
177

Chapter 6

In this chapter:
• Introduction to

Controls
• Buttons
• Picture Buttons
• Checkboxes
• Radio Buttons
• Text Fields
• Multiple Control

Example Project

6
6.Controls and

Messages

A control is a graphic image that resides in a window and acts as a device that
accepts user input. The BeOS API includes a set of classes that make it easy to add
certain predefined controls to a program. These standard controls include the but-
ton, checkbox, radio button, text field, and color control. There’s also a Be-defined
class that allows you to turn any picture into a control. That allows you to create
controls that have the look of real-world devices such as switches and dials.
Chapter 5, Drawing, described the color control and the BColorControl class
used to create such controls. This chapter discusses other control types and the
classes used to create each. Also discussed is the BControl class, the class from
which all other control classes are derived.

When the user clicks on a control, the system responds by sending a message to
the window that holds the control. This message indicates exactly which control
has been clicked. The message is received by the window’s MessageReceived()
hook function, where it is handled. Since the BWindow version of
MessageReceived() won’t know how to go about responding to messages that
originate from your controls, you’ll override this routine. Your application then
gains control of how such messages are handled, and can include any code neces-
sary to carry out the task you want the control to perform. This chapter includes
examples that demonstrate how to create controls and how to override
MessageReceived() such that the function handles mouse clicks on controls of
any of the standard types.

Introduction to Controls
When a BWindow object receives a message, it either handles the message itself or
lets one of its views handle it. To handle a message, the window invokes a
BWindow hook function. For example, a B_ZOOM message delivered to a window

178 Chapter 6: Controls and Messages

results in that window invoking the BWindow hook function Zoom() to shrink or
enlarge the window. To allocate the handling of a message to one of its views, the
window passes the message to the affected view, and the view then invokes the
appropriate BView hook function. For example, a B_MOUSE_DOWN message results
in the affected view invoking the BView hook function MouseDown().

Besides being the recipient of system messages, a window is also capable of
receiving application-defined messages. This lets you implement controls in your
application’s windows. When you create a control (such as a button object from
the BButton class), define a unique message type that becomes associated with
that one control. Also, add the control to a window. When the user operates the
control (typically by clicking on it, as for a button), the system passes the applica-
tion-defined message to the window. How the window handles the message is
determined by the code you include in the BWindow member function
MessageReceived().

Control Types

You can include a number of different types of controls in your windows. Each
control is created from a class derived from the abstract class BControl. The
BControl class provides the basic features common to all controls, and the
BControl-derived classes add capabilities unique to each control type. In this
chapter, you’ll read about the following control types:

Button
The BButton class is used to create a standard button, sometimes referred to
as a push button. Clicking on a button results in some immediate action tak-
ing place.

Picture button
The BPictureButton class is used to create a button that can have any size,
shape, and look to it. While picture buttons can have an infinite variety of
looks, they act in the same manner as a push button—a mouse click results in
an action taking place.

Checkbox
The BCheckBox class creates a checkbox. A checkbox has two states: on and
off. Clicking a checkbox always toggles the control to its opposite state or
value. Clicking on a checkbox usually doesn’t immediately impact the pro-
gram. Instead, a program typically waits until some other action takes place
(such as the click of a certain push button) before gathering the current state
of the checkbox. At that time, some program setting or feature is adjusted
based on the value in the checkbox.

Introduction to Controls 179

Radio button
The BRadioButton class is used to create a radio button. Like a checkbox, a
radio button has two states: on and off. Unlike a checkbox, a radio button is
never found alone. Radio buttons are grouped together in a set that is used to
control an option or feature of a program. Clicking on a radio button turns off
whatever radio button was on at the time of the mouse click, and turns on the
newly clicked radio button. Use a checkbox in a yes or no or true or false sit-
uation. Use radio buttons for a condition that offers multiple choices that are
mutually exclusive (since only one button can be on at any given time).

Text field
The BTextControl class is used to create a text field. A text field is a control
consisting of a static string on the left and an editable text area on the right.
The static text acts as a label that provides the user with information about
what is to be typed in the editable text area of the control. Typing text in the
editable text area of a control can have an immediate effect on the program,
but it’s more common practice to wait until some other action takes place (like
a click on a push button) before the program reads the user-entered text.

Color control
The BColorControl class, shown in Chapter 5, creates color controls. A color
control displays the 256 system colors, each in a small square. The user can
choose a color by clicking on it. A program can, at any time, check to see
which color the user has currently selected, and perform some action based
on that choice. Often the selected color is used in the next, or all subsequent,
drawing operation the program performs.

Figure 6-1 shows four of the six types of controls available to you. In the upper
left of the figure is a button. The control in the upper right is a text field. The
lower left of the figure shows a checkbox in both its on and off states, while the
lower right of the figure shows a radio button in both its states. A picture button
can have any size and look you want, so it’s not shown. All the buttons are associ-
ated with labels that appear on or next to the controls themselves.

The sixth control type, the color control based on the BColorControl class, isn’t
shown either—it was described in detail in Chapter 5 and will only be mentioned
in passing in this chapter.

A control can be in an enabled statewhere the user can interact with itor a
disabled state. A disabled control will appear dim, and clicking on the control will
have no effect. Figure 6-2 shows a button control in both its enabled state (left-
most in the figure) and its disabled state (rightmost in the figure). Also shown is
what an enabled button looks like when it is selected using the Tab key (middle
in the figure). A user can press the Tab key to cycle through controls, making each
one in turn the current control. As shown in Figure 6-2, a button’s label will be

180 Chapter 6: Controls and Messages

underlined when it’s current. Once current, other key presses (typically the Return
and Enter key) affect that control.

Creating a Control

A control is created from one of six Interface Kit classes—each of which is cov-
ered in detail in this chapter. Let us start by examining the BControl class from
which they are derived.

The BControl class

The BControl class is an abstract class derived from the BView and BInvoker
classes. Control objects are created from BControl-derived classes, so all controls
are types of views.

It’s possible to create controls that aren’t based on the BControl
class. In fact, the Be API does that for the BListView and
BMenuItem classes. These are exceptions, though. You’ll do best by
basing each of your application’s controls on one of the six
BControl-derived classes. Doing so means your controls will
behave as expected by the user.

BControl is an abstract class, so your project will create BControl-derived class
objects rather than BControl objects. However, because the constructor of each
BControl-derived class invokes the BControl constructor, a study of the
BControl constructor is a worthwhile endeavor. Here’s the prototype:

BControl(BRect frame,
 const char *name,

Figure 6-1. Examples of button, text field, checkbox, and radio button controls

Figure 6-2. A button control that’s (from left to right) enabled, current, and disabled

Introduction to Controls 181

 const char *label,
 BMessage *message,
 uint32 resizingMode,
 uint32 flags)

Four of the six BControl constructor parameters match BView constructor param-
eters. The frame, name, resizingMode, and flags arguments get passed to the
BView constructor by the BControl constructor. These parameters are discussed
in Chapter 4, Windows, Views, and Messages, so here I’ll offer only a brief recap of
their purposes. The frame parameter is a rectangle that defines the boundaries of
the view. The name parameter establishes a name by which the view can be iden-
tified at any time. The resizingMode parameter is a mask that defines the behav-
ior of the view should the size of the view’s parent view change. The flags
parameter is a mask consisting of one or more Be-defined constants that deter-
mine the kinds of notifications (such as update) the view is to be aware of.

The remaining two BControl constructor parameters are specific to the control.
The label parameter is a string that defines the text associated with it. For
instance, for a button control, the label holds the words that appear on the but-
ton. The message parameter is a BMessage object that provides a means for the
system to recognize the control as a unique entity. When the control is selected by
the user, it is this message that the system will send to the window that holds the
control.

Your project won’t create BControl objects, so a sample call to the BControl
constructor isn’t useful here. Instead, let’s look at the simplest type of BControl-
derived object: the BButton.

The BButton class

Creating a new push button involves creating a new BButton object. The
BButton constructor parameters are an exact match of those used by the
BControl constructor:

BButton(BRect frame,
 const char *name,
 const char *label,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

The BButton constructor invokes the BControl constructor, passing all of its
arguments to that routine. The BControl constructor uses the label argument to
initialize the button’s label, and uses the message argument to assign a unique
message to the button. The BControl constructor then invokes the BView con-
structor, passing along the remaining four arguments it received from the BButton
constructor. The BView constructor then sets up the button as a view. After the

182 Chapter 6: Controls and Messages

BControl and BView constructors have executed, the BButton constructor car-
ries on with its creation of a button object by implementing button-specific tasks.
This is, in essence, how the constructor for each of the BControl-derived classes
works.

Creating a button

A button is created by defining the arguments that are passed to the BButton con-
structor and then invoking that constructor using new. To become functional, the
button must then be added to a window. That’s what’s taking place in this snippet:

#define BUTTON_OK_MSG 'btmg'

BRect buttonRect(20.0, 20.0, 120.0, 50.0);
const char* buttonName = "OKButton";
const char* buttonLabel = "OK";
BButton *buttonOK;

buttonOK = new BButton(buttonRect, buttonName,
 buttonLabel, new BMessage(BUTTON_OK_MSG));

aView->AddChild(buttonOK);

In the above code, the BRect variable buttonRect defines the size and location
of the button. This push button will be 100 pixels wide by 30 pixels high. The
buttonName string gives the button the name “OKButton.” This is the name used
to locate and access the button by view name using the BView member function
FindView(). The name that actually appears on the button itself, “OK,” is defined
by the buttonLabel string. The message associated with the new button control
is a new BMessage object of type BUTTON_OK_MSG. I’ll explain the BMessage class
in a minute. Here it suffices to say that, as shown above, creating a new message
can be as easy as defining a four-character string and passing this constant to the
BMessage constructor.

