

The HLA Compile-Time Language

e-time

g

on

r

rv

Macros Chapter Eight

8.1 Chapter Overview

This chapter continues where the previous chapter left off – continuing to discuss the HLA compile time
language. This chapter discusses what is, perhaps, the most important component of the HLA compil
language, macros. Many people judge the power of an assembler by the power of its macro processing capa-
bilities. If you happen to be one of these people, you’ll probably agree that HLA is one of the more powerful
assemblers on the planet after reading this chapter; because HLA has one of the most powerful macro pro-
cessing facilities of any computer language processing system.

8.2 Macros (Compile-Time Procedures)

Macros are symbols that a language processor replaces with other text during compilation. Macros are
great devices for replacing long repetitive sequences of text with much shorter sequences of text. In addi-
tional to the traditional role that macros play (e.g., "#define" in C/C++), HLA’s macros also serve as the
equivalent of a compile-time language procedure or function. Therefore, macros are very important in
HLA’s compile-time language; just as important as functions and procedures are in other high level lan-
guages.

Although macros are nothing new, HLA’s implementation of macros far exceeds the macro processin
capabilities of most other programming languages (high level or low level). The following sections explore
HLA’s macro processing facilities and the relationship between macros and other HLA CTL control c-
structs.

8.2.1 Standard Macros

HLA supports a straight-forward macro facility that lets you define macros in a manner that is simila
to declaring a procedure. A typical, simple, macro declaration takes the following form:

#macro macroname;

<< macro body >>

#endmacro;

Although macro and procedure declarations are similar, there are several immediate differences
between the two that are obvious from this example. First, of course, macro declarations use the reseed
word #MACRO rather than PROCEDURE. Second, you do not begin the body of the macro with a
"BEGIN macroname;" clause. This is because macros don’t have a declaration section like procedures so
there is no need for a keyword that separates the macro declarations from the macro body. Finally, you will
note that macros end with the "#ENDMACRO" clause rather than "END macroname;" The following is a
concrete example of a macro declaration:

#macro neg64;

neg(edx);
neg(eax);
sbb(0, edx);

#endmacro;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 969

Chapter Eight

Volume Four

(see

edure

at mac
re in the

ros are
nstruc-
vocation
e of the
ughout
 more
 execu-
dy of a

s

ic) vari-
) recur-
Execution of this macro’s code will compute the two’s complement of the 64-bit value in EDX:EAX
“Extended Precision NEG Operations” on page 872).

To execute the code associated with neg64, you simply specify the macro’s name at the point you want
to execute these instructions, e.g.,

mov((type dword i64), eax);
mov((type dword i64+4), edx);
neg64;

Note that you do not follow the macro’s name with a pair of empty parentheses as you would a proc
call (the reason for this will become clear a little later).

Other than the lack of parentheses following neg64’s invocation1 this looks just like a procedure call.
You could implement this simple macro as a procedure using the following procedure declaration:

procedure neg64p;
begin neg64p;

neg(edx);
neg(eax);
sbb(0, edx);

end neg64p;

Note that the following two statements will both negate the value in EDX:EAX:

neg64; neg64p();

The difference between these two (i.e., the macro invocation versus the procedure call) is the fact th-
ros expand their text in-line whereas a procedure call emits a call to the associate procedure elsewhe
text. That is, HLA replaces the invocation "neg64;" directly with the following text:

neg(edx);
neg(eax);
sbb(0, edx);

On the other hand, HLA replaces the procedure call "neg64p();" with the single call instruction:

call neg64p;

Presumably, you’ve defined the neg64p procedure earlier in the program.

You should make the choice of macro versus procedure call on the basis of efficiency. Mac
slightly faster than procedure calls because you don’t execute the CALL and corresponding RET i
tions. On the other hand, the use of macros can make your program larger because a macro in
expands to the text of the macro’s body on each invocation. Procedure calls jump to a single instanc
procedure’s body. Therefore, if the macro body is large and you invoke the macro several times thro
your program, it will make your final executable much larger. Also, if the body of your macro executes
than a few simple instructions, the overhead of a CALL/RET sequence has little impact on the overall
tion time of the code, so the execution time savings are nearly negligible. On the other hand, if the bo
procedure is very short (like the neg64 example above), you’ll discover that the macro implementation i
much faster and doesn’t expand the size of your program by much. Therefore, a good rule of thumb is

❏ Use macros for short, time-critical program units. Use procedures for longer blocks
of code and when execution time is not as critical.

Macros have many other disadvantages over procedures. Macros cannot have local (automat
ables, macro parameters work differently than procedure parameters, macros don’t support (run-time

1. To differentiate macros and procedures, this text will use the term invocation when describing the use of a macro and call
when describing the use of a procedure.
Page 970 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

u

r

is
LA

 a pro-

paren

r

sion, and macros are a little more difficult to debug than procedures (just to name a few disadvantages).
Therefore, you shouldn’t really use macros as a substitute for procedures except in some rare situations.

8.2.2 Macro Parameters

Like procedures, macros allow you to define parameters that let you supply different data on each macro
invocation. This lets you write generic macros whose behavior can vary depending on the parameters yo
supply. By processing these macro parameters at compile-time, you can write very sophisticated macros.

Macro parameter declaration syntax is very straight-forward. You simply supply a list of paramete
names within parentheses in a macro declaration:

#macro neg64(reg32HO, reg32LO);

neg(reg32HO);
neg(reg32LO);
sbb(0, reg32HO);

#endmacro;

Note that you do not associate a data type with a macro parameter like you do procedural parameters. Th
is because HLA macros are always text objects. The next section will explain the exact mechanism H
uses to substitute an actual parameter for a formal parameter.

When you invoke a macro, you simply supply the actual parameters the same way you would for
cedure call:

neg64(edx, eax);

Note that a macro invocation that requires parameters expects you to enclose the parameter list within -
theses.

8.2.2.1 Standard Macro Parameter Expansion

As the previous section explains, HLA automatically associates the type text with macro parameters.
This means that during a macro expansion, HLA substitutes the text you supply as the actual paramete
everywhere the formal parameter name appears. The semantics of "pass by textual substitution" are a little
different than "pass by value" or "pass by reference" so it is worthwhile exploring those differences here.

Consider the following macro invocations, using the neg64 macro from the previous section:

neg64(edx, eax);
neg64(ebx, ecx);

These two invocations expand into the following code:

// neg64(edx, eax);

neg(edx);
neg(eax);
sbb(0, edx);

// neg64(ebx, ecx);

neg(ebx);
neg(ecx);
sbb(0, ebx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 971

Chapter Eight Volume Four

sion

truction
l param-
egister,

e
s
as (and

tring
Note that macro invocations do not make a local copy of the parameters (as pass by value does) nor do
they pass the address of the actual parameter to the macro. Instead, a macro invocation of the form
"neg64(edx, eax);" is equivalent to the following:

?reg32HO: text := "edx";
?reg32LO: text := "eax";

neg(reg32HO);
neg(reg32LO);
sbb(0, reg32HO);

Of course, the text objects immediately expand their string values in-line, producing the former expan
for "neg64(edx, eax);".

