will be executed with the sending job's context, in Supervisor Mode.

The Special Function Routine Entry

Reserved for future expansion.

The Inter-Task Comm unication System Page 15-15
The Network Driver Structure

AMOS Monitor Calls Manual, Rev. 10

The Hardware Address

The hardware address entry contains the 32-bit physical device address of the hardware associated with
the network. It provides information to other processes, but is not used by the ITC system itself.

The Interrupt Vector Address

The interrupt vector address entry contains the address of the routine that handles any interrupts
associated with the current network hardware. Provides information to other processes, but is not used by
the ITC system itself.

The Node Entry Data Size

The node entry data size entry contains the size of the extra data space to be allocated for each node entry
in the network node list. The extra space can be used to store special network information on a per-node
basis.

AMOS Monitor Calls Manual, Rev. 10

Chapter 16
Serial Communications System

AMOS provides a number of services and calls to support serial communications. While most of these
can be accomplished through the normal terminal service routines, the serial communications system
provides higher performance alternatives, specifically tailored to the task of serial communications,
eliminating much of the overhead normally associated with the terminal handling that AMOS must
perform. Moreover, it does this in a device independent fashion.

Some of the features offered by the serial communications system are:

• Transparent, hardware independent access to the modem control signals (CTS, DSR, RI, etc.)
present on the majority of serial interfaces.

• Hardware independent support of modem functions such as dialing, answering, etc.

• Support for very high-speed serial I/O by completely bypassing all TRMSER support functions.

Traditionally, gaining access to the control signals required in data communication applications required
software developers to access the hardware directly, defeating the device independent nature of AMOS,
and creating potential incompatibilities when a variety of software and hardware is used.

In addition, some high-performance applications require very high-speed communications support.
Again, implementing a solution to this type of problem often created incompatibilities and necessitated
redundant software development.

In keeping with AMOS convention, symbols in this chapter containing "." specify memory
offsets. Symbols containing "$" specify a bit mask for logical instructions (AND, OR, etc.). In
addition, for each symbol containing "$" there is a complementary symbol containing "%" to
specify bit positions for bit instructions (BTST, BSET, etc.).

COMSET - SET COMMUNICATIONS PORT PARAMETERS

The COMSET call allows you to set various communications parameters associated with a particular
communications port.

The calling format is:

COMSET port, addr

port Points to the terminal definition block defining the communications port which
is to be affected.

addr Indexes a 12-byte argument block in memory specifying the parameters to be set.

The 12-byte argument block is formatted into the following five fields:

Page 16-2 Chapter Sixteen
COMSET - Set Communications Port Parameters

AMOS Monitor Calls Manual, Rev. 10

Symbol Meaning
CM.BAU This 16-bit field contains the desired baud rate, defined as follows:

Octal
Value

Hex
Value

Baud Rate
Octal
Value

Hex
Value

Baud Rate

0 0 50 baud 12 A 2000 baud
1 1 75 baud 13 B 2400 baud
2 2 110 baud 14 C 3600 baud
3 3 134.5 baud 15 D 4800 baud
4 4 150 baud 16 E 7200 baud
5 5 200 baud 17 F 9600 baud
6 6 300 baud 20 10 19200 baud
7 7 600 baud 21 11 38400 baud

10 8 1200 baud 22 12 57600 baud
11 9 1800 baud

CM.DAT This 16-bit field specifies the number of data bits to be used by the communications port, encoded
as follows:

Value Data Bits
0 5 data bits
1 6 data bits
2 7 data bits
3 8 data bits

CM.STP This 16-bit field specifies the number of stop bits to be used with this communications port
Value Stop Bits

0 1 stop bit
1 1.5 stop bits
2 2 stop bits

CM.FLA This 16-bit field specifies miscellaneous flags to be used in setting up the communications port:
Flag Meaning

CM$PAR If set, parity checking/generation is enabled. If zero, no parity checking
or generating is performed.

CM$ODD If set, and CM$PAR is also set, odd parity is used. If zero, and
CM$PAR is also set, even parity is used. If CM$PAR is zero, this flag
is ignored.

CM$TRTS If set, and the feature is available on the selected interface, this flag
enables transmitter RTS control. Normally, this feature toggles RTS
each time the transmitter is disabled. Because AMOS frequently
disables the transmitter, this feature is not always desirable. Setting
this flag turns this feature on.

CM$RRTS If set, and the feature is available on the selected interface, this flag
enables receiver RTS control. When enabled, the RTS line will be
toggled whenever the receiver FIFO buffer is full, preventing further
transmission that might result in an overrun condition, providing the
transmitting end has the CM$CTS feature enabled.

CM$CTS If set, and the feature is available on the selected interface, this flag
enables transmitter CTS control. When enabled, and the CTS line is
de-asserted, the transmitter will be disabled until CTS returns to an
active state.

CM$BRK If set, and CM$BKE is also set, a break condition will be placed on the
transmit data line. The break condition will continue until this bit is
reset.

CM$BKE This bit, when set, enables the operation of the CM$BRK flag. If
CM$BKE is not set, the setting of CM$BRK is ignored.

Serial Communications System Page 16-3
COMINT - Set Interrupt Service Vectors

AMOS Monitor Calls Manual, Rev. 10

Symbol Meaning
CM.STS This 32-bit field defines an "interrupt mask" to be applied against the modem status lines. Each of

the possible inputs is assigned a bit in this longword. If a bit is a one in this field, then the status
change interrupt routine will be called anytime the control line associated with the input bit
changes state. The program should use the COMRST call prior to setting up this longword to
make sure that the desired input status line is available on the particular communications port in
question. Note that most of the symbols below will not generate interrupts on Alpha Micro
interfaces. Symbols have been defined as follows:

Symbol
Octal
Value

Hex
Value

Meaning

RS$PGD 2 2 Protective ground
RS$TXD 4 4 Transmit data
RS$RXD 10 8 Receive data
RS$RTS 20 10 Request to send
RS$CTS 40 20 Clear to send
RS$DSR 100 40 Data set ready
RS$SGD 200 80 Signal ground
RS$DCD 400 100 Data carrier detect
RS$009 1000 200 RS-232 pin 9
RS$010 2000 400 RS-232 pin 10
RS$011 4000 800 RS-232 pin 11
RS$SRL 10000 1000 Secondary receive line signal
RS$SCT 20000 2000 Secondary clear to send
RS$STX 40000 4000 Secondary transmit data
RS$TSC 100000 8000 Transmitter signal element timing (DCE)
RS$SRX 200000 10000 Secondary receive data
RS$RSC 400000 20000 Receiver signal element timing (DCE)
RS$018 1000000 40000 RS-232 pin 18
RS$SRT 2000000 80000 Secondary request to send
RS$DTR 4000000 100000 Data terminal ready
RS$SQD 10000000 200000 Signal quality detector
RS$RGI 20000000 400000 Ring indicator
RS$DSS 40000000 800000 Data signal rate selector (DCE/DTE)
RS$TST 100000000 1000000 Transmitter signal element timing (DTE)
RS$025 200000000 2000000 RS-232 pin 25

This call returns with the Z-bit set if it was successful; the Z-bit will be returned reset if any error
condition was detected. If the error is of a catastrophic nature (e.g., invalid port number, port does not
exist, etc.), the N bit will also be set.

The symbol CM.SZE defines the size of the argument block used by COMSET.

COMINT - SET INTERRUPT SERVICE VECTORS

One of the major benefits of the serial communications system is the ability to get individual interrupt
service for input characters, output characters, and status change. Interrupt service for these three cases
can be provided by the user when invoking the COMINT call by specifying an address for a routine to be
associated with each of them.

By transferring control directly to the application, with a minimal amount of system overhead, special
purpose applications can provide maximum throughput. This capability is provided by allowing the
interface driver (IDV) to transfer control directly to a user supplied routine rather than performing normal
terminal buffering via the terminal service system and the TRMICP and TRMOCP calls. The user
supplied routine can then process the characters in a fashion tailored to the specific application, rather

Page 16-4 Chapter Sixteen
COMINT - Set Interrupt Service Vectors

AMOS Monitor Calls Manual, Rev. 10

than having to "make do" with the standard terminal service routines which must try to be all things to all
programs.

Before any of the three user routines can be called, the application program must inform the system of the
address of the interrupt routines. This is done via the COMINT monitor call. A program may make use of
as few as zero and as many as three of the three available interrupts. If an interrupt is not to be used, the
program should supply a zero as the interrupt service address.

The price paid for this extra flexibility and performance is simply the burden it places on the applications
programmer. The programmer must be concerned with the details of character buffering and timing
considerations, items normally left up to the system software itself. For this reason, programming with
the interrupt service routines is best left to experienced assembly language systems programmers.

Particular care must be taken with the amount of time spent in the user supplied interrupt service
routines. Because these routines are executed with all other interrupts disabled, any time spent in the
service routines defers all other interrupts, potentially having a major impact on system performance. In
extreme cases, spending too long in the interrupt service routine can lead to complete system failure. Try
to limit interrupt service time to less than 100 microseconds. It is not possible to enable other interrupts
while in a communications service interrupt routine; trying to do so will lead to system lockups.

The calling format is:

COMINT port

port points to the terminal definition block defining the communications port for which interrupts are to
be serviced.

At the time of the call, the following registers must be set up:

Register Purpose
A1 Contains the address of the output character interrupt

routine, or zero if normal TRMOCP processing by the IDV is
desired.

A2 Contains the address of the input character interrupt routine,
or zero if normal TRMICP processing by the IDV is desired.

A3 Contains the address of the status change interrupt routine,
or zero if no status change interrupt is desired.

Because control is being given to the user program at interrupt level, it is very important that all interrupt
service routines used with COMINT be carefully optimized and debugged to make sure that the system is
not adversely affected. Maximum interrupt service time should be kept to 100 microseconds or less.

Also keep in mind that because the service routines are running at interrupt service level, without a job
context, very few monitor calls are valid. Most all of the monitor calls require a job context (such as all
I/O calls) making them illegal in interrupt service routines. Any attempt to use such calls will result in
the system crashing.

The applications program must obey all rules concerning the use of the TCB semaphore when accessing
the contents of the TCB. Failure to do so may result in system lockups due to the multi-processing nature

Serial Communications System Page 16-5
COMINT - Set Interrupt Service Vectors

AMOS Monitor Calls Manual, Rev. 10

of terminal handling under AMOS. Refer to Appendix B of this book for more information on handling
the TCB.

It is up to the applications program to disable the interrupt service addresses before exiting. Refer to the
AM-350 Intelligent I/O Controller Installation Instructions, PDI-00350-00, for more information related
to the COMINT call.

The Input Character Routine

The input character interrupt routine is called each time a character is received by the communications
port hardware. The input routine is called with the input character contained in the low-order byte of D1.
No modification has been done to the character at this point.

In addition to the incoming character, the following registers are passed to the input character interrupt
routine:

Register Meaning
D6 This register contains the receiver status that reflects the condition of

the receiver after receiving the current character. The flags contained
in this register are:

Symbol Meaning
CS$FRM If set, a framing error was detected.
CS$ORN If set, an overrun error was detected.
CS$PAR If set, a parity error was detected.
CS$BRK If set, a break condition was detected. This does not indicate

whether or not a break is still active, but indicates a break
was received sometime after the last time receiver status
was reported.

A6 This register contains the address of the terminal control block assigned to
the port. Your routine should not modify the contents of A5.

The only registers that have been saved are D1, D6, D7, and A5. It is the responsibility of the input
character interrupt routine to save any other registers it may need to use.

The Output Character Routine

The output character interrupt routine is called each time the communications port hardware is ready to
accept another character for output.

The following register is passed to the routine:

Register Purpose
A5 This register contains the address of the terminal control

block assigned to the port. Your routine should not
modify the contents of A5.

The output character routine should supply the next character available for output in the low order byte of
D1. If no further characters are available, the output character routine must place a longword -1 in D1.

Page 16-6 Chapter Sixteen
COMINT - Set Interrupt Service Vectors

AMOS Monitor Calls Manual, Rev. 10

You must use the TINIT call to start up output processing. Normally, the output character routine will
only be called after the output process has been initiated by a TINIT call. However, your routine should
be prepared to return -1 in D1 any time it is called and there are no characters, even if the output process
has not been started up.

The only registers that have been saved are D1, D6, D7, and A5. It is the responsibility of the output
character interrupt routine to save any other registers it may need to use.

The Status Change Routine

The status change interrupt routine is called whenever one or more of the status bits specified in the
status change mask (specified in the COMSET monitor call) changes state.

The following registers are passed to the routine:

Register Purpose
A5 This register contains the address of the terminal

control block assigned to the port. Your routine should
not modify the A5 register.

D6 Contains the current status of the RS-232 input pins for
the port. (A bit value of 1 indicates a true or asserted
state.)

D7 Available pin mask, which specifies the RS-232 input
and output pins available for the port.

The only registers that have been saved are D1, D6, D7, and A5. It is the responsibility of the output
character interrupt routine to save any other registers it may need to use.

Initializing Terminal Output (TINIT)

The TINIT call is used to initiate output through a communications port. Whenever a character is placed
in the output character buffer (to be picked up by the output character interrupt routine), but no output is
currently taking place (the T$OIP flag is not set in the terminal status word), then a TINIT call must be
performed to initiate character output. To make programming easier, the TINIT call can be issued for
every character entered into the user's output buffer, although this is obviously less efficient than only
doing it when T$OIP is not set.

After a character has been placed in the output buffer, and a TINIT call issued, an output character
interrupt will take place, allowing the interrupt service routine to remove the character from the buffer
and deliver it to the hardware for output. Any time that an output character interrupt occurs but there are
no characters pending output, the T$OIP flag will be cleared and the output character interrupt will be
dismissed, not to recur until a later TINIT starts the process over again.

The calling format is:

INIT port

port is a 32-bit address pointing to the terminal definition block defining the communications port which
is to be affected.

Serial Communications System Page 16-7
COMRST - Read Communications Status Lines

AMOS Monitor Calls Manual, Rev. 10

COMRST - READ COMMUNICATIONS STATUS LINES

The COMRST call allows a program to read the status of all possible incoming modem control signals,
as well as to obtain a bit mask specifying which of these incoming modem control signals are available
on the particular hardware in use.

The calling format is:

COMRST port, stat, mask

port A 32-bit pointer to the terminal definition block defining the communications
port which is to be read.

stat A 32-bit register in which the status of all input status bits will be returned. Any
bit set to a one indicates that the corresponding signal is asserted at the interface.

mask A 32-bit register in which the valid status signals will be flagged. If a given
status signal is available from the hardware in use, the corresponding bit will be
a one. Thus if the current hardware has valid DSR status, the bit RS$DSR of this
mask will be a one. If valid status is not available, the bit will be a zero in this
mask. Symbols for the bits in this mask are defined in the section on COMSET,
above.

COMWST - WRITE COMMUNICATIONS STATUS LINES

The COMWST call allows a program to control the status of all possible outgoing modem control
signals. Before attempting to set a given bit, however, the program should make sure that the hardware in
use of the particular communications port supports the status bit in question. A mask describing all
supported bits can be obtained via the COMRST call.

The calling format is:

COMWST port, stat

port A 32-bit pointer to the terminal definition block defining the communications
port which is to be affected.

stat A 32-bit register in which you supply the status of the status bits you wish to
output. Any bit you set to a one in this register will be sent to the hardware to be
asserted. Symbolic definitions of the bits used in this parameter are as follows:

Symbol
Octal
Value

Hex
Value

Meaning

RS$RTS 20 10 Request to send
RS$DTR 4000000 100000 Data terminal ready

Page 16-8 Chapter Sixteen
MDREQ - Request a Modem

AMOS Monitor Calls Manual, Rev. 10

MDREQ - REQUEST A MODEM

Before a modem and communications port can be used by a program, it must first be assigned to that
program. Likewise, in a system with multiple modems, a program may not be able to effectively use all
of the modems, but may have special requirements. The MDREQ call arbitrates this reservation system
for modems. By specifying the type of modem being requested (including "any") and by keeping track of
the modems currently available, the MDREQ call assigns modems on a first-come first-served basis.

The calling format is:

MDREQ type, port

type A 32-bit argument specifying the type of modem being requested. A zero in this
field means any modem is acceptable. Other values for this field are defined as
follows:

Symbol
Octal
Value

Hex
Value

Meaning

MD$B30 1 1 300 baud supported
MD$B12 2 2 1200 baud supported
MD$B24 4 4 2400 baud supported
MD$B48 10 8 4800 baud supported
MD$B96 20 10 9600 baud supported
MD$B19 40 20 19200 baud supported
MD$B38 100 40 38400 baud supported
MD$B56 200 80 57600 baud supported
MD$ASY 200000 10000 async modem
MD$DIL 400000 20000 autodialer available

By setting one or more of these bits, a program can specify that it is only willing
to accept a modem having the specified capability. For example, a program
which requires 9600 baud transmission capability can select that bit, ensuring
that no slower modems will be assigned by the MDREQ call. By performing
multiple MDREQ calls, reducing the requirements each time the call returns
unsuccessfully, a program can obtain the fastest (or most capable) modem
currently available.

port A 32-bit address register in which the address of the terminal definition block of
the communications port to which the assigned modem is returned.

This call returns with the Z-bit set if it was able to assign a modem, reset if not.

MDRTN - RETURN A MODEM

The MDRTN call is used in conjunction with MDREQ to arbitrate the assignment of modems.

The calling format is:

MDRTN port

Serial Communications System Page 16-9
MDSET - Set Modem Communications Parameters

AMOS Monitor Calls Manual, Rev. 10

Port is an address register containing the address of the terminal definition block of the communications
port to which the modem being returned is connected.

MDSET - SET MODEM COMMUNICATIONS PARAMETERS

The MDSET call allows you to set various communications parameters associated with a particular
modem. Note that this call changes the modem settings, not the communications port settings. The
communications port parameters must be changed by using the COMSET call.

The calling format is:

MDSET port, addr

port A 32-bit pointer to the terminal definition block defining the communications
port which is to be affected.

addr A 32-bit pointer to an 8-byte argument block in memory specifying the
parameters to be set.

The 8-byte argument block is formatted into the following four fields:

Symbol Meaning
CM.BAU This 16-bit field contains the desired baud rate, defined as follows:

Octal
Value

Hex
Value

Baud Rate
Octal
Value

Hex
Value

Baud Rate

0 0 50 baud 12 A 2000 baud
1 1 75 baud 13 B 2400 baud
2 2 110 baud 14 C 3600 baud
3 3 134.5 baud 15 D 4800 baud
4 4 150 baud 16 E 7200 baud
5 5 200 baud 17 F 9600 baud
6 6 300 baud 20 10 19200 baud
7 7 600 baud 21 11 38400 baud
10 8 1200 baud 22 12 57600 baud
11 9 1800 baud

CM.DAT This 16-bit field specifies the number of data bits to be used by the
communications port, encoded as follows:

Value Data Bits
0 5 data bits
1 6 data bits
2 7 data bits
3 8 data bits

CM.STP This 16-bit field specifies the number of stop bits to be used with this
communications port.

Value Stop Bits
0 1 stop bit
1 1.5 stop bits
2 2 stop bits

Page 16-10 Chapter Sixteen
MDDIAL - Dial a Modem

AMOS Monitor Calls Manual, Rev. 10

Symbol Meaning
CM.FLA This 16-bit field specifies miscellaneous flags to be used in setting up the

communications port:
Symbol Meaning

CM$PAR If set, parity checking/generation is enabled. If zero, no
parity checking or generating is performed.

CM$ODD If set, and CM$PAR is also set, odd parity is used. If
zero, and CM$PAR is also set, even parity is used. If
CM$PAR is zero, this flag is ignored.

MDSET returns with the Z-bit set if it was successful; the Z-bit will be returned reset if any error
condition was detected.

MDDIAL - DIAL A MODEM

When using auto-dial modems it becomes necessary to use the dialer portion of the modem to place
outgoing calls in a modem independent fashion. This can be done via the MDDIAL monitor call. The
MDDIAL call allows you to both dial calls and to hang up.

The calling format is:

MDDIAL port, addr, status

port A 32-bit pointer to the terminal definition block defining the communications
port to which the modem in question is connected.

addr A 32-bit pointer to a null terminated (ASCIZ) string describing the number to be
dialed, formatted as described below.

status Specifies a 32-bit data register into which the status of the call will be placed.
The status will be zero if the call was successful.

The Z-bit will be returned set if the call was successfully completed, reset on an error.

The phone number to be dialed must consist of a null terminated string consisting of the digits 0 through
9 and the following special characters:

Character Purpose
, (comma) Pause in the dialing of the number, as when waiting for a

second dial tone in PBX systems.
(pound) Dial the special "#" symbol when tone (DTMF) dialing.
* (asterisk) Dial the special "*" symbol when tone (DTMF) dialing.
P Commence rotary (pulse) dialing, if supported by the modem.
T Commence tone (DTMF) dialing, if supported by the modem.
H Hang up phone. Must be only character in command string.

The status codes returned by MDDIAL are as follows:

Serial Communications System Page 16-11
MDON - Enabling a Modem

AMOS Monitor Calls Manual, Rev. 10

Symbol
Octal
Value

Hex
Value

Meaning

MR$OK 0 0 Call completed successfully
MR$UAF 1 1 Modem does not support requested feature (rotary or

tone dialing)
MR$NDT 2 2 No dial tone was detected
MR$BSY 3 3 Number was busy
MR$NOA 4 4 No answer
MR$NOC 5 5 No carrier
MR$INV 6 6 Invalid/blacklisted number
MR$MNR 7 7 Modem not responding
MR$REL 15 D Reliable connection

Bits 8 - 14 are the connected baud rates as defined in CM.BAU in the previous section.

Not all modems are capable of detecting all error conditions. In particular, many inexpensive modems
have no provision for dial tone or busy signal detection and will therefore always return status code 4
when a call fails to be completed, regardless of the true reason.

MDON - ENABLING A MODEM

When used in dial-up communications environments it sometimes is desirable to be able to control
whether a modem is available to be called into. This can be very important when designing the system
security features to prevent unauthorized access. The MDON monitor call enables a modem to allow
external systems to dial into it. A companion monitor call (MDOFF) disables this capability.

The calling format is:

MDON port

port is a 32-bit pointer to the terminal definition block defining the communications port to be affected.

If the call was successfully completed, the Z-bit will be returned set. If the call fails for any reason, the Z-
bit will be reset to zero.

MDOFF - DISABLING A MODEM

A companion call to MDON, the MDOFF call allows a program to disable a specific modem from
external access.

The calling format is:

MDOFF port

port is a 32-bit pointer to the terminal definition block defining the communications port which is to be
affected.

If the call was successfully completed, the Z-bit will be returned set. If the call fails for any reason, the Z-
bit will be reset to zero.

Page 16-12 Chapter Sixteen
Modem Driver Format

AMOS Monitor Calls Manual, Rev. 10

MODEM DRIVER FORMAT

Modem drivers are device specific modules which allow AMOS to control a modem while making the
software interface to the modem hardware "modem independent." Modem drivers have the extension
.MDV and reside in DSK0:[1,6].

Internally, modem drivers are structured much like other drivers used by AMOS. They contain a header
area containing descriptive information and a dispatch table. It is not intended that this header area be
directly accessed by programs which should instead use monitor calls to access the information.

The format of the modem driver is as follows, with the symbols defined below defined in
SYSSYM.UNV:

Serial Communications System Page 16-13
Modem Driver Format

AMOS Monitor Calls Manual, Rev. 10

Symbol Size Meaning
MD.HDR 10 bytes Standard PHDR style file header defining version number and program header

flags.

MD.TYP 4 bytes Modem type number as used in the MDREQ call.

MD.SET 4 bytes Entry point to the MDSET routine. This entry should contain a JMP to the routine
which will be called each time an MDSET call is executed. Upon entry to the
routine, A5 will index the terminal control block and A1 will index the argument
block.

MD.DIL 4 bytes Entry point to the MDDIAL routine. This entry should contain a JMP to the
routine which will be called each time an MDDIAL call is executed. Upon entry to
the routine, A5 will index the terminal control block and A1 will index the
argument block.

MD.ON 4 bytes Entry point to the MDON routine. This entry should contain a JMP to the routine
which will be called each time an MDON call is executed. Upon entry to the
routine, A5 will index the terminal control block.

MD.OFF 4 bytes Entry point to the MDOFF routine. This entry should contain a JMP to the routine
which will be called each time an MDOFF call is executed. Upon entry to the
routine, A5 will index the terminal control block.

MD.SND 4 bytes Entry point to the MDSND routine. This entry should contain a JMP to the routine
which will be called each time an MDSND call is executed. Upon entry to the
routine, A5 will index the terminal control block and A1 will index the argument
block.

MD.RCV 4 bytes Entry point to the MDRCV routine. This entry should contain a JMP to the routine
which will be called each time an MDRCV call is executed. Upon entry to the
routine, A5 will index the terminal control block and A1 will index the argument
block.

MD.CON 4 bytes Pointer to modem time constants. This longword offset (relative to the base of
the modem driver) points to a table of timing constants used by this particular
modem. These timing constants can be used to implement time-out error
recovery techniques. Each constant is two bytes and specifies the maximum
time to be taken by a particular call, in seconds, as follows:

Symbol Call
MD.TST MDSET
MD.TDI MDDIAL
MD.TON MDON
MD.TOF MDOFF
MD.TSD MDSND
MD.TRC MDRCV

MD.IMP 4 bytes Specifies the number of bytes to allocate as impure space for this modem.
Impure space is allocated at TRMDEF time for each port using a specific
modem type. The impure space is pointed to by the field T.MBF in the terminal
control block associated with the modem port.

AMOS Monitor Calls Manual, Rev. 10

Chapter 17
International Language Support

Monitor Calls

THE LANGUAGE DEFINITION TABLE

AMOS provides for international support by implementing a language definition table for each job on the
system. This table contains definitions for those items which are language dependent. For example, the
characters used as a currency symbol are stored within the table, allowing a program to use whatever
characters are appropriate for the currently selected language.

By providing the language definition table on a job-by-job basis, AMOS allows multiple languages to be
supported on the system at the same time. In addition, any job may change its currently selected language
at any time.

A default language definition table is built into AMOS at MONGEN time. Each job initially uses this
default table. If properly configured, AMOS also allows each job to select the appropriate table via the
SET program. Default language tables can also be selected via the MUSER program, so that the correct
table is selected each time a user logs in to the system.

Contents of the Language Definition Table

The fields contained in the language definition table and their symbolic offsets are shown below. All of
these offsets are defined in SYSSYM.UNV:

LD.NM1 A 20-byte field containing up to 19 ASCII characters, null terminated, that
defines the name of the language. Example: "SPANISH".

LD.NM2 A 20-byte field containing up to 19 ASCII characters, null terminated, that
defines an alternate name for the language. Example: "ESPANOL".

LD.EXT A 2-byte field containing the file extension, packed RAD50, that is used for
language dependent message files. For example, the message file for
AlphaWRITE might be called WRTMSG, with the extension depending on the
selected language. For American English, the extension is "USA," while for
England it might be "UK."

LD.CSY A 4-byte field containing up to three ASCII characters null terminated. This field
defines the characters to be used as the currency symbol. Examples might be "$"
for American dollars, "$A" for Australian dollars, or "Kr" for Kronar.

Page 17-2 Chapter Seventeen
The Language Definition Table

AMOS Monitor Calls Manual, Rev. 10

LD.CPS This two-byte field defines the position of the currency symbol in relation to the
currency amount. A value of zero means the symbol precedes the amount; a
value of one means the symbol follows the amount.

LD.CSP This two-byte field contains the number of spaces to output between the currency
symbol and the amount.

LD.CSZ This two-byte field contains the number of decimal digits in a currency amount.
This is provided for use with decimal arithmetic for computing the maximum
required precision for monetary amounts.

LD.TSP This one-byte field contains the character to be used to separate groups of one
thousand. For example, in the United States it would be a comma, while in many
European countries it would be a period.

LD.DEC This one-byte field contains the character to be used as the decimal point. In the
United States it would be a period, while elsewhere it would be a comma.

LD.DTS This one-byte field contains the character to be used as a date separator. It is
usually either a "/" or a "-".

LD.DTF A one-byte field defining the date ordering. A value of zero means "month-day-
year;" one means "day-month-year;" two means "year-month-day."

LD.TMS A one-byte field containing the character to be used as the time separator
between hours, minutes, and seconds. It is usually a colon, but may sometimes
be a space or a period.

LD.TMF This one-byte field defines the time format. A value of zero means 12-hour
(AM/PM) format, while a value of one means to use 24-hour (military) format.

LD.DLS This one byte field contains the character to be used as a separator in lists of
data. It is normally a comma, but this may cause problems when the period and
comma are reversed from common United States usage.

LD.PPL This one-byte field contains the character to be used as the left side of a PPN
designation. It is normally a "[", but as this character is not available in all
languages, it may be redefined through the use of this field.

LD.PPR This one-byte field contains the character to be used as the right side of a PPN
designation. It is normally a "]", but as this character is not available in all
languages, it may be redefined through the use of this field. The left and right
PPN designation characters may be the same if desired.

International Language Support Monitor Calls Page 17-3
The Language Definition Table

AMOS Monitor Calls Manual, Rev. 10

LD.CHS This one-byte field contains the character set number associated with this
language. This character set number is intended to be used with terminals that
have selectable character sets. The currently defined character set numbers are
assigned as follows:

Octal
Value

Hex
Value

Character Set

0 0 United States (USASCII)
1 1 British (U.K.)
2 2 German
3 3 French
4 4 Swedish
5 5 Danish
6 6 Norwegian
7 7 Dutch
10 8 Italian
11 9 Spanish

LD.YES This six-byte field contains an ASCII string, null terminated, that represents the
word for "YES" to be used for positive confirmation of commands. This word
must consist of all upper case characters. Example: "OUI"

LD.NO This six-byte field contains an ASCII string, null terminated, that represents the
word for "NO" to be used for negative confirmation of commands. This word
must consist of all upper case characters. Example: "NEIN"

LD.YCH This one-byte field contains the single ASCII character to be used for a single
character confirmation of commands. This character must be in upper case.
Example: "Y".

LD.NCH This one-byte field contains the single ASCII character to be used for a single
character negative confirmation of commands. This character must be in upper
case. Example: "N".

LD.WRD This 30-byte table, terminated by a null byte, contains any characters, other than
"A-Z" and "a-z," to be considered alphabetic and therefore part of a word. This
table is necessary because most foreign character sets have additional letters that
are placed in ASCII codes normally occupied by punctuation in USASCII. This
table is used by the ALF monitor call, as well as previous word/next word type
of functions.

LD.ULC This 30-byte table, terminated by a null byte, consists of 15 pairs of characters.
Each pair consists of an upper case character followed by its lower case
equivalent. One entry must be made in this table for each pair of alphabetic
characters other than "A-Z" and "a-z". This table is used by the UCS and LCS
monitor calls and any other routines that must perform case conversion. It is
necessary as the additional alphabetic characters do not have a standard
relationship between their upper and lower case versions.

Page 17-4 Chapter Seventeen
The Language Definition Table

AMOS Monitor Calls Manual, Rev. 10

LD.COL This 128-byte table contains the collating sequence for the 128 printable ASCII
characters. The table is intended for use in sorting operations. It is used by using
the ASCII value of the character as an index into this table to obtain a collating
value. This table is necessary because the additional alphabetic characters in
other character sets do not have ASCII values corresponding to their desired sort
sequence.

LD.JAN This 20-byte field contains the ASCII text for the name of the month of January,
terminated by a zero.

LD.FEB This 20-byte field contains the ASCII text for the name of the month of
February, terminated by a zero.

LD.MAR This 20-byte field contains the ASCII text for the name of the month of March,
terminated by a zero.

LD.APR This 20-byte field contains the ASCII text for the name of the month of April,
terminated by a zero.

LD.MAY This 20-byte field contains the ASCII text for the name of the month of May,
terminated by a zero.

LD.JUN This 20-byte field contains the ASCII text for the name of the month of June,
terminated by a zero.

LD.JUL This 20-byte field contains the ASCII text for the name of the month of July,
terminated by a zero.

LD.AUG This 20-byte field contains the ASCII text for the name of the month of August,
terminated by a zero.

LD.SEP This 20-byte field contains the ASCII text for the name of the month of
September, terminated by a zero.

LD.OCT This 20-byte field contains the ASCII text for the name of the month of October,
terminated by a zero.

LD.NOV This 20-byte field contains the ASCII text for the name of the month of
November, terminated by a zero.

LD.DCM This 20-byte field contains the ASCII text for the name of the month of
December, terminated by a zero.

LD.MON This 20-byte field contains the ASCII text for the name of the day Monday,
terminated by a zero.

LD.TUE This 20-byte field contains the ASCII text for the name of the day Tuesday,
terminated by a zero.

International Language Support Monitor Calls Page 17-5
Using the GTLANG Monitor Call

AMOS Monitor Calls Manual, Rev. 10

LD.WED This 20-byte field contains the ASCII text for the name of the day Wednesday,
terminated by a zero.

LD.THU This 20-byte field contains the ASCII text for the name of the day Thursday,
terminated by a zero.

LD.FRI This 20-byte field contains the ASCII text for the name of the day Friday,
terminated by a zero.

LD.SAT This 20-byte field contains the ASCII text for the name of the day Saturday,
terminated by a zero.

LD.SUN This 20-byte field contains the ASCII text for the name of the day Sunday,
terminated by a zero.

In addition to the fields listed above, the symbol LD.SIZ is defined as the size of a language definition
table.

USING THE GTLANG MONITOR CALL

The GTLANG monitor call returns a pointer to the language definition table currently in use by your job.
It is called by:

GTLANG An

An is any address register. You may then use this address register as an index when using the table
offsets defined above.

For software which must run under versions of AMOS prior to 1.3, but wishes to take advantage
of the language definition tables when they become available, you must test the SY$LNG bit in
the SYSTEM word within the system communication area prior to using the GTLANG call. Use
of the GTLANG call under AMOS 1.2A and earlier monitors may crash the system.

DEFINING YOUR OWN LANGUAGE DEFINITION FILE

Alpha Micro provides a way for you to create your own language definition files based on your own
special needs. We have supplied you with an .LDF file for American English, and a special definition
file, LDFSYM.M68, which makes it easier to define your own file.

The macros used within the language definition files are all contained in the file LDFSYM.M68. Each of
these macros defines one of the language definition file fields defined above. Each of these macros must
be used in order, and all fields must be defined. For this reason the easiest way of creating a new
language definition file is to simply modify one of the existing files.

All arguments used by the macros are decimal.

AMOS Monitor Calls Manual, Rev. 10

Chapter 18
Directory Handling System

AMOS supplies a set of monitor calls which perform directory access in a standard, file system
independent fashion. By using these calls, you can make sure that your software will not be affected by
minor changes to the AMOS file structure.

These calls function equally well on the traditional and extended format file systems. Your software can
use these calls without regard to what file system is in use, greatly simplifying the task of generating
directory access software.

DSKINI - INITIALIZE A LOGICAL DISK

The DSKINI call is used to initialize a logical unit by resetting the directory and bitmap areas to be
completely empty. This call removes all files, including BADBLK.SYS, requiring extreme caution in its
use. This call is used by the SYSACT program and will rarely be needed by user software.

DSKINI requires that the calling job be logged into DSK0:[1,2] to perform this call.

The calling sequence is:

DSKINI ddb ; initialize the logical unit

Ddb references an INITed DDB referencing the logical unit to be initialized.

DSKACC - ACQUIRE DIRECTORY ACCESS

The DSKACC call is used prior to any other directory access calls to gain access to the directory and to
initialize the DDB’s directory marker.

The calling sequence is:

DIRACC ddb, flags ; get access to directory

Ddb references an INITed DDB specifying the device whose directory you wish to access, and flags
contains one or more of the following flags:

Symbol Meaning
DA$INI Initialize directory search from root.
DA$NEW DDB contains a new marker: reread the directory block

to make sure everything is correct.
DA$LVL Advance to next directory level (i.e., from MFD to UFD).
DA$DRL Lock the directory (same as DSKDRL) before doing

anything else.

Page 18-2 Chapter Eighteen
DIRSCH - Search a Directory

AMOS Monitor Calls Manual, Rev. 10

DIRSCH - SEARCH A DIRECTORY

This call scans through a directory, returning selected items. Flags supplied with the call allow you to
specify which items or combination of items will be returned. This is the basic call used for wildcarding
through directories.

The calling sequence is:

DIRSCH ddb, flags ; search thru directory

Ddb references an INITed DDB specifying the device whose directory you wish to search, and flags
contains one or more of the following flags:

Symbol Meaning
DS$DIR Return directory items that are found (i.e., PPNs)
DS$DAT Return data file items that are found
DS$DEL Return deleted entries that are found
DS$CMP Compare filename to DDB and return only matches
DS$INH Inhibit transfer of directory information into DDB
DS$FNF Set error if file not found
DS$DUP Set error if duplicate primary file
DS$AUX Set error if duplicate auxiliary file

After this call returns to your program, you can check the flags in D.DIR to determine which type of
entry was located. These flags are:

Symbol Meaning
DF$MFD Current level is MFD
DF$UFD Current level is UFD
DF$DIR Current entry defines a directory item
DF$DAT Current entry defines a data file item
DF$DEL Current entry is a delete item
DF$ISF Initial search flag (used internally)
DF$LVL Search next level (used internally)
DF$ALC Next level needs to be allocated (used internally)
DF$AUX Auxiliary file was found
DF$EOD End of directory was encountered

The DF$EOD flag will be set after all items in the current level have been searched.

DIRREP - REPLACE A DIRECTORY ENTRY

This call replaces the current directory item—the one referenced by the current directory marker—with
the information contained in the specified DDB, including filename, extension, dates, times, and
protection.

The calling sequence is:

DIRREP ddb ; back to AMOS

Ddb references an INITed DDB specifying the directory entry you wish to replace.

Directory Ha ndling System Page 18-3
DIRDEL - Remove a Directory Entry

AMOS Monitor Calls Manual, Rev. 10

DIRDEL - REMOVE A DIRECTORY ENTRY

This call removes the current directory entry—the one referenced by the current directory marker—by
marking it as deleted.

The calling sequence is:

DIRDEL ddb ; back to AMOS

Ddb references an INITed DDB specifying the directory entry you wish to delete.

DIRALC - ALLOCATE A NEW DIRECTORY LEVEL

DIRALC allocates new directory items in an existing directory. It is intended for Alpha Micro use only.

The calling sequence is:

DIRALC ddb, flags ; back to AMOS

Ddb references an INITed DDB specifying the device whose directory you wish to allocate a new entry
in, and flags contains a 32-bit value equivalent to the D$TYP field described in the “Directory Block
Format” section of Appendix A

SAMPLE USAGE OF DIRECTORY HANDLING CALLS

The following code fragment demonstrates the DIRACC and DIRSCH calls. It performs a wildcard
search for all files with a DVR extension in DSK0:[1,6]. As each file is found, it is loaded into the
caller's partition. It assumes that A5 indexes an impure area defined to contain two DDBs (SDDB and
FDDB).

;Handle wildcard driver loading
LODDVR: LEA A1,SDDB(A5) ; index DDB for scanning

MOVW #[DSK],D.DEV(A1) ; setup for DSK0:
CLRW D.DRV(A1)
INIT @A1 ; get a buffer
DIRACC @A1,#DA$INI ; get access to device
MOVW #ED.DVR,D.FIL(A1) ; scan for [1,6]
DIRSCH @A1,#DS$DIR+DS$CMP
DIRACC @A1,#DA$NEW+DA$LVL ; drop down a level to files

;Loop here for each data file in the directory
110$: DIRSCH @A1,#DS$DAT ; get another data file

TSTW D6 ; end of files?
BMI 120$; yes -
CMPW D.EXT(A1),#[DVR] ; is this a device driver?
BNE 110$; no -
CLEAR FDDB(A5),D.DDB ; start with fresh DDB
MOV D.FIL(A1),FDDB+D.FIL(A5) ; set filename
MOVW D.EXT(A1),FDDB+D.EXT(A5) ; and extension
FETCH FDDB(A5) ; load the driver
BEQ 110$; and go get more
TYPECR <?Unable to fetch driver>

;All done –- return to AMOS
120$: EXIT

AMOS Monitor Calls Manual, Rev. 10

Chapter 19
System Disk Cache Calls

AMOS provides an integral disk cache buffer system as part of its file service system. By buffer
frequently used disk blocks in memory, AMOS is able to substantially reduce the amount of physical
disk IO performed, substantially improving overall system response speed.

While this buffering process is normally completely transparent to all software, there are times when a
program needs to gain access to some of the control parameters used by the disk cache system. By
properly manipulating these controls, system performance can be tuned for a particular application.

For more information on the disk cache system, and how the various parameters can be used, see the
section on the Disk Cache Buffer Manager in the AMOS System Operator's Guide.

STRUCTURE OF CALLS TO THE DISK CACHE SYSTEM

If you wish to write assembly language routines that use the disk cache system, the following sections
describe the various calls you can make. Each of these calls is made by calling the disk cache system
through a special dispatch vector (DCACHE) in the System Communications Area, rather than via the
more usual monitor calls.