The BButton constructor prototype lists six parameters, yet the above invocation
of that constructor passes only four arguments. The fifth and sixth parameters,
resizingMode and flags, offer default values that are used when these argu-
ments are omitted. The default resizingMode value (B_FOLLOW_LEFT |
B_FOLLOW_TOP) creates a button that will remain a fixed distance from the left and
top edges of the control’s parent view should the parent view be resized. The
default flags value (B_WILL_DRAW | B_NAVIGABLE) specifies that the control
needs to be redrawn if altered, and that it can become the focus view in response
to keyboard actions.

Adding a control to a window means adding the control to a view. In the above
snippet, it’s assumed that a view (perhaps an object of the application-defined
BView-derived MyDrawView class) has already been created.

Introduction to Controls 183

Enabling and disabling a control

When a control is created, it is initially enabled—the user can click on the control
to select it. If you want a control to be disabled, invoke the control’s
SetEnabled() member function. The following line of code disables the
buttonOK button control that was created in the previous snippet:

buttonOK->SetEnabled(false);

SetEnabled() can be invoked on a control at any time, but if the control is to
start out disabled, call SetEnabled() before displaying the window the control
appears in. To again enable a control, call SetEnabled() with an argument of
true.

This chapter’s CheckBoxNow project demonstrates the enabling and disabling of a
button. The technique in that example can be used on any type of control.

Turning a control on and off

Checkboxes and radio buttons are two-state controls—they can be on or off.
When a control of either of these two types is created, it is initially off. If you want
the control on (to check a checkbox or fill in a radio button), invoke the
BControl member function SetValue(). Passing SetValue() the Be-defined
constant B_CONTROL_ON sets the control to on. Turning a control on and off in
response to a user action in the control is the responsibility of the system—not
your program. So after creating a control and setting it to the state you want, you
will seldom need to call SetValue(). If you want your program to “manually”
turn a control off (as opposed to doing so in response to a user action), have the
control invoke its SetValue() function with an argument of B_CONTROL_OFF.

A button is a one-state device, so turning a button on or off doesn’t make sense.
Instead, this snippet turns on a two-state control—a checkbox:

requirePasswordCheckBox->SetValue(B_CONTROL_ON)

Creating checkboxes hasn’t been covered yet, so you’ll want to look at the Check-
Box example project later in this chapter to see the complete code for creating and
turning on a checkbox.

Technically, a button is also a two-state control. When it is not being
clicked, it’s off. When the control is being clicked (and before the
user releases the mouse button), it’s on. This point is merely an
aside, though, as it’s unlikely that your program will ever need to
check the state of a button in the way it will check the state of a
checkbox or radio button.

184 Chapter 6: Controls and Messages

To check the current state of a control, invoke the BControl member function
Value(). This routine returns an int32 value that is either B_CONTROL_ON (which
is defined to be 1) or B_CONTROL_OFF (which is defined to be 0). This snippet
obtains the current state of a checkbox, then compares the value of the state to the
Be-defined constant B_CONTROL_ON:

int32 controlState;

controlState = requirePasswordCheckBox->Value();
if (controlState == B_CONTROL_ON)
 // password required, display password text field

Changing a control’s label

Both checkboxes and radio buttons have a label that appears to the right of the
control. A text field has a label to the left of the control. The control’s label is set
when the control is created, but it can be changed on the fly.

The BControl member function SetLabel() accepts a single argument: the text
that is to be used in place of the control’s existing label. In this next snippet, a
button’s label is initially set to read “Click,” but is changed to the string “Click
Again” at some point in the program’s execution:

BRect buttonRect(20.0, 20.0, 120.0, 50.0);
const char *buttonName = "ClickButton";
const char *buttonLabel = "Click";
BButton *buttonClick;

buttonOK = new BButton(buttonRect, buttonName,
 buttonLabel, new BMessage(BUTTON_CLICK_MSG));

aView->AddChild(buttonClick);
...
...
buttonClick->SetLabel("Click Again");

The labels of other types of controls are changed in the same manner. The last
example project in this chapter, the TextField project, sets the label of a button to
a string entered by the user.

Handling a Control

BControl-derived classes take care of some of the work of handling a control. For
instance, in order to properly update a control in response to a mouse button
click, your program doesn’t have to keep track of the control’s current state, and it
doesn’t have to include any code to set the control to the proper state (such as
drawing or erasing the check mark in a checkbox). What action your program
takes in response to a mouse button click is, however, your program’s responsibil-
ity. When the user clicks on a control, a message will be delivered to the affected

Introduction to Controls 185

window. That message will be your program’s prompt to perform whatever action
is appropriate.

Messages and the BMessage class

When the Application Server delivers a system message to an application
window, that message arrives in the form of a BMessage object. Your code deter-
mines how to handle a system message simply by overriding a BView hook func-
tion (such as MouseDown()). Because the routing of a message from the Applica-
tion Server to a window and then possibly to a view’s hook function is
automatically handled for you, the fact that the message is a BMessage object may
not have been important (or even known) to you. A control also makes use of a
BMessage object. However, in the case of a control, you need to know a little bit
about working with BMessage objects.

The BMessage class defines a message object as a container that holds informa-
tion. Referring to the BMessage class description in the Application Kit chapter of
the Be Book, you’ll find that this information consists of a name, some number of
bytes of data, and a type code. You’ll be pleased to find out that when using a
BMessage in conjunction with a control, a thorough knowledge of these details of
the BMessage class isn’t generally necessary (complex applications aside). Instead,
all you need to know of this class is how to create a BMessage object. The snip-
pet a few pages back that created a BButton object illustrated how that’s done:

#define BUTTON_OK_MSG 'btmg'

// variable declarations here

buttonOK = new BButton(buttonRect, buttonName,
 buttonLabel, new BMessage(BUTTON_OK_MSG));

The only information you need to create a BMessage object is a four-character lit-
eral, as in the above definition of BUTTON_OK_MSG as ‘btmg’. This value, which
will serve as the what field of the message, is actually a uint32. So you can
define the constant as an unsigned 32-bit integer, though most programmers find it
easier to remember a literal than the unsigned numeric equivalent. This value then
becomes the argument to the BMessage constructor in the BButton constructor.
This newly created message object won’t hold any other information.

The BMessage class defines a single public data member named what. The what
data member holds the four-character string that distinguishes the message from all
other message types—including system messages—the application will use. In the
previous snippet, the constant btmg becomes the what data member of the
BMessage object created when invoking the BButton constructor.

186 Chapter 6: Controls and Messages

When the program refers to a system message by its Be-defined constant, such as
B_QUIT_REQUESTED or B_KEY_DOWN, what’s really of interest is the what data
member of the system message. The value of each Be-defined message constant is
a four-character string composed of a combination of only uppercase characters
and, optionally, one or more underscore characters. Here’s how Be defines a few
of the system message constants:

enum {
 B_ABOUT_REQUESTED = '_ABR',
 ...
 ...
 B_QUIT_REQUESTED = '_QRQ',
 ...
 ...
 B_MOUSE_DOWN = '_MDN',
 ...
 ...
};

Be intentionally uses the message constant value convention of uppercase-only
characters and underscores to make it obvious that a message is a system mes-
sage. You can easily avoid duplicating a Be-defined message constant by simply
including one or more lowercase characters in the literal of your own application-
defined message constants. And to make it obvious that a message isn’t a Be-
defined one, don’t start the message constant name with “B_”. In this book’s
examples, I have chosen to use a fairly informative convention in choosing sym-
bols for application-defined control messages: start with the control type, include a
word or words descriptive of what action the control results in, and end with
“MSG” for “message.” The value of each constant may hint at the message type
(for instance, ‘plSD’ for “play sound”), but aside from avoiding all uppercase char-
acters, the value is somewhat arbitrary. These two examples illustrate the conven-
tion I use:

#define BUTTON_PLAY_SOUND_MSG 'plSD'
#define CALCULATE_VALUES 'calc'

Messages and the MessageReceived() member function

The BWindow class is derived from the BLooper class, so a window is a type of
looper—an object that runs a message loop that receives messages from the Appli-
cation Server. The BLooper class is derived from the BHandler class, so a win-
dow is also a handler—an object that can handle messages that are dispatched
from a message loop. A window can both receive messages and handle them.

For the most part, system messages are handled automatically; for instance, when
a B_ZOOM message is received, the operating system zooms the window. But you
cannot completely entrust the handling of an application-defined message to the
system.

Introduction to Controls 187

When a user selects a control, the Application Server delivers a message object
with the appropriate what data member value to the affected BWindow object.
You’ve just seen a snippet that created a BButton associated with a BMessage
object. That BMessage had a what data member of ‘btmg’. If the user clicked on
the button that results from this object, the Application Server would deliver such
a message to the affected BWindow. It’s up to the window to include code that
watches for, and responds to, this type of message. The BWindow class member
function MessageReceived() is used for this purpose.

When an application-defined message reaches a window, it looks for a
MessageReceived() function. This routine receives the message, examines the
message’s what data member, and responds depending on its value. The
BHandler class defines such a MessageReceived() function. The BHandler-
derived class BWindow inherits this function and overrides it. The BWindow ver-
sion includes a call to the base class BHandler version, thus augmenting what
BHandler offers. If the BWindow version of MessageReceived() can’t handle a
message, it passes it up to the BHandler version of this routine. Figure 6-3 shows
how a message that can’t be handled by one version of MessageReceived() gets
passed up to the next version of this function.