Note that macro parameters are not limited to memory, register, or constant operands as are ins
or procedure operands. Any text is fine as long as its expansion is legal wherever you use the forma
eter. Similarly, formal parameters may appear anywhere in the macro body, not just where memory, r
or constant operands are legal. Consider the following macro declaration and sample invocations:

#macro chkError(instr, jump, target);

instr;
jump target;

#endmacro;

chkError(cmp(eax, 0), jnl, RangeError); // Example 1
...

chkError(test(1, bl), jnz, ParityError); // Example 2

// Example 1 expands to

cmp(eax, 0);
jnl RangeError;

// Example 2 expands to

test(1, bl);
jnz ParityError;

In general, HLA assumes that all text between commas constitutes a single macro parameter. If HLA
encounters any opening "bracketing" symbols (left parentheses, left braces, or left brackets) then it will
include all text up to the appropriate closing symbol, ignoring any commas that may appear within th
bracketing symbols. This is why the chkError invocations above treat "cmp(eax, 0)" and "test(1, bl)" a
single parameters rather than as a pair of parameters. Of course, HLA does not consider comm
bracketing symbols) within a string constant as the end of an actual parameter. So the following macro and
invocation is perfectly legal:

#macro print(strToPrint);

stdout.out(strToPrint);

#endmacro;
.
.
.
print("Hello, world!");

HLA treats the string "Hello, world!" as a single parameter since the comma appears inside a literal s
constant, just as your intuition suggests.
Page 972 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

er

tu

e eight

ile-time
rite the

nerate
ree with
ading...
If you are unfamiliar with textual macro parameter expansion in other languages, you should be aware
that there are some problems you can run into when HLA expands your actual macro parameters. Consid
the following macro declaration an invocation:

#macro Echo2nTimes(n, theStr);

?echoCnt: uns32 := 0;
#while(echoCnt < n*2)

#print(theStr)
?echoCnt := echoCnt + 1;

#endwhile

#endmacro;

.

.

.
Echo2nTimes(3+1, "Hello");

This example displays "Hello" five times during compilation rather than the eight times you might in-
itively expect. This is because the #WHILE statement above expands to

#while(echoCnt < 3+1*2)

The actual parameter for n is "3+1", since HLA expands this text directly in place of n, you get the text
above. Of course, at compile time HLA computes "3+1*2" as the value five rather than as the valu
(which you would get had HLA passed this parameter by value rather than by textual substitution).

The common solution to this problem, when passing numeric parameters that may contain comp
expressions, is to surround the formal parameter in the macro with parentheses. E.g., you would rew
macro above as follows:

#macro Echo2nTimes(n, theStr);

?echoCnt: uns32 := 0;
#while(echoCnt < (n)*2)

#print(theStr)
?echoCnt := echoCnt + 1;

#endwhile

#endmacro;

The previous invocation would expand to the following code:

?echoCnt: uns32 := 0;
#while(echoCnt < (3+1)*2)

#print(theStr)
?echoCnt := echoCnt + 1;

#endwhile

This version of the macro produces the intuitive result.

If the number of actual parameters does not match the number of formal parameters, HLA will ge
a diagnostic message during compilation. Like procedures, the number of actual parameters must ag
the number of formal parameters. If you would like to have optional macro parameters, then keep re
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 973

Chapter Eight Volume Four

A
a
en
eter

n
rs
o

r

f

s

o

8.2.2.2 Macros with a Variable Number of Parameters

You may have noticed by now that some HLA macros don’t require a fixed number of parameters. For
example, the stdout.put macro in the HLA Standard Library allows one or more actual parameters. HL
uses a special array syntax to tell the compiler that you wish to allow a variable number of parameters in
macro parameter list. If you follow the last macro parameter in the formal parameter list with "[]" th
HLA will allow a variable number of actual parameters (zero or more) in place of that formal param.
E.g.,

#macro varParms(varying[]);

<< macro body >>

#endmacro;
.
.
.
varParms(1);
varParms(1, 2);
varParms(1, 2, 3);
varParms();

Note, especially, the last example above. If a macro has any formal parameters, you must supply pare-
theses with the macro list after the macro invocation. This is true even if you supply zero actual paramete
to a macro with a varying parameter list. Keep in mind this important difference between a macro with n
parameters and a macro with a varying parameter list but no actual parameters.

When HLA encounters a formal macro parameter with the "[]" suffix (which must be the last paramete
in the formal parameter list), HLA creates a constant string array and initializes that array with the text asso-
ciated with the remaining actual parameters in the macro invocation. You can determine the number o
actual parameters assigned to this array using the @ELEMENTS compile-time function. For example,
"@elements(varying)" will return some value, zero or greater, that specifies the total number of parameter
associated with that parameter. The following declaration for varParms demonstrates how you might use
this:

#macro varParms(varying[]);

?vpCnt := 0;
#while(vpCnt < @elements(varying))

#print(varying[vpCnt])
?vpCnt := vpCnt + 1;

#endwhile

#endmacro;
.
.
.
varParms(1); // Prints "1" during compilation.
varParms(1, 2); // Prints "1" and "2" on separate lines.
varParms(1, 2, 3); // Prints "1", "2", and "3" on separate lines.
varParms(); // Doesn’t print anything.

Since HLA doesn’t allow arrays of text objects, the varying parameter must be an array of strings. This,
unfortunately, means you must treat the varying parameters differently than you handle standard macr
parameters. If you want some element of the varying string array to expand as text within the macro body,
you can always use the @TEXT function to achieve this. Conversely, if you want to use a non-varying for-
Page 974 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

mber

cro
h the
mal parameter as a string object, you can always use the @STRING:name operator. The following example
demonstrates this:

#macro ReqAndOpt(Required, optional[]);

?@text(optional[0]) := @string:ReqAndOpt;
#print(@text(optional[0]))

#endmacro;

.

.

.
ReqAndOpt(i, j);

// The macro invocation above expands to

?@text("j") := @string:i;
#print("j")

// The above further expands to

j := "i";
#print(j)

// The above simply prints "i" during compilation.

Of course, it would be a good idea, in a macro like the above, to verify that there are at least two param-
eters before attempting to reference element zero of the optional parameter. You can easily do this as fol-
lows:

#macro ReqAndOpt(Required, optional[]);

#if(@elements(optional) > 0)

?@text(optional[0]) := @string:ReqAndOpt;
#print(@text(optional[0]))

#else

#error("ReqAndOpt must have at least two parameters")

#endif

#endmacro;

8.2.2.3 Required Versus Optional Macro Parameters

As noted in the previous section, HLA requires exactly one actual parameter for each non-varying for-
mal macro parameter. If there is no varying macro parameter (and there can be at most one) then the nu
of actual parameters must exactly match the number of formal parameters. If a varying formal parameter is
present, then there must be at least as many actual macro parameters as there are non-varying (or required)
formal macro parameters. If there is a single, varying, actual parameter, then a macro invocation may have
zero or more actual parameters.