Before making one of these calls, you must load the address of a DDB into register A4. The exact
contents of the DDB will depend on the call being made.

The sequence used for these calls is:

MOV call function code,D7
MOV DCACHE,A6
CALL @A6

Cache Function Codes

Calls to the disk cache manager require a function code in register D7 to identify the type of call being
made. The available function codes are:

Page 19-2 Chapter Nineteen
Structure of Calls to the Disk Cache System

AMOS Monitor Calls Manual, Rev. 10

Symbol
Octal
Value

Hex
Value

Purpose

DC.LM 1 1 Lock MFD
DC.LU 2 2 Lock UFD
DC.LF 3 3 Lock a file
DC.LB 4 4 Lock a block
DC.UM 5 5 Unlock MFD
DC.UU 6 6 Unlock UFD
DC.UF 7 7 Unlock a file
DC.UB 10 8 Unlock a block
DC.CM 11 9 Clear MFD
DC.CU 12 A Clear UFD
DC.CF 13 B Clear a file
DC.CB 14 C Clear a block
DC.CD 15 D Clear a unit
DC.ON 16 E Turn on the cache
DC.OF 17 F Turn off the cache
DC.DM 20 10 Dynamically lock MFD
DC.DU 21 11 Dynamically lock UFD
DC.XM 22 12 Dynamically unlock MFD
DC.XU 23 13 Dynamically unlock UFD

For example:

MOV #DC.LF,D7
MOV DCACHE,A6
CALL @A6

Error Codes

All function calls, except the ON and OFF calls, perform error checking and report an error status on
return. When an error is detected, the error status byte in the DDB is set to the appropriate error code.
Also, on return, the Z-bit is set to indicate a good completion or cleared to indicate an error. There is no
option to abort on error or to print an error message.

Error codes that are less than 200 (octal) indicate a monitor error and codes greater than or equal to 200
(octal) indicate a cache error. Currently, the only cache error code reported by the cache manager is
ER.NOS (Not enough cache space available). The remaining cache error codes are used elsewhere. The
error codes are:

Symbol
Octal
Value

Hex
Value

Meaning

ER.SPC 201 81 Specification error
ER.CMD 202 82 Command error
ER.ARG 203 83 Argument error
ER.SWX 204 84 Switch error
ER.NEX 205 85 Disk cache does not exist
ER.INA 206 86 Disk cache is off
ER.ONX 207 87 Disk cache is already on
ER.OFF 210 88 Disk cache is already off
ER.NOS 211 89 Not enough cache space available
ER.LOC 212 8A Locked
ER.UNL 213 8B Unlocked
ER.CLR 214 8C Cleared

AMOS Monitor Calls Manual, Rev. 10

Chapter 20
AlphaTCP Programming Interface

AlphaTCP is Alpha Microsystems’ implementation of the industry standard DARPA TCP/IP family of
protocols. AlphaTCP allows your AMOS applications to communicate with applications running on a
variety of systems.

The AlphaTCP TAME interface (TCP Access Made Easy) is an event-driven monitor call interface for
AlphaTCP. TAME transparently handles the complexities involved with translating host names, handling
a connection in a non-blocking mode, and a variety of other functions.

COMPATIBILITY

TAME requires AlphaTCP 1.4 or later, and AMOS 2.3 or later. It is not compatible with the 1.X versions
of AMOS. The AlphaTCP TAME server must be active on the system. See the AlphaTCP
Administrator’s Guide for information on setting up servers.

Only the TCP protocol is supported, UDP is not available through the TAME interface.

TCP PROGRAMMING OVERVIEW

The next sections provide a brief overview of TCP application programming. You should be familiar
with these concepts before you use the TAME interface.

Client/Server Paradigm

The majority of TCP/IP software is written according to the client/server paradigm. The concept is that
server programs provide valuable services and functions to client programs, which will contact them as
needed.

Servers usually start at boot time and never exit. They passively listen in the background until a request
is made of them; they do not normally have a terminal attached. Because they must be contacted, they
listen on well known port numbers. If you imagine the U. S. telephone system, servers will always be
contacted on a well known number (such as 0 or 911), which can also be associated with a well-known
service name (operator or emergency). Port numbers and service names are explained below. In the
UNIX world, servers are often referred to as daemons.

Clients usually contact a server to perform their operations. Since they do not usually need to be
contacted themselves, they may initiate their conversation on whatever port the system assigns them at
the time. This is known as an ephemeral port. Again, if you imagine the U. S. telephone system, it does
not matter which telephone number you are calling from. (There might be an argument for the emergency
number 911, but just like 911 a server can identify where the communication originated.)

Page 20-2 Chapter Twenty
TCP Programming Overview

AMOS Monitor Calls Manual, Rev. 10

IP Addresses and Port Numbers

A TCP/IP communication endpoint is defined by a protocol, an IP address, and a port number. A virtual
communication channel exists between two applications when each application’s endpoint references the
other application’s endpoint using a common protocol. This association is known as a 5-tuple, because it
contains two IP addresses, two port numbers, and one protocol:

• The protocol is the method used to communicate between applications via a physical interface
(i.e., the Ethernet). It is the language spoken across the interface, much like speaking English or
French during a telephone conversation. Just as both sides of this conversation must speak the
same language, both sides of a TCP/IP connection must speak the same protocol. The most
commonly used protocols are TCP and UDP. TAME supports TCP only.

 TCP is a reliable protocol which handles the intricacies of data delivery over potentially
unreliable paths. At the same time, it adjusts to the varying bandwidth available when networks
are connected using slower links.

• TCP/IP uses the IP address to define a system. The IP address is often shown as four decimal
values separated by periods. Each of these values may be from 0 to 255. The IP address is
comparable to a telephone number.

 An example of an IP address is 127.0.0.1. This IP address is the loopback address: the address
that points back to your local system so network applications can communicate without a
network.

• The port number identifies a place on the system where data may be read or written. Often, this
means a running application. Any application may have many communication channels open.
Port numbers range from 1 to 65535.

Port numbers under 1024 often have a special meaning since certain values are assigned to
standard applications. These are the well-known port numbers. Most systems begin allocating
temporary port numbers at 1024. Numbers under 1024 were considered more secure due to a
feature in UNIX; however, with the proliferation of PCs ,this characteristic can no longer be
taken for granted.

An actual conversation is defined by the complete 5-tuple. Thus, it is valid to see many separate
conversations active using the same port numbers, as long as some portion of the association is
unique.

Service Names

Service names are given to the well-known ports to make them easier to remember. Whenever TCP/IP
applications encounter a service name, they look it up to get the port number associated with it. When
programming, use service names, choosing to connect to a service or provide a service. The system will
handle the actual port number. For example, the telnet service uses the well known port number 23.
Examine the file TCP:SERVIC. for the services commonly used with AlphaTCP.

AlphaTCP Prog ramm ing Interface Page 20-3
TAME Programming Overview

AMOS Monitor Calls Manual, Rev. 10

Host and Domain Names

Systems are assigned names in a hierarchy of host name and domain name. The full specification of host
name with domain name is known as the systems fully qualified domain name (FQDN). Whenever a
TCP/IP application encounters a name, it looks it up to find the real IP address associated with it. If the
name is not fully qualified, portions of the domain name are appended to find a match.

Much like IP addresses, the FQDN is divided into sections separated by periods. Unlike IP addresses,
there is no fixed number of sections. This allows for flexible naming conventions which can fit the
organizational structure of a site. The domain name may contain many sections itself. From left to right,
sections of the FQDN represent higher levels of administration, with as many levels as an organization
needs.

For example, the name orders.widgit.com can represent the order entry system at Widgit, Inc.’s
headquarters. Taking this further, pc.tx.widgit.com can represent the Production Control system at their
plant in Texas, while mail.tx.widgit.com can represent the mail system at that same plant.

The com section is a virtual root domain that represents commercial entities. A university would use edu
instead. A different style is used for international sites. More information about root domains can be
found in the AlphaTCP Administrators Guide, or most other TCP/IP publications.

TAME PROGRAMMING OVERVIEW

Following is an overview of the programming implementation presented by the TAME API.

Procedural Versus Event-Driven

In use today are two primary models of software development, procedural and event-driven. TAME uses
the event-driven model, which is a newer style popularized by the advent of GUI operating systems.

The procedural model follows a step-by-step flow of control. Most procedural TCP/IP programming is
written with blocking synchronous calls. In other words, the call will not return until satisfied. For
example, a procedural server writes out a welcome message and waits for the client to issue its request. If
other writes were done previously, the welcome message write could pause. Nothing can be done until
the you provide input, and then the program performs its next step. You must address error conditions in
every section of the program. Modifying the behavior of a procedural program can be difficult.
Procedural programs tend to interact with their environment in many different places in the code, the
execution of which depends on past operations.

The event-driven model follows no strict flow. The program reacts to stimuli known as events. Because
events may come in at different times in different order, most event-driven TCP/IP programming is
written with non-blocking asynchronous calls. In other words, the calls always return right away. Some
calls simply initiate an operation, while others will return an error if they were called before they should
have been. You are notified of call completion and readiness through processing of events. In the
previous example, you will know when it’s OK to write without pausing through an event. You will
know the same way when input is available. Your application is free to perform other tasks in between.

Page 20-4 Chapter Twenty
TAME Programming Overview

AMOS Monitor Calls Manual, Rev. 10

Event-driven programs tend to have a main loop of execution where interaction with their environment
takes place, and state flags to control behavior from past operations.

The TAME interface supports the event-driven model of programming. All TAME operations are non-
blocking and so, all the monitor calls will return right away without waiting for completion. You are
notified of important events through software interrupts, thus your application is event-driven. Examples
of events include the presence of input, the ability to accept more output, and connection establishment or
shutdown.

TAME’s use of AMOS software interrupts is an important aspect of its event-driven nature. Software
interrupts cannot be processed while in another wait state, for example the terminal input wait state. Your
entire application should be event driven, or at least written to use the TCPWAT or SIWAIT monitor
calls. You should avoid calls which will place you in a non-event-driven style wait state. If you are not
familiar with software interrupts, refer to chapters 14 and 15 in this manual. There are also a number of
books available on the basics of event-driven programming.

Features

AMOS monitor calls provide access to TAME. TAME provides a large number of calls useful in network
programming, plus several support functions. Monitor calls are provided to:

• Establish, accept, and close network connections.

• Read and write data.

• Transfer control of a connection to another job.

• Return useful connection information.

• Dynamically spawn other jobs.

• Pass information between jobs.

• Convert path and filenames to AMOS format in a standard way.

Program Operation

Clients and servers usually differ in operation only at the start and end of a connection. As a client, an
application will first attempt to establish a connection. As a server, an application will begin listening for
connections, then accept the connections as they are requested. After a connection is terminated, a client
will usually terminate while a server listens for and processes new connections.

Once a connection is established, operation of a client or a server is pretty much the same. The
application checks for events, retrieves the active events and services them as needed. Then, it notifies
TAME when it has completed processing events. This cycle is repeated until the connection is not needed
any more, and the connection is closed.

AlphaTCP Prog ramm ing Interface Page 20-5
TAME Programming Overview

AMOS Monitor Calls Manual, Rev. 10

Client Operation

A client establishes a connection with a server. Upon successful connection, data will be read and
written. After completing the transaction, the client may opt to close the connection or wait for the server
to do it. This depends on the design of the application. After this, a client usually exits.

When designing both the client and server applications, it is best to let the client close the connection
first. The reason is a TCP state known as TIME-WAIT. The end initiating the close must keep
information about the connection for one to four minutes after closing the connection. This ties up system
resources. Since clients often run on many systems while the server runs on one, allowing the clients to
initiate the close spreads the TIME-WAIT support between more systems. If you design your application
to have the server close first, all TIME-WAIT resources will be concentrated on the server system.

Server Operation

A server listens to a well-known port number. When notified of a client connection, it accepts the
connection. This creates a new handle, allowing the original handle to keep listening.

Once a server has accepted the connection, it may chose to do one of two things. It may process the
connection itself through events, or it may spawn another server to handle each connection. This is purely
a design decision and depends on your application’s requirements.

Servers which don’t spawn will allocate a control structure for each new connection. It then processes
and responds to events as needed, cleaning up the control structure upon termination of the connection.
You must avoid lengthy processing on any one connection.

Servers which spawn pass the connection handle to the spawned child, possibly on the command line or
through the attention event mechanism. Upon starting, the child should request control of the session by
using the passed handle, thus causing a handoff event in the parent. The parent should only process the
handoff event on the connection handle, any other events should simply be acknowledged. Once the
parent has relinquished control, the child can then use the new handle returned to control the session.

Making Requests

Through monitor calls, connections are established and terminated, and data is read and/or written. Every
one of these monitor calls will return without a significant delay, though the operation requested may
take time to complete.

For example, the process of establishing a connection is simple and returns quickly;

TCPCNI D6,HANDLE(A5),<dev.widgit.com>,<pop3>

The underlying mechanism, however, is complex. The service name pop3 must be converted to a port
number and the hostname dev.widgit.com must be converted to an address. This may involve contacting
several other systems known as name servers. The host itself must acknowledge acceptance of the
connection. Only then is the connection request actually complete. This may take less than a second, or
several minutes. There are also a number of places which can fail along the way. In a later section we
discuss events that notify you of completion and failure.

Page 20-6 Chapter Twenty
Monitor Call Summary

AMOS Monitor Calls Manual, Rev. 10

TAME connections are called sessions, whether completed or not. To avoid the problems associated with
stale memory addresses, all sessions are addressed using a unique handle. The handle is simply a four-
byte value provided by TAME which will not be reused for a long time, thus providing an identification
mechanism.

The monitor calls used to make requests are listed below. Each one is discussed in detail later in the text.
Note that some of these calls will return while the action is pending. Other calls cannot be made unless
the connection is prepared for them and will return an error. These requirements are supported by proper
handling of the various event notifications you receive during the life of a session.

Handling Events

Events provide support for the asynchronous non-blocking nature of TAME. Software interrupts notify
the program of events. While there are several different software interrupts available, TAME uses the
SI$TCP software interrupt for event notification. Software interrupts are described in chapters 14 and 15
of this manual.

Events are serviced, or flagged as needing service, within the SI$TCP software interrupt handler in your
application. The handler will query TAME for current events using the TCPEVT or TCPPOL monitor
calls, which return event flags in a word size field. Upon completion of all event servicing, the TCPEDN
monitor call notifies TAME that event servicing has completed, thus allowing a new cycle.

Certain data movement events are handled directly within TCPEVT or TCPPOL themselves. Because of
this, it is important to perform TCPEDN only when events are reported to you. If no events were reported
to you, it’s possible the only events pending were the hidden data movement ones, thus no TCPEDN is
needed. In other words, it is possible to receive a software interrupt indicating events exist, only to query
for those events and have nothing reported. In this case, the only events which existed were the hidden
data movement ones and those were already serviced by the polling.

There are two styles of event:

• Global events, which are not directly related to any session.

• Session events, which are unique to each session.

The events you may see are listed below. Each one is discussed in detail further on.

MONITOR CALL SUMMARY

TAME provides a large set of monitor calls. While only a handful of these are required for most TCP/IP
programming, TAME has been developed to allow for a variety of complex client/server
implementations.

Avoid using data registers with any of the monitor calls; many of them are used internally by the
calls for passing on data.

Client Side Active Connection Establishment

• TCPCON—Connect using indexed strings

AlphaTCP Prog ramm ing Interface Page 20-7
Monitor Call Summary

AMOS Monitor Calls Manual, Rev. 10

• TCPCNI—Connect using immediate strings

 Server Side Passive Connection Acceptance

• TCPLSN—Listen using indexed strings

• TCPLNI—Listen using immediate strings

• TCPACC—Accept an incoming connection request

 Connection Shutdown

• TCPDSC—Terminate active or passive session

 Data Movement

• TCPRED—Read currently available data (amount will vary)

• TCPFIL—Read in a data record of fixed size (begin record transfer)

• TCPLIN—Read in a line of data (begin line transfer)

• TCPWRT—Write data

 Event Processing

• TCPEVT—Return global and session events

• TCPPOL—Return global and session events for all sessions

• TCPEDN—Completed event servicing, ready for more

 Spawned Job Support

• TCPSPN—Spawn a job

• TCPDES—Cleanup terminated spawned jobs

• TCPKIL—Terminate a spawned job

• TCPREQ—Request control of a session (for a spawned job)

• TCPREL—Relinquish control of a session (for parent job)

 Other Calls

• TCPPID—Return process ID information

• TCPSAT—Set an attention event

• TCPQAT—Query for attention event information

• TCPINF—Return connection information for session

• TCPCPF—Convert a path specification to an AMOS filename

• TCPWAT—Preemptively wait for a software interrupt

• TCPRES—Resolve a hostname to address, or address to hostname

Page 20-8 Chapter Twenty
Event Summary

AMOS Monitor Calls Manual, Rev. 10

EVENT SUMMARY

Global Events

• TG$CHILD—A spawned job has exited (parent job only)

• TG$PARENT—Parent of spawned job has exited (spawned job only)

• TG$ATTENTION—General signaling method for parent and spawned jobs

• TG$DOWN—The TAME interface is being shut down

Session Events

• TE$CONNECTED—Connection established

• TE$DISCONNECTED—Connection closed by remote

• TE$DROPPED—Connection abruptly terminated or failed establishment

• TE$DATAIN—Unspecified amount of data ready to be read

• TE$DATAOUT—Interface ready for sending data

• TE$RECORD—Record fill or line read has completed (data ready)

• TE$HANDOFF—Control of a session has been requested

• TE$TRUNCATED—Connection closed with a partially filled line or record

• TE$RESOLVED—Name or address query has completed

THE EVENT HANDLER

The event handler is the heart of an application using TAME. While the rest of the application may
request operations, it is the event handler which controls scheduling and completion of the requests. For
instance, if the event handler has not been notified that a connection can accept data, a write attempt by
the application will fail.

You may query a session for events and find no events pending; if so, you should not
automatically perform TCPEDN. To ensure fair sharing of processor time, TAME performs certain
data movement operations with special events. These special events are serviced directly within the
TCPEVT call itself, which will perform its own TCPEDN unless more events are pending to be
serviced by your application.

Setting Up

To develop a true event-driven application, you must use a variety of software interrupts. For more
information on the use of software interrupts, see chapters 14 and 15 in this manual. The SI$TCP
software interrupt handles event notification.

AlphaTCP Prog ramm ing Interface Page 20-9
The Event Handler

AMOS Monitor Calls Manual, Rev. 10

To set up the event handler:

1. Define a software interrupt vector table in your impure area, for example:

.OFDEF SITBL,SI.SIZ

2. You need a mechanism to pass the impure pointer, since software interrupt code cannot rely on
the state of any registers. For a stand-alone program, use the job’s DSECT pointer in the JCB.
The example below assumes the impure area is indexed by A5:

JOBIDX
MOV A5,JOBDSC(A6)

3. Place a reference to your event handler code within the table, register the table, and enable the
event handler. The example below assumes the impure memory is indexed by A5:

LEA A6,TCP.EVENT
MOV A6,SITBL+SI.TCP(A5)
SIMSK SITBL(A5),#SI$TCP

4. You will use other software interrupts when developing a truly event-driven application. Place
references to all these event handlers in the vector table prior to the SIMSK above.

5. Enable them all at once by OR-ing together all of the mask flags on a single SIMSK line.

Accepting Events

The event handler code is called with the same job context as the main program. It saves all modified
registers, and may not rely on the existing content of any of them. Be aware that most monitor calls
change A6, D6, and D7 even if you don’t. The event handler should index the programs impure area,
then determine which events need servicing. If you follow the examples above, the start of the event
handler may look like the following assuming there is an entry in the impure area called HANDLE, into
which a prior connect or listen call stored a returned session handle. Further, assuming there are a pair of
words where we put global and session events:

TCP.EVENT:
SAVE A5,A6,D6,D7
SICLR SI$TCP
JOBIDX
MOV JOBDSC(A6),A5
TCPEVT D6,HANDLE(A5),GEVENTS(A5),SEVENTS(A5)
BNE BAD.HANDLE
REST A5,A6,D6,D7
SIRTN

The code above resets the active SI$TCP software interrupt. It then retrieves the impure memory
reference from the job’s DSECT vector. Finally, it requests the pending events from the TAME
subsystem. If an error occurs, the offset BAD.HANDLE may interrogate D6 and act appropriately.

There are many ways to write the event handler. It may service the events itself, or it may simply store
them for processing in the main body of the program. The example above stores the event for later
processing. No further events will arrive until a TCPEDN is performed, and executing TCPEVT again
will simply return the same events.

Note the use of SIRTN instead of RTN in the example above. SIRTN is the proper instruction for leaving
a software interrupt routine.

Page 20-10 Chapter Twenty
The Event Handler

AMOS Monitor Calls Manual, Rev. 10

Servicing Events

The example above stores events to be processed within the main body of the program. To keep your
program from using CPU time when there is nothing to do, use the TCPWAT call. For example:

MAIN.LOOP:
CTRLC EXIT.PROGRAM
SUPVR
TSTW GEVENTS(A5)
BNE 10$
TSTW SEVENTS(A5)
BNE 10$
TCPWAT
LSTS #0
BR MAIN.LOOP

10$: LSTS #0
CALL EVENT.PROCESSING
BR MAIN.LOOP

The SUPVR and LSTS #0 statements are used to avoid a deadlock condition. Software interrupts
are normally processed during monitor calls and context switches, but not if the job is in
supervisor mode. By using supervisor mode, the possibility of GEVENTS or SEVENTS
becoming set after the test but before the TCPWAT is eliminated. CTRLC is used outside of
supervisor mode not only to check for ^C, but to process any outstanding software interrupts.
The JOBIDX monitor call is another fast monitor call which may be used to force processing of
software interrupts.

The EVENT.PROCESSING subroutine calls appropriate code for each set event. When all pending
events are processed, the EVENT.PROCESSING subroutine clears the event flags and performs the
following operation:

TCPEDN D6,HANDLE(A5)

This tells TAME that the program is ready for new events. To tell tame you are finished processing
global events should any occur, use the following operation:

TCPEDN D6,#0

Keep an eye out for the following conditions when building a TAME program:

• Never perform a TCPEDN if the TCPEVT call does not return any active events. Certain special
data movement events are serviced within TCPEVT. If the only events present were the special
data movement events, TCPEVT performs its own TCPEDN and returns with no events pending.

• When addressing global events or multiple sessions, it is possible to get deadlocks or missed
SI$TCP signals. When you are expecting events from multiple sources (i.e., multiple sessions or
spawned children), insure that you provide interlocking. Process the events directly in the event
handler, where the SI$TCP software interrupt is blocked pending the SIRTN. A more complex
approach involves the use of flags.

• In an event-driven program , it is important to avoid extended wait states, other than software
interrupt wait (Si). One example is terminal input wait (Ti). If you enter a non-event-driven wait
state, the program will be unable to process software interrupts. To avoid using the terminal input
wait state, use TCPWAT or SIWAIT instead, which will be awakened by keyboard input as well

AlphaTCP Prog ramm ing Interface Page 20-11
Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

as other events. You may then choose to register a keyboard handler, or simply use TCKI prior to
retrieving keyboard input. Use either method to avoid blocking in a non-event-driven wait state.

MONITOR CALLS

The following section details all the monitor calls. It is important to remember that:

• Monitor calls always destroy registers A6, D6, and D7.

• Parameters are passed internally in data registers.

• A6 is used to get indexes to memory-based arguments.

Although monitor calls save any registers that get modified (except the ones mentioned above), it’s not a
good idea to use a data register in an argument since the order used internally might conflict with a
subsequent argument using it (i.e. if the call uses D2 internally to reference argument #1, then passing
0(A0)[D2] as argument #2 would result in a bad value for argument #2). Examining the structure of the
TAME macros will give you a better understanding. As error conditions are returned in D6, it is safe to
use D6 as the error argument.

Establish a Connection

To establish a connection to a server, use either:

TCPCON error, handle, host, port, {sourceport}, {flags}

TCPCNI error, handle, host, port, {sourceport}, {flags}

TCPCON uses indexed references to host and port, while TCPCNI uses immediate strings on the line.
Use either of these two calls to establish a connection to a server on host which is listening on port. The
port argument may be a numerical string, or a service name defined in TCP:SERVIC. The call returns
handle, which is a longword used to reference the connection in other calls. The argument sourceport is
optional and may be a numerical string or service name. If the source port is not specified the next
available port will be used.

The following options may be specified for the optional argument flags:

Symbol Meaning
TC$KEEPALIVE Enables keepalives for clients.
TC$NODELAY Disables NAGLE small-packet delay.
TC$FIRSTADDR Only attempt first IP address.

Keepalives are mechanisms transparent to the application which periodically test an idle connection. If
the remote does not respond for an extended period (by default two hours), the connection is reset. If the
remote has been rebooted, the connection will be reset at the next keepalive (two minutes). Keepalive is
used to prevent a server from waiting in the background endlessly and is OFF for active connects
(implied clients) by default. Specifying TC$KEEPALIVE turns it ON.

NAGLE is a TCP feature that attempts to queue up tiny data fragments into larger ones, thus lowering the
overall packet overhead. This is very important on slower connections, or busy or long routes, since TCP
packet headers are usually 40 bytes in length. NAGLE works by allowing only 1 unacknowledged packet

Page 20-12 Chapter Twenty
Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

in transit at a time. On a fast Ethernet, NAGLE is transparent, but on serial connections, it groups things
like keystrokes into single packets for more efficient transmission. By default NAGLE is enabled.
Specifying TC$NODELAY turns it OFF.

A name lookup could return multiple IP addresses for a single host, when using domain name service.
This happens when a host contains multiple network interfaces. By default, if a connection cannot be
established on one address, TCPCON and TCPCNI try the next one. When you specify
TC$FIRSTADDR, it only tries the first address. This switch should not be used in most situations.

Examples of the above calls:

TCPCON D6,HANDLE(A5),HOST(A5),PORT(A5)
TCPCNI D6,HANDLE(A5),<dev.widgit.com>,<pop3>,,#TC$KEEPALIVE
TCPCNI D6,HANDLE(A5),<test.widgit.com>,<2001>,<2002>

Listen for Connections

To listen for connection requests on a specific port, use either:

TCPLSN error, handle, port, {flags}

TCPLNI error, handle, port, {flags}

The port argument may be a numerical string, or a service name defined in TCP:SERVIC. The call
returns handle, which is a longword that references the listening session. Incoming connections generate
TE$CONNECTED events, however the listening session is never used to transfer data. Instead, when a
connection arrives the TCPACC call should be used to assign a new handle for the active connection.

TCPLSN uses indexed references to host and port, while TCPLNI uses immediate strings on the line.
The following is a list of alternatives to use for the optional argument flags:

Symbol Meaning
TL$GETNAME lookup the connecting hostname.
TL$FAILNAME Ignore connection if lookup fails.
TL$NOKEEPALIVE Disables keepalives for servers.
TL$NODELAY Disables NAGLE small-packet delay.

By default, TCP/IP accepts an incoming connection as-is (with only the source address and port number).
Use TL$GETNAME to look up the source hostname prior to notifying the application of the connection.

To drop any connections for which the name is unavailable, use TL$FAILNAME. The application is
never notified of the connection attempt. TL$GETNAME is automatically implied by this option.

Remember that using the above flags delays establishing the connection. Also, the name may not
always be available for various reasons, which will cause another delay or prevent the connection.

Keepalives are mechanisms which transparently trigger periodical testing of an idle connection. If the
remote does not respond for an extended period (by default two hours), the connection is reset. If the
remote has been rebooted, the connection will reset at the next keepalive (two minutes). Keepalives are
used to prevent a server from waiting in the background endlessly. The default setting is ON for passive
listens (implied servers); specifying TL$NOKEEPALIVE turns it OFF.

AlphaTCP Prog ramm ing Interface Page 20-13
Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

NAGLE is a TCP feature that queues up tiny data fragments into larger ones for transmission, thus
lowering the overall packet overhead. This is very important on slower connections, or busy or long
routes, since TCP packet headers are usually 40 bytes in length. NAGLE allows only 1 unacknowledged
packet in transit at a time. On a fast Ethernet, NAGLE is transparent, but on serial connections, it groups
things like keystrokes into single packets to expedite transmission. By default NAGLE is enabled.
Specifying TC$NODELAY turns it OFF.

Following are examples of the calls discussed above:

TCPLSN D6,HANDLE(A5),PORT(A5)
TCPLNI D6,HANDLE(A5),<pop3>,#TL$GETNAME
TCPLNI D6,HANDLE(A5),<2001>,#TL$GETNAME+TL$FAILNAME

Accept a Connection

To accept a connection on a listening handle, use:

TCPACC error, oldhandle, newhandle

Once a server receives a TE$CONNECTED event on the listening session oldhandle, the connection is
accepted and assigned its own session using TCPACC. The handle for the new session is returned in
newhandle. The connection is processed using the new handle, while the listening session may receive
further connections on oldhandle. To accept a connection:

TCPACC D6,HLISTN(A5),HACTIV(A5)

Terminate a Session

To disconnect or terminate a session, use:

TCPDSC error, handle, reset

TCPDSC is used to disconnect an active connection, or otherwise terminate a session referenced by
handle. Upon return, handle will be invalid and should no longer be used. The reset argument is
optional. When it is used, it discards any data waiting to be sent. If reset is not used, it continues to
deliver any data waiting to be sent. The value of reset does not matter, only its presence on the line. For
example:

TCPDSC D6,HANDLE(A5)
TCPDSC D6,HANDLE(A5),#1

Read Data Stream

To read data transmitted by a session into a buffer, use:

TCPRED error, handle, buf, maxlen, len

TCPRED reads incoming data from the session referenced by handle into the buffer indexed by buf. A
maximum of maxlen characters will be read. The actual number of characters read is written to len.

Page 20-14 Chapter Twenty
Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Please note that the number of characters read will not always match the number written by
individual writes on the remote end. The TCP protocol can adjust the size to make a read return
partial or multiple sections, as needed. For fixed record sizes, you must devise a mechanism
yourself, or use the TCPFIL monitor call instead.

Example of a read data call:

TCPRED D6,HANDLE(A5),BUFFER(A5),#BUFLEN,READSZ(A5)

Read Data Record

To read fixed amounts of data from a session:

TCPFIL error, handle, buf, reclen

TCPFIL launches the reading of fixed amounts of data from the session referenced by handle. Data is
read into the buffer indexed by buf until reclen characters are read. This is a fully event-driven call. Data
is transferred by your program transparently during TCPEVT calls. Once the buffer is filled in an event is
triggered notifying you of completion of the TCPFIL call. To read another record you must perform
another TCPFIL call. A good place to do this is in response to TE$DATAIN events. In other words,
when you receive a TE$DATAIN event, perform the TCPFIL call rather than reading data. The TCPFIL
call is used as follows:

TCPFIL D6,HANDLE(A5),RECORD(A5),#RECSIZ

If the connection is closed prior to the record being completed, a TE$TRUNCATED event will occur.
The number of characters completed may then be found using TCPINF.

Read a Line

Use TCPLIN to read a line of data:

TCPLIN error, handle, buf, maxlen

TCPLIN launches the reading of a line of data from the session referenced by handle. Data is read into
the buffer indexed by buf until a linefeed is encountered, or maxlen-2 characters are read. If you don’t
pair a linefeed with a carriage return, one will be added before the linefeed. In all cases, the returned
string will be terminated with a null.

This is a fully event-driven call. Data is transferred by your program transparently during TCPEVT calls.
Once the line is complete an event is triggered notifying you of completion of the TCPLIN call. To read
another line you must perform another TCPLIN call. A good place to do this is in response to
TE$DATAIN events. In other words, when you receive a TE$DATAIN event, perform the TCPLIN call
rather than reading data. The TCPLIN call is used as follows:

TCPLIN D6,HANDLE(A5),STRING(A5),#STRLEN

If the connection is closed prior to the line being completed, a TE$TRUNCATED event will occur. The
number of characters completed may then be found using TCPINF.

AlphaTCP Prog ramm ing Interface Page 20-15
Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Write Data

To write a fixed number of characters, use:

TCPWRT error, handle, buf, len

TCPWRT writes len characters indexed by buf to the session referenced by handle. This call should be
used only once per event, and only after an event indicates it is OK to write data. The data buffer should
also remain unchanged until another write event occurs. To maintain the non-blocking nature of this call,
data is actually moved during the TCPEVT call as resources permit. A new TE$DATAOUT event
indicates that it is OK to write data. It also indicates that any previous write buffer used is free and can be
reused.

The buffer sizes in the stack allow a maximum of 2,048 bytes of data to be written in a single TCPWRT
call. Larger writes require additional TE$DATAOUT events and TCPWRT calls. Since TCP connections
are byte streams without record boundaries, this is not a limitation. To write larger amounts of data, limit
individual writes to around 1,024 bytes. This fits well in an Ethernet frame, thus the stack won’t have to
fragment and reassemble the data to make it fit. Since writes larger than 1,024 bytes are placed in 2,048
byte buffers, it also avoids waste and frees up more large buffers for storing incoming Ethernet packets.

Examples of the above call:

TCPWRT D6,HANDLE(A5),WRTBUF(A5),WRTLEN(A5)
TCPWRT D6,HANDLE(A5),ASCLBL,#ASCEND-ASCLBL

Query Events

To identify pending current events for a session, use:

TCPEVT error, handle, gevents, sevents

TCPEVT requests current events pending for the session referenced by handle. Active events for the
session set bits in the word sevents. Global events set bits in the word gevents.

If you are only interested in the global events, pass a handle number of zero and only the gevents
argument will be filled in.

Even if you are not requesting session event information, you still need to pass a sevents
argument to the call.

Examples:

TCPEVT D6,HANDLE(A5),GEVENTS(A5),SEVENTS(A5)
TCPEVT D6,#0,GEVENTS(A5),D7

Query Multiple Events

To identify pending current events for all sessions owned by a specific job, use:

TCPPOL error, gevents, array, max, filled

Page 20-16 Chapter Twenty
Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

TCPPOL requests current events pending for all sessions owned by the job performing the TCPPOL call.
Only those sessions with active events will be returned. The array argument indexes an array of
longword/word pairs. The array will be filled in with (longword) handle and (word) events pairs, up to a
maximum of max pairs. The number of entries filled in is returned in the longword filled. Global events
set bits in the word gevents.

Each session listed in the array should be processed individually, with a TCPEDN performed on each
handle in the array that has active events.

Example of the above call:

TCPPOL D6,GEVENTS(A5),EVNARR(A5),#ARRMAX,EVNCNT(A5)

Completing Event Processing

Use this call to indicate that all events for the session are complete:

TCPEDN error, handle

TCPEDN notifies the TAME subsystem that processing of all current events is complete for the session
referenced by handle. This frees the application to be notified of further events. When dealing with
multiple sessions, you will have to address a number of issues to avoid signal loss and deadlock
conditions.

If global events have been processed, pass a handle number of zero. If no events were returned for a
session, do not perform this call on the session. It’s possible the only events present were the transparent
data movement ones processed in the TCPEVT and TCPPOL calls.

Examples of the above call:

TCPEDN D6,HANDLE(A5)
TCPEDN D6,#0

Getting Process ID Information

Use this call to return job and parent process IDs:

TCPPID error, pid, ppid

TCPPID returns the job’s process ID, and the job’s parent process ID if applicable. Process IDs are the
method used by AlphaTCP and the TAME interface to identify and control jobs using TCP/IP. Upon
return, the longwords pid and ppid are filled in. If the job was not spawned by a TAME-aware
application, then ppid is set to 0; otherwise it contains the process ID of the job which spawned it.

Note that this will be a different ppid than listed by the PS program. For control reasons,
TAMED is always the parent process listed by PS.

AlphaTCP Prog ramm ing Interface Page 20-17
Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Setting an Attention Event

Use this call to set an attention event for a specific process ID:

TCPSAT error, pid, arg1, arg2

TCPSAT sets an attention event for the process in pid. The longword arguments arg1 and arg2 are
passed to the process and are user defined. As the actual processing of the event in the other job is
asynchronous, it’s best not to pass pointers to memory areas, though memory based arguments are
encouraged. For example, you can use the form ARG(A5) as long as ARG(A5) makes no reference to
another memory location. Arguments not provided default to 0. The attention mechanism is handy for
passing control of a session to a child.

Querying for Attention Event Information

Use this call to return information for an attention event:

TCPQAT error, pid, arg1, arg2

TCPQAT writes the signaling process ID to pid and the arguments passed with the attention call are
written to the longwords arg1 and arg2. Arguments not provided default to 0.

Getting Connection Information

Use this call to return information about a specific connection:

TCPINF error, handle, info

TCPINF returns information about a call referenced by handle. The information is returned in the
structure referenced by info. TCPINF returns local and remote addresses and port numbers. The local
hostname is returned as found in TCP:MYNAME.. Also, to return the remote hostname for incoming
connections, configure the TCPLSN call to look it up with TL$GETNAME. Furthermore, TCPINF
returns a distance indicator in relation to the remote host.

The format of the info structure is as follows:

Page 20-18 Chapter Twenty
Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Symbol Size Purpose
tai.lname 4 Pointer to local name string storage
tai.lnsiz 4 Size of above string
tai.laddr 4 Pointer to local address string storage
tai.lasiz 4 Size of above string
tai.lport 2 Local port number
tai.rname 4 Pointer to remote name string storage
tai.rnsiz 4 Size of above string
tai.raddr 4 Pointer to remote address string storage
tai.rasiz 4 Size of above string
tai.rport 2 Remote port number
tai.rdist 2 Remote distance indicator
tai.errno 2 Last socket error encountered
tai.herrno 2 Last name-resolution error encountered
tai.rbytes 4 Characters filled in an aborted record or

line
tai.size Size of this structure

Note that the symbol names are lower case.

Before calling TCPINF you must fill in the pointer and size fields for the names and addresses in
the array. The TCPINF call will then fill in the referenced areas with null terminated strings.

Assuming the session obtains a connection, the remote distance indicator may contain one of the
following values upon return:

Symbol Meaning
TD$LOCALHOST Remote is running on the local system.
TD$LOCALNET Remote is on another system on the local network.
TD$REMOTE Remote is on another network altogether.

Spawning Jobs

To spawn a new job with a specific configuration, use:

TCPSPN error, pid, how

TCPSPN spawns a job using the configuration in how. Upon successful creation, the new job’s process
ID is written to the word pid. The process ID is a mechanism used by AlphaTCP to transparently keep
track of jobs. The spawn descriptor referenced by how has the following structure which may be
assigned using the size definition tas.siz:

Symbol Size Purpose
tas.mem lword Memory size in bytes
tas.run lword Pointer to command line to execute
tas.nam lword Pointer to desired jobname (or 0 for default)
tas.flg word Spawn flags. See below.

Note that the symbol names are in lowercase.

Flags which may be provided in tas.flg are:

AlphaTCP Prog ramm ing Interface Page 20-19
Monitor Calls

AMOS Monitor Calls Manual, Rev. 10

Symbol Purpose
TS$FNAM Fail if name referenced by tas.nam already exists.
TS$LOFF Start the job logged off.
TS$ADOT Don’t despawn the job when it reaches the AMOS

prompt.
TS$SDOT Suppress printing the AMOS prompt.

Terminating Spawned Jobs

Use this call to terminate a specific job and begin shutting it down:

TCPKIL error,pid

TCPKIL removes the spawned job from the AlphaTCP process ID list and starts shutdown processing on
it. The target job receives up to two SI$EXI software interrupt exit requests and Control-C’s. Failing this,
the job terminates with an SI$ABT software interrupt abort.

Spawned Job Cleanup

Whenever one or more spawned jobs terminate your application will receive an event. To return the
status of terminated jobs, use:

TCPDES error, pid, status

TCPDES requests status of terminated spawned jobs. Each call returns status for a single despawned job.
Call TCPDES repeatedly until it indicates there is no more status to return. The exiting job’s process ID
is written into pid, and the job’s exit status (from JOBERR) is written into status.

It is very important to perform this call when spawning jobs. As spawned jobs disappear, their
status is held, taking up system resources. Using this call frees up the resources holding their
termination status. Once you receive a child termination event, keep performing this call until
you receive a TA$ENRDY error, indicating no more termination status exists. This allows for
multiple jobs to have terminated for a single event.

Requesting a Session

To request control of a specific session, use:

TCPREQ error, handle, newhandle

Requests control of the session referenced by handle. Upon successful handshaking with the current
owner, control will be given to the requesting job and a new handle will be written to the longword
newhandle.

As this is not an event-driven call, make sure that the owner job releases the session as quickly as
possible to avoid any delays.

Page 20-20 Chapter Twenty
Events

AMOS Monitor Calls Manual, Rev. 10

Releasing a Session

To release a specific session to the requester, use:

TCPREL error, handle

TCPREL relinquishes control of the session referenced by handle to the requester.