Here is how the MessageReceived() looks in BWindow:

void BWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 // handle B_KEY_DOWN and scripting-related system messages

Figure 6-3. Message passed to parent class’s version of MessageReceived()

messageApplication
server MessageReceived()

BWindow-derived
version

MessageReceived()

BWindow
version

MessageReceived()

BHandler
version

message

message

188 Chapter 6: Controls and Messages

 default:
 BHandler::MessageReceived(message);
 }
}

Your project’s windows won’t be based directly on the BWindow class. Instead,
windows will be objects of a class you derive from BWindow. While such a
BWindow-derived class will inherit the BWindow version of MessageReceived(),
that version of the function won’t suffice—it won’t know anything about the appli-
cation-defined messages you’ve paired with the window’s controls. Your BWindow-
derived class should thus do what the BWindow class does: override the inherited
version of MessageReceived() and, within the new implementation of this func-
tion, invoke the inherited version:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 // handle application-defined messages

 default:
 BWindow::MessageReceived(message);
 }
}

What messages your BWindow-derived class version of MessageReceived() looks
for depends on the controls you’re adding to windows of that class type. If I add a
single button to windows of the MyHelloWindow class, and the button’s BButton
constructor pairs a message object with a what constant of BUTTON_OK_MSG (as
shown in previous snippets), the MyHelloWindow version of MessageReceived()
would look like this:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_OK_MSG:
 // handle a click on the OK button
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

The particular code that appears under the control’s case label depends entirely
on what action you want to occur in response to the control being clicked. For
simplicity, assume that we want a click on the OK button to do nothing more than
sound a beep. The completed version of MessageReceived() looks like this:

Buttons 189

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_OK_MSG:
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Buttons
The BButton class is used to create a button—a labeled push button that is oper-
ated when the button is clicked. The previous sections used the BButton class
and button objects for its specific examples and in its code snippets. That section
provided some background on creating and working with buttons, so the empha-
sis here will be on incorporating the button-related code in a project.

Creating a Button

The BButton constructor has six parameters, each of which was described in the
“The BButton class” section of this chapter:

BButton(BRect frame,
 const char *name,
 const char *label,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

The BButton constructor calls the BControl constructor, which in turn calls the
BView constructor. Together, these routines set up and initialize a BButton object.

After attaching the button to a window, the height of the button may automati-
cally be adjusted to accommodate the height of the text of the button’s label and
the border of the button. If the values of the frame rectangle coordinates result in
a button that isn’t high enough, the BButton constructor will increase the button
height by increasing the value of the frame rectangle’s bottom value. The exact
height of the button depends on the font in which the button label is displayed.

For the example button creation code, assume that a window is keeping track of
BView and BButton objects in data members named fView and fButton, respec-
tively, and that the button’s message type is defined by the constant BUTTON_MSG:

#define BUTTON_MSG 'bttn'

class MyWindow : public BWindow {
 ...

190 Chapter 6: Controls and Messages

 private:
 BView *fView;
 BButton *fButton;
}

The code that creates a new button and adds it to the view fView might then look
like this:

BRect buttonRect(20.0, 20.0, 100.0, 50.0);

fButton = new BButton(buttonRect, "MyButton",
 "Click Me", new BMessage(BUTTON_MSG));

fView->AddChild(fButton);

Making a Button the Default Button

One button in a window can be made the default button—a button that the user
can select either by clicking or by pressing the Enter key. If a button is the default
button, it is given a wider border so that the user recognizes it as such a button.
To make a button the default button, call the BButton member function
MakeDefault():

fButton->MakeDefault(true);

If the window that holds the new default button already had a default button, the
old default button automatically loses its default status and becomes a “normal”
button. The system handles this task to ensure that a window has only one default
button.

While granting one button default status may be a user-friendly gesture, it might
also not make sense in many cases. Thus, a window isn’t required to have a
default button.

Button Example Project

The TwoButtons project demonstrates how to create a window that holds two but-
tons. Looking at Figure 6-4, you can guess that a click on the leftmost button
(which is the default button) results in the playing of the system sound a single
time, while a click on the other button produces the beep twice.

Preparing the window class for the buttons

A few additions to the code in the MyHelloWindow.h file are in order. First, a pair
of constants are defined to be used later when the buttons are created. The choice
of constant names and values is unimportant, provided that the names don’t begin
with “B_” and that the constant values don’t consist of all uppercase characters.

Buttons 191

#define BUTTON_BEEP_1_MSG 'bep1'
#define BUTTON_BEEP_2_MSG 'bep2'

To keep track of the window’s two buttons, a pair of data members of type
BButton are added to the already present data member of type MyDrawView. And
now that the window will be receiving and responding to application-defined
messages, the BWindow-inherited member function MessageReceived() needs to
overridden:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep1;
 BButton *fButtonBeep2;
};

Creating the buttons

The buttons are created and added to the window in the MyHelloWindow con-
structor. Before doing that, the constructor declares several variables that will be
used in the pair of calls to the BButton constructor and assigns them values:

BRect buttonBeep1Rect(20.0, 60.0, 110.0, 90.0);
BRect buttonBeep2Rect(130.0, 60.0, 220.0, 90.0);
const char *buttonBeep1Name = "Beep1";
const char *buttonBeep2Name = "Beep2";
const char *buttonBeep1Label = "Beep One";
const char *buttonBeep2Label = "Beep Two";

In the past, you’ve seen that I normally declare a variable within the routine that
uses it, just before its use. Here I’ve declared the six variables that are used as
BButton constructor arguments outside of the MyHelloWindow constructor—but
they could just as well have been declared within the MyHelloWindow construc-
tor. I opted to do things this way to get in the habit of grouping all of a window’s

Figure 6-4. The window that results from running the TwoButtons program

192 Chapter 6: Controls and Messages

layout-defining code together. Grouping all the button boundary rectangles,
names, and labels together makes it easier to lay out the buttons in relation to one
another and to supply them with logical, related names and labels. This technique
is especially helpful when a window holds several controls.

The buttons will be added to the fMyView view. Recall that this view is of the
BView-derived application-defined class MyDrawView and occupies the entire con-
tent area of a MyHelloWindow. In the MyHelloWindow constructor, the view is
created first, and then the buttons are created and added to the view:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtonBeep1 = new BButton(buttonBeep1Rect, buttonBeep1Name,
 buttonBeep1Label,
 new BMessage(BUTTON_BEEP_1_MSG));

 fMyView->AddChild(fButtonBeep1);
 fButtonBeep1->MakeDefault(true);

 fButtonBeep2 = new BButton(buttonBeep2Rect, buttonBeep2Name,
 buttonBeep2Label,
 new BMessage(BUTTON_BEEP_2_MSG));

 fMyView->AddChild(fButtonBeep2);

 Show();
}

Handling button clicks

MessageReceived() always has a similar format. The Application Server passes
this function a message as an argument. The message data member what holds
the message type, so that data member should be examined in a switch state-
ment, with the result compared to any application-defined message types the win-
dow is capable of handling. A window of type MyHelloWindow can handle a
BUTTON_BEEP_1_MSG and a BUTTON_BEEP_2_MSG. If a different type of message is
encountered, it gets passed on to the BWindow version of MessageReceived():

void MyHelloWindow::MessageReceived(BMessage* message)
{
 bigtime_t microseconds = 1000000; // one second

 switch(message->what)
 {
 case BUTTON_BEEP_1_MSG:
 beep();

Picture Buttons 193

 break;

 case BUTTON_BEEP_2_MSG:
 beep();
 snooze(microseconds);
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Picture Buttons
A picture button is a button that has a picture on its face rather than a text label.
The picture button behaves like a standard push button—clicking and releasing
the mouse button while over the picture button selects it.

The BPictureButton class is used to create a picture button. Associated with one
BPictureButton object are two BPicture objects. One of the pictures acts as the
button when the button is in its normal state (that is, when the user isn’t clicking
on it). The other picture acts as the button when the user clicks on the button.
You’ll supply a BPictureButton object with the two pictures, and the system will
be responsible for switching back and forth between the pictures in response to
the user’s actions.

Creating a Picture Button

A picture button is created by the BPictureButton constructor. As is the case for
other controls, this constructor invokes the BControl constructor, which in turn
invokes the BView constructor:

BPictureButton(BRect frame,
 const char *name,
 BPicture *off,
 BPicture *on,
 BMessage *message,
 uint32 behavior = B_ONE_STATE_BUTTON,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

The BPictureButton constructor has eight parameters, five of which you’re
already familiar with. The frame, name, resizingMode, and flags parameters
get passed to the BView constructor and are used in setting up the picture button
as a view. The message parameter is used by the BControl constructor to assign
a message type to the picture button. The remaining three parameters, off, on,
and behavior, are specific to the creation of a picture button.

194 Chapter 6: Controls and Messages

The off and on parameters are BPicture objects that define the two pictures to
be used to display the button. In Chapter 5, you saw how to create a BPicture
object using the BPicture member functions BeginPicture() and
EndPicture(). Here I create a picture composed of a white circle within a black
circle:

BPicture *buttonOffPict;

fMyView->BeginPicture(new BPicture);
 BRect aRect(0.0, 0.0, 50.0, 50.0);

 fMyView->FillEllipse(aRect, B_SOLID_HIGH);
 aRect.InsetBy(10.0, 10.0);
 fMyView->FillEllipse(aRect, B_SOLID_LOW);
buttonOffPict = fMyView->EndPicture();

A second BPicture object should then be created in the same way. These two
BPicture objects could then be used as the third and fourth arguments to the
BPictureButton constructor.

For more compelling graphic images, you can use bitmaps for but-
ton pictures. Once a bitmap exists, all that needs to appear between
the BeginPicture() and EndPicture() calls is a call to the BView
member function DrawBitMap(). Chapter 10, Files, discusses bit-
maps.