There is one big difference between a macro invocation of a macro with no parameters and a ma
invocation of a macro with a single, varying, parameter that has no actual parameters: the macro wit
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 975

Chapter Eight Volume Four

LE

,

 to

upon

You
varying parameter list must have an empty set of parentheses after it while the macro invocation of the macro
without any parameters does not allow this. You can use this fact to your advantage if you wish to write a
macro that doesn’t have any parameters but you want to follow the macro invocation with "()" so that it
matches the syntax of a procedure call with no parameters. Consider the following macro:

#macro neg64(JustForTheParens[]);

#if(@elements(JustForTheParens) = 0)

neg(edx);
neg(eax);
sbb(0, edx);

#else

#error("Unexpected operand(s)")

#endif

#endmacro;

The macro above allows invocations of the form "neg64();" using the same syntax you would use for a
procedure call. This feature is useful if you want the syntax of your parameterless macro invocations to
match the syntax of a parameterless procedure call. It’s not a bad idea to do this, just in the off chance you
need to convert the macro to a procedure at some point (or vice versa, for that matter).

If, for some reason, it is more convenient to operate on your macro parameters as string objects rather
than text objects, you can specify a single varying parameter for the macro and then use #IF and @E-
MENTS to enforce the number of required actual parameters.

8.2.2.4 The "#(" and ")#" Macro Parameter Brackets

Once in a (really) great while, you may want to include arbitrary commas (i.e., outside a bracketing
pair) within a macro parameter. Or, perhaps, you might want to include other text as part of a macro expan-
sion that HLA would normally process before storing away the text as the value for the formal parameter2.
The "#(" and ")#" bracketing symbols tell HLA to collect all text, except for surrounding whitespace
between these two symbols and treat that text as a single parameter. Consider the following macro:

#macro PrintName(theParm);

?theName := @string:theParm;
#print(theName)

#endmacro;

Normally, this macro will simply print the text of the actual parameter you pass to it. So were you
invoke the macro with "PrintName(j);" HLA would simply print "j" during compilation. This occurs
because HLA associates the parameter data ("j") with the string value for the text object theParm. The
macro converts this text data to a string, puts the string data in theName, and then prints this string.

Now consider the following statements:

?tt:text := "j";
PrintName(tt);

This macro invocation will also print "j". The reason is that HLA expands text constants immediately
encountering them. So after this expansion, the invocation above is equivalent to

2. For example, HLA will normally expand all text objects prior to the creation of the data for the formal parameter.
might not want this expansion to occur.
Page 976 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

w

ters

rs
PrintName(j);

So this macro invocation prints "j" for the same reason the last example did.

What if you want the macro to print "tt" rather than "j"? Unfortunately, HLA’s eager evaluation of the
text constant gets in the way here. However, if you bracket "tt" with the "#(" and ")#" brackets, you can
instruct HLA to defer the expansion of this text constant until it actually expands the macro. I.e., the follow-
ing macro invocation prints "tt" during compilation:

PrintName(#(tt)#);

Note that HLA allows any amount of arbitrary text within the "#(" and ")#" brackets. This can include
commas and other arbitrary text. The following macro invocation prints "Hello, World!" during compila-
tion:

PrintName(#(Hello, World!)#);

Normally, HLA would complain about the mismatched number of parameters since the comma ould
suggest that there are two parameters here. However, the deferred evaluation brackets tell HLA to consider
all the text between the "#(" and ")#" symbols as a single parameter.

8.2.2.5 Eager vs. Deferred Macro Parameter Evaluation

HLA uses two schemes to process macro parameters. As you saw in the previous section, HLA uses
eager evaluation when processing text constants appearing in a macro parameter list. You can force deferred
evaluation of the text constant by surrounding the text with the "#(" and ")#" brackets. For other types of
operands, HLA uses deferred macro parameter evaluation. This section discusses the difference between
these two forms and describes how to force eager evaluation if necessary.

Eager evaluation occurs while HLA is collecting the text associated with each macro parameter. For
example, if "T" is a text constant containing the string "U" and "M" is a macro, then when HLA encoun
"M(T)" it will fi rst expand "T" to "U". Then HLA processes the macro invocation "M(U)" as though you
had supplied the text "U" as the parameter to begin with.

Deferred evaluation of macro parameters means that HLA does not process the parameter(s), but rather
passes the text unchanged to the macro. Any expansion of the text associated with macro parameters occu
within the macro itself. For example, if M and N are both macros accepting a single parameter, then the
invocation "M(N(0))" defers the evaluation of "N(0)" until HLA processes the macro body. It does not
evaluate "N(0)" first and pass this expansion as a parameter to the macro. The following program demon-
strates eager and deferred evaluation:

// This program demonstrates the difference
// between deferred and eager macro parameter
// processing.

program EagerVsDeferredEvaluation;

macro ToDefer(tdParm);

 #print("ToDefer: ", @string:tdParm)
 @string:tdParm

endmacro;

macro testEVD(theParm);

 #print("testEVD:'", @string:theParm, "'")
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 977

Chapter Eight Volume Four

ing

A

endmacro;

const

 txt:text := "Hello";
 str:string := "there";

begin EagerVsDeferredEvaluation;

 testEVD(str); // Deferred evaluation.
 testEVD(txt); // Eager evaluation.
 testEVD(ToDefer(World)); //Deferred evaluation.

end EagerVsDeferredEvaluation;

Program 8.1 Eager vs. Deferred Macro Parameter Evaluation

Note that the macro testEVD outputs the text associated with the formal parameter as a string dur
compilation. When you compile Program 8.1 it produces the following output:

testEVD:’Hello’
testEVD:’Hello’
testEVD:’ToDefer(World)’

The first line prints ’Hello’ because this is the text supplied as a parameter for the first call to testEVD.
Since this is a string constant, not a text constant, HLA uses deferred evaluation. This means that it passes
the text appearing between the parentheses unchanged to the testEVD macro. That text is "Hello" hence the
same output as the parameter text.

The second testEVD invocation prints ’Hello’. This is because the macro parameter, txt, is a text object.
HLA eagerly processes text constants before invoking the macro. Therefore, HLA translates "testEVD(txt)"
to "testEVD(Hello)" prior to invoking the macro. Since the macro parameter text is now "Hello", that’s what
HLA prints during compilation while processing this macro.

The third invocation of testEVD above is semantically identical to the first. It is present just to demon-
strate that HLA defers processing macros just like it defers the processing of everything else except text con-
stants.