Standard Filename Conversion

TCPCPF error, path, fname, flags

TCPCPF converts the UNIX- or DOS-style path indexed by path into an AMOS filename and stores it in
the buffer indexed by fname. The conversion performed is documented in the AlphaTCP User’s Guide.
This is the same conversion routine used throughout AlphaTCP, providing a consistent name conversion
style. When using DOS-style paths you should replace the backslashes with forward slashes first. The
following options may be specified for flag:

Symbol Meaning
TF$NODIR Discard directory information (keep filename only).

Hostname and Address Conversion

Normally a hostname is translated to an address automatically when establishing a connection. Likewise,
an address is translated to a hostname prior to notification of a new incoming connection.

If you find a reason you need to perform this conversion outside of an actual connection you may use:

TCPRES error, handle, string, flags

This will start a domain name query on string. When the query is complete, a TE$RESOLVED event
will be generated. The resolved name or address may be read using TCPINF. You should close the
handle when you are done with the query.

flags controls how the query is performed. The following options may be specified for flag:

Symbol Meaning
TR$REV Used when string contains an IP address and you

want to find the hostname

EVENTS

The following section contains details for each of the events generated.

AlphaTCP Prog ramm ing Interface Page 20-21
Events

AMOS Monitor Calls Manual, Rev. 10

Global Events

Symbol Meaning
TG$CHILD One or more child processes have terminated. Use the

TCPDES call to find out which and the exit status.
TG$PARENT The parent process has terminated. This may or may not

indicate an error, depending upon the application.
TG$ATTENTION Another process is requesting attention. Actual communication

between processes is left up to the application. This is simply a
signaling mechanism with a built-in ability to pass a pair of
longword values. Use TCPQAT to determine the signaling
process and any passed arguments.

TG$DOWN The TAME subsystem is shutting down. This is a fatal error, all
session handles are now invalid. Any existing connections will
be reset. Most often you won’t see this event as the subsystem
will usually be gone by the time you perform the TCPEVT call.
In this case your TCPEVT will return TA$ENAVL (TAME
unavailable) status instead.

Session Events

Symbol Meaning
TE$CONNECTED An outgoing connection request has completed successfully, or

an incoming connection has been established.
TE$DISCONNECTED The remote application has closed the connection. This results

from an orderly shutdown.
TE$DROPPED A pending connection request has failed, or an active connection

has been terminated. This usually results from a fatal network
error, although the remote application itself can request that the
connection be aborted in some cases.

TE$DATAIN There is data available on the connection ready to be read. You
should only perform a single read per TE$DATAIN event. If you
are reading records using TCPFIL or lines using TCPLIN you
should ignore TE$DATAIN events, possibly using them to restart
record or line mode instead.

TE$DATAOUT The connection is ready to have data written to it and any
previously sent buffer may now be reused. You should only
perform a single write per TE$DATAOUT event. Also, the buffer
used to send data should remain unaltered until the next
TE$DATAOUT event.

TE$RECORD A complete record or line is now available. This implies either a
TCPFIL or TCPLIN operation was being performed on the
connection. The connection reverts back to normal mode and
will begin generating TE$DATAIN events again. To begin
reading another record, initiate another TCPFIL operation. To
begin reading another line, initiate another TCPLIN operation. A
convenient place to do this is during TE$DATAIN processing.

TE$HANDOFF A child job is requesting control of an existing session. Perform
a TCPREL to relinquish the session to the child.

TE$TRUNCATED Connection closed with a partially filled line or record
TE$RESOLVED Name or address query has completed

Page 20-22 Chapter Twenty
Quick Reference List of Calls

AMOS Monitor Calls Manual, Rev. 10

QUICK REFERENCE LIST OF CALLS

The following alphabetic list includes the format and a brief description for all uses of TAME:

Calling Fo rmat Description
TCPACC ERR,OHAND,NHAND Accept a connection and generate a new handle.
TCPCNI ERR,HAND,HOST,DPORT,SPORT,FLAGS Establish a connection using immediate strings.
TCPCON ERR,HAND,HOST,DPORT,SPORT,FLAGS Establish a connection using indexed strings.
TCPCPF ERR,PATH,FNAME,FLAGS Convert a path to an AMOS filename.
TCPDSC ERR,HAND,RST Disconnect the session.
TCPDES ERR,PID,STAT Handle despawned job cleanup.
TCPEDN ERR,HAND Notify completion of current event driven activity.
TCPEVT ERR,HAND,GEVENTS,SEVENTS Request current events for session.
TCPFIL ERR,HAND,BUF,RECLEN Begin filling a record of reclen bytes.
TCPINF ERR,HAND,INFO Return information about current connection into an

array and strings.
TCPKIL ERR,PID Kill a spawned job.
TCPLIN ERR,HAND,BUF,MAXLEN Begin reading a line of up to maxlen bytes.
TCPLNI ERR,HAND,PORT,FLAGS Listen for connections using immediate strings.
TCPLSN ERR,HAND,PORT,FLAGS Listen for connections using indexed strings.
TCPPID ERR,PID,PPID Request process ID information.
TCPPOL ERR,GEVENTS,ARRAY,MAX,FILLED Request current events for all sessions.
TCPQAT ERR,PID,ARG1,ARG2 Request attention event information.
TCPRED ERR,HAND,BUF,MAXLEN,LEN Read currently available data up to maxlen bytes.
TCPRES ERR,HAND,STRING,FLAGS Resolve a hostname or an address
TCPREL ERR,HAND Release control of a session to a requester.
TCPREQ ERR,HAND,NHAND Request control of a session.
TCPSAT ERR,PID,ARG1,ARG2 Set an attention event for the given process.
TCPSPN ERR,PID,HOW Spawn a job.
TCPWRT ERR,HAND,BUF,LEN Write data for len bytes.
TCPWAT Wait for something to do.

TAME ERROR CODES

There are three sets of error codes related to TAME:

• The general error codes may be returned in the ERR argument in any TCP call. The
TASYM.M68 file defines symbols for the general error codes so you can test for them easily in
your application.

• The socket error codes contain information about the BSD socket function, and can be accessed
using the TCPINF call.

• The name error codes are also accessed using TCPINF. They contain information about the DNS
Resolver functions.

AlphaTCP Prog ramm ing Interface Page 20-23
TAME Error Codes

AMOS Monitor Calls Manual, Rev. 10

General Error Codes

Symbol Meaning
TA$ENAVL TCP interface not available
TA$ENVLD Invalid TCP function call
TA$EINTR TCP function interrupted
TA$ENRDY Not ready for requested TCP operation
TA$EDISA TCP session has been disabled
TA$ESOOR TCP service out of resources
TA$ESOOM TCP service out of memory
TA$ESOCK General TCP socket failure
TA$EPORT Invalid TCP service or port
TA$EHOST Invalid TCP host name
TA$EHUNR TCP Host unreachable or not responding
TA$EPARM Parameter error in TCP call
TA$ETDV Spawn failure, cannot find tdv
TA$EIDV Spawn failure, cannot find idv
TA$EMEM Spawn failure, not enough memory
TA$EFUL Spawn failure, job table is full
TA$EDUP Spawn failure, job already exists
TA$ELIC Spawn failure, would exceed AMOS license

Socket Errors

Decimal
Value

Meaning Decimal
Value

Meaning

1 File specification error 523 Address family not supported by
2 Insufficient free memory 524 Socket type not supported
3 File not found 525 Protocol not supported
4 File already exists 526 No buffer space available
6 Device full 528 Socket is already connected
7 Device error 529 Socket is not connected
8 Device in use 530 Bad protocol option
10 Protection violation 531 Connection reset by peer
11 Write protected 532 Software caused connection abort
12 File type mismatch 533 Network is down
13 Device does not exist 534 Connection refused
14 Illegal block number 535 Host is unreachable
27 Remote is not responding 536 Protocol wrong type for socket
28 File in use 537 Operation not supported on socket
30 Deadly embrace possible 538 IP subnet table full

500 Device not a stream 539 Subnet module not linked
501 No data 540 Unknown ioctl call
502 Timer expired 541 Failure in streams buffer allocn
503 Out of streams resources 542 ICMP protocol unreachable
504 Machine is not on the network 543 ICMP port unreachable
505 Package not installed 544 ICMP network unreachable
506 The object is remote 545 Protocol family not supported
507 The link has been severed 546 Can't send after socket shutdown
508 Advertise error 547 Network dropped connection on reset
509 Surmount error 548 Destination address required
510 Communication error on send 549 Invalid Ethernet packet
511 Protocol error 550 Type registration error
512 Multihop attempted 551 Illegal address
513 Inode is remote 552 Message too big for buffer
514 Cross mount point 553 No message of requested type exists
515 Trying to read unreadable message 554 File table overflow
516 Given log. name not unique 1000 USAM error

Page 20-24 Chapter Twenty
Examples

AMOS Monitor Calls Manual, Rev. 10

Decimal
Value

Meaning Decimal
Value

Meaning

517 f.d. invalid for this operation 1001 Domain error
518 Remote address changed 1002 Range error
519 Try again 1003 Interrupted system call
520 Socket operation on non-socket 1004 Too many open files
521 Can't assign requested address 1005 No such device or address
522 Address already in use 1006 Not super user

Name (DNS Resolver) Errors

Value Meaning
1 Unknown host
2 Host name lookup failure
3 Unknown server error
4 No address associated with name

EXAMPLES

A number of example programs are provided in the [7,7] account of the AlphaTCP release. Please refer
to the TCP.DIR file of the release.

AMOS Monitor Calls Manual, Rev. 10

Appendix A
Disk Structure Format

AMOS supports a flexible disk file system that relieves you of the task of keeping track of files, links,
and block counts. Not only does this hiding of details make it easier to create programs which access
files, but it also allows a program to deal with different file systems without regard for the low-level
details.

AMOS supports two distinct file systems: the traditional file system, which uses 16-bit pointers and
limits file sizes to 32 MB or less; and the extended file system, which uses 32-bit pointers, allowing file
sizes up to 2,097,512 MB. Both file systems can be present on a given system at the same time, with
different logical units containing different file systems. You can choose how to set up each logical unit
based on the requirements of a given system.

The structure of the disk directory used by AMOS is described here for informational purposes only; all
manipulation—reading or writing—of the directory structure should be done via the standard AMOS file
and directory handling calls. By using only these calls to access directories, you can ensure that your
program will not be affected by future changes to the underlying file structures.

PHYSICAL BLOCK FORMAT

The logical block size for all disks used within the AMOS file structure, regardless of type, is 512 bytes.
While most disk drives are formatted by AMOS to have a physical sector size of 512 bytes, AMOS
provides support for devices with smaller physical sector sizes by automatically clustering the smaller
sectors into a 512 byte block.

Regardless of the physical sector size, all AMOS file system I/O is done with 512 byte disk blocks.

DISK BLOCK TYPES

The AMOS file systems use five different block types which are categorized by their use in the logical
processing of files. Each block is 512 bytes long, but their internal structure differs due to different usage
in the system. The five block types are:

• Disk Label block

• Bitmap blocks

• Directory blocks

• Sequential file data blocks

• Contiguous file data blocks

Page A-2 Appendix A
Disk Block Types

AMOS Monitor Calls Manual, Rev. 10

Physical blocks 0, 1, and 2-n (where n depends on the size of the disk) contain predefined information,
regardless of file system type. Block 0 contains the disk label block, block 1 contains the first disk
directory block, and blocks 2-n contain the disk storage allocation bitmap.

The Disk Label Block

The Disk Label block is always block 0 and is used by the LABEL and MOUNT programs, plus any
other programs that need to know what disk is currently mounted on a given disk drive. The label block
is reserved for disk identification information. It is permanently allocated, so a system routine will not
accidentally use it as a data block. Since this block is reserved for the disk label, you should not attempt
to use it for other purposes.

The label block is used to store the flags that indicate to AMOS what directory type (traditional or
extended) is in use on a logical unit. Other than the presence (or absence) of these flags, the label block
format is the same for both file systems.

The format of the disk label block is as follows:

Symbol Meaning Size Notes
LB.HDR Header 2 words ^O125252 :

052525
LB.VLN Volume Name 40 bytes ASCII text
LB.VID Volume ID 10 bytes ASCII text
LB.CRE Creator 30 bytes ASCII text
LB.INS Installation 30 bytes ASCII text
LB.SYS System Name 30 bytes ASCII text
LB.CRD Creation Date 4 bytes Separated date
LB.ACD Access Date 4 bytes Separated date

Unused, reserved 36 bytes
LB.FLG Flags 1 byte Bitmask

Symbol Value Meaning
LB$14D 4 Disk contains extended format

directories
Unused, reserved 5 bytes

The LB.HDR field contains two "noise" words used to identify the disk as being labeled. If these two
words do not contain the values specified above, the disk is not considered to be labeled.

All ASCII text fields are terminated by either a null or by the field length.

The dates contained in the disk label in system separated format, as shown in Figure A-1. Separated date
format is described in more detail in Chapter 10.

Day Month Day of Week Year

31 24 23 16 15 8 7
0

Figure A-1: Disk Label Date Format

Disk Structure Format Page A-3
Disk Block Types

AMOS Monitor Calls Manual, Rev. 10

The Bitmap

The bitmap consists of one or more disk blocks that are used as a storage allocation map for the disk. The
bitmap always starts at block two and extends for as many blocks as are necessary to map the entire disk.
Each word in the bitmap is capable of representing the state of 16 logical blocks with one bit being used
for each block. The bit is set if the block is in use and cleared if it is free. The last two words of every
bitmap are a double-word hash total that is used to maintain bitmap integrity during processing. Any
remaining words in the last bitmap block are unused. The bitmap itself is permanently allocated but
contains no links to other system disk blocks. If you destroy the bitmap, you can run the DSKANA
program to recover it.

The format of the bitmap is the same for both traditional and extended format directories.

Directory Blocks

Directory blocks are used by both file systems to define both the data files stored on the disk and the
directory or account (PPN) structure in which these data files are organized.

While the implementation details are different, both file systems use a multi-level organization allowing
collections of files to be grouped into accounts (PPNs). Both start their directory structure with block 1 of
the disk.

Traditional Format Directories

The traditional format directory structure makes use of a two level directory hierarchy consisting of a
master file directory (MFD) which in turn points to user file directories (UFD) allocated throughout the
disk structure.

 The master file directory block always starts in block 1 and forms the basis of the file structure
organization. It contains one entry of four words for each user PPN which is allocated to this disk by the
SYSACT program. If more entries are needed, additional disk blocks may be linked to block 1 to extend
the size of the MFD.

User directory blocks (UFDs) contain up to 42 entries of six words each to describe user files in a PPN.
The first word of each directory block is a link word to the next directory block, to accommodate
situations where more than 42 files are allocated in the current user area. The final directory block has a
zero link word, indicating that no more directory blocks follow.

Extended Format Directory Blocks

Extended format directory blocks consist of a multi-level hierarchy of directories. The root of these
directories always starts in block 1 of the disk. This root directory contains a series of variable length
directory entries defining additional directories (PPNs) on the disk. In turn, each of these directories
contains variable length entries defining the individual data files on the disk.

While the structure of the extended format directory blocks does not require it, for compatibility reasons
the file system is formatted as a two-level structure much the same as the traditional format file system.

Page A-4 Appendix A
Traditional Format File Structure

AMOS Monitor Calls Manual, Rev. 10

Sequential File Data Blocks

Sequential data files consist of a series of disk blocks linked together by a disk block pointer contained at
the start of each block. Traditional format sequential files have a two byte link and 510 data bytes in each
block. Extended format sequential files have a four byte link and 508 data bytes in each block. The link
contains the block number of the next block in the file. A zero link indicates this is the last block in the
file. The last block in the file may have anywhere from 0 to 510 (0 to 508 in extended format) active data
bytes in its data area. The directory block item contains this number. Sequential files are normally
processed as one long string of bytes from start to finish.

Contiguous File Data Blocks

Contiguous file data blocks have 512 data bytes and no links. Contiguous files must be allocated as a
group of blocks with no intervening blocks belonging to other files. They must be allocated before you
use them, while sequential files are allocated one block at a time as required. Contiguous files allow
random access processing, since any block may be located as a direct offset relative to the base block.

Contiguous files are structured the same under both the traditional and extended file systems.

TRADITIONAL FORMAT FILE STRUCTURE

The traditional format file structure is depicted in Figure A-2 and resembles a waterfall with the MFD as
its source. The MFD block has one entry for each allocated user on this disk. The MFD contains as many
blocks as are necessary to hold all the PPNs on the disk. Each MFD item then contains the block number
of the first user directory block for that PPN number. The user directory block has one item for each data
file in this user's area. Each directory item then contains the block number of the first data block in the
file. Sequential files then chain through the data blocks by link words as shown in the diagram. The two
files that are partially depicted are LOG.LIT and DIR.LIT in user area [1,4], which happens to be the
system program area. Contiguous files have no link words and must occupy physically adjacent blocks
beginning with the first block as addressed in the directory item.

MFD Item Format

The MFD consists of one or more linked blocks, each of which contains space for 63 entries. The first
MFD block is always block 1. Additional blocks are linked to this block as new PPNs are added.

Each of the 63 items in an MFD block is four words long and contains the PPN specification, user
directory link, and password. The format of the item is:

Word Offset Meaning
1 User PPN (project and programmer are each one byte)
2 Block number of first user directory block

3-4 Password packed RAD50 (up to 6 characters

Word 2 is zero if no files have been allocated to this user yet, meaning no directory blocks have yet been
allocated. Words 3-4 are zero if no password is required to gain access to this user account when logging
on via the LOG command.

Disk Structure Format Page A-5
Traditional Format File Structure

AMOS Monitor Calls Manual, Rev. 10

MFD blocks are linked together by means of an 8-byte entry at the end of each MFD block. The fields in
this entry are:

Symbol Size Meaning
MF.ZER 2 bytes Always zero
MF.NXT 2 bytes Link to next block of MFD
MF.PRV 2 bytes Link to previous block of MFD
MF.FLG 2 bytes Flags:

MF$PRM = This block is permanent

MF.NXT is zero in the last block of the MFD. MF.PRV is zero for single block MFDs; otherwise, the
first block contains the number of the last block in the MFD.

MFD items are added, deleted, and changed through use of the SYSACT program.

UFD Item Format

Each user directory item is six words long and contains information about the data file which it defines.
The format of the item is:

Word
Offset

Meaning

1-3 Filename.extension of the file packed RAD50
4 Number of data blocks in this file
5 Number of active data bytes in last block
6 Block number of first data block in file

Word 1 is -1 (octal 177777) if this file has been erased and the directory item is available for another file
definition. Word 1 is zero, to mark the logical end of the user directory. The byte count in word 5 is
negative if this is a contiguous file. It also represents the negative active byte count of the file if the
contiguous file has been opened for output and has been written into sequentially.

Page A-6 Appendix A
Traditional Format File Structure

AMOS Monitor Calls Manual, Rev. 10

0

520DVR.DVR

-1,0 (deleted file)

TRM.DVR

0 (end of directory)

2 byte link

DIR.LIT

SERTBL.TBL

First data block
of SERTBL.TBL

Second data block
of SERTBL.TBL

2 byte link

1,2

1,4

1,6

125,56

2,2

0

0 (no files)

Disk block 1
(Master File Directory)

To next block in MFD

Links to directory blocks

First directory
block for [1,2]

First directory
block for [1,4]

First directory
block for [1,6]

2 byte link

MAP.LIT

BASICP.LIT

To MAP.LIT
file

To BASICP.LIT
file

To 520DVR.DVR
file

To TRM.DVR
file

etc.

2 byte link

First data block
of DIR.LIT

2 byte link

Second data block
of DIR.LIT

0 (end of file)

Third data blcok
of DIR.LIT

Sequential file consisting of linked data blocks (510 data bytes per block)

Contiguous file consisting of consecutive blocks without links (512 data bytes per block)

Links to other
directory blocks

Second directory block for [1,4]

Third data blcok
of SERTBL.TBL

Figure A-2
Traditional Format Disk File Structure

Disk Structure Format Page A-7
Extended Format File Structure

AMOS Monitor Calls Manual, Rev. 10

4 byte link

DIR.LIT

SERTBL.TBL

First data block
of SERTBL.TBL

Second data block
of SERTBL.TBL

4 byte link

1,2

1,4

1,6

125,56

2,2

Third data blcok
of SERTBL.TBL

Disk block 1
(Master File Directory)

To next block in MFD

Links to directory blocks

First directory
block for [1,2]

First directory
block for [1,4]

First directory
block for [1,6]

4 byte link

System directory
entry

BASICP.LIT

To BASICP.LIT
file

To 520DVR.DVR
file

To TRM.DVR
file

etc.

4 byte link

First data block
of DIR.LIT

4 byte link

Second data block
of DIR.LIT

0 (end of file)

Third data blcok
of DIR.LIT

Sequential file consisting of linked data blocks (508 data bytes per block)

Contiguous file consisting of consecutive blocks without links (512 data bytes per block)

Links to other
directory blocks

0

0
End of directory
entry (no files)

0

520DVR.DVR

Deleted file entry

TRM.DVR

End of directory entry

Second directory block for [1,4]

Figure A-3
Extended Format Disk File Structure

EXTENDED FORMAT FILE STRUCTURE

The extended format directory structure consists of a series of linked directory blocks, each containing
variable length entries. Each of these entries defines either another level of directories, or a data file.
Figure A-3 illustrates how these different directory blocks link together.

Page A-8 Appendix A
Extended Format File Structure

AMOS Monitor Calls Manual, Rev. 10

While the extended format directory structure allows directories and data files to be freely mixed within a
given directory block, most AMOS software is limited to dealing with the two level directory structure
originally imposed by the traditional format structure. In this mode, disk block 1 (and the blocks it links
to) contains only directory items, each one defining a PPN. Each of these directory items points to a
series of directory blocks (a UFD) containing only data file items.

Directory Block Format

All extended format directory blocks share the same format. Each consists of a four-byte link (at the base
of the block) followed by 508 bytes of directory entries. Each directory entry is of a variable length,
producing directory blocks with differing numbers of entries in each block.

Each directory entry is one of four types: a system entry used to define internal file system related
information and linkages; a directory entry defining a link to a lower level of directories; a data file entry
defining a link to a data file; or a deleted entry reserving available space previously occupied by some
other entry type. System and directory entries share a common format, while data file entries differ in
part of their format.

Figure A-4 illustrates the format of a system or directory entry, while Figure A-5 illustrates the format of
a data file entry. The contents of each of these fields is defined below:

Symbol Meaning
D$TYP This 32-bit field is broken into three sub-fields. The high-order word of D$TYP

contains flags describing this entry. The low-order byte of D$TYP contains the size
of the name field for this entry, while the high-order byte of the low-order word
contains flags specifically pertaining to the filename format of this entry.

D$PRT This 32-bit field contains the protection level associated with this entry.
D$DAT This field consists of three 32-bit packed dates representing the creation, update

and backup dates for this entry. These dates can be manipulated by the $PAKDT
and $UNPDT library routines.

D$NXT This 32-bit field, used only in system and directory entries, contains a link to the
next lower directory level.

D$CUR This 32-bit field, used only in system and directory entries, is reserved for future
use.

D$PRV This 32-bit field, used only in system and directory entries, is reserved for future
use.

D$BAS This 32-bit field, used only in data file entries, contains the block number of the first
block in the data file.

D$FSZ This 32-bit field, used only in data file entries, contains the number of disk blocks
occupied by the data file.

D$RSZ This 16-bit field, used only in data file entries, contains the default record size used
by this file. This field is only valid for contiguous files.

D$LSZ This 16-bit field, used only in data file entries, contains the number of active bytes
contained in the last block of a sequential file. This field will contain a -1 for
contiguous files.

D$NAM This variable length field contains the directory name (PPN) in the case of directory
entries, and the filename in the case of data file entries. The size of this field (in
bytes) is defined in the D$TYP field. For standard six-byte directory entries, the first
word will contain the PPN, with the next two words containing the password, packed
RAD50. For standard six-byte data file entries, the filename and extension will be
packed RAD50 in this field.

Disk Structure Format Page A-9
Extended Format File Structure

AMOS Monitor Calls Manual, Rev. 10

D$TYP Flags

Name flags Name size

D$PRT Protection code

D$DAT Creation date/Time

Update date/Time

Backup date/Time

D$NXT Pointer to next directory level

D$CUR Reserved

D$PRV Reserved

D$NAM PPN/Password

Figure A-4: Extended Format System and Directory Entry Format

The flags in the high-order word of D$TYP are defined as follows:

Octal
Value

Hex
Value

Meaning

1 1 This item is a system entry
2 2 This item is a directory entry
4 4 This item is a data file entry

20 10 This data file entry is an initialized USAM file
100000 8000 This item is a deleted entry

The size of the name field within D$TYP defines the number of bytes contained in this entry past the
D$NAM field. For directory items this is typically six, as it is for data file items.

The only flag defined in the filename flag field is bit 0 which indicates that the filename consists of an
ASCII string, rather than a packed RAD50 value. This flag is only valid for data file entries.

Page A-10 Appendix A
Program Header Format

AMOS Monitor Calls Manual, Rev. 10

D$TYP Flags

Name flags Name size

D$PRT Protection code

D$DAT Creation date/Time

Update date/Time

Backup date/Time

D$NXT Pointer to first block of file

D$CUR Size of file

D$PRV Default record size

Bytes in last block

D$NAM Filename/Extension

Figure A-5: Extended Format Data File Entry Format

PROGRAM HEADER FORMAT

AMOS supports the use of optional file headers for program (.LIT) files. This option gives you the
ability to attach version numbers, assign required privileges, and identify characteristics of program files.

A program file that contains a header is flagged by one of two control values in the first word of the file.
If the first word is not one of the two special values, then the operating system assumes that no program
header exists.

The format of the program header (as defined in SYSSYM.UNV) is:

Disk Structure Format Page A-11
Program Header Format

AMOS Monitor Calls Manual, Rev. 10

Symbol Octal
Byte

Offset

Hex
Byte

Offset

Size Meaning

PH.FLG 0 0 2 bytes Flag:
Value Meaning

-1 Program must be run logged in.
-2 Program can be run logged out

PH.VER 2 2 4 bytes Packed version number
PH.PRV 6 6 2 bytes Required privilege bits:

Symbol Meaning
PV$RSM Can read system memory
PV$WSM Can write system memory
PV$RPD Can read physical disk
PV$WPD Can write physical disk
PV$DIA Can run diagnostics
PV$PRV Can change privilege bits

PH.CHR 10 8 2 bytes Program characteristics:
Symbol Meaning

PH$REE Program is re-entrant
PH$REU Program is reusable
PH$OPR Program must be logged under

OPR: (DSK0:[1,2])
PH$L12 Program must be logged into [1,2]
PH$M20 Program requires a MC 68020 or

later processor
PH$ILC Program does not want the

command line or other terminal
input folded into upper case

PH$EXT Program wants extended (8-bit)
character input

PH$ERR Program inspects JOBERR field:
do not clear JOBERR on initial
program load

The size of the header area is defined as PH.SIZ. The privilege bits should be defined in each program
but are reserved for future use. The program characteristics are checked by the LOAD and SYSTEM
programs to output warning messages if an attempt is made to LOAD a non-re-usable program or
SYSTEM a non-re-entrant program.

The version number is stored in a packed 32-bit format. The display format of the version number is:

A.BC(D)-E

Component Meaning Symbol Range (Decimal)

A Major version number VMAJOR 0 - 255
B Minor version number VMINOR 0 - 15
C Sub-version letter VSUB 0 – 15 (null – N)
D Edit number VEDIT 0 - 4095
E Patch level VWHO 0 - 15

The major version number reflects a major revision to the program, including operational changes. The
minor version number flags a change that may include additional features, but does not change the
overall operation of the program. The sub-version marks each formal release of a program, where
changes may be very minor. The edit number is incremented each time the program is modified, no

Page A-12 Appendix A
Program Header Format

AMOS Monitor Calls Manual, Rev. 10

matter how minor the change, and continues to increment forever, never being reset. The patch level
records the number of patches installed in this version of the program.

Defining the Program Header

To define a program header area, use the PHDR macro. It must be the first instruction in the program.
The format of the macro is:

PHDR flag, privilege, characteristics

flag must be -1 or -2, privilege is the required privilege bits, and characteristics are the characteristics
bits defined above. Before calling the PHDR macro, you should set up the version number by defining
values for VMAJOR, VMINOR, VSUB, VEDIT, and VWHO. Any of these that are not defined will
default to zero values.

For example, to define the program header for a program whose version number is "1.2B(101)" and
which requires the ability to read physical disk blocks, and is both re-entrant and re-usable, and requires
the user to be logged in, would appear in source code as:

VMAJOR=1.
VMINOR=2.
VSUB=2.
VEDIT=101.

START: PHDR -1,PVRPD,PHREE!PH$REU
code

You can use the VCVT monitor call to unpack and display version numbers. See section 8.3.5 for more
information on the VCVT call.

AMOS Monitor Calls Manual, Rev. 10

Appendix B
Terminal Service System

The terminal service system incorporated within AMOS is a flexible and efficient set of routines and
drivers for interfacing a variety of different terminals with different interface boards. Not only does it
support the full range of Alpha Micro supplied interfaces, but you may also write your own drivers for
terminals and interfaces not supported by Alpha Micro. This appendix describes the general structure and
function of the terminal service system and some of the data structures used, but does not go into details
on how to write user-defined drivers. Source code for several terminal and interface drivers are provided
for those individuals who want to write their own driver programs. For more specific information on the
terminal service system and how terminal drivers may be written, see the AMOS Terminal Service System
User's Guide. For a general overview of the Alpha Micro Operating System, see Part III of Introduction
to AMOS.

GENERAL STRUCTURE

AMOS contains a general terminal processing routine called TRMSER whose function is to link user
programs and monitor processes to the outside world of interactive terminals; this is done purely on a
data basis, without regard to terminal or interface hardware. TRMSER processes data on a character-by-
character basis. Monitor calls are available to your programs for passing characters and full buffers of
data between the terminals and the system. Think of TRMSER as a telephone operator who switches
calls back and forth between sources and destinations without regard to the type of telephone in use or
the name of the person using that telephone. TRMSER also provides the synchronous link to the
asynchronous world of the terminal hardware.

TRMSER is a monitor routine that is embedded in the operating system skeleton monitor. In addition to
the general TRMSER routine in the monitor, there must exist one or more routines called drivers that
take the data from TRMSER and translate it as necessary into the specific codes required by the
hardware, and then route it to the terminal through the interface board. These drivers reside in account
[1,6] of the system disk, and are automatically loaded into system memory in response to the terminal
definition (TRMDEF) command lines in the system initialization command file at the time of system
bootup. Driver programs MUST be re-entrant; only one copy of a driver is loaded into memory
regardless of the number of terminals or interface boards of that type defined on the system.

The terminal service system uses two general types of drivers: interface drivers and terminal drivers.
Interface drivers contain the routines necessary to get data characters to and from the physical interface
hardware. Terminal drivers contain routines that process each character that goes to or from the terminal.
Terminal drivers handle code character conversions, echoing functions, line-feed null characters, cursor
control, and special functions as required by the type of terminal in use.

INTERFACE DRIVERS

Interface drivers link the TRMSER routines and the actual hardware responsible for getting characters to
and from the terminal device. The interface drivers are assembly language programs with an .IDV

Page B-2 Appendix B
Interface Drivers

AMOS Monitor Calls Manual, Rev. 10

extension. The filename of the interface driver appears in the TRMDEF command line of the system
initialization command file, and tells the system what kind of interface is being used by the terminal
defined by that command line. The interface driver handles all initialization sequences for the ports, and
also sets up the interrupt handling used by the ports. A special interface driver exists on the system called
the PSEUDO interface driver; it controls no hardware at all, but instead represents a software-controllable
interface for inter-job communication and control.

Interface Driver Format

The following is a typical AMOS .IDV communications area. The program header is stripped off when it
is loaded into memory by TRMDEF.

IDVBAS: PHDR -1,0,0 ; Program header at base of IDV
BR CHROUT ; character output routine
BR 10$; initialization routine
BR GETPIN ; read RS-232 input pin status routine
BR SETPIN ; toggle RS-232 output pin routine
WORD ^H0A5A5 ; noise word to signal flags word next
LWORD FLAG ; IDV characteristics
BR 20$; disable/enable receiver routine

10$: JMP INIT ; intermediate jump to init routine

Offsets to each element of the communications area are defined by the following symbols.

Symbol Octal Byte
Offset

Hex Byte
Offset

Purpose

ID.CHR 0 0 First instruction of character output initiation
routine, usually a branch instruction.

ID.INI 2 2 First instruction of port initialization routine,
usually a branch instruction.

ID.RST 4 4 First instruction of RS-232 input pin status
routine, usually a branch instruction.

ID.WST 6 6 First instruction of RS-232 output pin toggle
routine, usually a branch instruction.

ID.NOI 10 8 16-bit noise word
ID.FLG 12 A 32-bit IDV characteristics flag
ID.SPC 16 E First instruction of special function routines,

usually a branch

The IDV characteristics flag bits are:

Terminal Service System Page B-3
Terminal Drivers

AMOS Monitor Calls Manual, Rev. 10

Symbol Meaning
ID$ASNC Asynchronous type interface
ID$SYNC Synchronous type interface
ID$TRTS Transmitter can control the RTS output
ID$RRTS Receiver can control the RTS output
ID$CTS The CTS input can enable transmitter
ID$BGEN Interface can generate breaks
ID$DRCV Can disable receiver interrupts
ID$SMRT IDV has intelligent capabilities (e.g.,

AM350)

TERMINAL DRIVERS

Terminal drivers customize the handling of character input and output based on the type of terminal
being used. They are assembly language programs that have the .TDV extension. The filename of the
driver is the name by which the terminal type is referenced in the TRMDEF statements in the system
initialization command file. Typical terminal drivers are for the AM-65 and AM-75.

The terminal driver processes all input and output characters, and determines if these characters need
special handling because of the type of terminal being used. The terminal driver handles echo control and
different methods of character deletion. For example, most CRT terminals have the ability to back up and
erase the character being deleted, while hard copy terminals must explicitly echo the character, usually in
a format that distinguishes the characters from those accepted as input. The terminal driver is responsible
for using the current form of deletion echo.

Terminal drivers may also be written for software-controlled ports, and two such drivers are built into the
monitor already. The PSEUDO and NULL terminal drivers are used in conjunction with the PSEUDO
interface driver, and provide a means for passing characters straight through to the controlling job or
discarding output characters that are unimportant. Terminal drivers are usually unconcerned with the type
of interface used to physically tie the terminal to the computer.

INTERSYSTEM DRIVER LINKS

The relationship between the different elements of the terminal service system can seem confusing at
first; nevertheless, efficient systems-level programming requires a thorough understanding of the links
that exist between these items. The following units are referenced in further discussions:

• JOB - A job is the unit that controls the operation of one task or a series of tasks running on the
system. A job is independent of any other jobs running on the system unless it is tied to them by
special user software. Every job on the system has a unique name one to six characters long.

• TERMINAL - A terminal is the hardware device used to physically transfer data into the system,
and get data from the system to the user on a character-by-character basis. Terminals do not
themselves have names. Typical terminals might be an AM-65 or AM-75.

• TERMINAL CONTROL BLOCK - A terminal control block (TCB) is a block of memory in the
system area set up by a TRMDEF statement. It is the basic unit by which a terminal in the
system is referenced when attaching that terminal to a specific job, or when using the terminal as
an I/O device under control of the TRM device driver. The terminal control block has a unique
name one to six characters long.

Page B-4 Appendix B
INTERSYSTEM DRIVER LINKS

AMOS Monitor Calls Manual, Rev. 10

• INTERFACE DRIVER - An interface driver is the program that transfers characters back and
forth between the terminal and the hardware interface board to which the terminal is physically
connected. The interface driver has a name one to six characters long that is referenced by the
TRMDEF statements in the system initialization command file. Interface drivers reside in
account DSK0:[1,6], and have the extension .IDV.

• TERMINAL DRIVER - A terminal driver is the program that performs the character code
conversions required by the terminal in use. The program has a name (one to six characters long)
that is referenced only in the TRMDEF statement of the system initialization command file.
Terminal drivers reside in account DSK0:[1,6] and have an extension of .TDV.

• DEVICE DRIVER - A device driver is a program that allows the system to communicate with
any I/O device connected to the system. Device drivers are written for disks, tape units, printers
and terminals. The handling of terminals as devices for use by the generalized file service system
is done through the TRM device driver, and not through the terminal drivers themselves. Device
drivers have a one to three character name that is referenced in the device table statement
(DEVTBL) in the system initialization command file, and in user file specifications (e.g.,
AMS1:FILNAM.TXT). Device drivers reside in account DSK0:[1,6] and have the extension of
.DVR.

The terminal control block contains the links to the defined interface driver and to the defined terminal
driver; it thus is the basic unit by which terminals are referenced on the system. When a terminal is
attached to a job, the JCB (Job Control Block) and the TCB become linked to each other. A job is
considered to be detached if it is not linked to a TCB, and a terminal is considered to be detached if it is
not linked to a JCB. A job may only be linked to one controlling terminal, and vice versa.

A job performs I/O operations through the particular device driver referenced by the device specified in
the file specification. A job performs terminal operations through the linked TCB for the terminal that is
controlling that job. A detached job is placed into terminal wait state if it attempts to perform a terminal
input or output operation. Since I/O operations differ in structure and usage from terminal operations,
performing I/O operations to a terminal must be done through some mechanism other than directly into
the TCB. From a system standpoint, the TCB works differently than a device driver. To allow
generalized I/O, without regard to whether it is to a terminal or other device, a general device driver has
been written called TRM which allows terminals to be accessed as devices, as opposed to being accessed
only as job controlling terminals. This operation will be described later.

Terminal Input Characters

Terminal input characters are processed through a complex chain of events. When a terminal keyboard
character is struck by the operator, it is transferred to the hardware interface which then passes it to the
interface driver routine. The interface driver routine reads in the character and then passes it to the
TRMSER processor. TRMSER puts the character into the input buffer to wait for pickup by the program
or monitor. As an asynchronous event, if echoing is not suppressed or is local to the terminal, TRMSER
passes the character back to the terminal driver (when it is about to be echoed) to again allow the terminal
routine to perform special functions. An example of this is the special echoing of Control-U characters
for line deletion or rubouts for character deletion. The terminal routine then passes the character (or the
converted character) back to TRMSER to be sent to the output processor.

Terminal Service System Page B-5
USING TERMINALS AS I/O DEVICES

AMOS Monitor Calls Manual, Rev. 10

Terminal Output Characters

Terminal output characters can come from two main sources: 1. characters to be echoed from the input
processor; and, 2. characters to be output (generated by the monitor or user program) as messages or data
to the user. Both are handled differently from a buffering standpoint, but eventually are presented to a
common output routine in TRMSER to be sent to the terminal. Each character for output goes from
TRMSER to the terminal driver for possible output code conversion or character translation. An example
of this would be the null sequence sent after every line-feed for timing purposes to some printing
terminals that require a delay to allow for mechanical settling. The terminal driver processes the character
and then sends it back to TRMSER for position processing. TRMSER then passes the output character
(or converted character) from the terminal driver to the interface driver where it is physically output to
the terminal.

USING TERMINALS AS I/O DEVICES

Most programs (including the print spooler) perform input and output operations to I/O devices rather
than to the controlling terminal. In some instances it is desirable to perform these operations on a
terminal rather than a specific I/O device defined by its own device driver. One example would be the
printing of data on a printing terminal, or the use of these terminals as the output device of the printer
spooler. Any terminal may be accessed as a device through the general device driver called TRM. The
TRM device driver acts as a software link between the format required by the FILSER file service system
and the TRMSER terminal service system. Any terminal can be considered a device by using the device
code TRM and using the name given the terminal definition unit as the filename (the extension and PPN
are ignored in the file specification).

For example, suppose you have an Epson printer connected to an AM-355 using port number two. Your
TRMDEF command in the system initialization command file might look like this:

TRMDEF EPSON,AM355=2:9600,TELTYP,100,100,100

This Epson printer may then be accessed as an output device by the file specification for any I/O
operations requiring a specific device:

TRM:EPSON

To output directly to this device from BASIC, you would first open the device:

OPEN #file,"TRM:EPSON",OUTPUT

and then display data as follows:

PRINT #file,variable-list

The variable list may contain text and variables that you want to print as well as PRINT USING masks.

If you are planning on using terminals as I/O devices or to spool to them, it might save some space to
include the TRM.DVR program in system memory during system startup. You would use the command

SYSTEM TRM.DVR[1,6]

Page B-6 Appendix B
The Terminal Control Block

AMOS Monitor Calls Manual, Rev. 10

before the last SYSTEM command in the system initialization command file.

Note that if you are using AlphaBASIC, AlphaVUE, or any other program that does its own memory
management not consistent with the normal AMOS memory module scheme, you must pre-load
TRM.DVR before using such a program to access TRM:. For example:

UNYANK TRM:TI810

THE TERMINAL CONTROL BLOCK

The terminal control block (TCB) is the primary data structure associated with the terminal service
system. Because AMOS provides monitor calls to perform just about every possible terminal related
function, the internal format of the TCB is generally of no interest to the programmer or user. However,
because terminal service is such an integral part of AMOS, an understanding of how it is implemented
can benefit the programmer by providing better insight into the structure and philosophy of AMOS itself.