Picture buttons are actually more versatile than described in this section. Here the
picture button is treated as a one-state device—just as a standard push button is.
The BPictureButton class can also be used, however, to create a picture button
that is a two-state control. Setting the behavior parameter to the constant B_TWO_
STATE_BUTTON tells the BPictureButton constructor to create a picture button
that, when clicked on, toggles between the two pictures represented by the
BPicture parameters off and on. Clicking on such a picture button displays one
picture. Clicking on the button again displays the second picture. The displayed
picture indicates to the user the current state of the button. To see a good real-
world use of a two-state picture button, run the BeIDE. Then choose Find from
the Edit menu. In the lower-left area of the Find window you’ll find a button that
has a picture of a small file icon on it. Click on the button and it will now have a
picture of two small file icons on it. This button is used to toggle between two
search options: search only the currently open, active file, and search all files
present in the Find window list. Figure 6-5 shows both of this button’s two states.

Picture Buttons 195

Picture Button Example Project

The PictureButton project creates a program that displays a window that holds a
single picture button. Figure 6-6 shows this one window under two different con-
ditions. The leftmost window in the figure shows the button in its normal state.
The rightmost window shows that when the button is clicked it gets slightly
smaller and its center is filled in.

The picture button can include other pictures, which will be used if
the program lets the button be disabled. Now that you know the
basics of working with the BPictureButton class, the details of
enhancing your picture buttons will be a quick read in the
BPictureButton section of the Interface Kit chapter of the Be
Book.

Figure 6-5. The Find window of the BeIDE provides an example of a picture button

Figure 6-6. The window that results from running the PictureButton program

The two states of the same
picture button

196 Chapter 6: Controls and Messages

Preparing the window class for the picture button

This chapter’s TwoButtons example project (presented in the “Buttons” section)
provided a plan for adding a control, and support of that control, to a window.
Here’s how the window class header file (the MyHelloWindow.h file for this
project) is set up for a new control:

• Define a constant to be used to represent an application-defined message type

• Override MessageReceived() in the window class declaration

• Add a control data member in the window class declaration

Here’s how the MyHelloWindow class is affected by the addition of a picture but-
ton to a window of this class type:

#define PICTURE_BEEP_MSG 'bep1'

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BPictureButton *fPicButtonBeep;
};

I’ve defined the PICTURE_BEEP_MSG constant to have a value of
'bep1'. Looking back at the TwoButtons example project, you’ll see
that this is the same value I gave to that project’s BUTTON_BEEP_1_
MSG constant. If both controls were present in the same application,
I’d give one of these two constants a different value so that the
MessageReceived() function could distinguish between a click on
the Beep One push button and a click on the picture button.

Creating the picture button

The process of creating a control can also be expressed in a number of steps. All
of the following affect the window source code file (the MyHelloWindow.cpp file
in this particular example):

• Declare and assign values to the variables to be used in the control’s con-
structor

• Create the control using new and the control’s constructor

• Attach the control to the window by adding it to one of the window’s views

Picture Buttons 197

Following the above steps to add a picture button to the MyHelloWindow con-
structor results in a new version of this routine that looks like this:

BRect pictureBeep1Rect(20.0, 60.0, 50.0, 90.0);
const char *pictureBeep1Name = "Beep1";

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 BPicture *buttonOffPict;
 BPicture *buttonOnPict;

 fMyView->BeginPicture(new BPicture);
 BRect offRect;

 offRect.Set(0.0, 0.0, 30.0, 30.0);
 fMyView->FillRect(offRect, B_SOLID_LOW);
 fMyView->StrokeRect(offRect, B_SOLID_HIGH);
 buttonOffPict = fMyView->EndPicture();

 fMyView->BeginPicture(new BPicture);
 BRect onRect;

 onRect.Set(0.0, 0.0, 30.0, 30.0);
 fMyView->StrokeRect(onRect, B_SOLID_LOW);
 offRect.InsetBy(2.0, 2.0);
 fMyView->StrokeRect(onRect, B_SOLID_HIGH);
 onRect.InsetBy(2.0, 2.0);
 fMyView->FillRect(onRect, B_SOLID_HIGH);
 buttonOnPict = fMyView->EndPicture();

 fPicButtonBeep = new BPictureButton(pictureBeep1Rect, pictureBeep1Name,
 buttonOffPict, buttonOnPict,
 new BMessage(PICTURE_BEEP_MSG));
 fMyView->AddChild(fPicButtonBeep);

 Show();
}

The two BPicture objects are defined using a few of the basic drawing tech-
niques covered in Chapter 5. As you read the following, refer back to the picture
button in its off state (normal, or unclicked) and on state (being clicked) in
Figure 6-5.

The off picture fills in a rectangle with the B_SOLID_LOW pattern (solid white) to
erase the on picture that might currently be displayed (if the user has just clicked

198 Chapter 6: Controls and Messages

the picture button, the on picture will be serving as the picture button). Then a
rectangle is outlined to serve as the off button.

The on picture erases the off picture (should it be currently drawn to the window
as the picture button) by drawing a white (B_SOLID_LOW) rectangle outline with
the boundaries of the off picture rectangle. That rectangle is then inset two pixels
in each direction and a new rectangle is framed in black (B_SOLID_HIGH). The
rectangle is then inset two more pixels, and this new area is filled with black.

Handling a picture button click

To handle a click on the picture button, MessageReceived() now looks for a
message of type PICTURE_BEEP_MSG. Should that message reach the window, the
computer sounds the system beep one time:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case PICTURE_BEEP_MSG:
 beep();
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Checkboxes
The BCheckBox class is used to add checkboxes to a window. A BCheckBox
object includes both the checkbox itself and a label, or title, to the right of the
box. A checkbox is a two-state control: in the on state, the checkbox has an “X” in
it; when off, it is empty. When a user clicks on a checkbox, its state is toggled. It’s
worthy of note that a checkbox label is considered a part of the checkbox con-
trol. That means that a user’s click on the checkbox itself or anywhere on the
checkbox label will toggle the checkbox to its opposite state.

Whether a click results in a checkbox being turned on (checked) or off
(unchecked), a message is sent to the window that holds the checkbox. While a
program can immediately respond to a click on a checkbox, it is more typical for
the program to wait until some other action takes place before responding. For
instance, the setting of some program feature could be done via a checkbox.
Clicking the checkbox wouldn’t, however, immediately change the setting. Instead,
when the user dismisses the window the checkbox resides in, the value of the
checkbox can be queried and the setting of the program feature could be per-
formed at that time.

Checkboxes 199

Creating a Checkbox

The BCheckBox constructor has six parameters:

BCheckBox(BRect frame,
 const char *name,
 const char *label,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

The BCheckBox parameters match those used in the BButton constructor—if you
know how to create a button, you know how to create a checkbox. Adding to the
similarities is that after you attach the checkbox to a window, the control’s height
will be automatically adjusted to accommodate the height of the text of the con-
trol’s label. If the values of the frame rectangle coordinates don’t produce a
rectangle with a height sufficient to display the checkbox label, the BCheckBox
constructor will increase the checkbox boundary rectangle height by increasing the
value of the frame rectangle’s bottom value. The exact height of the checkbox
depends on the font in which the control’s label is displayed.

As for other control types, you’ll define a message constant that is to be paired
with the control. For instance:

#define CHECKBOX_MSG 'ckbx'

Then, optionally, add a data member of the control type to the class declaration of
the window type the control is to be added to:

class MyWindow : public BWindow {
 ...
 private:
 BView *fView;
 BButton *fCheckBox;
}

The following snippet is typical of the code you’ll write to create a new checkbox
and add that control to a view:

BRect checkBoxRect(20.0, 20.0, 100.0, 50.0);

fCheckBox = new BCheckBox(checkBoxRect,"MyCheckbox"
 "Check Me", new BMessage(CHECKBOX_MSG));

fMyView->AddChild(fCheckBox);

Checkbox (Action Now) Example Project

Clicking a checkbox may have an immediate effect on some aspect of the pro-
gram, or it may not have an impact on the program until the user confirms the
checkbox selection—usually by a click on a button. The former use of a check-

200 Chapter 6: Controls and Messages

box is demonstrated in the example project described here: CheckBoxNow. For an
example of the other usage, a checkbox that has an effect after another action is
taken, look over the next example, the CheckBoxLater project.

The use of a checkbox to initiate an immediate action is often in practice when
some area of the window the checkbox resides in is to be altered. For instance, if
some controls in a window are to be rendered unusable in certain conditions, a
checkbox can be used to disable (and then later enable) these controls. This is
how the checkbox in the CheckBoxNow example works. The CheckBoxNow
project creates a program with a window that holds two controls: a button and a
checkbox. When the program launches, both controls are enabled, and the check-
box is unchecked—as shown in the top window in Figure 6-7. As expected, click-
ing on the Beep One button produces a single system beep. Clicking on the
checkbox disables beeping by disabling the button. The bottom window in
Figure 6-7 shows how the program’s one window looks after clicking the Disable
Beeping checkbox.

Preparing the Window class for the checkbox

The MyHelloWindow.h file prepares for the window’s support of a button and a
checkbox by defining a constant for each control’s message:

#define BUTTON_BEEP_1_MSG 'bep1'
#define CHECKBOX_SET_BEEP_MSG 'stbp'

The MyHelloWindow class now holds three data members:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;

Figure 6-7. The windows that result from running the CheckBoxNow program

Checkboxes 201

 BButton *fButtonBeep1;
 BCheckBox *fCheckBoxSetBeep;
};

Creating the checkbox

I’ve declared and initialized the button and checkbox boundary rectangles near
one another so that I could line them up—Figure 6-6 shows that the checkbox is
just to the right of the button and centered vertically with the button.