Although the code in Program 8.1 does not actually evaluate the ToDefer macro invocation, this is only
because the body of testEVD does not directly use the parameter. Instead, it converts theParm to a string and
prints its value. Had this code actually referred to theParm in an expression (or as a statement), then HL
would have invoked ToDefer and let it do its job. Consider the following modification to the above program:

// This program demonstrates the difference
// between deferred and eager macro parameter
// processing.

program DeferredEvaluation;

macro ToDefer(tdParm);

 @string:tdParm

endmacro;
Page 978 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

 In Pro-
e

r

macro testEVD(theParm);

 #print("Hello ", theParm)

endmacro;

begin DeferredEvaluation;

 testEVD(ToDefer(World));

end DeferredEvaluation;

Program 8.2 Deferred Macro Parameter Expansion

The macro invocation "testEVD(ToDefer(World));" defers the evaluation of its parameter. Therefore,
the actual parameter theParm is a text object containing the string "ToDefer(World)". Inside the testEVD
macro, HLA encounters theParm and expands it to this string, i.e.,

#print("Hello ", theParm)

expands to

#print("Hello ", ToDefer(World))

When HLA processes the #PRINT statement, it eagerly processes all parameters. Therefore, HLA
expands the statement above to

#print("Hello ", "World")

since "ToDefer(World)" expands to @string:tdParm and that expands to "World".

Most of the time, the choice between deferred and eager evaluation produces the same result.
gram 8.2, for example, it doesn’t matter whether the ToDefer macro expansion is eager (thus passing th
string "World" as the parameter to testEVD) or deferred. Either mechanism produces the same output.

There are situations where deferred evaluation is not interchangeable with eager evaluation. The fol-
lowing program demonstrates a problem that can occur when you use deferred evaluation rather than eage
evaluation. In this example the program attempts to pass the current line number in the source file as a
parameter to a macro. This does not work because HLA expands (and evaluates) the @LINENUMBER
function call inside the macro on every invocation. Therefore, this program always prints the same line
number (eight) regardless of the invocation line number:

// This program a situation where deferred
// evaluation fails to work properly.

program DeferredFails;

macro printAt(where);

 #print("at line ", where)

endmacro;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 979

Chapter Eight Volume Four

o state
e line

 macro

of all, of

ng
begin DeferredFails;

 printAt(@linenumber);
 printAt(@lineNumber);

end DeferredFails;

Program 8.3 An Example Where Deferred Evaluation Fails to Work Properly

Intuitively, this program should print:

at line 14
at line 15

Unfortunately, because of deferred evaluation, the two printAt invocations simply pass the text "@linenum-
ber" as the actual parameter value rather than the string representing the line numbers of these tw-
ments in the program. Since the formal parameter always expands to @LINENUMBER on the sam
(line eight), this program always prints the same line number regardless of the line number of the
invocation.

If you need an eager evaluation of a macro parameter there are three ways to achieve this. First
course, you can specify a text object as a macro parameter and HLA will immediately expand that object
prior to passing it as the macro parameter. The second option is to use the @TEXT function (with a stri
parameter). HLA will also immediately process this object, expanding it to the appropriate text, prior to pro-
cessing that text as a macro parameter. The third option is to use the @EVAL pseudo-function. Within a
macro invocation’s parameter list, the @EVAL function instructs HLA to evaluate the @EVAL parameter
prior to passing the text to the macro. Therefore, you can correct the problem in Program 8.3 by using the
following code (which properly prints at "at line 14" and "at line 15"):

// This program a situation where deferred
// evaluation fails to work properly.

program EvalSucceeds;

macro printAt(where);

 #print("at line ", where)

endmacro;

begin EvalSucceeds;

 printAt(@eval(@linenumber));
 printAt(@eval(@lineNumber));

end EvalSucceeds;

Program 8.4 Demonstration of @EVAL Compile-time Function

In addition to immediately processing built-in compiler functions like @LINENUMBER, the @EVAL
pseudo-function will also invoke any macros appearing in the @EVAL parameter. @EVAL usually leaves
other values unchanged.
Page 980 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

re than

,
ymbol
invoca

ce
8.2.3 Local Symbols in a Macro

Consider the following macro declaration:

macro JZC(target);

jnz NotTarget;
jc target;

NotTarget:

endmacro;

The purpose of this macro is to simulate an instruction that jumps to the specified target location if the
zero flag is set and the carry flag is set. Conversely, if either the zero flag is clear or the carry flag is clear
this macro transfers control to the instruction immediately following the macro invocation.

There is a serious problem with this macro. Consider what happens if you use this macro mo
once in your program:

JZC(Dest1);
.
.
.

JZC(Dest2);
.
.
.

The macro invocations above expand to the following code:

jnz NotTarget;
jc Dest1;

NotTarget:
.
.
.

jnz NotTarget;
jc Dest2;

NotTarget:
.
.
.

The problem with the expansion of these two macro invocations is that they both emit the same labelNot-
Target, during macro expansion. When HLA processes this code it will complain about a duplicate s
definition. Therefore, you must take care when defining symbols inside a macro because multiple -
tions of that macro may lead to multiple definitions of that symbol.

HLA’s solution to this problem is to allow the use of local symbols within a macro. Local macro sym-
bols are unique to a specific invocation of a macro. For example, had NotTarget been a local symbol in the
JZC macro invocations above, the program would have compiled properly since HLA treats each occurren
of NotTarget as a unique symbol.

HLA does not automatically make internal macro symbol definitions local to that macro3. Instead, you
must explicitly tell HLA which symbols must be local. You do this in a macro declaration using the follow-
ing generic syntax:

#macro macroname (optional_parameters) : optional_list_of_local_names ;
<< macro body >>

#endmacro;

3. Sometimes you actually want the symbols to be global.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 981

Chapter Eight Volume Four

me

occur

ntifier
explic
 in
s own
should
-gen

 that
l sym-

within a

 will
r the fol-
The list of local names is a sequence of one or more HLA identifiers separated by commas. Whenever
HLA encounters this name in a particular macro invocation it automatically substitutes some unique na
for that identifier. For each macro invocation, HLA substitutes a different name for the local symbol.

You can correct the problem with the JZC macro by using the following macro code:

#macro JZC(target):NotTarget;

jnz NotTarget;
jc target;

NotTarget:

#endmacro
;
Now whenever HLA processes this macro it will automatically associate a unique symbol with each -
rence of NotTarget. This will prevent the duplicate symbol error that occurs if you do not declare NotTarget
as a local symbol.

HLA implements local symbols by substituting a symbol of the form "_nnnn_" (where nnnn is a
four-digit hexadecimal number) wherever the local symbol appears in a macro invocation. For example, a
macro invocation of the form "JZC(SomeLabel);" might expand to

jnz _010A_;
jc SomeLabel;

010A:

For each local symbol appearing within a macro expansion HLA will generate a unique temporary ide
by simply incrementing this numeric value for each new local symbol it needs. As long as you do not -
itly create labels of the form "_nnnn_" (where nnnn is a hexadecimal value) there will never be a conflict
your program. HLA explicitly reserves all symbols that begin and end with a single underscore for it
private use (and for use by the HLA Standard Library). As long as you honor this restriction, there
be no conflicts between HLA local symbol generation and labels in your own programs since all HLA-
erated symbols begin and end with a single underscore.