However, because the contents of the TCB change from AMOS release to AMOS release, and because
the procedure for accessing the TCB is somewhat complex and vital to system integrity, we recommend
that all access to TCB fields be done via the monitor calls provided for that purpose (which handle all
necessary interlocking themselves) and that no direct access to the TCB be done at all. The information
provided in the remainder of this section is provided for information purposes only.

You can access the TCB associated with the terminal connected to the current job by executing the code
shown below. This code sets an index to the associated TCB so that you can inspect or modify the items
within. You can access TCBs associated with other terminals via the TCBIDX call, described later.

 JOBIDX A6 ; index our JCB with A6
 MOV JOBTRM(A6),An ; index TCB with An

AMOS allows the TCB data structure to be shared among multiple processors in a single system.
For this reason it is vital that proper inter-processor interlocking be done when accessing any
field within the TCB. To provide for multi-processor coordination, each TCB contains an access
semaphore which your program must acquire before assuming that any field within the TCB is
valid, and before modifying the contents of a TCB. Failure to properly acquire and de-acquire
this semaphore can lead to serious system problems.

To gain access to a TCB, use the following code sequence (the example assumes that the TCB in
question is indexed by A5):

SVLOK ; disable interrupts
10$: TAS T.SEM(A5) ; try to get semaphore

BNE 10$; not available - wait

Once you have completed all TCB accesses, you can release the TCB with the sequence:

CLRB T.SEM(A5) ; release the semaphore
SVUNLK ; allow interrupts

Because interrupts must be disabled during TCB access, and because acquiring the semaphore denies all
other processors access to the TCB, it is important to minimize the amount of time during which you
hold the TCB. Failure to properly disable and enable interrupts, in the correct order, will lead to system

Terminal Service System Page B-7
The Terminal Control Block

AMOS Monitor Calls Manual, Rev. 10

deadlock situations. (Note that within interrupt routines, interrupts are already disabled, allowing you to
eliminate the SVLOK and SVUNLK calls.)

The following sections describe each of the fields with the TCB. Each field is accessed as an offset from
a TCB pointer. The symbolic name for each field is defined in the symbol file TRM.UNV.

T.STS - The Terminal Status Word

This 16-bit status field is usually the only item within the TCB with which you need be concerned. It has
certain flags in it that you may modify to alter the operation of your terminal calls.

To avoid conflicts with future changes in the terminal status word, do not modify the bits in the
status terminal word directly: instead, use the TRMRST and TRMWST monitor calls, discussed
in Chapter 7, which handle all interprocessor coordination for you.

The terminal status word has the following flag positions defined:

Symbol Octal
Value

Hex
Value

Purpose

T$IMI 1 1 Set to force image mode input (see KBD call)
T$ECS 2 2 Set to suppress echoing of input characters
T$LCL 4 4 Set if terminal has local echoing (half-duplex)
T$DAT 10 8 Set to engage data mode to allow complete data transparency

on input and output ^C, nulls, and 8-bit characters are all
passed through without special processing.

T$ILC 20 10 Set to allow lower-case input (disables conversion)
T$XLT 40 20 Set to allow multi-key sequences for function key translation
T$NFK 100 40 Disables all function key processing—overrides T$XLT
T$OIP 200 80 Set if output is in progress (internal flag only)
T$LED 400 100 Set if monitor line editor is in use by this terminal
T$ASN 1000 200 Set if this terminal port is assigned
T$DIS 2000 400 Set if this terminal port is disabled
T$VLD 4000 800 Set if T.POO field contains a valid value
T$LDT 10000 1000 Set if in special line editor mode
T$EXT 20000 2000 Set if program wants extended (8-bit) characters
T$OSP 40000 4000 Output has been suspended (XOFF)
T$JLVL 100000 8000 Output data processing to be done at job level

The monitor resets the TIMI, TECS, T$DAT, and T$ILC bits in the terminal status word each time
your program exits back to AMOS command mode, thereby restoring normal terminal operation
regardless of program operation.

T.IDV - Pointer to Interface Driver

This 32-bit field contains a pointer to the interface driver (IDV) associated with this terminal. This
pointer points directly to the first word of the interface driver. The name of the interface driver (packed
RAD50) is contained in the longword at an offset of -4 from this pointer.

T.IHW - Interface Hardware Address

This 32-bit field contains the base address of the interface hardware associated with this terminal.

Page B-8 Appendix B
The Terminal Control Block

AMOS Monitor Calls Manual, Rev. 10

T.IHM - Interface Hardware Address Modifier

This 32-bit field contains the offset from the base hardware address for the particular interface port used
by this terminal. This is often referred to as the port number. The exact meaning of this value is interface
dependent.

T.TDV - Pointer to Terminal Driver

This 32-bit field contains a pointer to the terminal driver (TDV) associated with this terminal. This
pointer points directly to the first word of the terminal driver. The name of the terminal driver (packed
RAD50) is contained in the longword at an offset of -4 from this pointer.

T.ICC - Input Character Count

This 32-bit field contains the number of input characters currently awaiting processing. This field is used
as an offset into the input buffer indexed by T.IBF to determine where to place the next incoming
character.

 To check if input is available, use the TCKI monitor call, rather than checking this field.

T.ECC - Echo Character Count

This 32-bit field contains the number of characters that have been echoed since the last break character
(carriage return, etc.).

T.BCC - Break Character Count

This 32-bit field contains the number of characters that have been input since the last break character
(carriage return, etc.).

T.IBF - Input Buffer Address

This 32-bit pointer indexes the input buffer for this terminal. The T.ICC field is used as an index into this
buffer.

T.IBS - Input Buffer Size

This 32-bit field contains the size of the input buffer indexed by T.IBF.

The size contained in this field is set by the TRMDEF command defining this terminal during the system
initialization command file.

Terminal Service System Page B-9
The Terminal Control Block

AMOS Monitor Calls Manual, Rev. 10

T.OQX - Output Queue Index

This 32-bit field contains a pointer to a linked list of queue blocks used to describe the current output
queue. If no output is pending, this field will be zero.

T.OBX - Output Buffer Index

This 32-bit field is an offset into the currently active output buffer (pointed to by T.OBF). This offset is
used to determine where to place the next output character.

T.OBF - Output Buffer Address

This 32-bit field points to the currently active output buffer. AMOS maintains two output buffers which
it alternately fills. This field points to the currently active output buffer.

T.OBS - Output Buffer Size

This 32-bit field contains the size of the output buffer indexed by T.OBF.

The size contained in this field is set by the TRMDEF command defining this terminal during the system
initialization command file.

T.OBD - Output Buffer XOR Difference

This 32-bit field contains the result of exclusive ORing the addresses of the two output buffers. This
value is used as a very quick method of alternating between two buffers. (By exclusive ORing the
contents of T.OBD with the address of the current buffer, you will end up with the address of the other
buffer, without having to worry about which is which.)

T.POB - Beginning Output Position

This 16-bit field contains the column number of the position where the current input stream started. It is
used primarily for Control-U processing.

T.POO - Current Output Position

This 16-bit field contains the column number of the current cursor position. This field is primarily used
for Control-U processing. (T.POO minus T.POB yields the number of characters to echo.)

This field is not updated by TCRT commands such as cursor positioning, thus making its contents valid
only in a line input situation. A program can determine if the contents of T.POO are valid by checking
the T$VLD flag in the terminal status word (T.STS) which will be set if T.POO is valid. T.POO is reset
whenever a carriage return is processed, thereby resetting the value and setting the T$VLD flag.

Page B-10 Appendix B
The Terminal Control Block

AMOS Monitor Calls Manual, Rev. 10

T.LCH - Last Character Input

The low-order byte of this 16-bit field contains the value of the last character to have been input from this
terminal.

T.JLK - Attached JCB Pointer

This 32-bit field contains a pointer to the JCB of the job that this terminal is attached to. If the terminal is
not attached to any job, this field will contain a zero.

T.ILB - Input Line Buffer Address

This 32-bit field contains a pointer to the input line buffer. It is this buffer that A2 will index upon
completion of a line mode KBD monitor call.

T.ILS - Input Line Buffer Size

This 32-bit field contains the size of the input line buffer pointed to by T.ILB. This size is the maximum
number of characters that can be entered on a single line, regardless of the size of the internal input
buffers. Any attempt to enter more characters will result in a bell being echoed back.

The size contained in this field is set by the TRMDEF command defining this terminal during the system
initialization command file.

T.IMP - Pointer to Terminal Driver Impure Area

This 32-bit field contains a pointer to the impure space allocated by the terminal driver (TDV) in use by
this terminal. Impure space is allocated at TRMDEF time within the system initialization command file.
It is up to the terminal driver to determine the amount of impure space needed.

If no impure space is used by the terminal driver, this field will contain a zero.

T.BAU - Selected Baud Rate

This 16-bit field contains the transmission baud rate currently selected for this terminal port. The value is
taken from the table below:

Terminal Service System Page B-11
The Terminal Control Block

AMOS Monitor Calls Manual, Rev. 10

Octal
Value

Hex
Value

Setting Octal
Value

Hex
Value

Setting

0 0 50 baud 12 A 2000 baud
1 1 75 baud 13 B 2400 baud
2 2 110 baud 14 C 3600 baud
3 3 134.5 baud 15 D 4800 baud
4 4 150 baud 16 E 7200 baud
5 5 200 baud 17 F 9600 baud
6 6 300 baud 20 10 19200 baud
7 7 600 baud 21 11 38400 baud
10 8 1200 baud 22 12 57600 baud
11 9 1800 baud

Note that not all interfaces support all baud rates. Refer to the documentation specific to the interface in
question to see if a particular baud rate is supported.

 The baud rate for an interface may be changed via the COMINT monitor call.

T.MLT - Multiple Character Queue Link

This 32-bit field contains a pointer to the multi-character input queue, if multi-character input is currently
active. Multi-character input is used for the detection of function keys. This field is used, within AMOS
and within terminal drivers that support multi-character input handling, as a method of keeping track of
what characters have been seen during the multi-character input time period.

T.SEM - Multi-processor Interlock Semaphore

This 16-bit field is used as a semaphore to protect the integrity of the TCB during multi-processor
operation. This semaphore must be used by all software accessing the TCB.

T.MRP - Modem Command Response

This 16-bit field is used to return the status of a requested modem driver call. Because the completion of
a modem driver request can be asynchronous to the request itself, the status is returned here.

The flags returned in this field are defined as follows:

Symbol Value Meaning
T$MRO 1 Modem response was OK
T$MRF 2 Modem response failed

T.LED - Line Editor Dispatch

This 32-bit field contains a pointer to the monitor line editor routine. If the monitor line editor is not
enabled for this terminal, this field will contain a zero.

Page B-12 Appendix B
The Terminal Control Block

AMOS Monitor Calls Manual, Rev. 10

T.FXT - Function Key Translation Pointer

This 32-bit field contains a pointer to the function key translation table used by the monitor line editor. If
the monitor line editor is not enabled for this terminal, or if no function key translation table was found
for the terminal driver associated with this TCB, this field will contain a zero.

T.INC - Input Character Routine Address

This 32-bit field contains a pointer to the user supplied routine which will be handling input characters at
the interrupt level. The routine indexed by this field will be called each time an input character arrives at
the interface driver.

 This field should not be accessed directly, but should be set via the COMINT monitor call. More
information on the use of this field can be found in Chapter 16.

This field will be zero if no interrupt routine is currently active.

T.OTC - Output Character Routine Address

This 32-bit field contains a pointer to the user supplied routine which will be handling output characters
at the interrupt level. The routine indexed by this field will be called each time the interface driver is
ready to output another character.

 This field should not be accessed directly, but should be set via the COMINT monitor call. More
information on the use of this field can be found in Chapter 16.

This field will be zero if no interrupt routine is currently active.

T.EXC - Exception Routine Address

This 32-bit field contains a pointer to the user supplied routine which will be handling exception
conditions at the interrupt level. The routine indexed by this field will be called each time an exception is
detected by the interface driver.

 This field should not be accessed directly, but should be set via the COMINT monitor call. More
information on the use of this field can be found in Chapter 16.

This field will be zero if no interrupt routine is currently active.

T.MDV - Modem Driver Pointer

This 32-bit field contains a pointer to the modem driver (MDV) associated with this TCB. Modem
drivers are specified within the TRMDEF command in the system initialization command file.

If no modem driver is associated with this TCB, this field will contain a zero.

Terminal Service System Page B-13
The Terminal Control Block

AMOS Monitor Calls Manual, Rev. 10

T.ASJ - Pointer to Assigning Job

This 32-bit field contains a pointer to JCB of the job that currently has this TCB assigned. If this TCB is
not assigned, this field will contain a zero.

TCBs are assigned through the use of the MDREQ monitor call. For a TCB to be assigned, it must have
an associated modem driver and not be attached to any job.

T.TCX - Pointer to TCRT Translation Table

This 32-bit field contains a pointer to the currently active TCRT translation table for this terminal. When
this field is non-zero, all TCRT functions sent to this terminal will be translated through this table before
actually forwarding the TCRT request to the terminal driver. If this field is zero, no translation is
performed.

The purpose of this translation table is to allow software that does not conform to the terminal usage
standards to be used without needing to correct the non-conforming software.

The translation table indexed by this field consists of 256 words. All TCRT codes with a high byte of -1
are passed through this table by using the low-order byte of the TCRT command as a word index into the
table, selecting one of the 256 possible values. If the contents of the translation table at that address are
zero, no translation is performed. If the contents are non-zero, the word from the translation table is taken
to be the new TCRT value. If this new value contains a -1 in the high byte, it is also passed through the
translation table, with the process repeating itself until a zero entry in the table is reached. This allows
multiple translation passes through the table.

 This field is set to zero by the AMOS EXIT call when no further input is available from command files
or from the JOBCMD forced command (i.e., when AMOS will prompt the user for input, rather than
getting it from any other source).

T.MBF - Pointer to Modem Driver Impure Area

This 32-bit field contains a pointer to the impure space allocated by the modem driver (MDV) in use by
this terminal. Impure space is allocated at TRMDEF time within the system initialization command file.
It is up to the modem driver to determine the amount of impure space needed.

If no impure space is used by the modem driver, or if no modem driver is associated with this terminal,
this field will contain a zero.

T.OBE - End of Current Output Buffer

This 32-bit field points to the end of the current output buffer. For AMOS internal use only.

T.OWAT - Output Wait Chain

This 32-bit field points to the output wait chain.

Page B-14 Appendix B
The Terminal Control Block

AMOS Monitor Calls Manual, Rev. 10

T.SIS - Software Interrupt Structure

This 32-bit field points to the software interrupt structure associated with this terminal.

T.SIV - Software Interrupt Vector

This 32-bit field points to the software interrupt vector table associated with this terminal.

T.STSZ - Second Terminal Status Word

This 16-bit field contains the Second Terminal Status Word:

Symbol Value Meaning
T$OCP 1 Reserved for internal AMOS use
T$IACT 2 Interface is active

AMOS Monitor Calls Manual, Rev. 10

Appendix C
System Communication Area

The area in monitor memory starting at location 20008 is called the system communication area. This area
is used to store data that define the current system state and configuration. These items reflect global,
system-wide data that apply to the system as a whole, rather than to a single job. The symbols used in
this appendix are defined in the symbol file SYS and SYSSYM.

The data structures contained in the system communication area are briefly defined here for those who
wish to reference them; however, you should rarely change these fields, and you must exercise extreme
caution if you do. Arbitrarily modifying almost any of these fields will most likely result in system
failure.

You should make all references to these parameters symbolically in the absolute addressing mode. For
example, you would use the instruction MOV JOBTBL,A0 to set the base of the user job table into
address register A0.

SYSTEM - SYSTEM ATTRIBUTES WORD

This longword contains the following system attribute and status flags:

Page C-2 Appendix C
DEVTBL - Address of the Device Table

AMOS Monitor Calls Manual, Rev. 10

Symbol Octal
Value

Hex
Value

Meaning

SY$UP 1 1 Final SYSTEM command has been given
SY$LNK 2 2 Obsolete
SY$CPA 4 4 System is running on an AM-1000
SY$NET 10 8 System is on a network
SY$LOK 20 10 The system is running LOKSER
SY$M10 40 20 Central processor is a 68010
SY$CPB 100 40 CPU is running on a VME bus based system
SY$VNT 200 80 System connected to a video network
SY$TST 400 100 System is in "test" mode. This flag is set via the SET TEST

command.
SY$CPC 1000 200 System is running on an AM-170 ELS system
SY$LNG 2000 400 System has language definition tables installed
SY$NBP 4000 800 System contains "new" boot PROMs. For internal use

only.
SY$HFP 10000 1000 The system contains hardware floating point
SY$M20 20000 2000 Central processor is a 68020
SY$SIS 40000 4000 System supports the software interrupt system
SY$M30 100000 8000 Central processor is a 68030
SY$EXD 200000 10000 System supports extended format directories
SY$NEL 1000000 40000 System is running on an AM-113 AMPC system
SY$CPD 2000000 80000 System is running on an AM-2000M system
SY$TBX 4000000 100000 System has programmer's toolbox routines installed
SY$EXT 10000000 200000 System supports 8-bit character sets.
SY$CAR 100000000 1000000 System is running from the cartridge disk
SY$CPE 200000000 2000000 System is running on an AM-1400.
SY$CPF 400000000 4000000 System is running on an AM-1600.
SY$CPG 1000000000 8000000 System is running on an AM-3000M.
SY$M40 2000000000 10000000 System is running on 68040 processor.
SY$M60 4000000000 20000000 System is running on 68060 processor.

DEVTBL - ADDRESS OF THE DEVICE TABLE

The DEVTBL program in the system initialization command file sets up this longword to contain the
absolute address of the device table in monitor memory.

DDBCHN - ACTIVE DDB CHAIN

This is the base of the active DDB chain for interrupt driven routines. The file service routines sets it up
and alters it as new IO DDB's are queued for transfer requests. It goes to zero each time there are no
requests pending, and is not used for non-interrupt driven devices and certain intelligent IO controllers.

MEMBAS & MEMEND - USER MEMORY POINTERS

These two longwords define the beginning and end of the complete user memory area. MEMBAS is the
address of the first word following the complete resident monitor, including the system memory area for
user resident programs. MEMEND is the address of the last word in the total physically contiguous RAM
memory in the machine. AMOS sets it up when the monitor first starts up.

System Communication Area Page C-3
SYSBAS - Base of System Memory

AMOS Monitor Calls Manual, Rev. 10

SYSBAS - BASE OF SYSTEM MEMORY

This is the address of the system memory area, which contains any user programs set up by the SYSTEM
command in the system initialization command file. It is zero if no system memory area exists. The
format of this area is the same as for user memory modules.

JOBTBL - ADDRESS OF THE JOB TABLE

This is the address of the user job table which contains one JCB entry for each user allocated via the
JOBS command in the system initialization command file. For a complete description of the job table
and JCB entries, refer to Chapter 2, “Job Scheduling and Control System.”

JOBCUR - JCB ADDRESS OF THE CURRENT JOB

This longword always contains the address of the JCB for the job that is currently running and has
control of the CPU. For the user program, it always points to your own JCB, since you must be running
to reference this word. Within an interrupt service routine, JOBCUR may contain a zero or the JCB
address of a job. Only the AMOS's job scheduler updates JOBCUR.

JOBESZ - JOB TABLE ENTRY SIZE

This word is set up when the monitor is built and contains the size in bytes of the JCB entry in the job
table. This way, when the JCB item expands, you won't have to reassemble the programs which scan the
job table since they get the JCB size dynamically from JOBESZ. This includes routines within the
monitor itself.

LOKSEM - RECORD LOCKING SEMAPHORE

This is a two longword field used as a semaphore to force record locking requests to be serial.

TIMQUE - THE TIMER QUEUE

This longword points to the first entry in the timer queue. If no items are in the timer queue, this entry is
zero.

WEREUP - SYSTEM BOOT INDICATOR

If this location contains F32116, then the system has been booted at least once.

SPXSAV - STACK POINTER SAVE LOCATION

This word is used by the timer interrupt routine for saving the user stack pointer just prior to switching to
the internal stack.

Page C-4 Appendix C
SPXINT - Internal Stack

AMOS Monitor Calls Manual, Rev. 10

SPXINT - INTERNAL STACK

This is the address of the internal work stack used for processing timer interrupts. The initial load routine
sets it up, and the timer interrupt processor uses it.

LPTQUE - LINE PRINTER SPOOLER QUEUE

This is the dynamic link address to the base of the queue used by the memory based line printer spooler
(LPTSPL).

TRMDFC - BASE OF TERMINAL DEFINITION TABLE

This is the link to the base of a linked list of terminal control blocks (TCBs). There is one TCB for each
terminal defined at system startup by a TRMDEF statement in the system initialization command file, or
subsequently created via job spawning.

TRMIDC - ADDRESS OF FIRST INTERFACE DRIVER

This is the link to the first terminal interface driver defined in the system. Each driver then links to the
next one in the chain.

TRMTDC - ADDRESS OF FIRST TERMINAL DRIVER

This is the link to the first terminal driver defined in the system. Each driver then links to the next one in
the chain.

LOKADR - LOKSER ADDRESS

Not used under AMOS 2.0.

UPTIME - TIME AND DATE OF LAST SYSTEM RESET

This longword contains the packed time and date of the last system reset. By subtracting this value from
the current time and date, you can determine the length of time the system has been up. Bits 0-16 contain
the time of day (in internal format) that the system was booted. Bits 17-31 contain the date the system
was booted, where the date is stored as the number of days since January 1, 1980. You can convert the
packed date to standard internal date format by adding 2444240 (decimal). You can also use the
$OTCON subroutine described in Appendix D to unpack and display this field.

JLKCNT - THE JLOCK NESTING COUNTER

This longword is the counter for nesting JLOCK monitor calls. It is zero when no JLOCKs are active,
non-zero when at least one is active. Note that only the user executing the JLOCK will ever see this non-
zero.

System Communication Area Page C-5
WHYBOT - Reason for Last System Reboot

AMOS Monitor Calls Manual, Rev. 10

WHYBOT - REASON FOR LAST SYSTEM REBOOT

This two-byte field contains a code specifying the reason for the last system halt. The contents of
WHYBOT are only valid if the high order byte contains 1258. If this value is not present the low-order
byte is meaningless. If it is present, the low-order byte is interpreted as follows:

Octal
Value

Hex
Value

Meaning

4 4 The system ran out of queue blocks
376 FE The system was rebooted via the REBOOT program
377 FF The system was rebooted via the MONTST program

NETTBL - POINTER TO NETWORK LIST

This longword field contains a pointer to the list of defined networks. If no networks are defined, this
field will be a zero.

NETBUF - POINTER TO NETWORK BUFFER AREA

This longword field points to the buffer space allocated for use by the ITC system (via the MSGINI
program). If no buffer space has been allocated, this field will be zero.

DCACHE - DISK CACHE DISPATCH POINTER

This 32-bit field contains a pointer to the disk cache handler address. If the disk cache is not active, this
field will contain the address of a routine which simply sets the appropriate flags and returns.

SYSLNG - DEFAULT SYSTEM LANGUAGE

This longword field contains a pointer to the default system language definition table which was loaded
at MONGEN time.

HLDADR - HEAD LOAD TIMER ADDRESS

This is the low-order 16 bits of the I/O port address for the floppy disk controller currently using the head
load timer.

TMRLOK - TIMER INTERRUPT FLAG

One word field that is used internally to flag that the operating system is currently working within a timer
interrupt. This is necessary to avoid improper nesting of interrupts. This field must never be modified.

Page C-6 Appendix C
DRVTRK - The Drive/Track Table

AMOS Monitor Calls Manual, Rev. 10

DRVTRK - THE DRIVE/TRACK TABLE

DRVTRK is a 4-byte block that stores head track positioning information for floppy disks used in the
system. It is used only by the head unload and head positioning routines in various floppy disk drivers.

HLDTIM - HEAD LOAD TIMER COUNT

This is the amount of time (number of ticks) to wait between the last access to the floppy disk and
turning off the motor.

SCKTLS - POINTER TO LIST OF ASSIGNED SOCKETS

This 32-bit field contains a pointer to the list of currently assigned ITC sockets. If no sockets are
assigned, this field will contain a zero.

ZSYDSK - ADDRESS OF SYSTEM DISK DRIVER

This longword contains the base address of the system disk driver within the monitor. MONGEN uses it
to overlay the disk driver with another one when changing the resident disk type.

SYSLNK - SYSTEM LINK COMMUNICATIONS

Reserved for future use.

SCLKON - SCHEDULER CLOCK ENABLED FLAG

This 16-bit field contains a flag used by the AMOS scheduler and timer routines to flag that the scheduler
clock is enabled.

QFREE - QUEUE SYSTEM CONTROL

QFREE consists of two longwords, the first containing the number of queue blocks currently available,
the second pointing to the first available queue block. Queue blocks are allocated and deallocated by
getting and returning them from the front of the list controlled by this address, automatically
incrementing or decrementing the free count in the process. The operation of the queue system is more
fully explained in Chapter 5, "Monitor Queue System Calls.”

MEMQUE - SYSTEM MEMORY QUEUE POINTER

Reserved for future use.

System Communication Area Page C-7
SYSUFD - SYS: UFD pointer

AMOS Monitor Calls Manual, Rev. 10

SYSUFD - SYS: UFD POINTER

This longword contains the block number of the first directory block for SYS: (DSK0:[1,4]). It is stored
here to avoid reading the MFD on each access to DSK0:[1,4]. The DSKMNT and DSKUMT monitor
calls update this block number.

DVRUFD - DVR: UFD POINTER

This longword contains the block number of the first directory block for DVR: (DSK0:[1,6]). It is stored
here to avoid reading the MFD on each access to DSK0:[1,6]. The DSKMNT and DSKUMT monitor
calls update this block number.

CMDUFD - CMD: UFD POINTER

This longword contains the block number of the first directory block for CMD: (DSK0:[2,2]). It is stored
here to avoid reading the MFD on each access to DSK0:[2,2]. The DSKMNT and DSKUMT monitor
calls update this block number.

BASUFD - BAS: UFD POINTER

This longword contains the block number of the first directory block for BAS: (DSK0:[7,6]). It is stored
here to avoid reading the MFD on each access to DSK0:[7,6]. The DSKMNT and DSKUMT monitor
calls update this block number.

ERSATZ - ACCESSES ERSATZ DEVICE TABLE

This longword points to the start of the ersatz device table. The ERSATZ program builds a table in the
operating system containing the defined ersatz device specifications. If this longword is 0, no ersatz
devices are defined, otherwise it points to a table formatted as:

Symbol Size Meaning
EZ.NAM 4 bytes Ersatz device name, packed RAD50

or 0 to terminate the ersatz table
EZ.CPU 4 bytes Default CPU specification
EZ.DEV 2 bytes Default device specification
EZ.UNT 2 bytes Default unit number
EZ.FIL 4 bytes Default filename
EZ.EXT 2 bytes Default extension
EZ.PPN 2 bytes Default PPN

SYSNAM - NAME OF SYSTEM MONITOR

This 16-byte field contains the name of the system monitor in ASCII, terminated by a null. In the
standard release the name of the system is pre-defined as either "AMOS/L" or "AMOS/32." Programs
which must output the name of the system (STAT, SYSTAT, etc.) should display this field rather than
using an embedded text string.

Page C-8 Appendix C
AMGDSP - AMIGOS Dispatch Vector

AMOS Monitor Calls Manual, Rev. 10

AMGDSP - AMIGOS DISPATCH VECTOR

This 32-bit field contains a pointer to the entry point of AMIGOS. If AMIGOS is not installed, this
pointer will index a routine that returns an error in standard AMIGOS format.

SCHSEM - SCHEDULER SEMAPHORE

This single byte field contains a TAS style semaphore used to protect the scheduler data structures during
multi-processor access.

QUESEM - QUEUE SYSTEM SEMAPHORE

This single byte field contains a TAS style semaphore used to protect the queue system data structures
during multi-processor access.

RIOQUE - RECORD IO QUEUE

This 32-bit pointer indexes a queue used to coordinate physical block access within the record IO system.

LEDDSP - LINE EDITOR DISPATCH VECTOR

This 32-bit pointer indexes the line editor routine. If the line editor is not active, this field will contain a
zero.

TRMFXC - FUNCTION KEY TRANSLATION TABLE CHAIN

This 32-bit field contains a pointer to a linked list of terminal function key translation tables for use by
the line editor. If no function key translation tables are available, this field will contain a zero.

TRMMDC - MODEM DRIVER CHAIN

This 32-bit field contains a pointer to a linked list of modem drivers available on the system. If no
modem drivers are available, this field will contain a zero.

HRBCMD - HERBIE COMMAND BLOCK POINTER

This longword field indexes the command block initially used by Herbie type controllers.

PRESEM - SEMAPHORE TO PROTECT SCHEDULER FIELDS

This byte field contains a TAS style semaphore used to protect the next two fields during multi-processor
access. Failure to properly use this semaphore during access to these two fields will cause certain system
failure.

System Communication Area Page C-9
PREFLG - Scheduler Flags

AMOS Monitor Calls Manual, Rev. 10

PREFLG - SCHEDULER FLAGS

This 16-bit field contains flags that may be passed to the scheduler during certain internal operations.

PREJCB - SCHEDULER JCB ADDRESS

This 16-bit field contains a JCB address that may be passed to the scheduler during certain internal
operations.

NULTMR - NULL TIMER ROUTINE POINTER

This longword pointer indexes the null timer routine within AMOS. Originally used to allow for the
removal of timer requests from a queue, this field has now been obsoleted by the more general DQTIMR
monitor call.

FPNPTR - POINTER TO ISAM FILE TABLE

This longword field contains a pointer to a list of open ISAM files. This field should only be used by the
ISAM file processor itself.

HRBERR - POINTER TO HERBIE ERROR HANDLER

This 32-bit field contains a pointer to the fatal error handler supplied by AMOS to Herbie type intelligent
controllers.

MTSRES - MONTST RESET CHAIN

This 32-bit field contains a pointer to a linked list of routines that will be called when the MONTST
program is executed. Each routine which wishes to be called must link itself into this list. MONTST will
then call each routine (at the address immediately following the link) before starting the actual reboot
process. This provides "advance notice" to software of the impending reboot, allowing it to reset
hardware to a known state. All registers must be preserved within this routine.

LOKFLH - RECORD LOCK STRUCTURE POINTER

This 32-bit field contains a pointer into the record locking structure within the AMOS file system.

USMEXT - USAM EXIT HANDLER DISPATCH VECTOR

This 32-bit field contains a pointer to USAM's EXIT handler. This routine is called each time an EXIT is
performed.

Page C-10 Appendix C
SVCPTR - Pointer to Supervisor Call Dispatch Table

AMOS Monitor Calls Manual, Rev. 10

SVCPTR - POINTER TO SUPERVISOR CALL DISPATCH TABLE

This 32-bit field contains a pointer to AMOS's internal supervisor call dispatch table. It is provided for
the use of the Herbie intelligent controllers. Because its format is subject to change, we do not
recommend that other software make use of this pointer.

RFDVEC - VDK VECTOR

This 32-bit field contains a pointer to the VDK virtual disk routines, if installed. These routines should
not be called directly.

RFDPTR - POINTER TO VDK IMPURE SPACE

This 32-bit field contains a pointer to the impure space used by the VDK virtual disk routines. This
impure space should not be directly accessed.

PLKJCB - POINTER TO PARENT JOB OWNING PLOCK RESOURCE

This 32-bit field contains a pointer to the JCB of the parent job that currently owns the PLOCK resource.
If no PLOCK is in effect, this field will be zero.

PLKCNT - PLOCK NESTING COUNT

This 32-bit field contains the number of PLOCKs that are currently in effect. Zero when PLOCK is not
active, this field is used to properly nest and un-nest PLOCK calls.

TIMIDX - POINTER TO INTERNAL TIMER ROUTINES

This 32-bit field is used internally to support a variety of hardware timers. It should not be otherwise
accessed.

ESPVEC - POINTER TO ESP ROUTINES

This 32-bit field contains a pointer to the control routines used by the ESP screen processor.

DDBSEM - DDBCHN ACCESS SEMAPHORE

This 8-bit field is used as a TAS style semaphore to protect the DDBCHN resource. It should never be
accessed directly.

DDBSM2 - DDBCHN ACCESS SEMAPHORE

This 8-bit field is used as a TAS style semaphore to protect the DDBCHN resource. It should never be
accessed directly.

System Communication Area Page C-11
HCFLAG - Enable Herbie Caching

AMOS Monitor Calls Manual, Rev. 10

HCFLAG - ENABLE HERBIE CACHING

This 8-bit field is flag that enables caching of Herbie-style intelligent controllers. It is used internally by
Alpha Micro, and should not be used by user programs.

SYSCOF - POINTER TO LIST OF CURRENTLY OPEN OBJECT FILES

This 32-bit field contains a pointer to a list of the currently open object files.

TBXDSP - TOOLBOX DISPATCH VECTOR

This 32-bit field contains a pointer to ESP's toolbox program dispatch table.

RPCDSP - RPC DISPATCH VECTOR

This 32-bit field contains a pointer to the RPC dispatch table.

EXTDSP - EXTENSION DISPATCH VECTOR

This 32-bit field is reserved for future use.

QXFRAD - PHYSICAL DISK TRANSFER SYSTEM

This 32-bit field contains a pointer to the physical disk transfer queuing entry.

SCHEDW - FOR WATCHR PROGRAM

This 32-bit field is reserved for use of the WATCHR program.

VTJOBT - VTSER SPAWNED JOBS

This field contains a pointer to the VTSER spawned job table.

ETHZON - ETHERNET COMMUNICATIONS AREA

This 32-bit field contains a pointer to the Ethernet communications area used by AlphaNET. This field
must never be modified.

TTYPTR - TTYSI POINTER

This 32-bit field contains a pointer to the TTYSI service routine. This field is used internally by AMOS
and must never be modified.

Page C-12 Appendix C
XTABLE - X.25 Table Pointer

AMOS Monitor Calls Manual, Rev. 10

XTABLE - X.25 TABLE POINTER

This 32-bit field contains a pointer to a table used by the X.25 communications software. It must never
be modified.

UNXVEC - UNIX ACCESS VECTOR

This 32-bit field is reserved for future use.

OSI4VC - OSI LEVEL 4 VECTOR

This 32-bit field is used internally by the OSI Layer 4 communications software. This field should never
be modified.

NETVEC - NETFAM VECTOR TABLE POINTER

This 32-bit field is used internally by the Network File Access Method (NETFAM) and should never be
modified.

SEM522 - AM-522 INTERRUPT PENDING SEMAPHORE

This 8-bit field is used by the AM-522 disk controller to control interrupt access. This field must never
be modified.

VEC522 - AM-522 INTERRUPT SERVICE VECTOR

This 8-bit field is used to supply the appropriate interrupt vector to the AM-522 disk controller. This field
must never be modified.

FLEVEL - SYSTEM FEATURE LEVEL

This 32-bit field is used internally to determine the feature level of AMOS.

SYSTEM1 - SYSTEM1 ATTRIBUTE WORD

This 32-bit field is reserved for AMOS use only.

MSGBFE - MSGINI BUFFER

This field points to the end of the buffer defined by MSGINI.LIT.

System Communication Area Page C-13
CPUTYP - CPU Type

AMOS Monitor Calls Manual, Rev. 10

CPUTYP - CPU TYPE

This field contains the CPU board type. It is set by INITIA.

SCZDSP

This field is reserved for AMOS use only.

DIAG 01

This field is reserved for AMOS use only.

DIAG 02

This field is reserved for AMOS use only.

DIAG 03

This field is reserved for AMOS use only.

EMAILV

This field is reserved for AMOS use only.

JRC.ADDR

This field is reserved for AMOS use only.

RTCIDX

This field is reserved for AMOS use only.

UMEMIDX

This field is reserved for AMOS use only.

TAMEV

This field is reserved for AMOS use only.

Page C-14 Appendix C
RSCPM

AMOS Monitor Calls Manual, Rev. 10

RSCPM

This longword field contains information about PROMPT.SYS.

FP060

This field is reserved for AMOS use only.

AMOS Monitor Calls Manual, Rev. 10

Appendix D
Standard System Library Routines

 In addition to the monitor calls described in this manual, AMOS also includes a collection of standard
system subroutines. This collection, contained in the file DSK0:SYSLIB.LIB[7,7] contains various
routines to perform common system operations.

For convenience, whenever the linking loader, LNKLIT, has completed loading the files you have
specified, but still has unresolved global symbols, it automatically searches SYSLIB.LIB. Thus, to
include one of these system routines in your program, simply specify the routine name (such as
$ODTIM) as an external within your source program. LNKLIT will take care of the rest.

To make updating this appendix easier, each subroutine appears on a separate page.

The subroutines included in this appendix are:

$ADPPN $ADPPNX* $BBCHK $CHPPN
$CHPPNX* $CMDER $CPUPOL* $DITOS*
$DLPPN $DLPPNX* $DSTOI $ERPPN
$ERPPNX* $FLSET $FNPPN $FNPPNX*
$FNUSR* $GTARG $HSHFL* $IDTIM
$IDTIMX* $INMFD $INMFDX* $KILPF
$MSGLOG** $NETED $ODTIM $ODTM2
$OTCON $OTCPU $PAKDT** $PAMFD
$PAMFDX* $SEND* $SPLFL $STFRM
$SYSID $UNPDT $UPDSW $YESNO

*: These routines are not in the AMOS 1.X library, but are supported.

**: These routines are not in the AMOS 1.X library, and are not supported.

$ADPPN
Add a PPN to the MFD

AMOS 2.X only

AMOS Monitor Calls Manual, Rev. 10

The $ADPPN routine provides a standard method of adding new PPN entries to the MFD. To add a new
PPN, you simply specify the PPN to be added, the password, the DDB and buffer to be used, and then
call $ADPPN. You must be logged into [1,2] to use this subroutine.

$ADPPN works only with AMOS 2.X. If you want to support both AMOS 2.X and AMOS
1.X, use $ADPPNX instead.

Before calling $ADPPN, the following registers must be set up:

D1 Contains the PPN to be added in the low-order half of the register.

D2 Contains the password to be used for the new PPN, packed in RAD50 format.

A2 Points to an INITed DDB to be used for the add operation.

$ADPPN returns with the following:

D0 Contains the completion code:

0 PPN was added successfully
-1 The error code is contained in the DDB (D.ERR(A2))
-2 The MFD is damaged in some way
1 You are not logged into [1,2]
2 The specified PPN already exists
3 The specified PPN is not valid

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

All registers except D0, D6, D7, and A6 are preserved. The directory is locked (via DSKDRL) during
execution of this routine. This routine sets the D$ERC bit in the DDB flags byte.

Error message output (whether from DDB type error codes or from the "Damaged MFD" error) is under
the control of the D$BYP bit in the DDB flags byte.

$ADPPNX
Add a PPN to the MFD

AMOS 2.X or 1.X

AMOS Monitor Calls Manual, Rev. 10

The $ADPPNX routine provides a standard method of adding new PPN entries to the MFD under either
AMOS 2.X or 1.X. At run time, $ADPPNX checks the current operating system, then executes the
proper version of $ADPPN.

To add a new PPN, you simply specify the PPN to be added, the password, the DDB and buffer to be
used, and then call $ADPPNX. You must be logged into [1,2] to use this subroutine.

Before calling $ADPPNX, the following registers must be set up:

D1 Contains the PPN to be added in the low-order half of the register.

D2 Contains the password to be used for the new PPN, packed in RAD50 format.

A2 Points to an INITed DDB to be used for the add operation.

$ADPPNX returns with the following:

D0 Contains the completion code:

0 PPN was added successfully
-1 The error code is contained in the DDB (D.ERR(A2))
-2 The MFD is damaged in some way
1 You are not logged into [1,2]
2 The specified PPN already exists
3 The specified PPN is not valid

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

All registers except D0, D6, D7, and A6 are preserved. The directory is locked (via DSKDRL) during
execution of this routine. This routine sets the D$ERC bit in the DDB flags byte.

Error message output (whether from DDB type error codes or from the "Damaged MFD" error) is under
the control of the D$BYP bit in the DDB flags byte.

$BBCHK
Check for BADBLK. SYS[1,2]

AMOS Monitor Calls Manual, Rev. 10

The $BBCHK routine provides a standard method for checking to see if the file you are accessing on a
physical drive is the BADBLK.SYS[1,2] file. First, the routine checks for the filespec
BADBLK.SYS[1,2], then it checks if the device in the DDB is in the device table. Next, it checks if the
device is the first logical unit on a physical device, and if it has an alternate track table. If all of these
conditions have been met, the following error message will be output:

%Bypassing BADBLK.SYS[1,2]
 BADBLK.SYS exists to prevent bad blocks
 on a device from being allocated, and
 should never be directly accessed.