BRect buttonBeep1Rect(20.0, 60.0, 110.0, 90.0);
BRect checkBoxSetBeepRect(130.0, 67.0, 230.0, 90.0);
const char *buttonBeep1Name = "Beep1";
const char *checkBoxSetBeepName = "SetBeep";
const char *buttonBeep1Label = "Beep One";
const char *checkBoxSetBeepLabel = "Disable Beeping";

The MyHelloWindow constructor creates both the button and checkbox:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtonBeep1 = new BButton(buttonBeep1Rect, buttonBeep1Name,
 buttonBeep1Label,
 new BMessage(BUTTON_BEEP_1_MSG));

 fMyView->AddChild(fButtonBeep1);

fCheckBoxSetBeep = new BCheckBox(checkBoxSetBeepRect, checkBoxSetBeepName,
 checkBoxSetBeepLabel,
 new BMessage(CHECKBOX_SET_BEEP_MSG));

 fMyView->AddChild(fCheckBoxSetBeep);

 Show();
}

Handling a checkbox click

When the checkbox is clicked, the system will toggle it to its opposite state and
then send a message of the application-defined type CHECKBOX_SET_BEEP_MSG to
the MyHelloWindow MessageReceived() routine. In response, this message’s
case section obtains the new state of the checkbox and enables or disables the
Beep One button as appropriate. If the Disable Beeping checkbox is checked, or
on, the button is disabled by passing a value of false to the button’s

202 Chapter 6: Controls and Messages

SetEnabled() routine. If the checkbox is unchecked, or off, a value of true is
passed to this same routine in order to enable the button:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_BEEP_1_MSG:
 beep();
 break;

 case CHECKBOX_SET_BEEP_MSG:
 int32 checkBoxState;

 checkBoxState = fCheckBoxSetBeep->Value();

 if (checkBoxState == B_CONTROL_ON)
 // Disable Beeping checkbox is checked, deactivate beep button
 fButtonBeep1->SetEnabled(false);
 else
 // Disable Beeping checkbox is unchecked, activate beep button
 fButtonBeep1->SetEnabled(true);
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Checkbox (Action Later) Example Project

The CheckBoxNow project responds immediately to a click on a checkbox. More
often, programs let users check or uncheck the checkboxes without any immedi-
ate effect. Thus, your program might reserve action until the choice is confirmed
by the user’s click on a button (such as OK, Done, or Accept). The CheckBox-
Later project demonstrates this approach. Figure 6-7 shows that the CheckBox-
Later program displays a window that looks similar to that displayed by the
CheckBoxNow program. The program differs in when the state of the checkbox is
queried by the program. In the CheckBoxLater program, clicking the Disable
Beeping checkbox any number of times has no immediate effect on the Beep One
button (in Figure 6-8, you see that the checkbox is checked, yet the button isn’t
disabled). It’s only when the user clicks the Beep One button that the program
checks to see if the Disable Beeping checkbox is checked. If it isn’t checked, the
button click plays the system beep. If it is checked, the button can still be clicked,
but no sound will be played.

The only changes that were made to the CheckBoxNow code to turn it into the
code for the CheckBoxLater project are in the MessageReceived() function.
Here’s how the new version of that routine looks:

Radio Buttons 203

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_BEEP_1_MSG:
 int32 checkBoxState;

 checkBoxState = fCheckBoxSetBeep->Value();

 if (checkBoxState == B_CONTROL_ON)
 // Disable Beeping checkbox is checked, meaning DON'T beep
 ;
 else
 // Disable Beeping checkbox is unchecked, meaning DO beep
 beep();

 break;

 case CHECKBOX_SET_BEEP_MSG:
 // Here we don't do anything. Instead, we wait until the user
 // performs some other action before checking the value of the
 // checkbox break;

 default:
 BWindow::MessageReceived(message);
 }
}

In MessageReceived(), the body of the CHECKBOX_SET_BEEP_MSG case section
performs no action—a message of this type is now essentially ignored. The pro-
gram would run the same even if this case section was removed, but I’ve left the
CHECKBOX_SET_BEEP_MSG case label in the switch so that it’s evident that
MessageReceived() is still the recipient of such messages.

Radio Buttons
A radio button is similar to a checkbox in that it is a two-state control. Unlike a
checkbox, though, a radio button always appears grouped with at least one other
control of its kind.

Figure 6-8. The window that results from running the CheckBoxLater program

204 Chapter 6: Controls and Messages

For any given radio button group, no more than one radio button can be on at
any time. When the user clicks on one button in a group, the button that was on
at the time of the click is turned off and the newly clicked button is turned on. A
radio button group is responsible for updating the state of its buttons—your code
won’t need to turn them on and off.

Creating a Radio Button

The BRadioButton constructor has the same six parameters described back in this
chapter’s “The BControl class” section:

BRadioButton(BRect frame,
 const char *name,
 const char *label,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

Like other types of controls, a radio button’s height will be adjusted if the height
specified in the frame rectangle isn’t enough to accommodate the font being used
to display the radio button’s label.

Before creating a new radio button, define a constant to be used as the control’s
message type. Here’s an example from a project that has two radio buttons in a
window:

#define RADIO_1_MSG 'rad1'
#define RADIO_2_MSG 'rad2'

Access to a radio button is easiest if a data member of the control type is added to
the class declaration of the window type the control is to be added to:

class MyWindow : public BWindow {
 ...
 private:
 BView *fView;
 BRadioButton *fRadio1;
 BRadioButton *fRadio2;
}

The following snippet shows the creation of two radio buttons, each of which is
added to the same view:

BRect radio1Rect(20.0, 20.0, 100.0, 49.0);
BRect radio2Rect(20.0, 50.0, 100.0, 79.0);

fRadio1 = new BRadioButton(radio1Rect, "MyRadio1",
 "One", new BMessage(RADIO_1_MSG));
fMyView->AddChild(fRadio1);

Radio Buttons 205

fRadio2 = new BRadioButton(radio2Rect, "MyRadio2",
 "Two", new BMessage(RADIO_2_MSG));
fMyView->AddChild(fRadio2);

By adding radio buttons to the same view, you designate that the buttons be con-
sidered a part of a radio button group. The simple act of placing a number of but-
tons in the same view is enough to have these buttons act in unison. A click on
one radio button turns that button on, but not until that button turns off all other
radio buttons in the same view.

A single window can have any number of radio button groups, or sets. For
instance, a window might have one group of three buttons that provides the user
with the option of displaying graphic images in monochrome, grayscale, or color.
This same window could also have a radio button group that provides the user
with a choice of four filters to apply to the image. In such a scenario, the window
would need to include a minimum of two views—one for the group of three
color-level radio buttons and another for the group of four filter radio buttons.

Radio Buttons Example Project

The RadioButtonGroup project demonstrates how to create a group of radio but-
tons. As shown in Figure 6-9, the RadioButtonGroup program’s window includes a
group of three radio buttons that allow the user to alter the behavior of the Beep
push button.

Preparing the window class for the radio buttons

The MyHelloWindow.h header file includes four control message constants—one
per control. The push button constant has been given the value 'bEEp' just to
illustrate that an application-defined message constant can include uppercase char-
acters (to avoid conflicting with Be-defined control message constants, it just
shouldn’t consist of all uppercase characters).

#define BUTTON_BEEP_1_MSG 'bEEp'
#define RADIO_BEEP_1_MSG 'bep1'

Figure 6-9. The window that results from running the RadioButtonGroup program

206 Chapter 6: Controls and Messages

#define RADIO_BEEP_2_MSG 'bep2'
#define RADIO_BEEP_3_MSG 'bep3'

This project’s version of the MyHelloWindow class includes six data members: one
to keep track of the window’s view, one to keep track of each of the window’s
four controls, and one to keep track of the number of beeps to play when the
push button is clicked:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep1;
 BRadioButton *fRadioBeep1;
 BRadioButton *fRadioBeep2;
 BRadioButton *fRadioBeep3;
 int32 fNumBeeps;
};

Laying out the radio buttons

A number of radio buttons are defined as a group when they all reside in the same
view. A MyHelloWindow object includes a view (MyDrawView) that occupies its
entire content area—so I could add the three radio buttons to this view and have
them automatically become a radio button group. That, however, isn’t what I’m
about to do. Instead, I’ll create a new view and add it to the existing view. If at a
later time I want to add a second group of radio buttons (to control some other,
unrelated, option) to the window, the buttons that will comprise that group will
need to be in a new view—otherwise they’ll just be absorbed into the existing
radio button group. By creating a new view that exists just for one group of radio
buttons, I’m getting in the habit of setting up a radio button group as an isolated
entity.

Placing a radio button group in its own new view also proves beneficial if it
becomes necessary to make a change to the layout of all of the group’s radio but-
tons. For instance, if I want to relocate all of the buttons in a group to another
area of the window, I just redefine the group’s view rectangle rather than redefin-
ing each of the individual radio button boundary rectangles. When the view
moves, so do the radio buttons in it. Or, consider that I may, for aesthetic rea-
sons, want to outline the area that holds the radio buttons. I can easily do so by
framing the radio button group view.

Radio Buttons 207

The following variable declarations appear near the top of the MyHelloWindow.
cpp file. Note that the boundary rectangle for each of the three radio buttons has a
left coordinate of 10.0, yet the radio buttons are certainly more than 10 pixels in
from the left side of the window.