HLA implements local symbols by effectively converting that local symbol to a text constant
expands to the unique symbol HLA generates for the local label. That is, HLA effectively treats loca
bol declarations as indicated by the following example:

#macro JZC(target);
?NotTarget:text := "_010A_";

jnz NotTarget;
jc target;

NotTarget:

#endmacro;

Whenever HLA expands this macro it will substitute "_010A_" for each occurrence of NotTarget it encoun-
ters in the expansion. This analogy isn’t perfect because the text symbol NotTarget in this example is still
accessible after the macro expansion whereas this is not the case when defining local symbols
macro. But this does give you an idea of how HLA implements local symbols.

One important consequence of HLA’s implementation of local symbols within a macro is that HLA
produce some puzzling error messages if an error occurs on a line that uses a local symbol. Conside
lowing (incorrect) macro declaration:

#macro LoopZC(TopOfLoop): ExitLocation;

jnz ExitLocation;
jc TopOfLoop;

#endmacro;
Page 982 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

p
tate

r until

r pro
the
ore

ou

cal
Note that in this example the macro does not define the ExitLocation symbol even though there is a jum
(JNZ) to this label. If you attempt to compile this program, HLA will complain about an undefined s-
ment label and it will state that the symbol is something like "_010A_" rather than ExitLocation.

Locating the exact source of this problem can be challenging since HLA cannot report this erro
the end of the procedure or program in which LoopZC appears (long after you’ve invoked the macro). If you
have lots of macros with lots of local symbols, locating the exact problem is going to be a lot of work; your
only option is to carefully analyze the macros you do call (perhaps by commenting them out of you-
gram one by one until the error goes away) to discover the source of the problem. Once you determine
offending macro, the next step is to determine which local symbol is the culprit (if the macro contains m
than one local symbol). Because tracking down bugs associated with local symbols can be tough, y
should be especially careful when using local symbols within a macro.

Because local symbols are effectively text constants, don’t forget that HLA eagerly processes any local
symbols you pass as parameters to other macros. To see this effect, consider the following sample program:

// LocalDemo.HLA
//
// This program demonstrates the effect
// of passing a local macro symbol as a
// parameter to another macro. Remember,
// local macro symbols are text constants
// so HLA eager evaluates them when they
// appear as macro parameters.

program LocalExpansionDemo;

macro printIt(what);

 #print(@string:what)
 #print(what)

endmacro;

macro LocalDemo:local;

 ?local:string := "localStr";

 printIt(local); // Eager evaluation, passes "_nnnn_".
 printIt(#(local)#) // Force deferred evaluation, passes "local".

endmacro;

begin LocalExpansionDemo;

 LocalDemo;

end LocalExpansionDemo;

Program 8.5 Local Macro Symbols as Macro Parameters

Inside LocalDemo HLA associates the unique symbol "_0001_" (or something similar) with the lo
symbol local. Next, HLA defines "_0001_" to be a string constant and associates the text "localStr" with this
constant.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 983

Chapter Eight Volume Four

te

.

mbol

ram
The first printIt macro invocation expands to "printIt(_0001_)" because HLA eagerly processes xt
constants in macro parameter lists (remember, local symbols are, effectively, text constants). Therefore,
printIt’s what parameter contains the text "_0001_" for this first invocation. Therefore, the first #PRINT
statement prints this textual data ("_0001_") and the second print statement prints the value associated with
"_0001_" which is "localStr".

The second printIt macro invocation inside the LocalDemo macro explicitly forces HLA to use deferred
evaluation since it surrounds local with the "#(" and ")#" bracketing symbols. Therefore, HLA associates
the text "local" with printIt’s formal parameter rather than the expansion "_0001_". Inside printIt, the first
#PRINT statement displays the text associated with the what parameter (which is "local" at this point). The
second #PRINT statement expands what to produce "local". Since local is a currently defined text constant
(defined within LocalDemo that invokes printIt), HLA expands this text constant to produce "_0001_"
Since "_0001_" is a string constant, HLA prints the specified string ("localStr") during compilation. The
complete output during compilation is

0001
localStr
local
localStr

Discussing the expansion of local symbols may seem like a lot of unnecessary detail. However, as your
macros become more complex you may run into difficulties with your code based on the way HLA expands
local symbols. Hence it is necessary to have a good grasp on how HLA processes these symbols.

Quick tip: if you ever need to generate a unique label in your program, you can use HLA local sy
facility to achieve this. Normally, you can only reference HLA’s local symbols within the macro that defines
the symbol. However, you can convert that local symbol to a string and process that string in your prog
as the following simple program demonstrates:

// UniqueSymbols.HLA
//
// This program demonstrates how to generate
// unique symbols in a program.

program UniqueSymsDemo;

macro unique:theSym;

 @string:theSym

endmacro;

begin UniqueSymsDemo;

 ?lbl:text := unique;

 jmp lbl;

lbl:

 ?@tostring:lbl :text := unique;
 jmp lbl;

lbl:

end UniqueSymsDemo;
Page 984 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

ming

ere

y

a

some

ssem

ly

s

rol struc-
Program 8.6 A Macro That Generates Unique Symbols for a Program

The first instance of label: in this program expands to "_0001_:" while the second instance of label: in
this program expands to "_0003_:". Of course, reusing symbols in this manner is horrible program
style (it’s very confusing), but there are some cases you’ll encounter when writing advanced macros where
you will want to generate a unique symbol for use in your program. The unique macro in this program dem-
onstrates exactly how to do this.

8.2.4 Macros as Compile-Time Procedures

Although programmers typically use macros to expand to some sequence of machine instructions, th
is absolutely no requirement that a macro body contain any executable instructions. Indeed, many macros
contain only compile-time language statements (e.g., #IF, #WHILE, "?" assignments, etc.). By placing onl
compile-time language statements in the body of a macro, you can effectively write compile-time proce-
dures and functions using macros.

The unique macro from the previous section is a good example of a compile-time function that returns
string result. Consider, again, the definition of this macro:

#macro unique:theSym;

 @string:theSym

#endmacro;

Whenever your code references this macro, HLA replaces the macro invocation with the text
"@string:theSym" which, of course, expands to some string like "_021F_". Therefore, you can think of this
macro as a compile-time function that returns a string result.

Be careful that you don’t take the function analogy too far. Remember, macros always expand to their
body text at the point of invocation. Some expansions may not be legal at any arbitrary point in your pro-
grams. Fortunately, most compile-time statements are legal anywhere whitespace is legal in your programs.
Therefore, macros generally behave as you would expect functions or procedures to behave during the exe-
cution of your compile-time programs.