Before calling $BBCHK, the following register must be set up:

A4 Points to a DDB specifying the file to be checked.

Upon return from $BBCHK the Z-flag is set if the file is BADBLK.SYS[1,2], and reset if it is not.

All registers except D6, A0, and A6 are preserved. The error message that is output is under the control
of the D$BYP bit in the DDB flags byte.

$CHPPN
Change a PPN’s Password

AMOS 2.X only

AMOS Monitor Calls Manual, Rev. 10

The $CHPPN routine provides a standard method of changing the password of a PPN in the MFD. To
change a password, you simply specify the PPN to be changed, the new password, the DDB and buffer to
be used, and then call $CHPPN. You may only change your own password unless you are logged into
[1,2].

$CHPPN works only with AMOS 2.X. If you want to support both AMOS 2.X and AMOS
1.X, use $CHPPNX instead.

Before calling $CHPPN, the following registers must be set up:

D1 Contains the PPN to be changed in the low-order half of the register.

D2 Contains the new password to be used for the PPN, packed in RAD50 format.

A2 Points to an INITed DDB to be used for the add operation.

$CHPPN returns with the following:

D0 Contains the completion code:

0 Password was changed successfully
-1 The error code is contained in the DDB (D.ERR(A2))
-2 The MFD is damaged in some way
1 You are not logged into [1,2] and you tried to change another PPN's password
4 The specified PPN was not found in the MFD

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

All registers, except D0, D6, D7, and A6 are preserved. The directory is locked (via DSKDRL) during
execution of this routine. This routine sets the D$ERC bit in the DDB flags byte.

Error message output (whether from DDB type error codes or from the "Damaged MFD" error) is under
the control of the D$BYP bit in the DDB flags byte.

$CHPPNX
Change a PPN’s Password

AMOS 2.X or 1.X

AMOS Monitor Calls Manual, Rev. 10

The $CHPPNX routine provides a standard way to change the password of a PPN in the MFD, under
both AMOS 2.X and 1.X. At run time, it checks the operating system version and calls the proper version
of $CHPPN.

To change a password, you simply specify the PPN to be changed, the new password, the DDB and
buffer to be used, and then call $CHPPNX. You may only change your own password unless you are
logged into [1,2].

Before calling $CHPPNX, the following registers must be set up:

D1 Contains the PPN to be changed in the low-order half of the register.

D2 Contains the new password to be used for the PPN, packed in RAD50 format.

A2 Points to an INITed DDB to be used for the add operation.

$CHPPNX returns with the following:

D0 Contains the completion code:

0 Password was changed successfully
-1 The error code is contained in the DDB (D.ERR(A2))
-2 The MFD is damaged in some way
1 You are not logged into [1,2] and you tried to change another PPN's password
4 The specified PPN was not found in the MFD

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

All registers, except D0, D6, D7, and A6 are preserved. The directory is locked (via DSKDRL) during
execution of this routine. This routine sets the D$ERC bit in the DDB flags byte.

Error message output (whether from DDB type error codes or from the "Damaged MFD" error) is under
the control of the D$BYP bit in the DDB flags byte.

$CMDER
Output Error Message and Locator

AMOS Monitor Calls Manual, Rev. 10

The $CMDER routine provides a way of outputting an error message on the user's terminal, along with a
caret (^) symbol locating the point in the command line where the error was detected. This is the routine
used by COPY, DIR, etc. to point out the location of command line errors.

Before calling $CMDER, the following registers must be set up:

A1 Contains a pointer to the error message to be displayed. This error message must be
terminated by a zero byte.

A2 Contains a pointer into the command line buffer at the location where the error occurred.

$CMDER preserves all registers (except D6, D7, and A6).

$CPUPOL
Determine Computer Type, Processor Type, and AMOS Version

AMOS Monitor Calls Manual, Rev. 10

The $CPUPOL routine provides a standard method of checking the computer for computer type,
processor chip type, and AMOS version. You can check the computer type or processor type by using the
symbols provided (listed below).

Before calling $CPUPOL, you do not need to set up any registers. Call the routine as follows:

.

.
SEARCH CPUSYM
AUTOEXTERN

.

.
CALL $CPUPOL ; Check computer type, processor type,

 ; and AMOS version.
BMI XX$; AMOS/32 is running.
BEQ XY$; AMOS/L is running.
BPL XZ$; AMOS/LC is running.

$CPUPOL returns the following:

D0 System type flag (LWORD)
D1 CPU processor type flag (LWORD)
D2 AMOS release version code (BYTE)

Condition codes:

N-flag reset for AMOS/LC
Z-flag set for AMOS/L
N-flag set for AMOS/32

All registers other than D0, D1, D2, D6, D7, and A6 are preserved.

$CPUPOL Example:

.

.

.
SEARCH CPUSYM
AUTOEXTERN
.
.
.
CALL $CPUPOL ; Check computer type, processor type,

; and AMOS version.
BMI 10$; AMOS/32 running.
BEQ 20$; AMOS/L running.
TYPECR <AMOS-LC is running!>
BR 30$; Continue.

$10: TYPECR <AMOS-32 is running!>
BR 30$; Continue.

20$: TYPECR <AMOS-L is running!>
30$: ...

Below are the flags you can use to determine system type, processor type, and AMOS version. These
flags are defined in the file CPUSYM.M68 in DSK0:[7,7], and may be referenced through the universal
file CPUSYM.UNV.

Page 2 Appendix D: $CPUPOL

AMOS Monitor Calls Manual, Rev. 10

System Type Flags = D0 (LWORD)

Symbol AMOS Type AMOS System
AM113 AMOS/LC AM-PC
AM130 AMOS/LC AM-1400
AM134 AMOS/LC AM-1400
AM135 AMOS/L AM-1600
AM140 AMOS/32 AM-3000M
AM145 AMOS/32 AM-2000M
AM160 AMOS/L S/100
AM167 AMOS/L AM-1000
AM172 AMOS/L Roadrunner '030
AM174 AMOS/L Roadrunner '040
AM175 AMOS/L AM-1500
AM177 AMOS/L AM-1200
AM180 AMOS/32 AM-2000
AM185 AMOS/32 AM-3000
AM190 AMOS/32 AM-4000
AM319 AMOS/32 Eagle
FALCON AMOS/LC Falcon

Processor Type Flags = D1 (LWORD)

Symbol Description
C68000 M68000 CPU
C68010 M68010 CPU
C68020 M68020 CPU
C68030 M68030 CPU
C68040 M68040 CPU
C68060 M68060 CPU

AMOS Release Version = D2 (BYTE)

Octal
Value

Hex
Value

Meaning

1 1 AMOS/LC Version
0 0 AMOS/L Version

377 FF AMOS/32 Version

$DITOS
Convert Internal Format Date to Separated Format

AMOS Monitor Calls Manual, Rev. 10

The $DITOS routine provides a way of converting a date stored in internal format to one stored in
separated format. (Also see "$DSTOI," in this appendix for information on converting a date stored in
separated format to internal format.) Additional information on date formats may be found in Chapter 10
of this manual.

$DITOS will work correctly for dates from January 1, 1900 through December 31, 2155, inclusive.

Before calling $DITOS, the following register must be set up:

D7 Contains the date to be converted, in internal format.

Upon completion $DITOS returns the following:

D7 Contains the converted date, in separated format.

$DITOS assumes that the internal format date is in Julian format.

This routine preserves all registers (except D6, D7, and A6).

$DLPPN
Delete a PPN from the MFD

AMOS 2.X only

AMOS Monitor Calls Manual, Rev. 10

The $DLPPN routine provides a standard method of deleting PPN entries from the MFD. To delete a
PPN, you simply specify the PPN to be deleted, and the DDB and buffer to be used. Then call $DLPPN.
You must be logged into [1,2] to use this subroutine. The PPN to be deleted must not contain any disk
files.

$DLPPN works only with AMOS 2.X. If you want to support both AMOS 2.X and AMOS
1.X, use $DLPPNX instead.

Before calling $DLPPN, the following registers must be set up:

D1 Contains the PPN to be deleted in the low-order half of the register.

A2 Points to an INITed DDB to be used for the add operation.

$DLPPN returns the following:

D0 Contains the completion code:

0 PPN was deleted successfully
-1 The error code is contained in the DDB (D.ERR(A2))
-2 The MFD is damaged in some way
1 You are not logged into [1,2]
2 The specified PPN already exists
3 The specified PPN is not valid
4 The specified PPN was not found in the MFD
5 The specified PPN contains files

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

All registers except D0, D6, D7, and A6 are preserved. The directory is locked (via DSKDRL) during
execution of this routine. This routine sets the D$ERC bit in the DDB flags byte.

Error message output (whether from DDB type error codes or from the "Damaged MFD" error) is under
the control of the D$BYP bit in the DDB flags byte.

$DLPPNX
Delete a PPN from the MFD

AMOS 2.X or 1.X

AMOS Monitor Calls Manual, Rev. 10

The $DLPPNX routine provides a standard method of deleting PPN entries from the MFD. At run time,
it checks the operating system version and calls the proper version of $DLPPN.

To delete a PPN, you simply specify the PPN to be deleted, and the DDB and buffer to be used. Then,
call $DLPPNX. You must be logged into [1,2] to use this subroutine. The PPN to be deleted must not
contain any disk files.

Before calling $DLPPNX, the following registers must be set up:

D1 Contains the PPN to be deleted in the low-order half of the register.

A2 Points to an INITed DDB to be used for the add operation.

$DLPPNX returns the following:

D0 Contains the completion code:

0 PPN was deleted successfully
-1 The error code is contained in the DDB (D.ERR(A2))
-2 The MFD is damaged in some way
1 You are not logged into [1,2]
2 The specified PPN already exists
3 The specified PPN is not valid
4 The specified PPN was not found in the MFD
5 The specified PPN contains files

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

All registers except D0, D6, D7, and A6 are preserved. The directory is locked (via DSKDRL) during
execution of this routine. This routine sets the D$ERC bit in the DDB flags byte.

Error message output (whether from DDB type error codes or from the "Damaged MFD" error) is under
the control of the D$BYP bit in the DDB flags byte.

$DSTOI
Convert Separated Format Date to Internal Format

AMOS Monitor Calls Manual, Rev. 10

The $DSTOI routine provides a way of converting a date stored in separated format to one stored in
internal format. Additional information on date formats may be found in Chapter 10 of this manual.

Before calling $DSTOI, the following register must be set up:

D7 Contains the date to be converted, in separated format.

Upon completion $DSTOI returns the following:

D7 Contains the converted date, in internal format.

$DSTOI will work correctly for dates from January 1, 1900 through December 31, 2155, inclusive.

This routine preserves all registers (except D6, D7, and A6).

$ERPPN
Process Errors in PPN Routines

AMOS 2.X only

AMOS Monitor Calls Manual, Rev. 10

The $ERPPN routine provides a standard method of processing errors in the $ADPPN, $CHPPN,
$DLPPN, and $FNPPN routines. To process an error in any of these routines, and output the appropriate
error message, the error code is passed in D0, and then $ERPPN is called. Normally, $ERPPN is called
automatically by these routines. If you need to call it yourself, you must first set up register D0, which
contains the error code to be processed. $ERPPN outputs the following:

0 The function was successful, no error message
-1 DDB error, the monitor will output the error message
-2 ?Damaged MFD
-3 Invalid operation on extended disk
1 ?Not logged into [1,2]
2 ?Account already exists
3 ?Illegal account PPN - format is P, P(P = octal 1 to 377)
4 ?Account does not exist
5 ?Account has files on it

$ERPPN works only with AMOS 2.X. If you want to support both AMOS 2.X and AMOS
1.X, use $ERPPNX instead.

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs. If a -1 or -2 error occurs, the N-flag is also set. All registers are preserved. Error message output
(whether from DDB type error codes or from the "Damaged MFD" error) is under the control of the
D$BYP bit in the DDB flags byte.

$ERPPNX
Process Errors in PPN Routines

AMOS 2.X or 1.X

AMOS Monitor Calls Manual, Rev. 10

The $ERPPNX routine provides a standard method of processing errors in the $ADPPNX, $CHPPNX,
$DLPPNX, and $FNPPNX routines. To process an error in any of these routines, and output the
appropriate error message, the error code is passed in D0, and then $ERPPNX is called. Normally,
$ERPPNX is called automatically by these routines. If you need to call it yourself, you must first set up
register D0, which contains the error code to be processed. $ERPPNX outputs the following:

0 The function was successful, no error message
-1 DDB error, the monitor will output the error message
-2 ?Damaged MFD
-3 Invalid operation on extended disk
1 ?Not logged into [1,2]
2 ?Account already exists
3 ?Illegal account PPN - format is P, P(P = octal 1 to 377)
4 ?Account does not exist
5 ?Account has files on it

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs. If a -1 or -2 error occurs, the N-flag is also set. All registers are preserved. Error message output
(whether from DDB type error codes or from the "Damaged MFD" error) is under the control of the
D$BYP bit in the DDB flags byte.

$FLSET
Locate Open AlphaBASIC File

AMOS Monitor Calls Manual, Rev. 10

The $FLSET routine provides a standard way of locating open files within an AlphaBASIC XCALL
subroutine. Given a file channel number, it returns a pointer to the DDB referencing the file open on that
channel.

Prior to calling $FLSET, set up the registers as follows:

D1 Contains the file channel number to search for.

A0 Contains the AlphaBASIC impure area pointer. This register is already set up when an
XCALL routine is called by BASIC.

Upon a successful return from $FLSET, A2 indexes the file DDB and the Z-flag is set. If no file was
open on the specified file channel, the Z-flag is cleared.

For further information on AlphaBASIC XCALL subroutines, see the AlphaBASIC XCALL Subroutine
User's Manual.

$FNPPN
Find a PPN in the MFD

AMOS 2.X only

AMOS Monitor Calls Manual, Rev. 10

The $FNPPN routine has been superseded by the DIRSCH monitor call. $FNPPN does not
properly handle extended format directories and is provided only for compatibility with older
software. Use of $FNPPN in new software is discouraged.

The $FNPPN routine provides a standard method of locating PPN entries within the MFD. To find a
PPN, you simply specify the PPN to be located, the DDB and buffer to be used, and the call $FNPPN.

$FNPPN works only with AMOS 2.X. If you want to support both AMOS 2.X and AMOS
1.X, use $FNPPNX instead.

Before calling $FNPPN, the following registers must be set up:

D1 Contains the PPN to be located in the low-order half of the register.

A2 Points to an INITed DDB to be used for the find operation.

$FNPPN returns the following:

D0 Contains the completion code:

0 PPN was located successfully
-1 The error code is contained in the DDB (D.ERR(A2))
1 The specified PPN was not found in the MFD

The Z-flag will be set on a successful completion, and reset if an error occurs. If a -1 error occurs, the N-
flag is also set.

All registers except D0, D6, D7, A1, and A6 are preserved.

Error message output is under the control of the D$BYP bit in the DDB flags byte.

$FNPPNX
Find a PPN in the MFD

AMOS 2.X or 1.X

AMOS Monitor Calls Manual, Rev. 10

The $FNPPNX routine has been superseded by the DIRSCH monitor call. $FNPPNX does not
properly handle extended format directories and is provided only for compatibility with older
software. Use of $FNPPNX in new software is discouraged.

The $FNPPNX routine provides a standard method of locating PPN entries within the MFD under either
AMOS 2.X or 1.X. At run time, it checks the operating system version and calls the proper version of
$FNPPN.

To find a PPN, you simply specify the PPN to be located, the DDB and buffer to be used, and the call
$FNPPNX.

Before calling $FNPPNX, the following registers must be set up:

D1 Contains the PPN to be located in the low-order half of the register.

A2 Points to an INITed DDB to be used for the find operation.

$FNPPNX returns the following:

D0 Contains the completion code:

0 PPN was located successfully
-1 The error code is contained in the DDB (D.ERR(A2))
-2 The MFD is damaged in some way (AMOS 1.X only)
1 The specified PPN was not found in the MFD

A1 For AMOS 1.X only, if the PPN was found (D0 = 0), then A1 points to the PPN entry
within the DDB buffer. If the PPN was not found (D0 = 1), then A1 points to the point
at which the PPN would be inserted.

The Z-flag will be set on a successful completion, and reset if an error occurs. If a -1 or -2 error occurs,
the N-flag is also set.

D.REC of the specified DDB is left containing the block number of the MFD block that contains the PPN
being located. All registers except D0, D6, D7, A1, and A6 are preserved.

Error message output (whether from DDB type error codes or from the "Damaged MFD" error) is under
the control of the D$BYP bit in the DDB flags byte.

$FNUSR
Find User Description in USER.SYS

AMOS Monitor Calls Manual, Rev. 10

The $FNUSR routine provides a standard method of locating fields of the user description within the file
DSK0:USER.SYS[1,2]. To find a user description, specify the user name to be located, the DDB and
buffer to be used to open USER.SYS, and the call $FNUSR.

Before calling $FNUSR, the following registers must be set up:

A1 Points to an INITed DDB to be used to open USER.SYS.

A2 Points to a string specifying the user name you want to search for.

$FNUSR returns the following:

D0 Contains the completion code:

0 User name was located successfully
-1 The error code is contained in the DDB (D.ERR(A2))
1 The specified user name was not found.

D6 Relative block number of user name entry in USER.SYS.

A2 Indexes the user name description string in the buffer. Use US.xxx symbols to access the
information (e.g., US.CLS for user class). The US.xxx symbols are documented in
Appendix H, "User Description Symbols."

The Z-flag will be set on a successful completion, and reset if an error occurs. If a -1 error occurs, the N-
flag is also set.

All registers except D0, A2, A6, D6, and D7 are preserved.

Error message output (from DDB type error codes) is under the control of the D$BYP bit in the DDB
flags byte.

$GTARG
Get a Floating or String Argument from AlphaBASIC

AMOS Monitor Calls Manual, Rev. 10

The $GTARG routine provides a convenient way to convert AlphaBASIC XCALL subroutine arguments
from binary, string, or floating point to binary. $GTARG will correctly handle one-, two-, three-, and
four-byte binary variables (MAP type B), one-, two-, and four-byte integers (MAP type I), IEEE single-
and double-precision variables (MAP types F,4 and F,8), AMOS floating point variables (MAP type
F,6), and string variables holding string representations of positive integers. Floating point variables will
be truncated toward minus infinity if necessary.

When using $GTARG, you simply specify the offset to the argument you wish converted. $GTARG then
returns a 32-bit binary number.

Before calling $GTARG, set up the following registers:

D1 Contains the offset within the argument list for the argument you wish to convert (i.e.,
the first argument is at an offset of 2, the second is at an offset of 14, etc.).

A0 Contains the AlphaBASIC impure area pointer. This register is already set up when an
XCALL routine is called by BASIC.

A3 Contains the argument list pointer that BASIC passes into the XCALL subroutine.

A5 Contains the arithmetic stack pointer that BASIC passes into the XCALL subroutine.

$GTARG returns the argument value as a 32-bit binary number in D1. If the argument you specified in
D1 is out of range (e.g., you specified argument 5 when only 3 arguments were passed to the XCALL
routine), the Z-bit will be returned and reset. On a successful call, the Z-bit will be set. You can therefore
do a BNE to detect an error after a CALL $GTARG.

For further information on AlphaBASIC XCALL subroutines, see the AlphaBASIC XCALL Subroutine
User's Manual.

$HSHFL
Generate a Standard File Hash

AMOS Monitor Calls Manual, Rev. 10

The $HSHFL routine scans a disk file and generates a standard hash total for the file. This is the same
hash total as generated by the MAP and DIR/H programs.

In addition to returning a text representation of the hash total, $HSHFL also returns a 32-bit binary
representation of the hash total, making comparison easier.

Before calling $HSHFL, the following registers must be set up:

D6 Contains binary flags describing what to do with the text representation of the hash total.
If D6 is zero, no text representation will be output. If it is set to OT$TRM the result will
be displayed on the terminal. If D6 contains OT$MEM the text representation will be
placed in the memory buffer indexed by A6.

A2 Indexes a DDB describing the file to be hashed. The DDB must already be INITed.

A6 If D6 contains OT$MEM, A6 must index the memory buffer where the text
representation of hash total will be placed.

$HSHFL returns with the following:

D0 Contains the completion code:

0 File was hashed successfully
-1 The error code is contained in the DDB (D.ERR(A2))
-2 The MFD is damaged in some way
1 The specified file could not be found
2 An invalid flag was specified in D6

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

$IDTIM
Input Date and Time

AMOS 2.X only

AMOS Monitor Calls Manual, Rev. 10

The $IDTIM subroutine accepts and packs a time or date, or both. Prior to calling $IDTIM, set up the
registers as follows:

A2 Points to the string that is to be converted to packed date and time. Typically, A2 has
been set up by a prior KBD monitor call.

D5 Contains flags, as follows:

Bit 0 Do not scan input for date.
Bit 1 Do not scan input for time.
Bit 2 Force colon as time field separator; otherwise, use separator defined in job's

active Language Definition File.

Upon return from $IDTIM, A2 points past the time and date string, or points at an invalid character. D3
contains the date in separated format, and D4 contains the time in separated format.

If an error occurs while trying to parse the input, $IDTIM returns with the N-flag set on. (The $IDTIM
call should always be followed by a BNE to an error routine.)

If the input specifies both time and date, the time must follow the date. Extraneous leading spaces are
ignored. The time is considered to be one field—it is legal to omit the separator between the time field
and the symbol that follows it, if any. Case differences in letters are ignored. Both "19nn" and "nn" imply
the year "19nn." The input scan is completed by "AM," "PM," carriage-return, or a null.

Dates must be input with slash separators. Valid dates are from January 1, 1900 through December 31,
2155.

The system date can be set only to dates in the range January 1, 1980 through December 31, 2079.
See Chapter 10 for further details

The date will be accepted in the order specified by the currently selected language, as defined in the
language definition file for that language.

$IDTIMX
Input Date and Time

AMOS 2.X or 1.X

AMOS Monitor Calls Manual, Rev. 10

The $IDTIMX subroutine accepts and packs a time or date, or both. It has these advantages over
$IDTIM: it is language-aware, it accepts more input formats, and it handles two-digit years more
correctly.

Before calling $IDTIMX, set up the registers as follows:

A2 Points to the string that is to be converted to packed date and time. Typically, A2 has
been set up by a prior KBD monitor call.

D5 Contains flags, as follows:

Bit 0 Do not scan input for date.
Bit 1 Do not scan input for time.
Bit 2 Force colon as time field separator; otherwise, use separator defined in job's

active Language Definition File.

Upon return from $IDTIMX, A2 points past the time and date string, or points at an invalid character. D3
contains the date in separated format and D4 contains the time in separated format.

If an error occurs while trying to parse the input, $IDTIMX returns with the N-flag set on. (The
$IDTIMX call should always be followed by a BNE to an error routine.)

If the input specifies both time and date, the time must follow the date. Extraneous leading spaces are
ignored. The time separator must be the one specified in the current language definition file. The time is
considered to be one field—it is legal to omit the separator between the time field and the symbol that
follows it, if any. Case differences in letters are ignored. The input scan is completed by "AM," "PM,"
carriage-return, or a null.

Dates can use dashes, slashes, spaces, commas, or the character defined in the current language definition
file as the day/month/year separator. The date will be accepted in the order specified by the currently
selected language, as defined in the language definition file for that language.

Only dates between January 1, 1900 and December 31, 2155 are valid. A two-digit year from 80
through 99 will be interpreted as 1980 - 1999; a two-digit year of less than 80 will be interpreted as
2000 - 2079.

The system date can be set only to dates in the range January 1, 1980 through December 31, 2079.
See Chapter 10 for further details

$INMFD
Initialize the MFD and Bitmap

AMOS 2.X only

AMOS Monitor Calls Manual, Rev. 10

The $INMFD routine provides a standard method of initializing the MFD and bitmap of a disk. To
initialize the disk, simply specify a DDB referencing the disk to be initialized, and then call $INMFD.
You must be logged into [1,2] to use this subroutine.

$INMFD works only with AMOS 2.X. If you want to support both AMOS 2.X and AMOS
1.X, use $INMFDX instead.

Before calling $INMFD, the following registers must be set up:

A2 Points to an INITed DDB to be used for the add operation.

$INMFD returns with the following:

D0 Contains the completion code:

0 Disk was initialized successfully
-1 The error code is contained in the DDB (D.ERR(A2))
1 You are not logged into [1,2]

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

All registers except D0, D6, D7, and A6 are preserved. This routine sets the D$ERC bit in the DDB flags
byte.

Error message output (whether from DDB type error codes or from the "Damaged MFD" error) is under
the control of the D$BYP bit in the DDB flags byte.

$INMFDX
Initialize the MFD and Bitmap

AMOS 2.X or 1.X

AMOS Monitor Calls Manual, Rev. 10

The $INMFDX routine provides a standard method of initializing the MFD and bitmap of a disk under
either AMOS 2.X or 1.X. At run time, it checks the operating system version and calls the proper
version of $INMFD.

To initialize the disk, simply specify a DDB referencing the disk to be initialized, and then call
$INMFDX. You must be logged into [1,2] to use this subroutine.

Before calling $INMFDX, the following registers must be set up:

A2 Points to an INITed DDB to be used for the add operation.

$INMFDX returns with the following:

D0 Contains the completion code:

0 Disk was initialized successfully
-1 The error code is contained in the DDB (D.ERR(A2))
1 You are not logged into [1,2]

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

All registers except D0, D6, D7, and A6 are preserved. This routine sets the D$ERC bit in the DDB flags
byte.

Error message output (whether from DDB type error codes or from the "Damaged MFD" error) is under
the control of the D$BYP bit in the DDB flags byte.

$KILPF
Kill a File Entry in Spooler Queue

(Task Manager S pooler Only)

AMOS Monitor Calls Manual, Rev. 10

$KILPF stops the printing of a file in the printer queue, and/or removes the file from the queue. Only
works with the Task Manager controlled printer spooler. Set up registers:

A4 Pointer to the DDB of the file to kill

D0 Printer name in RAD50 (1 LWORD)

D1 Sequence number (if present, A4 and D0 ignored)

D2 CPU number of spooler node (0 if default)

The following will be returned:

D2 Number of file entries killed

D1 If N-flag is set on return, this register will contain the ITC error code that occurred. If a
non-ITC error code occurred, it will be returned in D0.

D0 If the N-flag is set on return, and D1 contains zero, a non-ITC error occurred. This
register contains flags defining the error:

10000 aborted

If a file-oriented error occurs, the error code will be stored in D.ERR(A4).

$MSGLOG
Send a Message to the System Logger

AMOS Monitor Calls Manual, Rev. 10

Sends a message to the System Logger. Before calling $MSGLOG, set up the registers as follows:

D3 User code 0-999

A1 Index to user message string (up to 45 characters), null terminated.

After calling $MSGLOG, the Z flag returns 0 (is not set) if an argument error occurred, and returns 1 (is
set) if the message was successfully sent. An argument error occurs if the user code is larger than 999 or
if the index is zero.

$NETED
Convert a CPU Specification to an Ersatz Name

AMOS Monitor Calls Manual, Rev. 10

Accepts as an argument a CPU number, and returns a string containing the ersatz device name by which
that CPU is known (if any). Before calling $NETED, set up the registers as follows:

A2 Points to a text buffer used to store the ersatz name

D1 Contains the CPU number whose ersatz name you wish to locate

After calling $NETED, the following will be returned:

A2 Updated pointed into the text buffer.

If $NETED was able to locate an ersatz name for the requested CPU number, the Z-bit will be set upon
return. If no ersatz name was located, the Z-bit will be reset to zero. The text buffer pointed to by A2
upon calling $NETED must be a minimum of eight bytes long.

$ODTIM
Output Date and Time

AMOS Monitor Calls Manual, Rev. 10

The $ODTIM routine provides a standard way of outputting dates and times in a variety of formats. Prior
to calling $ODTIM, set up the registers as follows:

A2 The destination pointer. If zero, then send output to the user's terminal. If non-zero and
D5 bit 15 is zero, then output to the memory buffer indexed by A2. If non-zero and D5
bit 15 is one, then output to the DDB indexed by A2.

D3 Contains the date to be output, in separated format. If D3 contains a zero, then the
current system date and time are used, and the contents of D4 are ignored.

D4 Contains the time to be output, in separated format. If D3 contains a zero, this register
is ignored.

D5 Contains date and/or time formatting flags and other options as follows:

DESTINATION OPTIONS

Bit 15 If set and A2 is non-zero, treat A2 as a pointer to a DDB and do all output
through that DDB. If clear, output to the user's terminal if A2 is zero,
otherwise output to memory indexed by A2 and update A2 to point past
the last character of the string on exit.

TIME AND DATE ORDERING AND FORMATTING

Bit 0 Omit date from the output, and ignore all other date formatting flags.
Bit 9 Omit time from the output, and ignore all other time formatting flags.
Bit 14 Affects numerical output for day, month and year only. If on, leading

zeros are suppressed on all elements. This produces output suitable for use
in an isolated message. If off, leading zeros are added if appropriate,
producing output of a constant width that is useful for printing tables. Note
that full month and weekday texts are never columniated, and time formats
always have leading zeros. Overridden by Bit 18. See also Bit 19.

Bit 26 Output the time before the date, else the time will follow the date.

DATE FORMATTING

Date Punctuation

Bits 7-8 Date punctuation control (can be overridden by Bit 21):
Both off: Use dashes, as 20-Feb-82
7 only: Use spaces, as in 20 Feb 82; if Bit 6 is on and Bit 3 is off, add a comma,

as in February 20, 1990
8 only: Use slashes, as 2/20/82.
Both on: Use the character defined as LD.DTS in the job's language definition file.
Bit 20 Do not output any commas in the date string. Overrides Bit 2 and Bit 6.
Bit 21 Do not output date punctuation. Overrides Bits 7 and 8.

Date Ordering

Bit 6 Output the day of the month after the month, otherwise output it before.

Page 2 Appendix D: $ODTIM

AMOS Monitor Calls Manual, Rev. 10

Ignored if Bits 7 or 8 are set. A comma is appended if the day is
immediately followed by the year and the month is not output as a
number.

Bit 16 If set, the year precedes the day and month (which are printed in the order
specified by Bit 6).

Date Items Output

Bit 1 Output the day of the week.
Bit 23 Do not output the day. Overrides Bit 6 and Bit 19.
Bit 24 Do not output the month. Overrides Bit 3 and Bit 4.
Bit 25 Do not output the year. Overrides Bit 5 and Bit 16.

Weekday Options

Bit 2 Use the full text for the weekday, otherwise use a three-letter abbreviation.
Bit 22 can force the weekday to be output as a number in the range 0-6,
overriding this bit. A comma will be added if alphabetic output is
generated and the date follows the weekday. Requires Bit 1.

Bit 22 Output the weekday as a number (0-6) as the first element of date output.
Overrides Bit 2, requires Bit 1 to be set.

Day Options

Bit 19 Add English day suffix (st, nd, rd, th) to the numerical day output. Forces
Bit 14 on for day output.

Month Options

Bit 3 Output the month as a number 1-12; ignore Bit 4.
Bit 4 Use the full text for the month, otherwise use a three-letter abbreviation.

Year Options

Bit 5 Output a four-digit year, otherwise use a two-digit year. Bit 14 may
disable leading zeros for two-digit years; Bit 18 may force them on.

Bit 18 Force leading zeros in two-digit years for years in the range xx00-xx09.
Overrides Bit 14.

TIME FORMATTING

Bit 11 Use 12-hour and AM/PM, otherwise use 24-hour time.
Bit 28 If 24-hour clock, output "hrs" after the time string. Otherwise ignored.

Hours Options

Bit 12 Do not output a separator between the hour and the minute values.
Bit 27 Affects hours output: if 12-hour clock, suppress any leading zero. If 24-

hour clock, ignored.

Seconds Options

Bit 10 Omit seconds; otherwise include seconds preceded by the time separator.

Standard System Library Routines: $ODTIM Page 3

AMOS Monitor Calls Manual, Rev. 10

Punctuation Options

Bit 13 Force a colon as the time separator, otherwise use the character defined as
LD.TMS in the job's language definition file.

Bit 17 Do not output separator between the minute and the second.

Notes

A zero in D5 produces columniated output of the form "03-Apr-81 01:06:03" on the user's terminal.

The default value for register D5 is -1. If D5 = -1, the date will be output in "normal" format. The normal
format for American English is, for example: "Tuesday, March 24, 1981 01:12:54 PM." Other languages
will use the specific format for the date as defined in the Language Definition File for that language.

Examples

Assume a language definition file containing the following:

Date Format = DMY Time Format = 24-hour
Date Separator = Backslash Time Separator = Period

On February 1, 2000, at 1:20 PM, $ODTIM returns the following:

Flag Output Notes
^H200 01-Feb-00 No date format bits set
^H288 01 02 00 Use spaces
^H308 01/02/00 Use slashes
^H2A8 01 02 2000 Use four-digit year
^H388 01\02\00 Use .LDF separator
^H4388 1\2\0 Suppress leading zeros
^H43A8 1\2\2000 Use four-digit year
^H200388 010200 Ignore date punctuation
^H2003A8 01022000 Same, four-digit year
^H210228 20000102 Year first, then day, month
^H210268 20000201 Year, month, day
^H10268 2000-02-01 Year, month, day: date punctuation
^H28A Tue 01 02 00 Use weekday abbreviation
^H10262 Tue 2000-Feb-01 Year first, month first, punctuation
^H28E Tuesday, 01 02 00 Full weekday with comma
^H2B6 Tuesday, 01 February 2000
^H42B6 Tuesday, 1 February 2000 Ignore leading zeros
^H0C02B6 Tuesday, 1st February 2000 Ignore leading zeros, add day suffix
^H1C02B6 Tuesday 1st February 2000 Ignore all date commas
^H0C02F6 Tuesday, February 1st, 2000 Day after month, adds comma
^H42F6 Tuesday, February 1, 2000 No day suffix
^H1 13.20.00 24-hour clock
^H401 13.20 Ignore seconds
^H1C01 0120 PM Add 12-hr clock, no hour/minute separator
^H801 01.20.00 PM Add separators, seconds
^H2C01 01:20 PM No seconds, force colon
^H21801 012000 PM Add seconds, no separators
^H21001 132000 24-hr clock
^H0 01-Feb-00 13.20.00 Note .LDF time separators
^H0FFFFFFFF (-1) Tuesday, 1 February 2000 13:20:00 Colons are forced

Page 4 Appendix D: $ODTIM

AMOS Monitor Calls Manual, Rev. 10

$ODTM2
Output Localized Date and Time

AMOS Monitor Calls Manual, Rev. 10

The $ODTM2 routine provides a standard way to output dates and times in the positional format
described in the language definition (.LDF) file, while letting the user control the content and format of
the output. Prior to calling $ODTM2, set up the registers as follows:

D3 Contains the date to be output in separated format. If D3 contains a zero, then the current
system date and time are used, and the contents of D4 are ignored.

D4 Contains the time to be output in separated format. If D3 contains a zero, this register is
ignored.

D5 Contains formatting flags. The flags are the same as those listed for $ODTIM, but
$ODTIM2 forces the correct flags to be set according to the job’s active langauge
definition file.

A2 The destination pointer. If zero, then send output the user's terminal. If non-zero and D5
bit 15 is zero, then output to the memory buffer indexed by A2. If non-zero and D5 bit
15 is one, then output to the DDB indexed by A2.

If the language definition file is available, $ODTM2 sets bits 6, 11, and 16, then calls the $ODTIM
library routine.

Upon return, if A2 was used as a memory buffer pointer, it is updated.

A zero in D5 produces columniated output of the form "03-Apr-81 01:06:03" on the user's terminal.

The default value for register D5 is -1. If D5 = -1, the date will be output in "normal" format. The normal
format for American English is, for example: "Tuesday, March 24, 1981 01:12:54 PM." Other languages
will use the specific format for the date as defined in the Language Definition File for that language.

Here is an example use:

EXTERN $ODTM2

CLR D3
CLR D5
MOV #0,A2
CALL $ODTM2
EXIT

This table shows the output from this routine for various date and time formats in the language definition
file:

LDF Format Output
M-D-Y 12hr Jul-16-97 01:17:20 PM
D-M-Y 12hr 16-Jul-97 01:17:20 PM
Y-M-D 12hr 97-Jul-16 01:17:20 PM
D-M-Y 24hr 16-Jul-97 13:17:20

$OTCON
Output Connect Time

AMOS Monitor Calls Manual, Rev. 10

The $OTCON routine provides a way of unpacking and displaying connect time. This packed format is
used within each JCB to store the connect time, and within the system communication area to store the
up time.

Before calling $OTCON, the following registers must be set up:

D1 Contains the packed connect time to be displayed.

A2 If A2 is zero, the output is displayed on the user's terminal. If A2 is non-zero, it is used
as a pointer to a memory buffer where the output is stored.

If A2 is non-zero, it is updated to point to the byte immediately following the last byte output by
$OTCON. $OTCON preserves all other registers (except D6, D7, and A6).

$OTCPU
Output CPU Time

AMOS Monitor Calls Manual, Rev. 10

The $OTCPU routine provides a way of unpacking and displaying CPU time. This packed format is used
within each JCB to store the CPU time used by the job.

$OTCPU will display as the decimal point the character defined as the decimal point in the current job's
language definition file.

Before calling $OTCPU, the following registers must be set up:

D1 Contains the packed CPU time to be displayed.

A2 If A2 is zero, the output is displayed on the user's terminal. If A2 is non-zero, it is used
as a pointer to a memory buffer where the output is stored.

If A2 is non-zero, it is updated to point to the byte immediately following the last byte output by
$OTCPU. $OTCPU preserves all other registers (except D6, D7, and A6).

$PAKDT
Pack the Current Time and Date into Directory Format

AMOS Monitor Calls Manual, Rev. 10

The $PAKDT routine converts the current time and date into the internal 32-bit directory format. This
format is used within the AMOS file structure for storing times and dates.

This format will represent dates in the range March 1, 1900 through December 31, 2027, inclusive.

$PAKDT does not require any setup prior to calling.

Upon completion $PAKDT returns with the following:

D0 Current date and time in packed directory format.

All registers except D0, D6, D7, and A6 are preserved.

Note that the internal directory format is packed in such a way that a simple 32-bit compare can be done
to determine the relative position in time of the packed date and time.

The packed directory format may be unpacked via the $UNPDT subroutine.

$PAMFD
Pre-Allocate Permanent MFD Blocks

AMOS 2.X only

AMOS Monitor Calls Manual, Rev. 10

Under versions of AMOS prior to 2.0, this routine pre-allocated additional MFD blocks. This feature is
no longer available and the $PAMFD routine has been converted to simply return to the caller. It is
provided for compatibility with some older software which explicitly referenced it.

$PAMFD works only with AMOS 2.X. If you want to support both AMOS 2.X and AMOS
1.X, use $PAMFDX instead.

$PAMFDX
Pre-Allocate Permanent MFD Blocks

AMOS 2.X or 1.X

AMOS Monitor Calls Manual, Rev. 10

At run time, $PAMFD checks the operating system version and calls the proper version of $PAMFD.
Under versions of AMOS prior to 2.0, this routine pre-allocated additional MFD blocks. This feature is
no longer available and the $PAMFD routine has been converted to simply return to the caller. It is
provided for compatibility with some older software which explicitly referenced it.

$SEND
Send a Text Message to Another Job

AMOS Monitor Calls Manual, Rev. 10

The $SEND routine allows you to send a text message to another job's terminal, located either on the
same system or on a different system connected via AlphaNET. This subroutine is used by the SEND
program to perform its functions.

Before calling $SEND, the following registers must be set up:

D2 Contains the name of the sending job, packed in RAD50. If this field is zero the current
job's name will be used.

D3 Contains the CPU number of the sending job. If this field is zero the current job's CPU
will be used.

D4 Contains the name of the job to send to, packed RAD50.

D5 Contains the CPU number of the job to send to. A zero in this register implies the current
CPU.

A2 Contains a pointer to the ASCII text string to be sent to the other job. This string must be
null terminated.

$SEND returns with the following:

D0 Contains the completion code:

1 The destination job could not be located
2 The destination job is guarded against messages
3 The destination job is busy
4 The destination job does not have a terminal attached to it
5 The remote CPU is not responding
6 An unrecognized error code was returned by the destination system
7 An unexpected error was returned by the inter-task communication system

In addition to the above codes, the Z-flag will be set on a successful completion, and reset if an error
occurs.