Keep in mind that after being created, the radio buttons will be added to a new
BView that is positioned in the window based on the radioGroupRect rectangle.
Thus, the coordinate values of the radio button rectangles are relative to the new
BView. Figure 6-10 clarifies my point by showing where the radio group view will
be placed in the window. In that figure, the values 125 and 50 come from the left
and top values in the radioGroupRect rectangle declared here:

BRect radioGroupRect(125.0, 50.0, 230.0, 120.0);

BRect radioBeep1Rect(10.0, 5.0, 90.0, 25.0);
BRect radioBeep2Rect(10.0, 26.0, 90.0, 45.0);
BRect radioBeep3Rect(10.0, 46.0, 90.0, 65.0);
const char *radioBeep1Name = "Beep1Radio";
const char *radioBeep2Name = "Beep2Radio";
const char *radioBeep3Name = "Beep3Radio";
const char *radioBeep1Label = "One Beep";
const char *radioBeep2Label = "Two Beeps";
const char *radioBeep3Label = "Three Beeps";

Creating the radio buttons

The three radio buttons are created, as expected, in the MyHelloWindow construc-
tor. Before doing that, a generic view (a view of the Be class BView) to which the
radio buttons will be added is created and added to the view of type MyDrawView.
By default, each new radio button is turned off. A group of radio buttons must
always have one button on, so after the three radio buttons are created, one of
them (arbitrarily, the One Beep button) is turned on by calling the button’s
SetValue() member function. The data member fNumBeeps is then initialized to
a value that matches the number of beeps indicated by the turned-on radio button:

Figure 6-10. A group of radio buttons can reside in their own view

50

125

208 Chapter 6: Controls and Messages

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtonBeep1 = new BButton(buttonBeep1Rect, buttonBeep1Name,
 buttonBeep1Label,
 new BMessage(BUTTON_BEEP_1_MSG));

 fMyView->AddChild(fButtonBeep1);

 BView *radioGroupView;

 radioGroupView = new BView(radioGroupRect, "RadioView",
 B_FOLLOW_ALL, B_WILL_DRAW);
 fMyView->AddChild(radioGroupView);

 fRadioBeep1 = new BRadioButton(radioBeep1Rect, radioBeep1Name,
 radioBeep1Label,
 new BMessage(RADIO_BEEP_1_MSG));

 radioGroupView->AddChild(fRadioBeep1);

 fRadioBeep2 = new BRadioButton(radioBeep2Rect, radioBeep2Name,
 radioBeep2Label,
 new BMessage(RADIO_BEEP_2_MSG));

 radioGroupView->AddChild(fRadioBeep2);

 fRadioBeep3 = new BRadioButton(radioBeep3Rect, radioBeep3Name,
 radioBeep3Label,
 new BMessage(RADIO_BEEP_3_MSG));

 radioGroupView->AddChild(fRadioBeep3);

 fRadioBeep1->SetValue(B_CONTROL_ON);
 fNumBeeps = 1;

 Show();
}

Handling a radio button click

When a radio button is clicked, a message of the appropriate application-defined
type reaches the window’s MessageReceived() function. The clicking of a radio
button, like the clicking of a checkbox, typically doesn’t cause an immediate
action to occur. Such is the case in this example. MessageReceived() handles
the button click by simply setting the MyHelloWindow data member fNumBeeps to
the value indicated by the clicked-on radio button. When the user eventually clicks
on the Beep push button, beep() is invoked the appropriate number of times:

Radio Buttons 209

void MyHelloWindow::MessageReceived(BMessage* message)
{
 bigtime_t microseconds = 1000000; // one second

 switch(message->what)
 {
 case RADIO_BEEP_1_MSG:
 fNumBeeps = 1;
 break;

 case RADIO_BEEP_2_MSG:
 fNumBeeps = 2;
 break;

 case RADIO_BEEP_3_MSG:
 fNumBeeps = 3;
 break;

 case BUTTON_BEEP_MSG:
 int32 i;

 for (i = 1; i <= fNumBeeps; i++) {
 beep();
 if (i != fNumBeeps)
 snooze(microseconds);
 }
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

View Hierarchy and Controls

Chapter 4 introduced the concept of the window view hierarchy—the organiza-
tion of views within a window. In this chapter’s most recent example you’ve just
seen a window that included a number of views (keeping in mind that a control is
a type of view). Now that you’ve encountered the first example that includes sev-
eral views, this a good time to revisit the topic of the view hierarchy in order to fill
in some of the details. Figure 6-11 shows the view hierarchy for a window—an
object of the MyHelloWindow class—from the RadioButtonGroup program.

Adding views to the hierarchy

A window’s top view is always a “built-in” part of the window—you don’t explic-
itly add the top view as you add other views. The BView-derived fMyView view
lies directly below the top view, telling you that this view has been added to the
window. The BButton fButtonBeep1 view and the BView radioGroupView lie
directly below the fMyView view, so you know that each has been added to

210 Chapter 6: Controls and Messages

fMyView. Finally, the three BRadioButton views are beneath radioGroupView,
telling you that these three views have been added to radioGroupView. You can
confirm this by looking at the six AddChild() calls in the MyHelloWindow con-
structor—they indicate which parent view each view was added to:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 ...
 AddChild(fMyView);
 ...
 fMyView->AddChild(fButtonBeep1);
 ...
 fMyView->AddChild(radioGroupView);
 ...
 radioGroupView->AddChild(fRadioBeep1);
 ...
 radioGroupView->AddChild(fRadioBeep2);
 ...
 radioGroupView->AddChild(fRadioBeep3);
 ...
}

Accessing views

The names of the views in Figure 6-12 tell you how each view is referenced.

You don’t draw to the top view—it merely serves as a container for organizing
other views. To reference this view (as when adding a view to the window), refer-
ence the window itself. In the window’s constructor, just call the desired BWindow
member function, as in:

AddChild(fMyView);

Figure 6-11. The view hierarchy for the RadioButtonGroup window

Top View

fmyView

fButtonBeep1 radioGroupView

fRadioBeep2fRadioBeep1 fRadioBeep3

Radio Buttons 211

From outside a window member function, use the fMyWindow data member from
the MyHelloApplication object. If the fMyView view was to be added in the
BApplication constructor after the window was created, the call to AddChild()
would look like this:

fMyWindow->AddChild(fMyView);

The Be naming convention states that the name of a class data member should
start with a lowercase “f” character. In Figure 6-11 you see that five of the six
views below the top view are referenced by data members. To work with any one
of these views, use the data member that references it. For instance, to invoke the
BView member function FillRect() to fill a rectangle in the window’s fMyView
view, just call the routine like this:

fMyView->FillRect(aRect);

I haven’t kept a data member reference in the MyHelloWindow class to the BView
that groups the three radio buttons. If it became necessary to reference this view,
you could call the BView member function FindView() to locate the view object
and return a reference to it. Recall that when a view is created, you give it a name.
For example, the radio group view was given the name “RadioView”:

radioGroupView = new BView(radioGroupRect, "RadioView", B_FOLLOW_ALL,
 B_WILL_DRAW);
fMyView->AddChild(radioGroupView);

You can find the view at any time by calling FindView() from the parent view.
For instance, to fill a rectangle in the radio group view, call FindView() from that
view’s parent view, fMyView:

BView *aView;

aView = fMyView->FindView("RadioView");
aView->FillRect(aRect);

Keep in mind that there are always two, and may be three, refer-
ences, associated with one view. When a view is created, the view
object is returned to the program and referenced by a variable (such
as radioGroupView in the preceding example). When invoking the
BView (or BView-derived) class constructor, a name for the view is
supplied in quotes (as in “RadioView” in the preceding example).
Finally, some views have a label—a name that is displayed on the
view itself (as in a control such as a BButton—the button displays a
name such as OK or Beep).

212 Chapter 6: Controls and Messages

View Updating

In the RadioButtonGroup project, the MyHelloWindow constructor creates a view
referenced by the MyHelloWindow data member fMyView and a view referenced
by the local BView variable radioGroupView. This one MyHelloWindow construc-
tor shows two ways of working with views, so it will be worth our while to again
sidetrack from the discussion of controls in order to gain a better understanding of
the very important topic of views.

BView-derived classes and the generic BView class

In the RadioButtonGroup project, and several projects preceding it, I’ve opted to
fill the content area of a window with a view of the application-defined BView-
derived class MyDrawView. One of the chief reasons for defining such a class is to
let the system become responsible for updating a view. This is accomplished by
having my own class override the BView member function Draw().

A second way to work with a view is to not define a view class, but instead sim-
ply create a generic BView object within an application-derived routine. That’s
what the RadioButtonGroup project does in the MyHelloWindow constructor:

radioGroupView = new BView(radioGroupRect, "RadioView", B_FOLLOW_ALL,
 B_WILL_DRAW);

After you attach the new view to an existing view, drawing can take place in the
new view. For instance, if in addition to beeping, you want the program to draw a
border around the three radio buttons in response to a click on the window’s one
push button, add the following code under the BUTTON_BEEP_MSG case label in
the MessageReceived() function:

BView *radioView;
BRect radioFrame;

radioView = fMyView->FindView("RadioView");
radioFrame = radioView->Bounds();
radioView->StrokeRect(radioFrame);

Superficially, this approach of creating a generic BView and then drawing in it is
simpler than defining a BView-derived class and then implementing a Draw()
function for that class. But in taking this easier approach, you lose the benefit of
having the system take responsibility for updating the view. Consider the above
snippet. That code will nicely frame the three radio buttons. But if the window
that holds the buttons ever needs updating (and if the user is allowed to move the
window, of course at some point it will), the frame that surrounds the buttons
won’t be redrawn. The system will indeed invoke a Draw() function for
radioGroupView, but it will be the empty BView version of Draw().