Of course, the only difference between a procedure and a function is that a function returns
explicit value while procedures simply do some activity. There is no special syntax for specifying a com-
pile-time function return value. As the example above indicates, simply specifying the value you wish to
return as a statement in the macro body suffices. A compile-time procedure, on the other hand, would not
contain any non-compile-time language statements that expand into some sort of data during macro invoca-
tion.

8.2.5 Multi-part (Context-Free) Macros

HLA’s macro facilities, as described up to this point, are not particularly amazing. Indeed, most a-
blers provide macro facilities very similar to those this chapter presents up to this point. Earlier, this chapter
made the claim that HLA’s macro facilities are quite a bit more powerful than those found in other assemb
languages (or any programming language for that matter). Part of this power comes from the synergy that
exists between the HLA compile-time language and HLA’s macros. However, the one feature that set
HLA’s macro facilities apart from all others is HLA’s ability to handle multi-part, or context-free4, macros.
This section describes this powerful feature.

4. The term "context-free" is an automata theory term used to describe constructs, like programming language cont
tures, that allow nesting.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 985

Chapter Eight Volume Four

.

l

n

The best way to introduce HLA’s context-free macro facilities is via an example. Suppose you wanted
to create a macro to define a new high level language statement in HLA (a very common use for macros)
Let’s say you wanted to create a statement like the following:

nLoop(10)

<< body >>

endloop;

The basic idea is that this code would execute the body of the loop ten times (or however many times the
nLoop parameter specifies). A typical low-level implementation of this control structure might take the fol-
lowing form:

mov(10, ecx);
UniqueLabel:

<< body >>

dec(ecx);
jne UniqueLabel;

Clearly it will require two macros (nLoop and endloop) to implement this control structure. The first
attempt a beginner might try is doomed to failure:

#macro nLoop(cnt);
mov(cnt, ecx);

UniqueLabel:

#endmacro;

#macro endloop;
dec(ecx);
jne UniqueLabel;

#endmacro;

You’ve already seen the problem with this pair of macros: they use a global target label. Any attempt to
use the nLoop macro more than once will result in a duplicate symbol error. Previously, we utilized HLA’s
local symbol facilities to overcome this problem. However, that approach will not work here because loca
symbols are local to a specific macro invocation; unfortunately, the endloop macro needs to reference
UniqueLabel inside the nLoop invocation, so UniqueLabel cannot be a local symbol in this example.

A quick and dirty solution might be to take advantage of the trick employed by the unique macro
appearing in previous sections. By utilizing a global text constant, you can share the label informatio
across two macros using an implementation like the following:

#macro nLoop(cnt):UniqueLabel;

?nLoop_target:string := @string:UniqueLabel;
mov(cnt, ecx);
UniqueLabel:

#endmacro;

#macro endloop;

dec(ecx);
jnz @text(nLoop_target);

#endmacro;
Page 986 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
Using this definition, you can have multiple calls to the nLoop and endloop macros and HLA will not
generate a duplicate symbol error:

nLoop(10)

stdout.put("Loop counter = ", ecx, nl);

endloop;

nLoop(5)

stdout.put("Second Loop Counter = ", ecx, nl);

endloop;

The macro invocations above produce something like the following (reasonably correct) expansion:

mov(10, ecx);
023A: //UniqueLabel, first invocation

stdout.put("Loop counter = ", ecx, nl);

dec(ecx);
jne _023A_; // Expansion of nLoop_target becomes _023A_.

mov(5, ecx);
023B: // UniqueLabel, second invocation.

stdout.put("Second Loop Counter = ", ecx, nl);

dec(ecx);
jnz _023B_; // Expansion of nLoop_target becomes _023B_.

This scheme looks like it’s working properly. However, this implementation suffers from a big draw-
back- it fails if you attempt to nest the nLoop..endloop control structure:

nLoop(10)

push(ecx); // Must preserve outer loop counter.
nLoop(5)

stdout.put("ecx=", ecx, " [esp]=", (type dword [esp]), nl);

endloop;
pop(ecx); // Restore outer loop counter.

endloop;

You would expect to see this code print its message 50 times. However, the macro invocations above
produce code like the following:

mov(10, ecx);
0321: //UniqueLabel, first invocation

push(ecx);
mov(5, ecx);

0322:

stdout.put("ecx=", ecx, " [esp]=", (type dword [esp]), nl);

dec(ecx);
jne _0322_; // Expansion of nLoop_target becomes _0322_.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 987

Chapter Eight Volume Four

 to cre

art

he
ara
 and local

n
ns.
pop(ecx);
dec(ecx);
jne _0322_; // Expansion of nLoop_target incorrectly becomes _0322_.

Note that the last JNE should jump to label "_0321_" rather than "_0322_". Unfortunately, the nested
invocation of the nLoop macro overwrites the value of the global string constant nLoop_target thus the last
JNE transfers control to the wrong label.

It is possible to correct this problem using an array of strings and another compile-time constant-
ate a stack of labels. By pushing and popping these labels as you encounter nLoop and endloop you can emit
the correct code. However, this is a lot of work, is very inelegant, and you must repeat this process for every
nestable control structure you dream up. In other words, it’s a total kludge. Fortunately, HLA provides a
better solution: multi-part macros.

Multi-part macros let you define a set of macros that work together. The nLoop and the endloop macros
in this section are a good example of a pair of macros that work intimately together. By defining nLoop and
endloop within a multi-part macro definition, the problems with communicating the target label between the
two macros goes away because multi-part macros share parameters and local symbols. This provides a
much more elegant solution to this problem than using global constants to hold target label information.

As its name suggests, a multi-part macro consists of a sequence of statements containing two matched
macro names (e.g., nLoop and endloop). Multi-part macro invocations always consist of at least two macro
invocations: a beginning invocation (e.g., nLoop) and a terminating invocation (e.g., endloop). Some num-
ber of unrelated (to the macro bodies) instructions may appear between the two invocations. To declare a
multi-part macro, you use the following syntax:

#macro beginningMacro (optional_parameters) : optional_local_symbols;

<< beginningMacro body >>

#terminator terminatingMacro (optional_parameters) : optional_local_symbols;

<< terminatingMacro body >>

#endmacro;

The presence of the #TERMINATOR section in the macro declaration tells HLA that this is a multi-p
macro declaration. It also ends the macro declaration of the beginning macro and begins the declaration of
the terminating macro (i.e., the invocation of beginningMacro does not emit the code associated with t
#TERMINATOR macro). As you would expect, parameters and local symbols are optional in both decl-
tions and the associated glue characters (parentheses and colons) are not present if the parameters
symbol lists are not present.

Now let’s look at the multi-part macro declaration for the nLoop..endloop macro pair:

#macro nLoop(cnt):TopOfLoop;

mov(cnt, ecx);
TopOfLoop:

#terminator endloop;

dec(ecx);
jne TopOfLoop;

#endmacro;

As you can see in this example, the definition of the nLoop..endloop control structure is much simpler whe
using multi-part macros; better still, multi-part macro declarations work even if you nest the invocatio
Page 988 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

part

ithin
The most notable thing in this particular macro declaration is that the endloop macro has access to
nLoop’s parameters and local symbols (in this example the endloop macro does not reference cnt, but it
could if this was necessary). This makes communication between the two macros trivial.