$SPLFL
Queue Up a File to the Spooler

AMOS Monitor Calls Manual, Rev. 10

Works for both the memory resident spooler and the Task Manager print spooler programs. The routine
will first try the memory resident spooler, and then the Task Manager spooler. Set up these registers:

A4 Pointer to the DDB of the file

A2 Pointer to the data (24. words)

PRINTR 4 bytes Printer name in RAD50 (0 if default)
CPU 4 bytes CPU number of spooler node (0 if default)
PSW 4 bytes Positive switches (See "Switch Settings," below)
NSW 4 bytes Negative switches (See "Switch Settings," below)
COPIES 2 bytes Number of copies
BANNER 4 bytes Pointer to BANNER text buffer (max. 50 bytes)
LPP 2 bytes Lines per page
WIDTH 2 bytes Width of text lines
FORMS 4 bytes Type of form (RAD50)

* PRI 2 bytes Priority # of the file
* AFTERD 4 bytes Run date (separated format)
* AFTERT 4 bytes Run time
* RSTART 2 bytes /RESTART{:n}
* START 2 bytes /START:n
* FINISH 2 bytes /FINISH:n
* LIMIT 2 bytes /LIMIT{:n}

* = Task Manager Spooler only

The following is returned:

D2 The sequence number of the file in the queue (if using the Task Manager spooler)
If D2 = 0 and there is no error, the memory resident spooler is installed

If an error occurs, the N-flag will be set, and the following registers will specify which error occurred:

D1 ITC error code

D0 Other error codes:

Code Meaning
1 Printer not found.
2 Printer already turned off.
4 Printer already turned on.

10 Queue entry specified by //SEQ not found.
20 Printing of the file has already started.
40 Queue file is full; not enough free queue records for request.

100 Spooler file error: including queue file error.
200 Print file error.

2000 Illegal switch(es)
4000 Not enough queue blocks for spooler request (memory

resident spooler).
10000 Aborted.

Page 2 Appendix D: $SPLFL

AMOS Monitor Calls Manual, Rev. 10

If a file oriented error occurs, the error code will be in D.ERR(A4).

SWITCH SETTINGS

You may select/deselect spooler options by placing the appropriate values into PSW (Positive Switch) to
select the option and NSW (Negative Switch) to deselect the option as defined below. The bit values
shown below are in octal.

You should use the enhanced ^C abort flag if the calling program does not run in line mode and ^C
interrupts are enabled. If the flag is not set, and the program is in image or data mode, a user cannot abort
spooling by pressing CTRL / C . If the flag is set and the user presses CTRL / C , $SPLFL exits with D0
set to 10000, and any pending keyboard input is discarded.

PSW - Activate Option

Value Option
1 /COPIES:n
2 /DELETE
4 /BANNER{:text}

10 /HEADER
20 /FF
40 /LPP:n

100 /WIDTH:n
200 /WAIT
400 /FORMS:x

4000 * /SUSPEND
10000 * /REVIVE
20000 * /PRIORITY:n
40000 * /AFTER:{+}mm-dd-yy {@hh:mm AM/PM}

100000 * /INFORM
200000 * /RESTART{:n}
400000 * /START:n

1000000 * /FINISH:n
2000000 * /LIMIT{:n}

20000000 Enhanced ^C abort handling

NSW - Inactivate Option

Value Option
2 /DELETE
4 /BANNER{:text}

10 /HEADER
20 /FF

200 /WAIT
4000 * /SUSPEND

10000 * /REVIVE
40000 * /AFTER:{+}mm-dd-yy {@hh:mm AM/PM}

100000 * /INFORM
200000 * /RESTART{:n}
400000 * /START:n

1000000 * /FINISH:n
2000000 * /LIMIT{:n}

* = Task Manager Spooler only (in both tables)

$STFRM
Set Forms Type on a Printer

(Task Manager Spooler Only)

AMOS Monitor Calls Manual, Rev. 10

$STFRM allows you to set the type of printer form needed for the printing of a file. It works only with
the Task Manager spooler. Set up the registers:

D0 Printer name in RAD50 (1 LWORD)

D1 Form name in RAD50

If an error occurs, the N-flag will be set, and the following registers will specify which error occurred.

D1 ITC error code

D0 Other error code:

400 printer name not specified
1000 not logged in to OPR:

10000 aborted

$SYSID
Get a Symbolic System Name for a Network CPU

AMOS Monitor Calls Manual, Rev. 10

$SYSID takes as an argument a CPU number and returns the symbolic name that the remote CPU calls
itself. Before calling $SYSID, set up the following registers:

A3 Points to a buffer to be used for sending and receiving Inter Task Communication (ITC)
messages. This buffer must be at least 512 bytes in length.

D1 Contains the CPU number for which you wish to receive the system ID.

After returning from $SYSID, the following registers will be returned:

D1 Completion code.

A2 Points to a null terminated string containing the system ID.

A3 Points to a null terminated string containing the system name and version.

Upon return, the Z-bit will be set is $SYSID was successful, and will be reset if the remote system was
not available (not responding).

In addition, the N-bit will be set if $SYSID received a fatal ITC error code while attempting to
communicate with the remote system. In this case, the ITC error code will be stored in D1.

$UNPDT
Unpack Directory Format Date and Time into Separated Format

AMOS Monitor Calls Manual, Rev. 10

The $UNPDT routine converts a packed date and time in the internal 32-bit directory format, into a date
and a time in separated format. The packed directory format is used within the AMOS file structure for
storing times and dates.

This format will represent dates in the range March 1, 1900 through December 31, 2027, inclusive.

Before calling $UNPDT set up the following:

D0 Date and time to be unpacked from directory format.

Upon completion $UNPDT returns with the following:

D3 Date in separated format.

D4 Time in separated format.

All registers except D0, D3, D4, D6, D7, and A6 are preserved.

Note that the internal directory format is packed in such a way that a simple 32-bit compare can be done
to determine the relative position in time of the packed date and time.

The current date and time can be packed into directory format via the $PAKDT subroutine.

$UPDSW
Update Switches in a Spooler Entry

(Task Manager Spooler Only)

AMOS Monitor Calls Manual, Rev. 10

Allows you to change switch(es) for a file that is already in the printer spooler. Only works with the
Task Manager controlled printer spooler. Set up the registers:

A2 Pointer to switch-related data (20. words):

PSW 4 bytes Positive switches
NSW 4 bytes Switches
COPIES 2 bytes Number of copies
BANNER 4 bytes Pointer to BANNER text buffer (max. 50 bytes, null

terminated)
LPP 2 bytes Lines per page
WIDTH 2 bytes Width of text lines
FORMS 4 bytes Name of form (RAD50)
PRI 2 bytes Priority # of the file
AFTERD 4 bytes Run date (separated format)
AFTERT 4 bytes Run time
RSTART 2 bytes /RESTART{:n}
START 2 bytes /START:n
FINISH 2 bytes /FINISH:n
LIMIT 2 bytes /LIMIT{:n}

D0 Printer name in RAD50 (1 LWORD. 0 if default)

D1 Sequence number of the queue entry to update (1 LWORD)

D2 CPU number of the spooler node (0 if default)

If an error occurs, the N-flag will be set, and the following registers will specify which error occurred.

D1 ITC error code

D0 Other error code:

2000 illegal switch(es)
10000 aborted
20000 illegal sequence number

$YESNO
Accept and Decipher “ YES/NO” Res ponses in Any Language

AMOS Monitor Calls Manual, Rev. 10

$YESNO allows you to check any yes/no input from a user. This subroutine accepts input from the user
which is compared against the YES and NO responses defined in the currently selected language
definition table. This allows a program to be "language independent" without having to concern itself
with the implementation details of the language definition files.

The KBD (for line mode input) and the TIN (image or data mode input) monitor calls are performed in
this routine for you. If a Control-C was used while waiting for input, all flags will be cleared and
$YESNO will return back to your program. Therefore, a ^C check should be done before anything else.

If you wish image mode input, your program must put the job into image mode before calling $YESNO,
otherwise, you need no preparation for the call.

$YESNO returns:

Z-flag Set for affirmative response. Tested for by a BEQ.

N-flag Set for negative response. Tested for by a BMI.

C-flag Set for a Carriage return response (i.e., default response). Tested for by a BCS.

V-flag Set for a bad response (anything else). Tested for by a BVS.

If the job running $YESNO entered the routine in image mode, that flag will be cleared upon return. All
registers are preserved except A6, D6, and D7.

AMOS Monitor Calls Manual, Rev. 10

Appendix E
Alphabetic Listing of AMOS

Monitor Calls
The following is a quick reference to all AMOS monitor calls:

ALF tests the character indexed by A2 for alphabetic
AMOS executes AMOS command without exiting current program
ASSIGN assigns a non-sharable device to a job
BACKSP perform backspace operation on tape
BUFSTS inquire on buffer status for printer device
BYP bypasses all spaces and tabs in the string indexed by A2
CHGMEM changes the size of a user memory module
CHKMSG check for received messages
CHPROT change file protection
CLOSE close a logical dataset
CLOSEK close a logical dataset, but keep it locked for the user who opened it.
CLSMSG close a message socket
COMINT select communications interrupt service routines
COMRST read communications port status flags
COMSET set communications port parameters
COMWST write communications port status flags
CRLF prints a carriage-return line-feed pair on the user terminal
CTRLC checks for a Control-C pending
DCVT converts a binary value to decimal and prints it on the user terminal
DEASGN de-assigns a non-sharable device from a job
DELMEM deletes a user memory module from his partition
DELSHM deletes a block of shared memory
DEVCHR get device characteristics
DIRACC request and set up access to directory
DIRALC allocate a new directory item
DIRDEL delete a directory item
DIRREP replace an existing directory item
DIRSCH search for specified item in directory
DQTIMR remove an active timer queue entry
DSKALC allocates next available record on disk and returns block number
DSKCTG allocates a contiguous file for random processing
DSKDEA deallocates a record on disk and makes it available for use again
DSKDEL deletes a file from a file-structured device
DSKDRL sets re-entrant directory lock for a specific user's directory
DSKDRU clears re-entrant directory lock for a specific user's directory
DSKFRE get number of free blocks on device
DSKINI initialize a disk

Page E-2 Appendix E

AMOS Monitor Calls Manual, Rev. 10

DSKMNT mounts a file structured device
DSKREN renames a file on a file-structured device
DSKUMT unmounts a file structured device
DVSTAT get tape device status
ERASE perform erase function on tape drive
ERRMSG converts standard system error code to text
EXIT exits from user program and returns to monitor command mode
FADD performs floating point addition using Alpha Micro format
FATOID convert Alpha Micro format floating point to double precision IEEE format
FATOIS convert Alpha Micro format floating point to single precision IEEE format
FCMP performs floating point comparison using Alpha Micro format
FCVT converts an Alpha Micro format floating point number to text
FCVTD converts a double precision IEEE format floating point number to text
FCVTS converts a single precision IEEE format floating point number to text
FDIV performs floating point division using Alpha Micro format
FETCH fetches a module from disk into user memory unless already in memory
FFTOA converts an Alpha Micro format floating point number to ASCII
FFTOAX converts an Alpha Micro format floating point number to extended ASCII
FFTOL converts an Alpha Micro format floating point number to a longword
FFTOX converts an Alpha Micro format floating point number to 40-bit extended format
FILINB input a byte from a sequential file
FILINL input a longword from a sequential file
FILINW input a word from a sequential file
FILNAM processes a filename specification indexed by A2 into RAD50 format
FILOTB output a byte to a sequential file
FILOTL output a longword to a sequential file
FILOTW output a word to a sequential file
FIDTOA convert double precision IEEE format floating point to Alpha Micro format
FISTOA convert single precision IEEE format floating point to Alpha Micro format
FLTOF converts a longword to Alpha Micro floating point format
FMARK find file mark on specified magnetic tape unit
FMARKR read in reverse to find file mark on specified magnetic tape unit
FMUL performs floating point multiplication using Alpha Micro format
FPWR multiplies an Alpha Micro format floating point number by a power of ten
FSPEC processes a complete file spec indexed by A2 and sets up DDB
FSUB performs floating point subtraction using Alpha Micro format
FXTOF converts 40-bit extended format to Alpha Micro floating point format
GDATEI gets system date in internal format
GDATES gets system date in separated format
GET read a record from a file
GETL read a record from a file and leave it locked
GETX read a record from a file regardless of locking
GETMEM allocates a user memory module in his partition
GETSHM gets a block of shared memory
GTDEC converts a decimal number indexed by A2 to binary, returns it in D1
GTFLFD input a double precision IEEE format floating point number
GTFLFS input a single precision IEEE format floating point number
GTFLT input a floating point number in Alpha Micro format
GTFLTD input a double precision IEEE format floating point number from a file
GTFLTF input a floating point number in Alpha Micro format from a file

Alphabetic Listing of AMOS Monitor Calls Page E-3

AMOS Monitor Calls Manual, Rev. 10

GTFLTS input a single precision IEEE format floating point number from a file
GTIMEI gets system time in internal format
GTIMES gets system time is separated format
GTLANG returns a pointer to the language definition table
GTOCT converts an octal number indexed by A2 into binary and returns it in D1
GTPARM read VCR interface parameters
GTPPN converts a p,pn format indexed by A2 into binary and returns it in D1
ICOFF turns off CPU instruction cache
ICON turns on CPU instruction cache
INIT initializes a dataset driver block (DDB) for I/O processing
INPUT performs a logical record input I/O function on an open dataset
INPUTL performs a logical record input I/O function to update a record
INPUTX performs a logical record input I/O function regardless of locking
JCBIDX index a job control block
JLOCK prevents context switches and allows current user to run
JLOCKI prevents context switches and allows current user to run while allowing current

I/O to complete.
JOBIDX set an index to a job control block item for the current job
JRUN restores a waiting job to the run request state
JUNLOK enables context switches (reverses effect of JLOCK)
JWAIT sets your job into a wait state
KBD accepts input from user terminal keyboard (character or line mode)
LCS converts one character in D1 to lower case
LEVEL7 enters Level7 debugger
LIN tests the character indexed by A2 for valid end-of-line character
LOCKF relocks a file that has already been OPENed
LOKSHM locking shared memory block
LOOKUP looks for a specific file on disk and returns information about it
MDDIAL dial phone number on modem
MDOFF disable modem
MDON enable modem
MDREQ request a modem with specified characteristics
MDRTN return a modem to available modem pool
MDSET set modem parameters
NUM tests the character indexed by A2 for numeric
OCVT converts a binary value to octal and prints it on the user terminal
OFILE outputs a file specification
OPENA opens a logical dataset for appending
OPENI opens a logical dataset for input
OPENO opens a logical dataset for output
OPENR opens a logical dataset for random access
OPNMSG opens a message socket
OUT generalized output byte call
OUTCR generalized output string with carriage return call
OUTI generalized output immediate call
OUTL generalized output string call
OUTPTL performs a logical record output I/O function for a new record
OUTPUT performs a logical record output I/O function on an open dataset
OUTS generalized output string call
OUTSP generalized output string with space call

Page E-4 Appendix E

AMOS Monitor Calls Manual, Rev. 10

PACK packs an ASCII triplet into its RAD50 code
PCALL invokes program as subroutine
PFILE prints a complete file specification on user terminal from a DDB
PHDR macro that defines a program header area
PLOCK lock a job and all related processes
PRNAM prints a filename specification on user terminal from its packed format
PRPPN prints a p,pn specification on user terminal from its packed format
PUNLOK unlock a job and all related processes
PUT write a record to a file
PUTL create a record in a file
QADD adds a queue block to the end of a queue list
QADDL links a queue block to the end of a queue
QGET gets a queue block from the free list and clears it for use
QINS inserts a queue block into a queue list at a defined point
QINSL links a queue block into a queue at a defined point
QRET removes a queue block from a queue list and returns it to the free list
QUNL unlinks a queue block from a specified queue
RCVMSG receive a message
READ performs a physical record read I/O function on a dataset
RETNSN re-tensions the tape on a specified streaming tape unit
REWIND rewind magnetic tape on specified magnetic tape unit
RLSE releases control of a semaphore and allows waiting job to access source
RQST requests control of a semaphore to access source or wait in wait chain
RSTCON resets (SP) to the base of the stack within current context
RTCRT perform TCRT function on remote terminal
RTNMSG return from message service system
SDATES sets the system date from separated format
SETMSG set MSQ/MSR status
SICLR clear software interrupt request
SIDIS disable software interrupts
SIMSK select software interrupt enable mask
SIRTN return from software interrupt
SISET set software interrupt request
SISTS get software interrupt enable status
SITIMR request software interrupt after specified time interval
SIWAIT wait for software interrupt
SKIPN skip over tape blocks
SLEEP puts the user job to sleep for a specified number of line clock ticks
SMSG display system message
SNDMSG send a message
SPAWN spawns jobs to perform specific tasks
SRCH searches for a named memory module and returns its address
STDERR perform standard error processing
STIMES sets system time from separated format
STPARM set VCR interface parameters
SUPVR places job in supervisor state
SVLOK disables interrupts
SVUNLK enables interrupts
SYNC flushes write cache on demand
TAB sends a tab character to the user terminal

Alphabetic Listing of AMOS Monitor Calls Page E-5

AMOS Monitor Calls Manual, Rev. 10

TAPDEN select tape drive density
TAPSPD select tape drive speed
TAPTYP select tape drive transport type
TAPST read tape status of specified magnetic tape unit
TBUF queues up a variable length data buffer for output to a terminal
TCBIDX index terminal control block
TCKI check terminal input buffer for input present
TCRT executes the special function CRT routine in the active terminal driver
TDVCNG change terminal drivers
TIMER adds an entry to the system timer queue
TIN reads one character from the user terminal input buffer
TINIT initiate terminal output
TOUT sends one character to the user terminal output buffer
TRM tests the character indexed by A2 for a valid termination character
TRMBFQ adds a data buffer to the active output queue of a terminal
TRMCHR defines terminal characteristics for color terminals
TRMICP processes one input character (used within terminal drivers)
TRMOCP processes one output character (used within terminal drivers)
TRMRST read terminal status flags
TRMWST write terminal status flags
TTY outputs one character to the user terminal
TTYI outputs an in-line message to the user terminal
TTYIN retrieves one character from any job's terminal input buffer
TTYL outputs a message to the user terminal
TTYOUT forces one character into any job's output buffer
TYPE types an ASCII message on the user terminal
TYPECR types an ASCII message on the user terminal with appended CRLF pair
TYPESP types an ASCII message on the user terminal with one appended space
UCS converts one character in D1 to upper case
UNLKSHM unlock a block of shared memory
UNLOAD unloads a specified tape unit
UNLOKF unlocks a file without closing it
UNLOKR unlocks a record read by an INPUTL call, but not yet updated
UNPACK unpacks a RAD50 code word into its equivalent ASCII triplet
USRBAS returns the address of the current user's memory partition base
USREND returns the address of the current user's memory partition end
USRFRE returns the address of the current user's free memory area
VCVT unpacks and display a version number
VSRCH perform VCR interface search function
WAKE wakes a job out of sleep state
WRITE performs a physical record write I/O function on a dataset
WRTFM write a file mark to specified magnetic tape unit
WTMSG wait for receipt of a message

AMOS Monitor Calls Manual, Rev. 10

Appendix F
Character Sets

AMOS uses a single-byte character set. Such a character set can represent 256 different characters. The
character set is aligned with a number of international standards.

A SHORT HISTORY OF CHARACTER SETS

The first international standard was set in 1965 by ECMA (European Computer Manufacturer’s
Association) and was known as ECMA-6. The character set was adopted by other standards bodies, and
is also known as US-ASCII, DIN 66003, and ISO 646. The standard only defined a basic alphabet, and
did not allow for national characters in use in many European countries. Such characters were
incorporated by specifying twelve code points (see Note 1 in the table below) as being places where
replacement characters could be defined. For example, Germany defined the letter Ä at code point 91,
where the [character was located. These character sets were called the “national ISO 646 variants”.
Portability of files containing such characters were low.

In 1981, the IBM PC introduced an 8-bit character set with Code Page 437, a character set with many
special characters. In 1982 DEC MCS (Multi Language Character Set) was released. This character set
was very similar to ISO 6937/2, which in turn is almost identical to the modern standard for 8-bit
character sets, ISO 8859. In 1985 ECMA standardized ECMA-94, which dealt with almost all European
languages. ECMA-94 was taken up by ISO, as ISO 8859-1 through 8859-4, and standardized in 1987.

Microsoft released MS-DOS 3.3 in 1987, which used Code Page 850. This code page uses all the
characters from ISO 8859-1, plus a few extra at code points representing the non-printing characters. A
second code page, Code Page 819, is fully ISO 8859-1 compliant.

THE ISO 8859 FAMILY OF STANDARDS AND AMOS

The ISO 8859-x character sets are designed for maximum interoperability and portability. All of them are
a superset of US-ASCII and will render English text properly. The code points 0xA0 through 0xFF are
used to represent national characters, while the characters in the range 0x20 through 0x7F are the same as
in the ISO 646 (US-ASCII) character set. Thus ASCII text is a subset of all ISO 8859 character sets, and
will be rendered properly by them. The code points 0x80 through 0x9F are earmarked as extended
control characters and are not used for encoding characters.

The ISO 8859 family of standards consists of:

8859-1 For Europe, Latin America, the Caribbean, Canada, and Africa
8859-2 For Eastern Europe
8859-3 For SE Europe, and a miscellany of alphabets, such as Esperanto, and

Maltese
8859-4 For Scandinavia, and the Baltic states (mostly covered by 8859-1 also)
8859-5 For languages using the Cyrillic alphabet

Page F-2 Appendix F

AMOS Monitor Calls Manual, Rev. 10

8859-6 For languages using Arabic
8859-7 For modern Greek
8859-8 For Hebrew
8859-9 Known as Latin-5. The same as 8859-1 except for Turkish instead of

Icelandic characters
8859-10 Known as Latin-6, for Lappish, Nordic, and Eskimo languages

ISO 8859-1 (also known as ISO Latin-1) has the required characters to display most Western European
languages. It supports Afrikaans, Basque, Catalan, Danish, Dutch, English, Faeroese, Finnish, French,
Galician, German, Icelandic, Irish, Italian, Norwegian, Portuguese, Spanish and Swedish. It cannot
support Welsh, due to two missing characters (Latin Letter W with circumflex and Latin Letter Y with
circumflex). It is the preferred encoding for the Internet.

AMOS follows this lead, and expects 8-bit aware software to use these ISO standards.

In passing, the ISO 8859-1 standard is a subset of the Unicode 1.x and 2.0 standards, which use 16-bit
character sets to encode most of the world’s alphabets. Unicode has aligned itself with a further ISO
standard for 32-bit character sets, ISO 10646-1:1993. There are several mappings available (such as UTF-
8) which can map Unicode characters to a variable length 8-bit based encoding.

Char-
acter

Also
Called

Octal
Value

Decimal
Value

Hex
Value

ISO/IEC 10646-1:1993(E)
and Unicode 2.0 Name

Also Known As Type. See
Note

NULL 0 0 0 Null Cc
SOH 1 1 1 Start of Heading Cc
STX 2 2 2 Start of Text Cc
ETX 3 3 3 End of Text Cc
EOT 4 4 4 End of Transmission Cc
ENQ 5 5 5 Enquiry Cc
ACK 6 6 6 Acknowledge Cc
BEL 7 7 7 Bell Cc
BS 10 8 8 Backspace Cc
HT 11 9 9 Character Tabulation (Tab) Cc
LF 12 10 A Line Feed Cc
VT 13 11 B Line Tabulation (Vertical

Tab)
Cc

FF 14 12 C Form Feed Cc
CR 15 13 D Carriage Return Cc
SO 16 14 E Shift Out Cc
SI 17 15 F Shift In Cc
DLE 20 16 10 Data Link Escape Cc
DC1 21 17 11 Device Control One Cc
DC2 22 18 12 Device Control Two Cc
DC3 23 19 13 Device Control Three Cc
DC4 24 20 14 Device Control Four Cc
NAK 25 21 15 Negative Acknowledge Cc
SYN 26 22 16 Synchronous Idle Cc
ETB 27 23 17 End of Transmission Block Cc
CAN 30 24 18 Cancel Cc
EM 31 25 19 End of Medium Cc
SUB 32 26 1A Substitute Cc
ESC 33 27 1B Escape Cc
FS IS4 34 28 1C File Separator Cc
GS IS3 35 29 1D Group Separator Cc
RS IS2 36 30 1E Record Separator Cc

Character Sets Page F-3

AMOS Monitor Calls Manual, Rev. 10

Char-
acter

Also
Called

Octal
Value

Decimal
Value

Hex
Value

ISO/IEC 10646-1:1993(E)
and Unicode 2.0 Name

Also Known As Type. See
Note

US IS1 37 31 1F Unit Separator Cc
SP 40 32 20 Space Zs
! 41 33 21 Exclamation Mark Po
" 42 34 22 Quotation Mark Po
43 35 23 Number Sign (Hash) So 1
$ 44 36 24 Dollar Sign Sc 1
% 45 37 25 Percent Sign Po
& 46 38 26 Ampersand So
' 47 39 27 Apostrophe Apostrophe-Quote Po
(50 40 28 Left Parenthesis Opening Parenthesis Ps
) 51 41 29 Right Parenthesis Closing Parenthesis Pe
* 52 42 2A Asterisk So
+ 53 43 2B Plus Sign Sm
, 54 44 2C Comma Po
- 55 45 2D Hyphen-Minus Minus Sign Pd
. 56 46 2E Full Stop Period Po
/ 57 47 2F Solidus Slash Po
0 60 48 30 Digit Zero Nd
1 61 49 31 Digit One Nd
2 62 50 32 Digit Two Nd
3 63 51 33 Digit Three Nd
4 64 52 34 Digit Four Nd
5 65 53 35 Digit Five Nd
6 66 54 36 Digit Six Nd
7 67 55 37 Digit Seven Nd
8 70 56 38 Digit Eight Nd
9 71 57 39 Digit Nine Nd
: 72 58 3A Colon Po
; 73 59 3B Semicolon Po
< 74 60 3C Less-Than Sign Sm
= 75 61 3D Equals Sign Sm
> 76 62 3E Greater-Than Sign Sm
? 77 63 3F Question Mark Po
@ 100 64 40 Commercial At Po 1
A 101 65 41 Latin Capital Letter A Lu
B 102 66 42 Latin Capital Letter B Lu
C 103 67 43 Latin Capital Letter C Lu
D 104 68 44 Latin Capital Letter D Lu
E 105 69 45 Latin Capital Letter E Lu
F 106 70 46 Latin Capital Letter F Lu
G 107 71 47 Latin Capital Letter G Lu
H 110 72 48 Latin Capital Letter H Lu
I 111 73 49 Latin Capital Letter I Lu
J 112 74 4A Latin Capital Letter J Lu
K 113 75 4B Latin Capital Letter K Lu
L 114 76 4C Latin Capital Letter L Lu
M 115 77 4D Latin Capital Letter M Lu
N 116 78 4E Latin Capital Letter N Lu
O 117 79 4F Latin Capital Letter O Lu
P 120 80 50 Latin Capital Letter P Lu
Q 121 81 51 Latin Capital Letter Q Lu
R 122 82 52 Latin Capital Letter R Lu
S 123 83 53 Latin Capital Letter S Lu
T 124 84 54 Latin Capital Letter T Lu
U 125 85 55 Latin Capital Letter U Lu
V 126 86 56 Latin Capital Letter V Lu

Page F-4 Appendix F

AMOS Monitor Calls Manual, Rev. 10

Char-
acter

Also
Called

Octal
Value

Decimal
Value

Hex
Value

ISO/IEC 10646-1:1993(E)
and Unicode 2.0 Name

Also Known As Type. See
Note

W 127 87 57 Latin Capital Letter W Lu
X 130 88 58 Latin Capital Letter X Lu
Y 131 89 59 Latin Capital Letter Y Lu
Z 132 90 5A Latin Capital Letter Z Lu
[133 91 5B Left Square Bracket Opening Square Bracket Ps 1
\ 134 92 5C Reverse Solidus Backslash Po 1
] 135 93 5D Right Square Bracket Closing Square Bracket Pe 1
^ 136 94 5E Circumflex Accent Spacing Circumflex; Caret Lm 1
_ 137 95 5F Low Line Spacing Underscore;

Underscore
So

` 140 96 60 Grave Accent Spacing Grave Lm 1
a 141 97 61 Latin Small Letter A Ll
b 142 98 62 Latin Small Letter B Ll
c 143 99 63 Latin Small Letter C Ll
d 144 100 64 Latin Small Letter D Ll
e 145 101 65 Latin Small Letter E Ll
f 146 102 66 Latin Small Letter F Ll
g 147 103 67 Latin Small Letter G Ll
h 150 104 68 Latin Small Letter H Ll
i 151 105 69 Latin Small Letter I Ll
j 152 106 6A Latin Small Letter J Ll
k 153 107 6B Latin Small Letter K Ll
l 154 108 6C Latin Small Letter L Ll
m 155 109 6D Latin Small Letter M Ll
n 156 110 6E Latin Small Letter N Ll
o 157 111 6F Latin Small Letter O Ll
p 160 112 70 Latin Small Letter P Ll
q 161 113 71 Latin Small Letter Q Ll
r 162 114 72 Latin Small Letter R Ll
s 163 115 73 Latin Small Letter S Ll
t 164 116 74 Latin Small Letter T Ll
u 165 117 75 Latin Small Letter U Ll
v 166 118 76 Latin Small Letter V Ll
w 167 119 77 Latin Small Letter W Ll
x 170 120 78 Latin Small Letter X Ll
y 171 121 79 Latin Small Letter Y Ll
z 172 122 7A Latin Small Letter Z Ll
{ 173 123 7B Left Curly Bracket Opening Curly Bracket Ps 1
| 174 124 7C Vertical Line Vertical Bar So 1
} 175 125 7D Right Curly Bracket Closing Curly Bracket Pe 1
~ 176 126 7E Tilde So 1
DEL 177 127 7F Delete Cc
PAD 200 128 80 Padding Character Cc
HOP 201 129 81 High Octet Preset Cc
BPH 202 130 82 Break Permitted Here Cc
NBH 203 131 83 No Break Here Cc
IND 204 132 84 Index Cc
NEL 205 133 85 Next Line Cc
SSA 206 134 86 Start of Selected Area Cc
ESA 207 135 87 End of Selected Area Cc
HTS 210 136 88 Character Tabulation Set Cc
HTJ 211 137 89 Character Tabulation with

Justification
Cc

VTS 212 138 8A Line Tabulation Set Cc
PLD 213 139 8B Partial Line Forward Cc
PLU 214 140 8C Partial Line Backward Cc

Character Sets Page F-5

AMOS Monitor Calls Manual, Rev. 10

Char-
acter

Also
Called

Octal
Value

Decimal
Value

Hex
Value

ISO/IEC 10646-1:1993(E)
and Unicode 2.0 Name

Also Known As Type. See
Note

RI 215 141 8D Reverse Line Feed Cc
SS2 216 142 8E Single-Shift Two Cc
SS3 217 143 8F Single-Shift Three Cc
DCS 220 144 90 Device Control String Cc
PU1 221 145 91 Private Use One Cc
PU2 222 146 92 Private Use Two Cc
STS 223 147 93 Set Transmit State Cc
CCH 224 148 94 Cancel Character Cc
MW 225 149 95 Message Waiting Cc
SPA 226 150 96 Start of Guarded Area Cc
EPA 227 151 97 End of Guarded Area Cc
SOS 230 152 98 Start of String Cc
SGCI 231 153 99 Single Graphic Character

Introducer
Cc

SCI 232 154 9A Single Character Introducer Cc
CSI 233 155 9B Control Sequence

Introducer
Cc

ST 234 156 9C String Terminator Cc
OSC 235 157 9D Operating System

Command
Cc

PM 236 158 9E Privacy Message Cc
APC 237 159 9F Application Program

Command
Cc

NBSP 240 160 A0 No-Break Space Zs
¡ 241 161 A1 Inverted Exclamation Mark Po
¢ 242 162 A2 Cent Sign Sc
£ 243 163 A3 Pound Sign Sc
¤ 244 164 A4 Currency Sign Sc
¥ 245 165 A5 Yen Sign Sc
¦ 246 166 A6 Broken Bar So
§ 247 167 A7 Section Sign So
¨ 250 168 A8 Diaeresis Lm
© 251 169 A9 Copyright Sign So
ª 252 170 AA Feminine Ordinal Indicator So
« 253 171 AB Left-Pointing Double Angle

Quotation Mark
Ps

¬ 254 172 AC Not Sign Sm
- 255 173 AD Soft Hyphen Po
® 256 174 AE Registered Sign So
¯ 257 175 AF Macron Lm
° 260 176 B0 Degree Sign So
± 261 177 B1 Plus-Minus Sign Sm
² 262 178 B2 Superscript Two So
³ 263 179 B3 Superscript Three So
´ 264 180 B4 Acute Accent Lm
µ 265 181 B5 Micro Sign So
¶ 266 182 B6 Pilcrow Sign So
· 267 183 B7 Middle Dot Po
¸ 270 184 B8 Cedilla Lm
¹ 271 185 B9 Superscript One So
º 272 186 BA Masculine Ordinal Indicator So
» 273 187 BB Right-Pointing Double Angle

Quotation Mark
Pe

¼ 274 188 BC Vulgar Fraction One Quarter So
½ 275 189 BD Vulgar Fraction One Half So
¾ 276 190 BE Vulgar Fraction Three So

Page F-6 Appendix F

AMOS Monitor Calls Manual, Rev. 10

Char-
acter

Also
Called

Octal
Value

Decimal
Value

Hex
Value

ISO/IEC 10646-1:1993(E)
and Unicode 2.0 Name

Also Known As Type. See
Note

Quarters
¿ 277 191 BF Inverted Question Mark Po
À 300 192 C0 Latin Capital Letter A With

Grave
Lu

Á 301 193 C1 Latin Capital Letter A With
Acute

Lu

Â 302 194 C2 Latin Capital Letter A With
Circumflex

Lu

Ã 303 195 C3 Latin Capital Letter A With
Tilde

Lu

Ä 304 196 C4 Latin Capital Letter A With
Diaeresis

Lu

Å 305 197 C5 Latin Capital Letter A With
Ring Above

Lu

Æ 306 198 C6 Latin Capital Ligature AE Lu 2
Ç 307 199 C7 Latin Capital Letter C With

Cedilla
Lu

È 310 200 C8 Latin Capital Letter E With
Grave

Lu

É 311 201 C9 Latin Capital Letter E With
Acute

Lu

Ê 312 202 CA Latin Capital Letter E With
Circumflex

Lu

Ë 313 203 CB Latin Capital Letter E With
Diaeresis

Lu

Ì 314 204 CC Latin Capital Letter I With
Grave

Lu

Í 315 205 CD Latin Capital Letter I With
Acute

Lu

Î 316 206 CE Latin Capital Letter I With
Circumflex

Lu

Ï 317 207 CF Latin Capital Letter I With
Diaeresis

Lu

Ð 320 208 D0 Latin Capital Letter Eth Lu
Ñ 321 209 D1 Latin Capital Letter N With

Tilde
Lu

Ò 322 210 D2 Latin Capital Letter O With
Grave

Lu

Ó 323 211 D3 Latin Capital Letter O With
Acute

Lu

Ô 324 212 D4 Latin Capital Letter O With
Circumflex

Lu

Õ 325 213 D5 Latin Capital Letter O With
Tilde

Lu

Ö 326 214 D6 Latin Capital Letter O With
Diaeresis

Lu

× 327 215 D7 Multiplication Sign Sm
Ø 330 216 D8 Latin Capital Letter O With

Stroke
Lu

Ù 331 217 D9 Latin Capital Letter U With
Grave

Lu

Ú 332 218 DA Latin Capital Letter U With
Acute

Lu

Û 333 219 DB Latin Capital Letter U With
Circumflex

Lu

Character Sets Page F-7

AMOS Monitor Calls Manual, Rev. 10

Char-
acter

Also
Called

Octal
Value

Decimal
Value

Hex
Value

ISO/IEC 10646-1:1993(E)
and Unicode 2.0 Name

Also Known As Type. See
Note

Ü 334 220 DC Latin Capital Letter U With
Diaeresis

Lu

Ý 335 221 DD Latin Capital Letter Y With
Acute

Lu

Þ 336 222 DE Latin Capital Letter Thorn Lu
ß 337 223 DF Latin Small Letter Sharp S Ll
à 340 224 E0 Latin Small Letter A With

Grave
Ll

á 341 225 E1 Latin Small Letter A With
Acute

Ll

â 342 226 E2 Latin Small Letter A With
Circumflex

Ll

ã 343 227 E3 Latin Small Letter A With
Tilde

Ll

ä 344 228 E4 Latin Small Letter A With
Diaeresis

Ll

å 345 229 E5 Latin Small Letter A With
Ring Above

Ll

æ 346 230 E6 Latin Small Ligature AE Ll 2
ç 347 231 E7 Latin Small Letter C With

Cedilla
Ll

è 350 232 E8 Latin Small Letter E With
Grave

Ll

é 351 233 E9 Latin Small Letter E With
Acute

Ll

ê 352 234 EA Latin Small Letter E With
Circumflex

Ll

ë 353 235 EB Latin Small Letter E With
Diaeresis

Ll

ì 354 236 EC Latin Small Letter I With
Grave

Ll

í 355 237 ED Latin Small Letter I With
Acute

Ll

î 356 238 EE Latin Small Letter I With
Circumflex

Ll

ï 357 239 EF Latin Small Letter I With
Diaeresis

Ll

ð 360 240 F0 Latin Small Letter Eth Ll
ñ 361 241 F1 Latin Small Letter N With

Tilde
Ll

ò 362 242 F2 Latin Small Letter O With
Grave

Ll

ó 363 243 F3 Latin Small Letter O With
Acute

Ll

ô 364 244 F4 Latin Small Letter O With
Circumflex

Ll

õ 365 245 F5 Latin Small Letter O With
Tilde

Ll

ö 366 246 F6 Latin Small Letter O With
Diaeresis

Ll

÷ 367 247 F7 Division Sign Sm
ø 370 248 F8 Latin Small Letter O With

Stroke
Ll

ù 371 249 F9 Latin Small Letter U With
Grave

Ll

ú 372 250 FA Latin Small Letter U With Ll

Page F-8 Appendix F

AMOS Monitor Calls Manual, Rev. 10

Char-
acter

Also
Called

Octal
Value

Decimal
Value

Hex
Value

ISO/IEC 10646-1:1993(E)
and Unicode 2.0 Name

Also Known As Type. See
Note

Acute
û 373 251 FB Latin Small Letter U With

Circumflex
Ll

ü 374 252 FC Latin Small Letter U With
Diaeresis

Ll

ý 375 253 FD Latin Small Letter Y With
Acute

Ll

þ 376 254 FE Latin Small Letter Thorn Ll
ÿ 377 255 FF Latin Small Letter Y with

Diaeresis
Ll

Notes:

1. This code point is used by National Replacement Character Sets (7-bit character sets).
Devices using such an NRC will not print the glyph shown, neither will it print glyphs for
code points above 127.

2. ISO may be reclassifying these code points as “Latin Letter”, as certain Scandinavian

languages use these characters as a complete letter, not as a ligature.

Type: The characters are broken down into “character types” by Unicode:

Cc Control or Format Character
Ll Lowercase Letter
Lm Modifier Letter
Lu Uppercase Letter
Nd Decimal Number
Pd Dash Punctuation
Pe Close Punctuation
Po Other Punctuation
Ps Open Punctuation
Sc Currency Symbol
Sm Math Symbol
So Other Symbol
Zs Space Separator

AMOS Monitor Calls Manual, Rev. 10

Appendix G
RAD50 Conversion Table

For historical reasons, AMOS often stores and retrieves text strings as packed RAD50 data. (For
example, filenames within disk directories are stored as RAD50 data.) ASCII characters take up one byte
each. Using the RAD50 packing algorithm, you can "pack" three ASCII characters into two bytes.

The ASCII characters that you may pack into RAD50 data are:

Character RAD50
Code (Octal)

blank 0
A-Z 1-32
a-z 1-32
$ 33
. 34
% 35
0-9 36-47

NOTE: the codes on the right are used to compute the RAD50 values of the characters.

The chart below gives you a method for manually converting RAD50 data back into its ASCII character
equivalents, and also for converting ASCII characters into RAD50 data.

THE RAD50 ALGORITHM

If you are interested in the actual algorithm used to pack three ASCII characters into two RAD50 bytes,
here is a summary:

1. Multiply the first character code by 31008. (To find out the character's code, consult the short
table above.) (31008 is 508 x 508—hence, the name RAD50.)

2. Multiply the second character code by 508 and add it to the first number.

3. Add the third character code to the above. This final sum is the RAD50 result.

To convert RAD50 data back into ASCII characters, reverse the sequence above, subtracting instead of
adding.

Note also that the PACK and UNPACK monitor calls are available for your use—these monitor calls
convert ASCII characters into RAD50 data and vice versa. (Consult Chapter 8, Conversion Monitor
Calls, for information on these monitor calls.)

Page G-2 Appendix G

AMOS Monitor Calls Manual, Rev. 10

USING THE CONVERSION CHART

To convert ASCII characters into RAD50:

1. Look in the first column on the left for the first ASCII character you want to pack. Write down
the octal number associated with it.

2. Look in the second column for the second ASCII character you want to pack. Write down the
octal number associated with it beneath the first number you wrote down. Now, add these
numbers. (Remember, add them in octal.)