Radio Buttons 213

Implementing a BView-derived class in the RadioButtonGroup project

What if I do want my RadioButtonGroup program to frame the radio buttons, and
to do so in a way that automatically updates the frame as needed? Instead of plac-
ing the radio buttons in a generic BView object, I can define a new BView-derived
class just for this purpose:

class MyRadioView : public BView {

 public:
 MyRadioView(BRect frame, char *name);
 virtual void Draw(BRect updateRect);
};

The MyRadioView constructor can be empty—just as the MyDrawView constructor
is:

MyRadioView::MyRadioView(BRect rect, char *name)
 : BView(rect, name, B_FOLLOW_ALL, B_WILL_DRAW)
{
}

 The MyRadioView version of the Draw() function is quite simple as well:

void MyRadioView::Draw(BRect)
{
 BRect frame = Bounds();

 StrokeRect(frame);
}

While I could keep track of an instance of the MyRadioView class by calling the
parent view’s FindView() function as needed, I’d opt for the method of storing a
reference to the view in the window that will hold the view. Here I’ve added such
a reference to the six existing data members in the MyHelloWindow class of the
RadioButtonGroup project:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep1;
 BRadioButton *fRadioBeep1;
 BRadioButton *fRadioBeep2;
 BRadioButton *fRadioBeep3;
 int32 fNumBeeps;
 MyRadioView *fMyRadioView;
};

214 Chapter 6: Controls and Messages

To create a MyRadioView object, I replace the generic BView creation code in the
MyHelloWindow constructor with the following:

fMyRadioView = new MyRadioView(radioGroupRect, "RadioView");
fMyView->AddChild(fMyRadioView);

Now, when a radio button is created, I add it to the MyRadioView object
fMyRadioView, like this:

fRadioBeep1 = new BRadioButton(radioBeep1Rect, radioBeep1Name,
 radioBeep1Label,
 new BMessage(RADIO_BEEP_1_MSG));

fMyRadioView ->AddChild(fRadioBeep1);

Thanks to the Draw() function of the MyRadioView class, the new radio button
group will have a border drawn around it, exactly as was shown back in
Figure 6-10. Better yet, obscuring the window and then bringing it back to the
forefront doesn’t cause the border to disappear—the update message that the
Application Server sends to the MyHelloWindow window results in the calling of
the Draw() function of each “out-of-date” view in the window.

If you want to see all of the code for this new version of the RadioButtonGroup
program, you’ll find it in the RadioButtonGroupFrame project.

If you’ve followed this discussion, you should be able to quickly
answer the following question: in the original RadioButtonGroup
project, why didn’t I create a new BView-derived class like the
MyRadioView class and use an object of that type to hold the radio
buttons? Answer: because I use the radio button view only as a
means to group the radio buttons together—I don’t draw to the
view. The simple approach of creating a BView on the fly works for
that purpose.

Text Fields
The BTextControl class is used to add a text field to a window. A text field con-
sists of both a static, uneditable label and an editable field that allows the user to
enter a single line of text. The label appears to the left of the editable field, and is
generally used to provide the user with an idea of what to enter in the editable
field (“Enter your age in years:” is an example).

A text field is often handled like a checkbox or radio button: no immediate action
is taken by the program in response to the user’s action. Typically, the program

Text Fields 215

acquires the text in the text field only when a button labeled OK, Accept, Save, or
something similar is clicked on.

If your program needs to get or set the editable text of a text field as soon as the
user has finished typing, the BTextControl accommodates you. Like other con-
trols, a text field issues a message that will be received by the
MessageReceived() function of the control’s window. Such a message is sent
when the control determines that the user has finished entering text in the edit-
able field, as indicated by a press of the Enter, Return, or Tab key or a mouse but-
ton click in the editable field of a different text field control. In all of these
instances, the text that was previously in the editable field must have been modi-
fied in order for the control to send the message. If the user, say, clicks in an edit-
able field of a text field, then presses the Enter key, no message will be sent.

Creating a Text Field

The BTextControl constructor has six parameters common to all controls, along
with a text parameter that specifies a string that is to initially appear in the edit-
able field of the text field control:

BTextControl(BRect frame,
 const char *name,
 const char *label,
 const char *text,
 BMessage *message,
 uint32 resizingMode = B_FOLLOW_LEFT | B_FOLLOW_TOP,
 uint32 flags = B_WILL_DRAW | B_NAVIGABLE)

Passing a string in the text parameter of the BTextControl constructor is useful
if you want to alert the user that a default string or value is to be used in the event
that the user doesn’t enter a string or value. If a value of NULL is passed as the
text parameter, no text initially appears in the editable field.

As with all control types, you must define a unique message constant that will be
paired with the control. To assist in keeping track of the text field control, you can
optionally include a data member in the window class in which the control is to
reside:

#define TEXT_FIELD_MSG 'txtf'

class MyWindow : public BWindow {
 ...
 private:
 BView *fView;
 BTextControl *fTextField;
}

216 Chapter 6: Controls and Messages

To create the control, pass the BTextControl constructor a boundary rectangle,
name, static text label, initial editable text, and a new BMessage object. Then add
the new text field to the view the control will reside in:

BRect textFieldRect(20.0, 20.0, 120.0, 50.0);

fTextField = new BTextControl(textFieldRect, "TextField",
 "Number of dependents:", "0",
 new BMessage(TEXT_FIELD_MSG));

fMyView->AddChild(fTextField);

Getting and Setting the Text

After creating a text field control, your program can obtain or set the editable field
text at any time. To obtain the text currently in the text field, invoke the
BTextControl member function Text(). Here, the text in a control is returned to
the program and saved to a string named textFieldText:

char *textFieldText;

textFieldText = fTextField->Text();

The text that appears in the editable field of the control is initially set in the
BTextControl constructor, and is then edited by the user. The contents of the
editable field can also be set at any time by your program by invoking the
BTextControl member function SetText(). This routine overwrites the current
contents of the editable field with the string that was passed to SetText(). Here
the current contents of a control’s editable field are obtained and checked for
validity. If the user-entered string isn’t consistent with what’s expected, the string
“Invalid Entry” is written in place of the incorrect text the user entered:

char *textFieldText;
bool textValid;

textFieldText = fTextField->Text();
...
// check for validity of user-entered text that's now held in textFieldText
...
if (!textValid)
 fTextField->SetText("Invalid Entry");

Reproportioning the Static Text and Editable
Text Areas

The label parameter specifies the static text that is to appear to the left of the
editable field. If NULL is passed here, all of the control’s boundary rectangle (as
defined by the frame parameter) is devoted to the text field. Any label string
other than NULL tells the constructor to devote half the width of the frame

Text Fields 217

rectangle to the static text label and the other half of this rectangle to the editable
text area. Consider this snippet:

BRect textFieldRect(20.0, 60.0, 220.0, 90.0);

fTextField = new BTextControl(textFieldRect, "TextField",
 "Name:", "George Washington Carver",
 new BMessage(TEXT_FIELD_MSG));

fMyView->AddChild(fTextField);

In this code, a text field control with a width of 200 pixels is created. By default,
the static text field and the editable text field of the control each have a width that
is one-half of the control’s boundary rectangle, or 100 pixels. The result is shown
in the top window in Figure 6-12. Because the label is a short string, and because
the value that might be entered in the editable text field may be a long string, it
would make sense and be more aesthetically pleasing to change the proportions
of the two text areas. Instead of devoting 100 pixels to the static text label
“Name:”, it would be better to give that text just, say, 35 pixels of the 200 pixels
that make up the control’s width. Such reproportioning is possible using the
BTextControl member function SetDivider().

When passed a floating-point value, SetDivider() re-establishes the dividing
point between the two text areas of a text field control. SetDivider() uses the
BTextControl object’s local coordinate system (meaning that the left edge of the
text edit control has a value of 0.0, regardless of where the control is positioned in
a window). The following addition to the above snippet changes the ratio to 35
pixels for the static text field and 165 pixels for the editable text field. The bottom
window in Figure 6-12 shows the result. Notice that the placement and overall
width of the control are unaffected by the call to SetDivider().

Figure 6-12. The two areas of a text field control can be proportioned in different ways

218 Chapter 6: Controls and Messages

float xCoordinate = 35.0;

fTextField->SetDivider(xCoordinate);

Text Field Example Project

The TextField project demonstrates how to include a text field in a window, obtain
that control’s user-entered string, and make use of that string elsewhere. When the
user clicks the window’s button, the program gets the string from the text field and
uses that string as the new label for the push button. Figure 6-13 shows the pro-
gram’s window after the button has been clicked.

Preparing the window class for the text field

The MyHelloWindow.h header file is edited to include a control message constant
for the window’s two controls.

#define BUTTON_BEEP_1_MSG 'bep1'
#define TEXT_NEW_TITLE_MSG 'newT'

To keep track of the window’s views, the MyHelloWindow class now holds three
data members:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BButton *fButtonBeep1;
 BTextControl *fTextNewTitle;
};

Figure 6-13. The window that results from running the TextField program

Text Fields 219

Creating the text field

The text field and button information are defined together just before the imple-
mentation of the MyHelloWindow constructor. The push button label will initially
be “Beep One” and the text that will appear initially in the editable field of the text
field control is the string “Beep Me!”:

BRect buttonBeep1Rect(20.0, 105.0, 110.0, 135.0);
BRect textNewTitleRect(20.0, 60.0, 260.0, 90.0);
const char *buttonBeep1Name = "Beep1";
const char *textNewTitleName = "TextTitle";
const char *buttonBeep1Label = "Beep One";
const char *textNewTitleLabel = "Enter New Button Name:";
const char *textNewTitleText = "Beep Me!";

The MyHelloWindow constructor creates the window’s main view, then creates
and adds the button control and text field control to that view:

MyHelloWindow::MyHelloWindow(BRect frame)
 : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_RESIZABLE)
{
 frame.OffsetTo(B_ORIGIN);
 fMyView = new MyDrawView(frame, "MyDrawView");
 AddChild(fMyView);

 fButtonBeep1 = new BButton(buttonBeep1Rect, buttonBeep1Name,
 buttonBeep1Label,
 new BMessage(BUTTON_BEEP_1_MSG));

 fMyView->AddChild(fButtonBeep1);

 fTextNewTitle = new BTextControl(textNewTitleRect, textNewTitleName,
 textNewTitleLabel, textNewTitleText,
 new BMessage(TEXT_NEW_TITLE_MSG));

 fMyView->AddChild(fTextNewTitle);

 Show();
}

Handling a text field entry and a button click

A program can make use of a text field control in two ways. First, a window can
obtain the user-entered text from a text field control at any time—without regard
for whether the text field has issued a message. Second, a window can await a
message sent by the text field and then respond. The MessageReceived() func-
tion demonstrates both these options.