Multi-part macro invocations must always occur in pairs. If the beginning macro appears in the text, the
terminating macro must follow at some point. A terminating macro may never appear in the source file with-
out a previous, matching, instance of the beginning macro. These semantics are identical to many of the
HLA high level control structures; i.e., you cannot have an ENDIF without having a corresponding IF clause
earlier in the source file.

When you nest multi-part macro invocations, HLA "magically" keeps track of local symbols and always
emits the appropriate local label value. The nested macros appearing earlier are no problem for multi-
macros:

nLoop(10)

push(ecx); // Must preserve outer loop counter.
nLoop(5)

stdout.put("ecx=", ecx, " [esp]=", (type dword [esp]), nl);

endloop;
pop(ecx); // Restore outer loop counter.

endloop;

The above code properly compiles to something like:

mov(10, ecx);
01FE:

push(ecx);
mov(5, ecx);

01FF:

stdout.put("ecx=", ecx, " [esp]=", (type dword [esp]), nl);

dec(ecx);
jne _01FF_;

pop(ecx);

dec(ecx);
jne _01FE_; // Note the correct label here.

In addition to terminating macros, HLA’s multi-part macro facilities also provide an option for introduc-
ing additional macro declarations associated with the beginning/terminating macro pair: #KEYWORD mac-
ros. #KEYWORD macros are macros that are active only between a specific beginning and terminating
macro pair. The classic use for #KEYWORD macros is to allow the introduction of context-sensitive key-
words into the macro (context-sensitive, in this case, meaning that the terms are only active within the con-
text of the body of statements between the beginning and terminating macros). Classic examples of
statements that could employ these types of macros include the BREAK and CONTINUE statements w
a loop body and the CASE clause within a SWITCH..ENDSWITCH statement.

The syntax for a multi-part macro declaration that includes one or more #KEYWORD macros is the fol-
lowing:

#macro beginningMacro(optional_parameters): optional_local_labels;

<< beginningMacro Body >>

#keyword keywordMacro(optional_parameters): optional_local_labels;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 989

Chapter Eight Volume Four

 decla

o.

ples
Specific
apters
e HLA

if the
port
<< keywordMacro Body >>

#terminator terminatingMacro(optional_parameters): optional_local_labels;

<< terminatingMacro Body >>

#endmacro;

If a #KEYWORD macro is present in a macro declaration there must also be a terminating macro-
ration. You cannot have a #KEYWORD macro without a corresponding #TERMINATOR macro. The
#TERMINATOR macro declaration is always last in a multi-part macro declaration.

The syntax example above specifies only a single #KEYWORD macro. HLA, however, allows zero or
more #KEYWORD macro declarations in a multi-part macro. The HLA SWITCH statement, for example,
defines two #KEYWORD macros, case and default.

#KEYWORD and #TERMINATOR macros may refer to the parameters and local symbols defined in
the beginning macro, but they may not refer to locals and parameters in other #KEYWORD macros. Param-
eters and local symbols in #KEYWORD macro declarations are local to that specific macro. If you really
need to communicate information between #KEYWORD and #TERMINATOR macros, define some local
symbols in the beginning macro and assign these local symbols the parameter (or local symbol) values in the
affected #KEYWORD macro. Then refer to this beginning macro local symbol in other parts of the macr
The following is a trivial example of this:

#macro ShareParameter:parmValue;

<< beginning macro body >>

#keyword ParmToShare(p);

?parmValue:text := @string:p;

<< keyword macro body >>

#terminator UsesSharedParm;

mov(parmValue, ecx);

<< terminator macro body >>

#endmacro;

By assigning ParmToShare’s parameter value to the beginning macro’s parmValue local symbol, this code
makes the value of p accessible by the UsesSharedParm terminating macro.

This section only touches on the capabilities of HLA’s multi-part macro facilities. Additional exam
appear later in this chapter in the section on Domain Specific Embedded Languages (see “Domain
Embedded Languages” on page 1003). This text will make use of HLA’s multi-part macros in later ch
as well. For more information on multi-part macros, see these sections in this text or check out th
documentation.

8.2.6 Simulating Function Overloading with Macros

The C++ language supports a nifty feature known as function overloading. Function overloading lets
you write several different functions or procedures that all have the same name. The difference between
these functions is the types of their parameters or the number of parameters. A procedure declaration is said
to be unique if it has a different number of parameters than other functions with the same name or
types of its parameters differs from another function with the same name. HLA does not directly sup
Page 990 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

ust

e

procedure overloading but you can use macros to achieve the same result. This section explains how to use
HLA’s macros and the compile-time language to achieve function/procedure overloading.

One good use for procedure overloading is to reduce the number of standard library routines you m
remember how to use. For example, the HLA Standard Library provides four different "puti" routines that
output an integer value: stdout.puti64, stdout.puti32, stdout.puti16, and stdout.puti8. The different routines,
as their name suggests, output integer values according to the size of their integer parameter. In the C++
language (or another other language supporting procedure/function overloading) the engineer designing th
input routines would probably have chosen to name them all stdout.puti and leave it up to the compiler to
select the appropriate one based on the operand size5. The following macro demonstrates how to do this in
HLA using the compile-time language to figure out the size of the parameter operand:

// Puti.hla
//
// This program demonstrates procedure overloading via macros.
//
// It defines a "puti" macro that calls stdout.puti8, stdout.puti16,
// stdout.puti32, or stdout.puti64 depending on the size of the operand.

program putiDemo;
#include("stdlib.hhf")

// puti-
//
// Automatically decides whether we have a 64, 32, 16, or 8-bit
// operand and calls the appropriate stdout.putiX routine to
// output this value.

macro puti(operand);

 // If we have an eight-byte operand, call puti64:

 #if(@size(operand) = 8)

 stdout.puti64(operand);

 // If we have a four-byte operand, call puti32:

 #elseif(@size(operand) = 4)

 stdout.puti32(operand);

 // If we have a two-byte operand, call puti16:

 #elseif(@size(operand) = 2)

 stdout.puti16(operand);

 // If we have a one-byte operand, call puti8:

 #elseif(@size(operand) = 1)

5. By the way, the HLA Standard Library does this as well. Although it doesn’t provide stdout.puti, it does provide stdout.put
that will choose an appropriate output routine based upon the parameter’s type. This is a bit more flexible than a puti routine.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 991

Chapter Eight Volume Four

.
n
d

 stdout.puti8(operand);

 // If it's not an eight, four, two, or one-byte operand,
 // then print an error message:

 #else

 #error("Expected a 64, 32, 16, or 8-bit operand")

 #endif

endmacro;

// Some sample variable declarations so we can test the macro above.