3. Look in the third column for the third ASCII character you want to pack. Write down the octal
number associated with it beneath the sum of the first two numbers. Add in the new number.

The final number is the 16-bit RAD50 result.

To convert RAD50 data into ASCII characters:

1. Write down the RAD50 octal data you want to convert.

2. Look in the first column on the left for the largest octal number that can be subtracted from your
RAD50 data without producing a negative number. The character associated with that number is
the first ASCII character. Now, subtract the octal number from the RAD50 data.

3. Look in the second column for the largest octal number that can be subtracted from your new
result without producing a negative number. The character in the second column that is
associated with that number is the second ASCII character. Subtract the octal number from the
current RAD50 result.

4. Look in the third column for the largest octal number that can be subtracted from your new result
without producing a negative number. The character in the third column associated with that
number is the final ASCII character.

For example:

To convert the ASCII characters "DSK" into RAD50:

1. Look for "D" in the first column. Write down its associated number:

 014400

2. Look for "S" in the second column. Write down its associated number, and add it to the data
above:

 014400
+001370

 015770

3. Look for "K" in the third column. Write down its associated number and add it to the result
above:

 014400
+001370

RAD50 Convers ion Table Page G-3

AMOS Monitor Calls Manual, Rev. 10

 015770
+000013

 016003

The octal, 16-bit RAD50 representation of the ASCII characters "DSK" is 016003.

To convert the RAD50 data "016003" into three ASCII characters:

1. Look for the largest number in the first column that you can subtract from 016003 without
producing a negative number (014400). The character associated with 014400 is "D." Subtract
the number:

 016003
 -014400

 001403

2. Look for the largest number in the second column that you can subtract from 001403 without
causing a negative result (001370). The character associated with 001370 is "S." Subtract the
number:

 016003
 -014400

 001403
 -001370

 000013

3. Look for the result above in the third column (000013). The character associated with that
number is "K."

The RAD50 number 016003 represents the three ASCII characters "DSK."

Page G-4 Appendix G

AMOS Monitor Calls Manual, Rev. 10

THE CONVERSION CHART

CHARACTER #1 CHARACTER #2 CHARACTER #3
Blank 000000 Blank 000000 Blank 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000016
N 053600 N 001060 N 000016
O 056700 O 001130 O 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 V 001560 V 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033
. 127400 . 002140 . 000034
% 132500 % 002210 % 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

AMOS Monitor Calls Manual, Rev. 10

Appendix H
User Description Symbols

The symbols below can be used to access user description information contained in the
DSK0:USER.SYS[1,2] file via the $FNUSR library call discussed in Appendix D. In addition to the
symbols below, US.SIZ contains the total number of bytes used by the US.xxx symbols.

Symbol
Size

(Bytes)
Description

US.USN 20. User name (ASCIZ)
US.FLG 4. User flags (low word matches JOBTYP)

Symbol Octal Value Hex Value Mea ning
US$HEX 20 10 Default radix is hex
US$DER 40 20 Disk error print
US$VER 100 40 Disk verify
US$CCA 200 80 Control-C enable
US$GRD 400 100 Guard
US$NLK 100000 8000 No LOKSER locking

on traditional logicals
US$ENLK 200000 10000 No LOKSER locking

on extended logicals
US$ECH 20000000000 80000000 Echo suppress

US.RTP 2. Root PPN
US.RTD 2. Root device
US.RTU 2. Root unit
US.RTC 4. Root CPU
US.MLP 2. Mail PPN
US.MLD 2. Mail device
US.MLU 2. Mail unit
US.MLC 4. Mail CPU
US.PRV 2. Default privileges
US.CLS 1. Class of user
US.EXP 1. Experience level of user
US.PAS 10. Password
US.CPU 4. Total CPU time
US.CON 4. Total connect time
US.KRM 4. Kilo-RAM-seconds used
US.DRD 4. Total disk reads
US.DWR 4. Total disk writes
US.PRT 4. Total pages printed
US.DFP 4. Default file protection
US.PRI 2. Default job priority
US.LNG 20. Default language
US.PRM 20. Default prompt

Not all fields are currently in use or updated by AMOS.

AMOS Monitor Calls Manual, Rev. 10

Appendix I
Eight-Bit Character Support

With the addition of support for full 8-bit character sets (such as ISO Latin-1) to AMOS, programs
capable of handling a full 8-bit character set are able to request that all characters are sent and received
without modification. Function key handling has also been updated to support full 8-bit transparency.

 AMOS has traditionally supported the 7-bit ASCII character set. Languages other than American
English have been supported through the use of National Replacement Character (NRC) sets, whereby
some of the symbols of USASCII are replaced by other symbols required by the local language.

In practice, this has been only a stopgap solution. Many applications are hindered by the lack of the
symbols used for substitution. Multilingual users have not been able to mix character sets. These and
many other limitations have led to the need for a better solution.

To expand the number of available characters, AMOS is moving to support a full 8-bit character set.
AMOS has traditionally removed the high-order bit of all ASCII characters, usually using it as a parity
bit (applications software often uses the high-order bit to "hide" flags associated with the characters). In
addition, the high-order bit has been used by AMOS to flag function key input. This makes the transition
to 8-bit character sets more difficult.

As of AMOS 2.2, AMOS has an 8-bit transparent mode, functional in line, image, and data input modes.
Appropriate changes were made within AMOS to allow this. Applications software, however, needs to be
upgraded to take full advantage of this new capability.

Although AMOS assumes the use of the ISO Latin-1 character set to the extent that the text files
distributed with AMOS will use that set, the 8-bit transparency feature does not limit the choice of
specific character sets.

Note also that AMOS still assumes a single byte per character, although the new 8-bit feature is designed
not to hinder users of multi-byte character sets.

Here is a brief summary of the changes made for 8-bit character support:

• A program can check for the availability of 8-bit character set support within AMOS by checking
for SY$EXT being set in the system flags (SYSTEM in the system communication area).

• A program can set the T$EXT bit in its terminal status word to receive full 8-bit character input.

• Terminal drivers flag their ability to generate and display 8-bit characters by setting the TD$EXT
bit in the terminal driver flags word, retrieved by the TRMCHR monitor call.

• When in 8-bit character mode, function keys are returned as two-byte sequences: a hex 9B
(Control Sequence Introducer— CSI) is a special ISO character that is followed by the same
function key byte returned by previous versions of AMOS.

Page I-2 Appendix I

AMOS Monitor Calls Manual, Rev. 10

• A program that wants to accept 8-bit characters can set the PH$EXT bit in the program header
flags, thus eliminating the need to explicitly set T$EXT by TRMRST/TRMWST. This also
allows for easy upgrading of programs that already support 8-bit character sets.

• Programs that set the high-order bit in an attempt to get the character sent "transparently" must
be changed to not do this in order to work with 8-bit characters. Common examples of where
changes are needed are programs that set the high-order bit on carriage returns (to avoid the line
feed being appended), tabs (to avoid the expansion to spaces) and bell (for no apparent reason).

8-bit character support in AMOS has been limited to the AMOS monitor itself, as well as some key
utilities, such as AlphaVUE and AlphaBASIC. Some programs shipped with AMOS may still be limited
to 7-bit ASCII.

The AMOS SORT program and the AlphaBASIC XCALL BASORT have been changed to sort
according to the type of character set currently being used. The language definition file format has been
updated to include additional fields required for 8-bit support.

COMPATIBILITY

To facilitate upgrading from software which only recognizes 7-bit character sets, AMOS allows a mix of
software on the system. Full 8-bit characters are sent to those programs which know how to deal with
them, while the set is reduced for 7-bit programs.

Both terminals and programs can be either 7- or 8-bit. AMOS handles all four combinations of these.
When a 7-bit terminal uses an 8-bit program, function key input is converted from single byte to two-
byte codes. It is up to the application to convert characters between the terminal's NRC and the
program's 8-bit code.

When an 8-bit terminal uses a 7-bit program, function key input is sent to the program as single byte
codes. It is up to the application to convert characters between the terminal's 8-bit code and the program's
NRC code.

The conversion between NRC and 8-bit should be done by a conversion table. These tables should be
both terminal-dependent and language-dependent. They should have the name term.lan, where term is the
name of the terminal, and lan is the language dependent extension from the currently selected language
definition table. By making the table dependent on both terminal type and language, it is possible to
handle the various differences in NRC sets. These table files actually consist of two tables. The first 128-
byte table, when indexed with the 7-bit NRC character, will give the 8-bit equivalent. A value of zero
means there is no equivalent. The second 256-byte table, when indexed with an 8-bit character value, will
give the 7-bit NRC equivalent. Again, a null means there is no equivalent.

UPGRADING AN APPLICATION

For all applications:

• All use of the high-order bit must be removed. This includes use inside of buffers, and any
masking of the high-order bit currently being done.

Eight-bit Character S upport Page I-3

AMOS Monitor Calls Manual, Rev. 10

• The program must set the T$EXT flag either through explicit use of TRMRST/TRMWST or by
setting the PH$EXT flag in the program header.

• Determine if the terminal in use is 7- or 8-bit and, when 7-bit, make appropriate use of
translation tables to convert back and forth between NRC and 8-bit characters.

• Make appropriate adjustments to comparison and sort routines to not sort based on simple ASCII
value, but on the collating table in the language definition file.

In addition, programs which run in data or image mode with function keys need to update the function
key handler to recognize the function key lead-in of hex 9B, discard that, and use the following byte as
the function code.

Upgrading a Terminal Driver

Terminals which only support 7-bit ASCII do not need any modifications. Terminals that are capable of
supporting an 8-bit character set need to have their drivers modified in two areas:

• The TD$EXT bit needs to be set in the terminal flags word.

• The function key handler needs to be changed—when the terminal is in 8-bit mode, function
keys are returned as two-byte sequences. When T$EXT is not set, the TDV must return a single
byte code.

Not all terminals available on the Alpha Micro computer may support 8-bit characters. See your dealer
for information on what terminals (and terminal drivers) are available that support 8-bit characters.
Remember that the terminal itself must be set to generate the full 8-bit ISO character set.

AMOS Monitor Calls Manual, Rev. 10

Appendix J
Using AMSORT.SYS

AMSORT.SYS is a sort module included with AMOS which can be easily called from assembler or C
programs. It uses a binary insertion sort method, which yields a stable sorting sequence. This means that
two different records will be returned in the same order as they were presented to AMSORT if their sort
keys compare equally. AMSORT can transparently handle more data than can fit in memory,
automatically paging data in and out of memory as needed without extra work on the programmer's part.
The number of keys supported is limited only by the amount of free memory. AMSORT calls
programmer-defined routines to read and write data, providing complete flexibility for data sources and
sinks.

AMSORT can deal with the following key data types:

• 7-bit ASCII strings. It can optionally support 8-bit characters and the extended collating sequence
defined in the job's language definition file. Character by character comparisons are done,
proceeding from lower locations to higher ones. If the optional extended collating flag is set, the
key is translated to and from the collating sequence characters to perform the comparison.

• AMOS floating point numbers. AMSORT uses the FCMP call to compare the keys.

• Binary data. AMSORT uses integer data in AlphaBASIC unsigned binary data format.

Non-key data in a record can be in any format.

AMSORT is easy to use. The following steps give an overview of the process:

1. Load AMSORT into user memory if it is not already loaded in user or system memory.

2. Use the AMCHK macro to verify that AMSORT.SYS is a current version.

3. Point A5 at an impure area. Details about this impure area are given below.

4. Check the active language for the job, and decide whether or not to call the 8-bit character
collation initialization sequence in AMSORT. If so, set the COLL8 flag using the XTDINI
macro.

5. Define the area in memory that can be used by AMSORT for sorting purposes. This area is
separate from, but can be contiguous with, AMSORT's impure area.

6. Set up the key list in the impure area using the KEYOFF macro.

7. Clear any unwanted features flags in the impure area using the FLGCLR macro.

8. Set the maximum record size of the records being sorted in the impure area.

9. Set the addresses of your own input and output routines in the impure area.

10. Call AMSORT.

The macros mentioned above are defined in the AMSYM.UNV file, which should be SEARCHed in
your source file.

Page J-2 Appendix J

AMOS Monitor Calls Manual, Rev. 10

LOCATING AND VERIFYING AMSORT.SYS

AMSORT can be located in memory by using the SRCH and FETCH monitor calls. The AMCHK macro
returns with the Z flag set if the AMSORT.SYS module is usable.

THE IMPURE AREA

AMSORT uses an impure area which must be indexed by A5 for variable storage and the key list table.
The variable storage is an area of fixed length that holds variables you set, as well as internal variables
private to AMSORT. You are responsible for building the key list table at the end of the variable storage
area with the help of the KEYOFF macro. The size of the impure area which must be allocated is
calculated by adding the minimum impure area size to N * KEYSIZ, where N is the number of sort keys
to be defined, and KEYSIZ is the size of a key table entry, currently 14. bytes. To find the minimum
impure area size, locate AMSORT.SYS in memory, and use:

KEYOFF An, Dn

An is an address register holding the address of the AMSORT.SYS module in memory, and Dn receives
the impure offset value to the key list table. Dn also represents the minimum impure area size. Add N *
KEYSIZ to Dn, and point register A5 to an area of that size or larger to define the impure area. The start
of the key table list, Am, is then given by:

LEA Am, 0(A5)[Dn]

where A5 indexes the impure area. Each key table entry is defined as follows:

Entry Size Description
SIZE longword Length of key in bytes, maximum = 65,535

bytes
LOCATION longword Offset into the record for this key. The first byte

of the record is byte zero.
SPARE longword Reserved, set to null
DIRECTION byte Sorting direction:

bit 7 set Ascending
bit 7 clear Descending
All other bits Reserved, set to zero.

TYPE byte Type of key:
0 String
1 AMOS 6-byte floating point
2 AlphaBASIC binary

KEYSIZ = 14. Size of a key table entry

The list is terminated by a key table entry with a SIZE set to zero. The key table list must be set up
before AMSORT is called.

Within the impure area are two variables: SM.FRE(A5), which defines the start of the contiguous area
which AMSORT can use for sorting; and SM.END(A5), which defines the address of the last word of the
area. Both addresses must be even addresses. AMSORT will longword align these two values, so they
can change after AMSORT is called. The maximum size of this area is 32KB. If a larger block is defined,
AMSORT will shrink the area during initialization by altering the SM.END(A5) value.

Using AMSORT.SYS Page J-3

AMOS Monitor Calls Manual, Rev. 10

SETTING THE RECORD SIZE

The maximum size of a record is set into the longword at SM.REC(A5). Only the lower word is used,
providing a maximum record size of 65,535 bytes. The total of each key's SIZE and LOCATION must be
less than or equal to SM.REC(A5).

SETTING FLAGS

The FLGCLR macro is then called to initialize the flags in AMSORT's impure area.

If you do not want AMSORT to use the job's language definition file's extended 8-bit collating sequence,
clear the byte at COLL8(A5). If you want the extended collating sequence used, place a non-zero byte in
COLL8(A5), and initialize 8-bit processing by calling the XTDINI macro. If XTDINI is not called when
it should be, or is called when the LDF does not contain an extended collating sequence, the sorted
records returned will be corrupted. XTDINI needs to be called only when the first (or a new) impure area
for AMSORT is being defined.

INPUT AND OUTPUT ROUTINES

You define your input and output routines to AMSORT by placing their addresses in SM.IN(A5) and
SM.OUT(A5) respectively. Any registers used in your routines must be preserved by those routines.
AMSORT will keep calling your input routine until you return a zero in register D0. You must place
exactly SM.REC(A5) bytes of data (padded with nulls if needed) into the area indexed by A1. Return
non-zero in register D0 and a zero in D1 until the last record is being processed, then return the last
record with registers D0 and D1 set to zero. If your input routine is called again, immediately return a -1
in register D1 to signal an error condition.

After you have sent the last record to AMSORT, AMSORT will start calling your output routine with
register A1 pointing to the record you are to receive. Register D2 will be set to SM.REC(A5) to help you
do the transfer from AMSORT's buffer to your data sink. After AMSORT has processed all the records,
it will call your output routine again with A1 cleared to zero. On return from that call, AMSORT will
clean up after itself, and return to the calling program.

EXAMPLE PROGRAM

SEARCH SYS
SEARCH SYSSYM
SEARCH AMSYM

NITEMS = 9. ;number of data items
RECSIZ = 5 ; record size
NKEYS = 1 ; number of keys

PHDR -1,, ; This program is not reentrant or reusuable.
; Initializing COUNT to zero at the start
; would make it reusable, and making
; OUTLST be in another impure area
; would make it reentrant.

SRCH AMNAME, A2 ; look for AMSORT.SYS in memory
BEQ 10$;br if found....
TYPECR <?AMSORT.SYS not in memory!> ;else error, abort
EXIT

Page J-4 Appendix J

AMOS Monitor Calls Manual, Rev. 10

10$: AMCHK A2 ; version check
BEQ 20$
TYPECR <?AMSORT.SYS is not current, and cannot be used>
EXIT

20$: KEYOFF A2, D6 ; D6 holds min impure size
ADD #KEYSIZ*NKEYS, D6 ; add key table size
ADD #4, D6 ; allow for terminating null
PUSH D6
PUSH
GETMEM @SP ; get module for impure area
BEQ 30$
TYPECR <?Insufficient memory for sorting!>
EXIT

30$: POP A5 ; A5 set to impure area
POP ; stack restored
GETIMP 1024., A4 ; allocate 1kbyte of sorting space
MOV A4, SM.FRE(A5) ; set in start of sort space into impure area
ADD #1024., A4 ; set upper bound of block....
MOV A4, SM.FRE(A5) ;into impure area

LEA A3, INSBR ; a3 -> my input routine
MOV A3, SM.IN(A5) ;set into impure area
LEA A3, OUTSBR ; a3-> my output routine
MOV A3, SM.OUT(A5) ;set into impure area

MOV #RECSIZ, SM.REC(A5) ; test data record is 5 bytes long
; (includes terminating null in this case)

FLGCLR A5 ; clear flags

CLRB COLL8(A5) ; default to ignore 8-bit collating
MOV SYSTEM, D7 ; D7 holds SYSTEM lword
AND #SY$LNG, D7 ; is .LDF file supported????
BEQ 40$;no, use default, br
GTLANG A3
CMPW LD.XTV(A3), #^H05A5A ; extended .LDF present????
BNE 40$;no, use default, br
MOVB #1, COLL8(A5) ; set up for extended collating
XTDINI A2 ; initialize...only if extended collating

40$: KEYOFF A2, D6 ; d6 holds key table offset address
LEA A3, 0(A5)[D6] ; A3 indexes the area
MOV #4, (A3)+ ; key is four bytes long....
CLR (A3)+ ;at byte zero in record....
CLR (A3)+ ; reserved, must be zero
CLRB (A3)+ ; ascending order
CLRB (A3)+ ; string type
CLR (A3)+ ; end of list

CALL @A2 ; call AMSORT!

TYPECR <The sorted list:>
MOV #NITEMS-1, D3 ; d3 holds items less DBF adjustment
LEA A3, OUTLST ; a3 -> list

50$: TTYL @A3 ; output item
CRLF
ADD #RECSIZ, A3 ; a3 -> next item
DBF D3, 50$; loop until done

EXIT

INSBR: PUSH A3 ; save registers I use
LEA A3, COUNT ; a3 -> items processed
CLR D0 ; preclear
MOVB @A3, D0 ; get count
CMPB D0, #NITEMS ; if all processed....
BLOS 10$
MOV #-1, D1 ;error, signal AMSORT, br
BR 40$

Using AMSORT.SYS Page J-5

AMOS Monitor Calls Manual, Rev. 10

10$: MOV D0, D1 ; save count
INC D0 ; inc count here....
INCB @A3 ;and in memory
CMPB D0, #NITEMS ; all done????
BLO 20$;no, br
CLR D0 ; yes, so signal AMSORT as well

20$: LEA A3, SRTLST ; a3 -> buffer area
MUL D1, #5 ; d1 converted to offset
ADD D1, A3 ; a3 -> area to hold item

30$: MOVB (A3)+, (A1)+ ; move from our buffer to AMSORT’s
BNE 30$;until done
CLR D1 ; signal "no error"

40$: POP A3 ; restore registers
RTN ; return to AMSORT

OUTSBR:
SAVE A3, D0, D1 ; save registers
LEA A3, COUNT ; a3 -> count
CLR D0 ; preclear
MOVB @A3, D0 ; get count of items to be processed
BEQ 20$; if all done, br
DECB @A3 ; dec count
MOV #NITEMS, D1 ; d1 holds max # items
SUB D0, D1 ; invert about that number
MUL D1, #5. ; convert item number into offset
LEA A3, OUTLST ; a3 -> buffer area
ADD D1, A3 ; a3 -> place to put item

10$: MOVB (A1)+, (A3)+ ; move from AMSORT's buffer to ours
BNE 10$;until done

20$: REST A3, D0, D1 ; restore used registers
RTN ; return to AMSORT

AMNAME:
RAD50 /AMSORTSYS/

COUNT:
BYTE 0

SRTLST:
ASCIZ /GGGG/
ASCIZ /BBBB/
ASCIZ /BBBC/
ASCIZ /1234/
ASCIZ / SPC
ASCIZ /.PER/
ASCIZ /AAAA/
ASCIZ /aa /
ASCIZ /aaa /

OUTLST:
BLKB NITEMS * RECSIZ

END

AMOS Monitor Calls Manual, Rev. 10

Document History
Revision Release Date Description

A00 AMOS/L 1.0 4/82 New Document, Part Number DSS-10003-00.

A01 AMOS/L 1.1 3/83 Added LOKSER Monitor Calls to Chapter 6, added LOKSER
fields in the system communication area to Appendix C, and
updated alphabetic listing of monitor calls in Appendix E.

A02 AMOS/L 1.2 5/84 Added TMRLOK, JOBFPC, JOBERC, and TRMCHR calls.
System flags SYLNK, SYLOK, SY$HFP added. Changes
were made to the TIMER call. The TTYOUT call was
implemented. New TCRT codes (79-99) and support codes for
color terminals were added. Routines $BBCHK and $ERPPN
were added, and routine $INFMD was renamed to $INMFD.
Some small errors were also corrected.

A03 AMOS/L 1.3 6/85 Added JOBLNG, JOBUSN, JOBRTP, JOBRTD, JOBRTU,
JOBLVL, JOBEXP, JOBPRM, and JOBCMD calls to the
JCB. Added to the FSPEC call. Added the T$XLT and
T$NFK flags to the terminal status word. Added TCRT
functions 100-147, and reserved all others for Alpha Micro
use only. Added the OT$NLD flag to the FCVT call. Added
the DEVCHR call. Added chapters 14, 15, and 16. Added new
status flags to the SYSTEM attributes word, and the
ERSATZ, SYSNAM, and SYSLNG calls to the system
communication area. New system library routines include
$KILPF, $NETED, $SPLFL, $STFRM, $SYSID, $UPDSW,
and $YESNO. Generally, support for the user-definable ersatz
names, function key translation, disk cache buffer manager,
intertask communication and foreign language/central
message support.

Rev. 00 AMOS 2.0 3/88 Rewritten and assigned new part number for AMOS 2.0
release, DSO-00040-00. Added many new calls to handle
expanded AMOS capabilities and extended disk format.

Rev. 01 AMOS 2.0A 12/88 Minor corrections: new status bits for the TAPST magnetic
tape status call, clarification of the use of the AMOS and
DQTIMR calls, information on the $FNUSR library routine,
information on the new JLOCKI call, updated information in
Chapter 16, “Serial Communications System,” Appendix H,
“User Description Symbols.”

(Continued)

Page 2 Document History

AMOS Monitor Calls Manual, Rev. 10

Revision Release Date Description

Rev. 02 AMOS 2.1 9/89 Minor typographical corrections; new J2$BGT flag for
JOBTY2; new queue management calls QADDL, QINSL,
QUNL; new GETX, INPUTX, and CLOSEK calls for file
system; new fields added to system communication area; new
system library routine $DITOS; additions to $SPLFL library
routine.

Rev. 03 AMOS 2.2 4/91 New system attribute word flags added for identifying new
computer systems; eight-bit character support documented;
miscellaneous terminal status word flags are documented in
Chapter 7 and Appendix B; new error codes for $SPLFL
library routine added; new system library routines $MSGLOG
and $CPUPOL added; additions to Software Interrupt System;
file locking changes adding new flags; floating point
clarifications and new call FFTOAX (Floating Point to ASCII
Extended) added; new shared memory facility documented.

Rev. 04 AMOS 2.3 9/96 Changes and additions to Appendix D. Added $..PPNX and
$..MFDX routines and changed $..PPN and $..MFD routines.
Changed $CPUPOL and $SPLFL. Year 2000 support:
changed Chapter 10, revised $ODTIM, $PAKDT, $UNPDT,
added $IDTIMX and $ODTM2. Chapter 2: added job priority
and interpreted prompt information. Added LEVEL7, ICON,
ICOFF to Chapter 13. Other miscellaneous changes to
chapters 2, 6, 15, and 16. New System Communications Area
words in Appendix C. All new Appendix F: ISO Latin-1
character set.

Rev. 05 AMOS 2.3A 5/97 Revised $ODTIM in Appendix D.

Rev. 06 AMOS 2.3A 12/97 Added Chapter 20, “AlphaTCP Programming Interface” and
Appendix J, “Using AMSORT.SYS.” Reformatted and edited
entire document.

Rev. 07 AMOS 2.3A 5/98 Correct error in $IDTIMX description in Appendix D.

Rev. 08 AMOS 2.3A,
PR 6/98

6/98 Change date range for $DITOS, $DSTOI, $IDTIM and
$IDTIMX; add bit 2 flag to $IDTIM and $IDTIMX, update
$ODTM2; add flags in Appendix H.

Rev 09 AMOS 2.3A,
PR 10/99

10/99 Added SYNC and SPAWN in Chapter 13 and Appendix E.

Rev 10 AMOS 2.3A,
AlphaTCP
1.5A

4/00 Added GETVTI in Chapter 13. Added Hostname and Address
Conversion call TCPRES

AMOS Monitor Calls Manual, Rev. 10

Index

5

5-tuple · 20-2

8

8-bit characters · I-1

A

Accept a connection · 20-7
Accepting events · 20-10
ALF · 9-1, E-1
Alphabetic conversion · 8-6
AMGDSP · C-8
AMOS · 2-8, 13-4, E-1
AMOS 1.X · 20-1
AMOS 2.3 · 20-1
AMSORT.SYS · J-1
ASSIGN · 6-35, E-1
Attention event · 20-8, 20-18
Attention event mechanism · 20-5

B

BACKSP · 6-40, E-1
BASUFD · C-7
Bitmap · 6-37
Bitmaps · A-3
Blocking synchronous call · 20-3
Buffer size · 20-16
BUFSTS · E-1
BYP · 9-2, E-1

C

C.KIN · 2-9
C.MON · 2-9
C.PTL · 2-9
C.SIL · 2-9
C.TRC · 2-9
Character sets · I-1
CHGMEM · 3-5, E-1
CHKMSG · E-1
CHPROT · 6-34, E-1

Client/server paradigm · 20-1
CLOSE · 6-20, E-1
CLOSEK · 6-20, E-1
CLSMSG · E-1
CMDUFD · C-7
COMINT · 16-3, B-11, B-12, E-1
Compatibility · 20-1
Complete event processing · 20-17
COMRST · 16-7, E-1
COMSET · 16-1, E-1
COMWST · 16-7, E-1
Connection

Accepting · 20-7, 20-14
Establishing · 20-7, 20-12
Resetting · 20-14
Shutdown · 20-7

Connection information · 20-19
Contiguous Files · A-4
Control-C · 13-1
Convenience Macros · 7-13
CPUTYP · C-13
CRLF · 7-3, E-1
CSI character · I-1
CTRLC · 13-1, E-1
Current AMOS prompt · 2-16
Current user name · 2-15
Cursor Addressing · 7-4, 7-9

D

D$BYP · 6-4
D$DSB · 6-4
D$EBBH · 6-12
D$EBBN · 6-12
D$EBBW · 6-12
D$EDNX · 6-12
D$EERR · 6-11
D$EFAO · 6-12
D$EFAX · 6-11
D$EFNF · 6-11
D$EFNO · 6-12
D$EFSZ · 6-13
D$EFUL · 6-11
D$EIBN · 6-12
D$EIFL · 6-12
D$EILC · 6-11
D$EINI · 6-12
D$EKPT · 6-12
D$EMEM · 6-11
D$EMFD · 6-12
D$EMNT · 6-12

Page 20-2 D - Index

AMOS Monitor Calls Manual, Rev. 10

D$ENBA · 6-13
D$ENOQ · 6-12
D$EPRV · 6-11
D$ERC · 6-4
D$ERDY · 6-11
D$ESPC · 6-11
D$ETYP · 6-12
D$EUFD · 6-13
D$EUSE · 6-11
D$EWRT · 6-11
D$INI · 6-4
D$OPNA · 6-7
D$OPNC · 6-7
D$OPNI · 6-7
D$OPNN · 6-7
D$OPNO · 6-7
D$OPNR · 6-7
D$OPNS · 6-7
D$RWF · 6-4
D$XFI · 6-4
D.ARG · 6-7

and LOKSER · 6-7
D.AUX · 6-8
D.BAS · 6-9
D.BDT · 6-8
D.BUF · 6-6
D.CDT · 6-8
D.CPU · 6-7
D.DEV · 6-5
D.DIR · 6-8
D.DVR · 6-7
D.ERR · 6-4
D.EXT · 6-5
D.FID · 6-11
D.FIL · 6-5
D.FLG · 6-4
D.FMT · 6-7
D.FSZ · 6-9
D.IDX · 6-6
D.LSZ · 6-9
D.LVL · 6-7
D.OPN · 6-6
D.PPN · 6-5
D.PRT · 6-10
D.REC · 6-5
D.RSZ · 6-9
D.SIZ · 6-6
D.TYP · 6-9
D.UDT · 6-8
D.WRK · 6-11
Daemons · 20-1
Dataset Driver Block · 6-1
Date classes · 10-3
Date conversion · 10-3
Date Conversion Calls · 10-1, 10-2
DCACHE · 19-1, C-5
DCVT · 8-1, E-1
DDB · 6-1

Block Number · 6-5
Buffer Address · 6-6
Buffer Index · 6-6
Buffer Size · 6-6
Buffers · 6-11
Call Level · 6-7
D.ARG · 6-7
D.AUX · 6-8
D.BAS · 6-9
D.BDT · 6-8
D.BUF · 6-6
D.CDT · 6-8
D.CPU · 6-7
D.DEV · 6-5
D.DIR · 6-8
D.DVR · 6-7
D.ERR · 6-4
D.EXT · 6-5
D.FID · 6-11
D.FIL · 6-5
D.FMT · 6-7
D.FSZ · 6-9
D.IDX · 6-6
D.LSZ · 6-9
D.LVL · 6-7
D.OPN · 6-6
D.PPN · 6-5
D.PRT · 6-10
D.REC · 6-5
D.RSZ · 6-9
D.SIZ · 6-6
D.TYP · 6-9
D.UDT · 6-8
D.WRK · 6-11
Device Code · 6-5
Device Driver Address · 6-7
Drive · 6-5
Driver Work Area · 6-11
Error Code · 6-4
Error Handling · 6-11
Extension · 6-5
Filename · 6-5
Flags · 6-4
Open Code · 6-6
PPN · 6-5
Project-Programmer Number · 6-5
User Argument · 6-7

DDB Format · 6-2
DDBCHN · C-2
DDBSEM · C-11
DDBSM2 · C-11
DEASGN · 6-35, E-1
Decimal Input · 9-2
Decimal Output · 8-1
Default command line · 2-17
DELMEM · 3-5, E-1
DELSHM · 4-6, E-1
Density · 6-43
DEVCHR · 13-10, E-1

Index - E Page 20-3

AMOS Monitor Calls Manual, Rev. 10

Device unit number · 2-15
DEVTBL · C-2
DIAG 02 · C-14
DIAG 03 · C-14
DIAG01 · C-14
DIRACC · 18-3, E-1
DIRALC · 18-3, E-1
DIRDEL · 18-3, E-1
Directory Handling Monitor Calls · 18-1
DIRREP · 18-2, E-1
DIRSCH · 18-2, 18-3, E-1
Disk Block Types · A-1
Disk File Structure · A-4
Disk Label Block · A-2
Disk Service Monitor Calls · 6-36
Disk Structure · A-1
Domain name · 20-3
DQTIMR · 13-6, E-1
DRVTRK · C-6
DSECT pointer · 20-9
DSKACC · 18-1
DSKALC · 6-37, E-1
DSKCTG · 6-34, E-1
DSKDEA · 6-38, E-1
DSKDEL · 6-33, E-1
DSKDRL · 6-38, E-1
DSKDRU · 6-38, E-1
DSKFRE · 13-11, E-1
DSKINI · 18-1, E-2
DSKMNT · 6-35, C-7, E-2
DSKREN · 6-33, E-2
DSKUMT · 6-36, C-7, E-2
DVRUFD · C-7
DVSTAT · E-2
Dynamic job priority scheduling · 2-2

E

EMAILV · C-14
Endpoint · 20-2
Ephemeral port · 20-2
ERASE · E-2
ERRMSG · 6-13, 13-6, E-2
Error Codes

D$EARG · 6-12
D$EBBH · 6-12
D$EBBN · 6-12
D$EBBW · 6-12
D$EBLK · 6-12
D$EDEL · 6-12
D$EDNX · 6-12
D$EEMB · 6-12
D$EERR · 6-12
D$EFAO · 6-12
D$EFAX · 6-12
D$EFIU · 6-12
D$EFNF · 6-12

D$EFNO · 6-12
D$EFUL · 6-12
D$EIAA · 6-12
D$EIBN · 6-12
D$EIFL · 6-12
D$EILC · 6-12
D$EINI · 6-12
D$EIRS · 6-12
D$EKPT · 6-12
D$ELNM · 6-12
D$ELQF · 6-12
D$EMEM · 6-12
D$EMFD · 6-12
D$EMNT · 6-12
D$ENFS · 6-12
D$ENOQ · 6-12
D$EPRV · 6-12
D$ERDY · 6-12
D$EREN · 6-12
D$ERIU · 6-12
D$ERNL · 6-12
D$ERNO · 6-12
D$ERNR · 6-12
D$ESPC · 6-12
D$ETYP · 6-12
D$EUSE · 6-12
D$EWRT · 6-12

ERSATZ · C-7
ESPVEC · C-11
EtherNet · C-12
ETHZON · C-12
Event · 20-6
Event completion · 20-9
Event handler · 20-9

Enable · 20-10
Event processing · 20-11
Event scheduling · 20-9
Event-driven programming · 20-4, 20-9
EXIT · 13-1, B-13, E-2
EXTDSP · C-12

F

F.ABS · 4-2
F.FCH · 4-2
F.FIL · 4-2
F.NFCH · 4-2
F.USR · 4-2
FADD · 11-2, E-2
FATOID · 11-12, E-2
FATOIS · 11-12, E-2
FCMP · 11-8, E-2
FCVT · 11-7, E-2
FCVTD · 11-15, E-2
FCVTS · 11-15, E-2
FDIV · 11-3, E-2
FETCH · 4-1, E-2

Page 20-4 G - Index

AMOS Monitor Calls Manual, Rev. 10

Example · 4-3
Flags · 4-2

FFP processor · 2-15
FFTOA · 11-5, E-2
FFTOAX · 11-5, E-2
FFTOL · 11-4, E-2
FFTOX · 11-4, E-2
FIDTOA · 11-13, E-2
File marks · 6-39, 6-40
File Service Monitor Calls · 6-14
File Service System · 6-1
File Structure · A-4
Filenames · 8-4, 9-3
Filespecs · 8-4
FILINB · 6-31, E-2
FILINL · 6-31, E-2
FILINW · 6-31, E-2
FILNAM · 9-3, E-2
FILOTB · 6-32, E-2
FILOTL · 6-32, E-2
FILOTW · 6-32, E-2
FISTOA · 11-13, E-2
FLEVEL · C-13
Floating Point

Addition · 11-2
Arithmetic · 11-2
Comparison · 11-8
Conversion · 11-4
Divide by Zero · 11-8, 11-16
Division · 11-3
Error Trapping · 11-8, 11-16
Extended to Float Conversion · 11-4
Float to ASCII Conversion · 11-5
Float to ASCII Conversion Extended · 11-5
Float to Extended Conversion · 11-4
Float to Long Conversion · 11-4
Get a Number · 11-6
Get a Number from File · 11-6
Input/Output Calls · 11-6
Internal Format · 11-1
Long to Float Conversion · 11-4
Miscellaneous Calls · 11-8
Monitor Calls · 11-1, 11-2, 11-4, 11-6, 11-8
Multiplication · 11-3
Multiply by Power of Ten · 11-8
Output · 11-7, 11-15
Overflow · 11-8, 11-16
Subtraction · 11-3
Underflow · 11-8, 11-16

FLTOF · 11-4, E-2
FMARK · 6-39, E-2
FMARKR · 6-40, E-2
FMUL · 11-3, E-2
FP060 · C-15
FPNPTR · C-9
FPWR · 11-8, E-2
FQDN · 20-3
FSPEC · 6-14, E-2

FSUB · 11-3, E-2
Fully qualified domain name · 20-3
FXTOF · 11-4, E-3

G

GDATEI · 10-1, E-3
GDATES · 10-1, E-3
Generalized Output Monitor Calls · 12-1
GET · 6-27, E-3
GETIMP · 3-7
GETL · 6-28, E-3
GETMEM · 3-5, 6-11, E-3
GETSHM · 4-4, E-3
GETVTI · 13-16
GETX · 6-29, E-3
Global event · 20-7, 20-8, 20-22
Global events · 20-11
GTDEC · 9-2, E-3
GTFLFD · 11-15, E-3
GTFLFS · 11-14, E-3
GTFLT · 11-6, E-3
GTFLTD · 11-14, E-3
GTFLTF · 11-6, E-3
GTFLTS · 11-13, E-3
GTIMEI · 10-2, E-3
GTIMES · 10-2, E-3
GTLANG · 17-5, E-3
GTOCT · 9-2, E-3
GTPARM · E-3
GTPPN · 9-3, E-3
GUI operating systems · 20-3

H

Handle · 20-5, 20-6, 20-12, 20-14
Handoff · 20-5
HCFLAG · C-11
Hexadecimal Input · 9-2
Hexadecimal Output · 8-1
HLDADR · C-6
HLDTIM · C-6
Host name · 20-3
HRBCMD · C-9
HRBERR · C-10

I

ICOFF · 13-13, E-3
ICON · 13-13
Impure area · 20-9
INIT · 6-11, 6-16, E-3
INPUT · 6-23, E-3
Input Line Processing Calls · 9-1

Index - J Page 20-5

AMOS Monitor Calls Manual, Rev. 10

INPUTL · 6-24, E-3
INPUTX · 6-25, E-3
Interface Drivers · 7-15, 7-16, C-4
Interrupts · 13-8, 13-9
Inter-Task Communication · 15-1
IP address · 20-2
ISO Latin-1 · I-1
ITC · 15-1

J

J.CAB · 2-6
J.CCA · 2-6
J.CCC · 2-5
J.DER · 2-6
J.EXW · 2-5
J.FIL · 2-5
J.GRD · 2-6
J.HEX · 2-6
J.IOW · 2-5
J.LOK · 2-5
J.LPT · 2-6
J.MON · 2-5
J.MSG · 2-5
J.NEW · 2-6
J.NLK · 2-6
J.NUL · 2-6
J.PLK · 2-5
J.PRE · 2-6
J.PRM · 2-6
J.PRO · 2-6
J.SIW · 2-5
J.SLP · 2-5
J.SMW · 2-5
J.SRQ · 2-6
J.SUS · 2-5
J.TIW · 2-5
J.TOW · 2-5
J.TSK · 2-6
J.USR · 2-6
J.VER · 2-6
J2$AGT · 2-6
J2$BTG · 2-6
J2$REM · 2-6
J2$SAP · 2-6
J2$TST · 2-6
JCB · 2-2, C-3

Size · C-3
JCB Entries

JOBATT · 2-12
JOBBAS · 2-7
JOBBPT · 2-12
JOBCMD · 2-17, B-13
JOBCMS · 2-9
JOBCMZ · 2-8
JOBCOF · 2-22

JOBCON · 2-14
JOBCPU · 2-13
JOBDEV · 2-12
JOBDFP · 2-20
JOBDRV · 2-12
JOBDSC · 2-17
JOBDSR · 2-14
JOBDSW · 2-14
JOBERC · 2-9
JOBERR · 2-18
JOBERS · 2-21
JOBESP · 2-21
JOBEXI · 2-8
JOBEXP · 2-16
JOBFCB · 2-20, 2-22
JOBFCP · 2-20
JOBFPC · 2-15
JOBFPE · 2-13, 11-9
JOBIEE · 2-21, 11-16
JOBLNG · 2-15
JOBLVL · 2-15
JOBMSR · 2-14
JOBNAM · 2-7
JOBNTB · 2-22
JOBPLK · 2-21
JOBPRG · 2-8
JOBPRM · 2-16
JOBPRV · 2-8
JOBRBK · 2-13, 4-3
JOBRES · 2-22
JOBRFU · 2-21
JOBRMF · 2-22
JOBRNQ · 2-13
JOBROF · 2-22
JOBRTD · 2-15
JOBRTP · 2-15
JOBRTU · 2-15
JOBSIM · 2-20
JOBSIP · 2-21
JOBSIS · 2-22
JOBSIT · 2-21
JOBSIV · 2-20
JOBSIZ · 2-7
JOBSPR · 2-7
JOBSSP · 2-23
JOBSTS · 2-5
JOBTRC · 2-14
JOBTRM · 2-12
JOBTSP · 2-22
JOBTY2 · 2-6
JOBTYP · 2-6
JOBUSN · 2-15
JOBUSP · 2-23
JOBUSR · 2-7
JOBWAT · 2-12