When the window’s push button is clicked, the window receives a message from
the button. At that time, the editable text of the text field control is retrieved and
used in a call to the button’s SetLabel() function. While the retrieving of the text

220 Chapter 6: Controls and Messages

field control’s editable text takes place in response to a message, that message is
one issued by the push button—not the text field control.

When the user clicks in the text field, that control becomes the focus view. Recall
from Chapter 4 that a window can have only one focus view, and that view
becomes the recipient of keystrokes. Once a text field is the focus view (as indi-
cated by the editable text field being highlighted and the I-beam appearing in it),
and once that control’s editable text has been altered in any way, the control is
capable of sending a message. That happens when the user presses the Return,
Enter, or Tab key. In response to a message sent by the text field control,
MessageReceived() resets the push button’s label to its initial title of “Beep One”
(as defined by the buttonBeep1Label constant):

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_BEEP_1_MSG:
 char *textFieldText;

 textFieldText = fTextNewTitle->Text();
 fButtonBeep1->SetLabel(textFieldText);
 beep();
 break;

 case TEXT_NEW_TITLE_MSG:
 fButtonBeep1->SetLabel(buttonBeep1Label);
 break;

 default:
 BWindow::MessageReceived(message);
 }
}

Multiple Control Example Project
The numerous example projects in this chapter demonstrated how to incorporate
one, or perhaps two, types of controls in a window. Your real-world program
might very well include numerous controls. ControlDemo is such a program—its
one window holds the six controls shown in Figure 6-14.

To use ControlDemo, enter a number in the range of 1 to 9 in the text field con-
trol, click a radio button control to choose one of three drawing colors, then click
the Draw button. The ControlDemo program responds by drawing colored, over-
lapping circles. The number of circles drawn is determined by the value entered in
the text field. Before drawing the circles, ControlDemo erases the drawing area—
so you can try as many combinations of circles and colors as you want. You can

Multiple Control Example Project 221

also click the Disable colors checkbox to disable the radio buttons and force draw-
ing to take place in the last selected color.

Preparing the Window Class for the Controls

The program’s window holds six controls, so you can expect to see six applica-
tion-defined message constants in the MyHelloWindow.h file:

#define BUTTON_DRAW_MSG 'draw'
#define RADIO_RED_MSG 'rred'
#define RADIO_GREEN_MSG 'rgrn'
#define RADIO_BLACK_MSG 'rblk'
#define TEXT_NUM_CIRCLES_MSG 'crcl'
#define CHECKBOX_SET_COLOR_MSG 'setc'

Each control is kept track of by a data member in the MyHelloWindow class.
There’s also the familiar data member that exists to keep track of the window’s
main view:

class MyHelloWindow : public BWindow {

 public:
 MyHelloWindow(BRect frame);
 virtual bool QuitRequested();
 virtual void MessageReceived(BMessage* message);

 private:
 MyDrawView *fMyView;
 BTextControl *fTextNumCircles;
 BCheckBox *fCheckBoxSetColor;
 BRadioButton *fRadioRed;
 BRadioButton *fRadioGreen;
 BRadioButton *fRadioBlack;
 BButton *fButtonDraw;
};

Figure 6-14. The window that results from running the ControlDemo program

222 Chapter 6: Controls and Messages

Creating the Controls

All of the variables that are to be used as arguments to the control constructors are
declared together in MyHelloWindow.cpp. Each of the controls is then created in
the MyHelloWindow constructor. There are no surprises here—just use new with
the appropriate control constructor and assign the resulting object to the proper
MyHelloWindow data member.

You should be quite familiar with this process by now. To see the complete
MyHelloWindow constructor listing, refer to MyHelloWindow.cpp.

Handling the Messages

All application-defined control messages are handled in the body of the switch
statement in MessageReceived(). The checkbox message is handled by first
checking the control’s value, then disabling or enabling the three radio buttons as
appropriate:

case CHECKBOX_SET_COLOR_MSG:
 int32 checkBoxState;

 checkBoxState = fCheckBoxSetColor->Value();
 if (checkBoxState == B_CONTROL_ON) {
 fRadioRed->SetEnabled(false);
 fRadioGreen->SetEnabled(false);
 fRadioBlack->SetEnabled(false);
 }
 else {
 fRadioRed->SetEnabled(true);
 fRadioGreen->SetEnabled(true);
 fRadioBlack->SetEnabled(true);
 }
 break;

Each of the radio buttons does nothing more than set the high color to an RGB
color that matches the button’s label:

case RADIO_RED_MSG:
 fMyView->SetHighColor(255, 0, 0, 255);
 break;

case RADIO_GREEN_MSG:
 fMyView->SetHighColor(0, 255, 0, 255);
 break;

case RADIO_BLACK_MSG:
 fMyView->SetHighColor(0, 0, 0, 255);
 break;

Multiple Control Example Project 223

Clicking the Draw button results in a number of colored circles being drawn. Here
the text field value is obtained to see how many circles to draw, and the high
color is used in the drawing of those circles. Before drawing the circles, any old
drawing is erased by whiting out an area of the window that is at least as big as
the drawing area:

case BUTTON_DRAW_MSG:
 int32 numCircles;
 int32 i;
 BRect areaRect(160.0, 70.0, 270.0, 180.0);
 BRect circleRect(160.0, 70.0, 210.0, 120.0);
 const char *textFieldText;

 textFieldText = fTextNumCircles->Text();
 numCircles = (int32)textFieldText[0] - 48;

 if ((numCircles < 1) || (numCircles > 9))
 numCircles = 5;

 fMyView->FillRect(areaRect, B_SOLID_LOW);

 for (i=1; i<=numCircles; i++) {
 fMyView->StrokeEllipse(circleRect, B_SOLID_HIGH);
 circleRect.OffsetBy(4.0, 4.0);
 }
 break;

The text field message is completely ignored. The program obtains the editable
text when the user clicks the Draw button. As written, the program checks the text
field input to see if the user entered a numeric character in the range of 1 to 9. If
any other value (or character or string) has been entered, the program arbitrarily
sets the number of circles to draw to five. This is a less-than-perfect way of doing
things in that it allows the user to enter an invalid value. One way to improve the
program would be to have the program react to a text field control message. That
type of message is delivered to MessageReceived() when the user ends a typ-
ing session (that is, when the user clicks elsewhere, or presses the Enter, Return,
or Tab key). MessageReceived() could then check the user-entered value and, if
invalid, set the editable text area to a valid value (and, perhaps, post a window
that informs the user what has taken place).

Modifying the ControlDemo Project

What the program draws isn’t important to the demonstration of how to include a
number of controls in a window. With the graphics information found in Chapter 4
you should be able to modify ControlDemo so that it draws something far more
interesting. Begin by enlarging the window so that you have some working room.
In the MyHelloWorld.cpp file, change the size of the BRect passed to the

224 Chapter 6: Controls and Messages

MyHelloWindow constructor. Here I’m setting the window to have a width of 500
pixels and a height of 300 pixels:

aRect.Set(20, 30, 520, 430);
fMyWindow = new MyHelloWindow(aRect);

Limiting drawing to only three colors isn’t a very user-friendly thing to do, so your
next change might be to include a BColorControl object that lets the user
choose any of the 256 system colors. The details of working with a color control
were covered back in Chapter 5. Recall that you can easily support this type of
control by first adding a BColorControl data member to the MyHelloWindow
class:

class MyHelloWindow : public BWindow {
 ...
 ...
 BColorControl *fColorControl;
};

Then, in the MyHelloWindow constructor, create the control and add it to the win-
dow. You’ll need to determine the appropriate coordinates for the BPoint and a
suitable Be-defined constant for the color_control_layout in order to position
the color control in the window you’re designing:

BPoint leftTop(20.0, 50.0);
color_control_layout matrix = B_CELLS_4x64;
long cellSide = 16;

fColorControl = new BColorControl(leftTop, matrix, cellSide, "ColorControl");
AddChild(fColorControl);

Finally, when it comes time to draw, check to see which color the user has
selected from the color control. You can do that when the user clicks the Draw
button:

void MyHelloWindow::MessageReceived(BMessage* message)
{
 switch(message->what)
 {
 case BUTTON_DRAW_MSG:
 rgb_color userColorChoice;

 userColorChoice = fColorControl->ValueAsColor();
 SetHighColor(userColorChoice);

 // now load up this section with plenty of graphics-drawing code
 break;

 ...
 ...

 default:

Multiple Control Example Project 225

 BWindow::MessageReceived(message);
 }
}

Now, review Chapter 4 to come up some ideas for drawing some really interest-
ing graphics. Then add them under the BUTTON_DRAW_MSG case label in
MessageReceived()!