JCBIDX · 2-3, E-3
Jiffies · 2-1, 2-13
JLCKNT · C-5
JLOCK · 13-1, E-3

Page 20-6 K - Index

AMOS Monitor Calls Manual, Rev. 10

JLOCKI · 13-2, E-3
Job

Relinquish control · 20-8
Request control · 20-8
Spawning · 20-8
Terminate · 20-8

Job Control Block · 2-2, C-3
Size · C-3

Job Privilege Bits
PV$DIA · A-10
PV$PRV · A-10
PV$RPD · A-10
PV$RSM · A-10
PV$WPD · A-10
PV$WSM · A-10

Job process ID · 20-18
Job Scheduler · 2-1, 2-13

dynamic scheduling · 2-2
Job Table · C-3
JOBATT · 2-12
JOBBAS · 2-7
JOBBPT · 2-12
JOBCMD · 2-17, B-13
JOBCMS · 2-9
JOBCMZ · 2-8
JOBCOF · 2-22
JOBCON · 2-14
JOBCPU · 2-13
JOBCUR · C-3
JOBDEV · 2-12
JOBDFP · 2-20
JOBDRV · 2-12
JOBDSC · 2-17
JOBDSR · 2-14
JOBDSW · 2-14
JOBERC · 2-9
JOBERR · 2-18
JOBERS · 2-21
JOBESP · 2-21
JOBESZ · C-3
JOBEXI · 2-8
JOBEXP · 2-16
JOBFCB · 2-20, 2-22
JOBFCP · 2-20
JOBFPC · 2-15
JOBFPE · 2-13, 11-9
JOBIDX · 2-2, 2-3, E-3
JOBIEE · 2-21, 11-16
JOBLNG · 2-15
JOBLVL · 2-15
JOBMSR · 2-14
JOBNAM · 2-7
JOBNTB · 2-22
JOBPLK · 2-21
JOBPRG · 2-8
JOBPRM · 2-16
JOBPRV · 2-8
JOBRBK · 2-13, 4-3

JOBRES · 2-22
JOBRFU · 2-21
JOBRMF · 2-22
JOBRNQ · 2-13
JOBROF · 2-22
JOBRTD · 2-15
JOBRTP · 2-15
JOBRTU · 2-15
JOBSIM · 2-20
JOBSIP · 2-21
JOBSIS · 2-22
JOBSIT · 2-21
JOBSIV · 2-20
JOBSIZ · 2-7
JOBSPR · 2-7
JOBSSP · 2-23
JOBSTS · 2-5
JOBTBL · C-3
JOBTRC · 2-14
JOBTRM · 2-12
JOBTSP · 2-22
JOBTY2 · 2-6
JOBTYP · 2-6
JOBUSN · 2-15
JOBUSP · 2-23
JOBUSR · 2-7
JOBWAT · 2-12
JRC.ADDR · C-14
JRUN · 2-4, E-3
Jtick · 2-1
JUNLOK · 13-2, E-3
JWAIT · 2-4, E-3

K

KBD · 7-2, 9-1, B-10, E-3
Keepalive · 20-12
Keepalives · 20-14

L

Language Definition Files · 17-5
Language definition table · 2-15
LB.ACD · A-2
LB.BBL · A-2
LB.BTL · A-2
LB.CPY · A-2
LB.CRD · A-2
LB.CRE · A-2
LB.DSZ · A-2
LB.FBD · A-2
LB.FBI · A-2
LB.FLG · A-2
LB.GBD · A-2
LB.GBI · A-2

Index - M Page 20-7

AMOS Monitor Calls Manual, Rev. 10

LB.HDR · A-2
LB.INS · A-2
LB.SVN · A-2
LB.SYS · A-2
LB.TIM · A-2
LB.VID · A-2
LB.VLN · A-2
LCS · 8-6, E-3
LDF · 17-5
LDFSYM.M68 · 17-5
LEDDSP · C-8
LEVEL7 · 13-13, E-3
Library routines · D-1
LIN · 9-2, E-3
Line Printer Spooler · C-4
LOCKF · 6-32, E-3
LOKADR · C-4
LOKFLH · C-10
LOKSEM · C-3
LOKSER · C-4

and D.ARG · 6-7
LOKSHM · 4-7, E-3
LOOKUP · 6-16, E-3
Loopback address · 20-2
LPTQUE · C-4

M

Magnetic tape drivers · 6-39
Master File Directory · A-3, A-4
Maxlen · 20-15
MDDIAL · 16-10, E-3
MDOFF · 16-11, E-4
MDON · 16-11, E-4
MDREQ · 16-8, B-13, E-4
MDRTN · 16-8, E-4
MDSET · 16-9, E-4
MEMBAS · C-2
MEMEND · C-2
Memory Modules · 3-3, 4-1
Memory Partitions · 3-1
MEMQUE · C-7
MFD · A-3, A-4
Miscellaneous Monitor Calls · 13-1
Monitor calls

SDATES · 10-4
Monitor Calls

ALF · 9-1
Alphabetic conversion · 8-6
AMOS · 2-8, 13-4
ASSIGN · 6-35
BACKSP · 6-40
BYP · 9-2
CHGMEM · 3-5
CHPROT · 6-34
CLOSE · 6-20
CLOSEK · 6-20

COMINT · 16-3, B-11, B-12
COMRST · 16-7
COMSET · 16-1
COMWST · 16-7
CRLF · 7-3
CTRLC · 13-1
DCVT · 8-1
DEASGN · 6-35
DELMEM · 3-5
DELSHM · 4-6
DEVCHR · 13-10
DIRACC · 18-3
DIRALC · 18-3
DIRDEL · 18-3
Directory Handling · 18-1
DIRREP · 18-2
DIRSCH · 18-2, 18-3
Disk Service · 6-36
DQTIMR · 13-6
DSKACC · 18-1
DSKALC · 6-37
DSKCTG · 6-34
DSKDEA · 6-38
DSKDEL · 6-33
DSKDRL · 6-38
DSKDRU · 6-38
DSKFRE · 13-11
DSKINI · 18-1
DSKMNT · 6-35, C-7
DSKREN · 6-33
DSKUMT · 6-36, C-7
ERRMSG · 6-13, 13-6
EXIT · 13-1, B-13
FADD · 11-2
FATOID · 11-12
FATOIS · 11-12
FCMP · 11-8
FCVT · 11-7
FCVTD · 11-15
FCVTS · 11-15
FDIV · 11-3
FETCH · 3-4, 4-1
FFTOA · 11-5
FFTOAX · 11-5
FFTOL · 11-4
FFTOX · 11-4
FIDTOA · 11-13
File Service · 6-14
FILINB · 6-31
FILINL · 6-31
FILINW · 6-31
FILNAM · 9-3
FILOTB · 6-32
FILOTL · 6-32
FILOTW · 6-32
FISTOA · 11-13
FLTOF · 11-4
FMARK · 6-39
FMARKR · 6-40

Page 20-8 M - Index

AMOS Monitor Calls Manual, Rev. 10

FMUL · 11-3
FPWR · 11-8
FSPEC · 6-14
FSUB · 11-3
FXTOF · 11-4
GDATEI · 10-1
GDATES · 10-1
Generalized Output · 12-1
GET · 6-27
GETIMP · 3-7
GETL · 6-28
GETMEM · 3-5, 6-11
GETSHM · 4-4
GETVTI · 13-16
GETX · 6-29
GTDEC · 9-2
GTFLFD · 11-15
GTFLFS · 11-14
GTFLT · 11-6
GTFLTD · 11-14
GTFLTF · 11-6
GTFLTS · 11-13
GTIMEI · 10-2
GTIMES · 10-2
GTOCT · 9-2
GTPPN · 9-3
INIT · 6-11, 6-16
INPUT · 6-23
Input Line Processing · 9-1
INPUTL · 6-24
INPUTX · 6-25
JCBIDX · 2-3
JLOCK · 13-1
JLOCKI · 13-2
JOBIDX · 2-2, 2-3
JRUN · 2-4
JUNLOK · 13-2
JWAIT · 2-4
KBD · 7-2, 9-1, B-10
LCS · 8-6
LEVEL7 · 13-13
LIN · 9-2
LOCKF · 6-32
LOKSHM · 4-7
LOOKUP · 6-16
Magnetic tape drivers · 6-39
MDDIAL · 16-10
MDOFF · 16-11
MDON · 16-11
MDREQ · 16-8, B-13
MDRTN · 16-8
MDSET · 16-9
Memory Control · 3-1
Miscellaneous · 13-1
NUM · 9-1
Numeric Conversion · 8-1
OCVT · 8-1
OFILE · 8-4
OPENA · 6-18

OPENI · 6-17
OPENIO · 6-19
OPENO · 6-17
OPENR · 6-19
OPENS · 6-18
OUT · 12-1
OUTCR · 12-2
OUTI · 12-2
OUTL · 12-2
OUTPTL · 6-26
OUTPUT · 6-25
OUTS · 12-2
OUTSP · 12-2
PACK · 8-3
PCALL · 2-8, 13-4
PFILE · 8-4
PLOCK · 13-2
Printing Conversion · 8-4
PRNAM · 8-5
PRPPN · 8-5
PUNLOK · 13-3
PUT · 6-29
PUTL · 6-30
QADD · 5-2, 5-3
QADDL · 5-4
QGET · 5-2, 5-3
QINS · 5-2, 5-3
QINSL · 5-4
QRET · 5-2, 5-3
QUNL · 5-4
RAD50 Conversion · 8-2
READ · 6-21
RETNSN · 6-41
REWIND · 6-39
RLSE · 13-4
RQST · 13-3
RTCRT · 7-9
SDATES · 10-2
Serial Communications · 16-1
SICLR · 14-4
SIDIS · 14-5
SIMSK · 14-2, 15-2
SIRTN · 14-3
SISET · 14-4
SISTS · 14-5
SITIMR · 14-3
SIWAIT · 14-3
SLEEP · 2-4
SMSG · 13-7
Software Interrupt · 14-1
SPAWN · 13-14
SRCH · 3-4, 4-1
STDERR · 2-9, 13-8
STIMES · 10-3
SUPVR · 13-9
SVLOK · 13-8
SVUNLK · 13-9
SYNC · 13-14
TAB · 7-3

Index - N Page 20-9

AMOS Monitor Calls Manual, Rev. 10

TAPDEN · 6-43
TAPERS · 6-40
TAPSKP · 6-40
TAPSPD · 6-43
TAPST · 6-41
TAPTYP · 6-42
TBUF · 7-17
TCBIDX · 7-17
TCKI · 7-10, B-8
TCRT · 7-4
TDVCNG · 13-11
Terminal Service · 7-1
TIMER · 13-5
TIN · 7-3
TOUT · 7-3
TRM · 9-2
TRMBFQ · 7-16
TRMCHR · 7-10
TRMICP · 7-15
TRMOCP · 7-16
TRMRST · 7-13
TRMWST · 7-14
TTY · 7-2
TTYI · 7-3, 7-13
TTYIN · 7-15
TTYL · 7-4
TTYOUT · 7-15
TYPE · 7-13
TYPECR · 7-13
TYPESP · 7-13
UCS · 8-6
UNLKSHM · 4-7
UNLOAD · 6-41
UNLOKF · 6-32
UNLOKR · 6-33
UNPACK · 8-3
USRBAS · 3-2
USREND · 3-2
USRFRE · 3-2
VCVT · 8-5, A-12
WAKE · 2-5
WRITE · 6-22
WRTFM · 6-39

MSGBFE · C-13
MTSRES · C-10

N

NAGLE · 20-13
Name server · 20-6
Naming convention · 20-3
NETBUF · C-5
NETTBL · C-5
NETVEC · C-13
Network

Establishing a connection · 20-5
Event processing · 20-7
Info structure · 20-19

TCPEDN · 20-8
TCPKIL · 20-8
TCPPOL · 20-8

Network list · 2-22
Newhandle · 20-14
Non-blocking asynchronous call · 20-4
NRC sets · I-1
NULTMR · C-9
NUM · 9-1, E-4
Numeric Conversion Monitor Calls · 8-1
Numeric Input · 9-2

O

Octal Input · 9-2
Octal Output · 8-1
OCVT · 8-1, E-4
OFILE · 8-4, E-4
Oldhandle · 20-14
OPENA · 6-18, E-4
OPENI · 6-17, E-4
OPENIO · 6-19
OPENO · 6-17, E-4
OPENR · 6-19, E-4
OPENS · 6-18
OPNMSG · E-4
OSI4VC · C-13
OT$CR · 13-7
OT$CSI · 11-7
OT$DDB · 8-1, 8-5, 11-7, 11-15, 12-1, 13-6, 13-7
OT$FIX · 11-7, 11-15
OT$LDQ · 13-6, 13-7
OT$LPC · 13-7
OT$LSP · 8-1, 8-5, 11-7, 11-15, 13-6, 13-7
OT$MEM · 8-1, 8-5, 11-7, 11-15, 12-1, 13-6, 13-7
OT$NLD · 11-7, 11-15
OT$NSP · 11-7, 11-15
OT$NUL · 13-7
OT$SPC · 13-7
OT$TRM · 8-1, 8-5, 11-7, 11-15, 12-1, 13-6, 13-7
OT$TSP · 8-1, 8-5, 11-7, 11-15, 13-6, 13-7
OT$UPC · 13-7
OT$ZER · 8-1
OUT · 12-1, E-4
OUTCR · 12-2, E-4
OUTI · 12-2, E-4
OUTL · 12-2, E-4
OUTPTL · 6-26, E-4
OUTPUT · 6-25, E-4
OUTS · 12-2, E-4
OUTSP · 12-2, E-4

P

PACK · 8-3, E-4

Page 20-10 Q - Index

AMOS Monitor Calls Manual, Rev. 10

PCALL · 2-8, 13-4, E-4
PFILE · 8-4, E-4
PH$EXT · A-10
PH$REE · A-10
PH$REU · A-10
PH.CHR · A-10
PH.FLG · A-10
PH.PRV · A-10
PH.SIZ · A-11
PH.VER · A-10
PHDR · 8-5, A-12, E-4
Physical Disk Block Format · A-1
PID · 20-18
PLKCNT · C-11
PLKJCB · C-11
PLOCK · 13-2, E-4
Port number · 20-2
PPNs · 8-5, 9-3
PREFLG · C-9
PREJCB · C-9
PRESEM · C-9
Printing Conversion Monitor Calls · 8-4
PRNAM · 8-5, E-4
Procedural Programming · 20-3
Program Characteristics Bits

PH$REE · A-10
PH$REU · A-10

Program Headers · 8-5, A-10
Project-Programmer Numbers · 8-5, 9-3
Protocol · 20-2
PRPPN · 8-5, E-4
PUNLOK · 13-3, E-4
PUT · 6-29, E-4
PUTL · 6-30, E-4
PV$DIA · A-10
PV$PRV · A-10
PV$RPD · A-10
PV$RSM · A-10
PV$WPD · A-10
PV$WSM · A-10

Q

QADD · 5-2, 5-3, 5-4, E-4
QADDL · E-4
QFREE · C-7
QGET · 5-2, 5-3, E-4
QINS · 5-2, 5-3, 5-4, E-4
QINSL · E-4
QRET · 5-2, 5-3, E-4
Quanta · 2-1
QUESEM · C-8
QUEUE command · 5-2
Queue System · 5-1, C-7

Manipulating Queue Blocks · 5-3, 5-4
Obtaining a Free Queue Block · 5-3

Returning a Queue Block · 5-3
QUNL · 5-4, E-4
QXFRAD · C-12

R

RAD50 Conversion Monitor Calls · 8-2
RAD50 Conversion Table · G-1
Random File Processing · 6-19, 6-23, 6-24, 6-27, 6-28, 6-

30
Random Files · A-4
RCVMSG · E-4
READ · 6-21, E-4
Read a line · 20-16
Read a record · 20-15, 20-16
Read data stream · 20-15
Record IO · 6-19
Reset a connection · 20-14
Resource manager · 2-22
RETNSN · 6-41, E-4
REWIND · 6-39, E-4
RFDPTR · C-10
RFDVEC · C-10
RIOQUE · C-8
RLSE · 13-4, E-4
Root device · 2-15
Root domain · 20-3
Root PPN · 2-15
RPC buffer pointer · 2-22
RPCDSP · C-12
RQST · 13-3, E-4
RSCPM · C-14
RSTCON · E-4
RTCIDX · C-14
RTCRT · 7-9, E-4
RTNMSG · E-5

S

SCHEDW · C-12
SCHSEM · C-8
SCKTLS · C-6
SCLKON · C-6
SCZDSP · C-14
SDATES · 10-2, 10-4, E-5
SEM522 · C-13
Semaphores · 13-3
Sequential Files · A-4
Serial Communications Monitor Calls · 16-1
Server · 20-1
Service name · 20-3
Session

Controlling · 20-21
Session event · 20-7, 20-23
Session events · 20-9

Index - S Page 20-11

AMOS Monitor Calls Manual, Rev. 10

SETMSG · E-5
Shared memory · 4-4
SI$TCP · 20-6, 20-9, 20-10
SICLR · 14-4, E-5
SIDIS · 14-5, E-5
SIMSK · 14-2, 15-2, E-5
SIRTN · 14-3, 20-10, E-5
SISET · 14-4, E-5
SISTS · 14-5, E-5
SITIMR · 14-3, E-5
SIWAIT · 14-3, E-5
SKIPN · E-5
Sky Fast Floating Point board · 2-15
SLEEP · 2-4, E-5
SMSG · 13-7, E-5
SNDMSG · E-5
Software interrupt

Exit a routine · 20-10
Software Interrupt Monitor Calls · 14-1
Software Interrupt System · 15-2
Software interrupts · 20-6
Sourceport · 20-12
SPAWN · 13-14, E-5
SPXINT · C-4
SPXSAV · C-4
SRCH · 3-4, 4-1, E-5

Example · 4-3
Flags · 4-2

STDERR · 2-9, 13-8, E-5
STIMES · 10-3, E-5
STPARM · E-5
Supervisor Mode · 13-9
SUPVR · 13-9, E-5
SVCPTR · C-10
SVLOK · 13-8, E-5
SVUNLK · 13-9, E-5
SYNC · 13-14, E-5
SYS.M68 · 2-2, 7-13, C-1
SYS.UNV · 6-2, 6-11, 12-2, C-1
SYSBAS · C-3
SYSCOF · C-11
SYSLIB.LIB · 10-1, D-1

$ADPPN · D-1
$ADPPNX · D-1
$BBCHK · D-1
$CHPPN · D-1
$CMDER · D-1
$CPUPOL · D-1
$DITOS · D-1
$DLPPN · D-1
$DLPPNX · D-1
$DSTOI · D-1
$ERPPN · D-1
$ERPPNX · D-1
$FLSET · D-1
$FNPPN · D-1
$FNPPNX · D-1
$FNUSR · D-1

$GTARG · D-1
$HSHFL · D-1
$IDTIM · D-1
$IDTIMX · D-1
$INMFD · D-1
$INMFDX · D-1
$KILPF · D-1
$MSGLOG · D-1
$NETED · D-1
$ODTIM · D-1
$ODTM2 · D-1
$OTCON · D-1
$OTCPU · D-1
$PAKDT · D-1
$PAMFD · D-1
$PAMFDX · D-1
$SEND · D-1
$SPLFL · D-1
$STFRM · D-1
$SYSID · D-1
$UNPDT · D-1
$UPDSW · D-1
$YESNO · D-1

SYSLNG · C-5
SYSLNK · C-6
SYSNAM · C-8
SYSTEM · C-1
System Communication Area · C-1

AMGDSP · C-8
BASUFD · C-7
CMDUFD · C-7
CPUTYP · C-13
DCACHE · 19-1, C-5
DDBCHN · C-2
DDBSEM · C-11
DDBSM2 · C-11
DEVTBL · C-2
DIAG 01 · C-14
DIAG 02 · C-14
DIAG 03 · C-14
DRVTRK · C-6
DVRUFD · C-7
EMAILV · C-14
ERSATZ · C-7
ESPVEC · C-11
ETHZON · C-12
EXTDSP · C-12
FLEVEL · C-13
FP060 · C-15
FPNPTR · C-9
HCFLAG · C-11
HLDADR · C-6
HLDTIM · C-6
HRBCMD · C-9
HRBERR · C-10
JLCKNT · C-5
JOBCUR · C-3
JOBESZ · C-3
JOBTBL · C-3

Page 20-12 T - Index

AMOS Monitor Calls Manual, Rev. 10

JRC.ADDR · C-14
LEDDSP · C-8
LOKADR · C-4
LOKFLH · C-10
LOKSEM · C-3
LPTQUE · C-4
MEMBAS · C-2
MEMEND · C-2
MEMQUE · C-7
MSGBFE · C-13
MTSRES · C-10
NETBUF · C-5
NETTBL · C-5
NETVEC · C-13
NULTMR · C-9
OSI4VC · C-13
PLKCNT · C-11
PLKJCB · C-11
PREFLG · C-9
PREJCB · C-9
PRESEM · C-9
QFREE · 5-1, C-7
QUESEM · C-8
QXFRAD · C-12
RFDPTR · C-10
RFDVEC · C-10
RIOQUE · C-8
RPCDSP · C-12
RSCPM · C-14
RTCIDX · C-14
SCHEDW · C-12
SCHSEM · C-8
SCKTLS · C-6
SCZDSP · C-14
SEM522 · C-13
SPXINT · C-4
SPXSAV · C-4
SVCPTR · C-10
SYSBAS · C-3
SYSCOF · C-11
SYSLNG · C-5
SYSLNK · C-6
SYSNAM · C-6, C-8
SYSTEM · C-1
SYSTEM1 · C-13
SYSUFD · C-7
TAMEV · C-14
TBXDSP · C-12
TIMIDX · C-11
TIMQUE · C-3
TRMDFC · C-4
TRMFXC · C-9
TRMIDC · C-4
TRMLOK · C-6
TRMMDC · C-9
TRMTDC · C-4
TTYPTR · C-12
UMEMIDX · C-14
UNXVEC · C-13

UPTIME · C-4
USMEXT · C-10
VEC522 · C-13
VTJOBT · C-12
WEREUP · C-3
WHYBOT · C-5
XTABLE · C-12
ZSYDSK · C-6

System date, setting · 10-4
System Library

Date and Time Routines · 10-1
SYSTEM1 · C-13
SYSUFD · C-7

T

T$ASN · 7-13, B-7
T$DAT · 7-13, B-7
T$DIS · 7-13, B-7
T$ECS · 7-13, B-7
T$EXT · 7-13, B-7
T$ILC · 7-13, B-7
T$IMI · 7-13, B-7
T$JLVL · 7-13, B-7
T$LCL · 7-13, B-7
T$LDT · 7-13, B-7
T$LED · 7-13, B-7
T$NFK · 7-13, B-7
T$OIP · 7-13, B-7
T$OSP · 7-13, B-7
T$VLD · 7-13, B-7
T$XLT · 7-13, B-7
T.ASJ · B-13
T.BAU · B-11
T.BCC · B-8
T.ECC · B-8
T.EXC · B-12
T.FXT · B-12
T.IBF · B-9
T.IBS · B-9
T.ICC · B-8
T.IDV · B-8
T.IHM · B-8
T.IHW · B-8
T.ILB · B-10
T.ILS · B-10
T.IMP · B-10
T.INC · B-12
T.JLK · B-10
T.LCH · B-10
T.LED · B-12
T.MBF · B-13
T.MDV · B-13
T.MLT · B-11
T.MRP · B-11
T.OBD · B-9

Index - T Page 20-13

AMOS Monitor Calls Manual, Rev. 10

T.OBE · B-14
T.OBF · B-9
T.OBS · B-9
T.OBX · B-9
T.OQX · B-9
T.OTC · B-12
T.OWAT · B-14
T.POB · B-10
T.POO · B-10
T.SEM · B-11
T.SIS · B-14
T.SIV · B-14
T.STS · 7-13, 7-14, B-7
T.STSZ · B-14
T.TCX · B-13
T.TDV · B-8
TAB · 7-3, E-5
tai.errno · 20-19
tai.herrno · 20-19
tai.laddr · 20-19
tai.lasiz · 20-19
tai.lname · 20-19
tai.lnsiz · 20-19
tai.lport · 20-19
tai.raddr · 20-19
tai.rasiz · 20-19
tai.rbytes · 20-19
tai.rdist · 20-19
tai.rname · 20-19
tai.rnsiz · 20-19
tai.rport · 20-19
tai.size · 20-19
TAME

Event handler · 20-9
Macro · 20-12
Monitor call · 20-7
Programming · 20-3, 20-7

TAME interface · 20-1
TAME programming · 20-11
TAMED · 20-18
TAMEV · C-14
TAPDEN · 6-43, E-5
TAPERS · 6-40
TAPSKP · 6-40
TAPSPD · 6-43, E-5
TAPST · 6-41, E-5
TAPTYP · 6-42, E-5
TBUF · 7-17, E-5
TBXDSP · C-12
TC$FIRSTADDR · 20-13
TCB · 7-1, B-6
TCBIDX · 7-17, E-5
TCKI · 7-10, 20-11, B-8, E-5
TCP · 20-2

MYNAME. · 20-19
SERVIC. · 20-12

TCP/IP · 20-1
5-tuple · 20-2

Accept a connection · 20-7, 20-14
Accepting events · 20-10
Attention event · 20-8, 20-18
Attention event mechanism · 20-5
Blocking synchronous call · 20-3
Buffer size · 20-16
Client operation · 20-5
Client/server paradigm · 20-1
Closing a connection · 20-5
Complete event processing · 20-17
Connection

Information · 20-19
Control of a session · 20-21
Daemons · 20-1
Data movement · 20-7
Domain name · 20-3
Ephemeral port · 20-2
Error status · 20-12
Establish a connection · 20-7
Event · 20-6
Event handler · 20-9
Event notification · 20-9
Event processing · 20-11
Event-driven programming · 20-4, 20-9
Exiting a connection · 20-5
Flag · 20-13
Global event · 20-7, 20-8, 20-22
Global events · 20-11
Handle · 20-5, 20-6, 20-12, 20-14
Handoff · 20-5
Host name · 20-3
Impure area · 20-9
Info structure · 20-19
Keepalive · 20-12
Keepalives · 20-14
Making requests · 20-6
Maxlen · 20-15
Monitor call · 20-12
NAGLE · 20-13
Name server · 20-6
Newhandle · 20-14
Non-blocking asynchronous call · 20-4
Oldhandle · 20-14
Procedural Programming · 20-3
Process ID · 20-8
Read a line · 20-16
Read a record · 20-15, 20-16
Read data · 20-7
Read data stream · 20-15
Reset a connection · 20-14
Return event · 20-7
Server · 20-1
Server operation · 20-5
Service name · 20-3
Session · 20-6
Session event · 20-7, 20-9, 20-23
Software interrupts · 20-6
Sourceport · 20-12
Spawned job support · 20-8
TAME interface · 20-1

Page 20-14 U - Index

AMOS Monitor Calls Manual, Rev. 10

TAME Programming · 20-3
Terminal input wait · 20-11
Terminate a connection · 20-7
Terminate a job · 20-8
Terminate a session · 20-14
Terminate a spawned job · 20-20
TIME-WAIT state · 20-5
Write data · 20-7, 20-16

TCPACC · 20-7, 20-13
TCPCN1 · 20-7
TCPCNI · 20-12
TCPCON · 20-7, 20-12
TCPCPF · 20-8
TCPDES · 20-8, 20-20
TCPDSC · 20-7, 20-14
TCPEDN · 20-8, 20-9, 20-10, 20-17
TCPEVT · 20-6, 20-7, 20-9, 20-10, 20-16
TCPFIL · 20-7, 20-15
TCPINF · 20-8, 20-19
TCPKIL · 20-8, 20-20
TCPLIN · 20-7, 20-16
TCPLN1 · 20-7
TCPLSN · 20-7, 20-13
TCPPID · 20-8, 20-18
TCPPOL · 20-6, 20-8, 20-17
TCPQAT · 20-8
TCPRED · 20-7, 20-15
TCPREL · 20-8
TCPREQ · 20-8, 20-21
TCPRES · 20-8
TCPSAT · 20-8, 20-18
TCPSPN · 20-8
TCPWAT · 20-8
TCPWRT · 20-7, 20-16
TCRT · 7-4, E-5
TDVCNG · 13-11, E-5
TE$CONNECTED · 20-9, 20-23
TE$DATAIN · 20-9, 20-23
TE$DATAOUT · 20-9, 20-23
TE$DISCONNECTED · 20-9, 20-23
TE$DROPPED · 20-9, 20-23
TE$HANDOFF · 20-9, 20-23
TE$RECORD · 20-9, 20-23
TE$RESOLVED · 20-9, 20-23
TE$TRUNCATED · 20-9, 20-23
Terminal Control Block · 7-1, B-6
Terminal Definition Table · C-4
Terminal Drivers · 7-16, C-4
Terminal Input · 7-2
Terminal input wait (Ti) · 20-11
Terminal Service Calls · 7-2
Terminal Service Monitor Calls · 7-1
Terminal Status Word · 7-13, 7-14, B-7

T$ASN · 7-13, B-7
T$DAT · 7-13, B-7
T$DIS · 7-13, B-7
T$ECS · 7-13, B-7
T$EXT · 7-13, B-7
T$ILC · 7-13, B-7

T$IMI · 7-13, B-7
T$JLVL · 7-13, B-7
T$LCL · 7-13, B-7
T$LDT · 7-13, B-7
T$LED · 7-13, B-7
T$NFK · 7-13, B-7
T$OIP · 7-13, B-7
T$OSP · 7-13, B-7
T$VLD · 7-13, B-7
T$XLT · 7-13, B-7

Terminate a connection · 20-7
Terminate a spawned job · 20-20
Terminate an TCP/IP session · 20-14
TG$ATTENTION · 20-8, 20-22
TG$CHILD · 20-8, 20-22
TG$DOWN · 20-8, 20-22
TG$PARENT · 20-8, 20-22
Tick · 2-2
Time Conversion Calls · 10-2, 10-3
TIMER · 13-5, E-5
Timer Queue · 13-5, 13-6, C-3
TIME-WAIT state · 20-5
TIMIDX · C-11
TIMQUE · C-3
TIN · 7-3, E-5
TINIT · E-5
TMRLOK · C-6
TOUT · 7-3, E-5
TRM · 9-2, E-5
TRMBFQ · 7-16, E-5
TRMCHR · 7-10, E-5
TRMDFC · C-4
TRMFXC · C-9
TRMICP · 7-15, E-5
TRMIDC · C-4
TRMMDC · C-9
TRMOCP · 7-16, E-5
TRMRST · 7-13, E-5, I-2
TRMTDC · C-4
TRMWST · 7-14, E-5, I-2
TTY · 7-2, E-5
TTYI · 7-3, 7-13, E-5
TTYIN · 7-15, E-5
TTYL · 7-4, E-5
TTYOUT · 7-15, E-6
TTYPTR · C-12
TYPE · 7-13, E-6
TYPECR · 7-13, E-6
TYPESP · 7-13, E-6

U

UCS · 8-6, E-6
UDP · 20-1, 20-2
UFD · A-3, A-5
UMEMIDX · C-14

Index - V Page 20-15

AMOS Monitor Calls Manual, Rev. 10

UNLKSHM · 4-7, E-6
UNLOAD · 6-41, E-6
UNLOKF · 6-32, E-6
UNLOKR · 6-33, E-6
UNPACK · 8-3, E-6
UNXVEC · C-13
UPTIME · C-4
US.xxx symbols · H-1
User description symbols · H-1
User experience level · 2-16
User File Directory · A-3, A-5
User level · 2-15
User Mode · 13-9
USMEXT · C-10
USRBAS · 3-2, E-6
USREND · 3-2, E-6
USRFRE · 3-2, E-6

V

VCVT · 8-5, A-12, E-6
VEC522 · C-13
Vector table · 20-10
VEDIT · A-11
Version Numbers · 8-5, A-11
VMAJOR · A-11
VMINOR · A-11
VSRCH · E-6
VSUB · A-11
VTJOBT · C-12

VWHO · A-11

W

Wait state
Terminal input · 20-4

WAKE · 2-5, E-6
Well known port number · 20-2
WEREUP · C-3
WHYBOT · C-5
WRITE · 6-22, E-6
Write data · 20-16
WRTFM · 6-39, E-6
WTMSG · E-6

X

XTABLE · C-12

Y

Year 2000 · 10-3

Z

ZSYDSK · C-6

AMOS Monitor Calls Manual, Rev. 10

	Summarized Table of Contents
	Table of Contents
	Preface
	Chapter 1
	COMPATIBILITY ISSUES
	MONITOR CALL CALLING FORMAT
	Arguments

	USE OF MONITOR CALL REGISTERS
	MONITOR CALL SYMBOLS (SPECIAL .UNV FILES)

	Chapter 2
	THE JOB SCHEDULER
	THE JOB CONTROL BLOCK (JCB)
	ACCESSING YOUR JCB
	ACCESSING ANOTHER JOB'S JCB
	JOB SCHEDULING CALLS
	SLEEP - Put Job to Sleep
	WAKE - Wake Up Job

	JOB CONTROL BLOCK FORMAT
	JOBSTS - The Job Status Word
	JOBTYP - The Job Type
	JOBTY2 - More Job Type Flags
	JOBSPR - The Stack Pointer Reset Address
	JOBNAM - The Job Name
	JOBBAS - The Memory Base Address
	JOBSIZ - The Memory Partition Size
	JOBUSR - The Current PPN
	JOBPRV - The Privilege Word
	JOBEXI - Job Exit-Trap Stack Pointer
	JOBPRG - The Current Program Name
	JOBCMZ - The Command File Size
	JOBCMS - The Command File Status
	JOBERC - The Error Control Address
	JOBWAT - Semaphore Wait Chain Link
	JOBBPT - The Breakpoint Address
	JOBATT - The Parent Job Index
	JOBDEV - The Default Device
	JOBDRV - The Default Drive
	JOBTRM - The Terminal Block Pointer
	JOBRBK - The Run Control Block
	JOBFPE - The Floating-Point Trap Address
	JOBRNQ - The Scheduling Area
	JOBCPU - The Job's CPU Time Counter
	JOBCON - The Time and Date the Job Logged-In
	JOBDSR - The Number of Disk Reads Performed
	JOBDSW - The Number of Disk Writes Performed
	JOBTRC - The Job's Trace Mode Trap Vector
	JOBMSR - Reserved
	JOBFPC - Current Context, Sky Floating Point Board
	JOBLNG - Point to Current Language Definition Table
	JOBUSN - Current User Name
	JOBRTP - Current Root PPN
	JOBRTD - Current Root Device
	JOBRTU - Current Device Unit Number
	JOBLVL - User Level
	JOBEXP - User Experience Level
	JOBPRM - Current AMOS Command Prompt
	JOBCMD - Default Command Line
	JOBDSC - The Job's DSECT Pointer
	JOBERR - Job Error Value
	JOBDFP - Default File Protection
	JOBFCB - Floating Point Coprocessor Control Block
	JOBFCP - Floating Point Coprocessor Context Pointer
	JOBSIV - Software Interrupt Vector Table Pointer
	JOBSIM - Software Interrupt Enable Mask
	JOBSIP - Software Interrupt Pending Mask
	JOBSIT - Software Interrupt Timer Pointer
	JOBERS - Error Context Save Area
	JOBPLK - PLOCK Nesting Count
	JOBIEE - IEEE Floating Point Error Vector
	JOBESP - Pointer for Screen Processor
	JOBRFU - VDK/USAM Impure Pointer
	JOBCOF - Current Open Object File Pointer
	JOBROF - Root Object File Handle
	JOBRMF - Network List
	JOBNTB - RPC Buffer Pointer
	JOBRES - Resource Manager Queue Pointer
	JOBTSP - Network Transport Service Buffer Pointer
	JOBFCB - Hardware Floating Point Context
	JOBSIS - Terminal Output Software Interrupt Structure
	JOBSSP - The Job's Supervisor Stack Area
	JOBUSP - The Job's User Stack Area

	Chapter 3
	MEMORY PARTITION FORMAT
	MEMORY MODULE FORMAT
	MANIPULATING MEMORY MODULES
	PERMANENT AND TEMPORARY MODULES
	ALLOCATING MODULES WITH GETIMP

	Chapter 4
	MEMORY MODULES - SRCH AND FETCH CALLS
	SHARED MEMORY FACILITY

	Chapter 5
	INCREASING THE AVAILABLE QUEUE LIST SIZE
	QUEUE BLOCK USAGE BY THE SYSTEM
	QUEUE SYSTEM MONITOR CALLS

	Chapter 6
	THE DATASET DRIVER BLOCK
	FILE SERVICE MONITOR CALLS
	DISK SERVICE MONITOR CALLS
	MAGNETIC TAPE DRIVE MONITOR CALLS

	Chapter 7
	TERMINOLOGY
	THE TERMINAL CONTROL BLOCK
	THE TERMINAL SERVICE CALLS

	Chapter 8
	NUMERIC CONVERSION CALLS
	RAD50 CONVERSION MONITOR CALLS
	PRINTING CONVERSION CALLS
	CASE CONVERSION CALLS

	Chapter 9
	Chapter 10
	YEAR 2000 ISSUES

	Chapter 11
	ALPHA MICRO 48-BIT FLOATING POINT FORMAT
	IEEE 32- AND 64-BIT FLOATING POINT FORMAT

	Chapter 12
	OUTPUT FLAGS

	Chapter 13
	Chapter 14
	OVERVIEW OF THE SOFTWARE INTERRUPT SYSTEM
	SOFTWARE INTERRUPT MONITOR CALLS
	SAMPLE PROGRAM

	Chapter 15
	WHAT IS INTER-TASK COMMUNICATION?
	GENERAL CONCEPTS
	TRANSPORT REQUIREMENTS
	MESSAGE FORMAT
	MESSAGE SYSTEM MONITOR CALLS
	NETWORK DRIVERS
	THE NETWORK DEFINITION TABLE
	THE NODE LIST STRUCTURE
	THE NETWORK DRIVER STRUCTURE

	Chapter 16
	Chapter 17
	THE LANGUAGE DEFINITION TABLE
	USING THE GTLANG MONITOR CALL
	DEFINING YOUR OWN LANGUAGE DEFINITION FILE

	Chapter 18
	SAMPLE USAGE OF DIRECTORY HANDLING CALLS

	Chapter 19
	STRUCTURE OF CALLS TO THE DISK CACHE SYSTEM

	Chapter 20
	COMPATIBILITY
	TCP PROGRAMMING OVERVIEW
	TAME PROGRAMMING OVERVIEW
	MONITOR CALL SUMMARY
	EVENT SUMMARY
	THE EVENT HANDLER
	MONITOR CALLS
	EVENTS
	QUICK REFERENCE LIST OF CALLS
	TAME ERROR CODES
	EXAMPLES

	Appendix A
	PHYSICAL BLOCK FORMAT
	DISK BLOCK TYPES
	TRADITIONAL FORMAT FILE STRUCTURE
	EXTENDED FORMAT FILE STRUCTURE
	PROGRAM HEADER FORMAT

	Appendix B
	GENERAL STRUCTURE
	INTERFACE DRIVERS
	TERMINAL DRIVERS
	INTERSYSTEM DRIVER LINKS
	USING TERMINALS AS I/O DEVICES
	THE TERMINAL CONTROL BLOCK

	Appendix C
	SYSTEM - SYSTEM ATTRIBUTES WORD

	Appendix D
	Appendix E
	Appendix F
	A SHORT HISTORY OF CHARACTER SETS
	THE ISO 8859 FAMILY OF STANDARDS AND AMOS

	Appendix G
	THE RAD50 ALGORITHM
	USING THE CONVERSION CHART

	Appendix H
	Appendix I
	COMPATIBILITY
	UPGRADING AN APPLICATION

	Appendix J
	LOCATING AND VERIFYING AMSORT.SYS
	THE IMPURE AREA
	SETTING THE RECORD SIZE
	SETTING FLAGS
	INPUT AND OUTPUT ROUTINES
	EXAMPLE PROGRAM

	Document History
	Index