static
 i8: int8 := -8;
 i16: int16 := -16;
 i32: int32 := -32;
 i64: qword;

begin putiDemo;

 // Initialize i64 since we can't do this in the static section.

 mov(-64, (type dword i64));
 mov($FFFF_FFFF, (type dword i64[4]));

 // Demo the puti macro:

 puti(i8); stdout.newln();
 puti(i16); stdout.newln();
 puti(i32); stdout.newln();
 puti(i64); stdout.newln();

end putiDemo;

Program 8.7 Simple Procedure Overloading Based on Operand Size

The example above simply tests the size of the operand to determine which output routine to useYou
can use other HLA compile-time functions, like @TYPENAME, to do more sophisticated processing. Co-
sider the following program that demonstrates a macro that overloads stdout.puti32, stdout.putu32, and st-
out.putd depending on the type of the operand:

// put32.hla
//
// This program demonstrates procedure overloading via macros.
//
// It defines a "put32" macro that calls stdout.puti32, stdout.putu32,
// or stdout.putdw depending on the type of the operand.
Page 992 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
program put32Demo;
#include("stdlib.hhf")

// put32-
//
// Automatically decides whether we have an int32, uns32, or dword
// operand and calls the appropriate stdout.putX routine to
// output this value.

macro put32(operand);

 // If we have an int32 operand, call puti32:

 #if(@typename(operand) = "int32")

 stdout.puti32(operand);

 // If we have an uns32 operand, call putu32:

 #elseif(@typename(operand) = "uns32")

 stdout.putu32(operand);

 // If we have a dword operand, call putidw:

 #elseif(@typename(operand) = "dword")

 stdout.putd(operand);

 // If it's not a 32-bit integer value, report an error:

 #else

 #error("Expected an int32, uns32, or dword operand")

 #endif

endmacro;

// Some sample variable declarations so we can test the macro above.

static
 i32: int32 := -32;
 u32: uns32 := 32;
 d32: dword := $32;

begin put32Demo;

 // Demo the put32 macro:

 put32(d32); stdout.newln();
 put32(u32); stdout.newln();
 put32(i32); stdout.newln();

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 993

Chapter Eight Volume Four

perands.

 If you
umber
xactly
ses this
end put32Demo;

Program 8.8 Procedure Overloading Based on Operand Type

You can easily extend the macro above to output eight and sixteen-bit operands as well as 32-bit o
That is left as an exercise.

The number of actual parameters is another way to resolve which overloaded procedure to call.
specify a variable number of macro parameters (using the "[]" syntax, see “Macros with a Variable N
of Parameters” on page 974) you can use the @ELEMENTS compile-time function to determine e
how many parameters are present and call the appropriate routine. The following sample program u
trick to determine whether it should call stdout.puti32 or stdout.puti32Size:

// puti32.hla
//
// This program demonstrates procedure overloading via macros.
//
// It defines a "puti32" macro that calls stdout.puti32 or stdout.puti32size
// depending on the number of parameters present.

program puti32Demo;
#include("stdlib.hhf")

// puti32-
//
// Automatically decides whether we have an int32, uns32, or dword
// operand and calls the appropriate stdout.putX routine to
// output this value.

macro puti32(operand[]);

 // If we have a single operand, call stdout.puti32:

 #if(@elements(operand) = 1)

 stdout.puti32(@text(operand[0]));

 // If we have two operands, call stdout.puti32size and
 // supply a default value of ' ' for the padding character:

 #elseif(@elements(operand) = 2)

 stdout.puti32Size(@text(operand[0]), @text(operand[1]), ' ');

 // If we have three parameters, then pass all three of them
 // along to puti32size:

 #elseif(@elements(operand) = 3)

 stdout.puti32Size
 (
 @text(operand[0]),
Page 994 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

ally call
t

e-time
 @text(operand[1]),
 @text(operand[2])
);

 // If we don't have one, two, or three operands, report an error:

 #else

 #error("Expected one, two, or three operands")

 #endif

endmacro;

// A sample variable declaration so we can test the macro above.

static
 i32: int32 := -32;

begin puti32Demo;

 // Demo the put32 macro:

 puti32(i32); stdout.newln();
 puti32(i32, 5); stdout.newln();
 puti32(i32, 5, '*'); stdout.newln();

end puti32Demo;

Program 8.9 Using the Number of Parameters to Resolve Overloaded Procedures

All the examples up to this point provide procedure overloading for Standard Library routines (specifi-
cally, the integer output routines). Of course, you are not limited to overloading procedures in the HLA
Standard Library. You can create your own overloaded procedures as well. All you’ve got to do is write a set
of procedures, all with unique names, and then use a single macro to decide which routine to actu
based on the macro’s parameters. Rather than call the individual routines, invoke the common macro and le
it decide which procedure to actually call.

8.3 Writing Compile-Time "Programs"

The HLA compile-time language provides a powerful facility with which to write "programs" that exe-
cute while HLA is compiling your assembly language programs. Although it is possible to write some gen-
eral purpose programs using the HLA compile-time language, the real purpose of the HLA compil
language is to allow you to write short programs that write other programs. In particular, the primary pur-
pose of the HLA compile-time language is to automate the creation of large or complex assembly language
sequences. The following subsections provide some simple examples of such compile-time programs.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 995

Chapter Eight Volume Four

t

e will

ed
ed
8.3.1 Constructing Data Tables at Compile Time

Earlier, this text suggested that you could write programs to generate large, complex, lookup tables for
your assembly language programs (see “Generating Tables” on page 651). That chapter provided examples
in HLA but suggested that writing a separate program was unnecessary. This is true, you can generate mos
look-up tables you’ll need using nothing more than the HLA compile-time language facilities. Indeed, fill -
ing in table entries is one of the principle uses of the HLA compile-time language. In this section w
take a look at using the HLA compile-time language to construct data tables during compilation.

In the section on generating tables, this text gave an example of an HLA program that writes a text file
containing a lookup table for the trigonometric sine function. The table contains 360 entries with the index
into the table specifying an angle in degrees. Each int32 entry in the table contained the value
sin(angle)*1000 where angle is equal to the index into the table. The section on generating tables suggest
running this program and then including the text output from that program into the actual program that us
the resulting table. You can avoid much of this work by using the compile-time language. The following
HLA program includes a short compile-time code fragment that constructs this table of sines directly.

// demoSines.hla
//
// This program demonstrates how to create a lookup table
// of sine values using the HLA compile-time language.

program demoSines;
#include("stdlib.hhf")

const
 pi :real80 := 3.1415926535897;

readonly
 sines: int32[360] :=
 [
 // The following compile-time program generates
 // 359 entries (out of 360). For each entry
 // it computes the sine of the index into the
 // table and multiplies this result by 1000
 // in order to get a reasonable integer value.

 ?angle := 0;
 #while(angle < 359)

 // Note: HLA's @sin function expects angles
 // in radians. radians = degrees*pi/180.
 // the "int32" function truncates its result,
 // so this function adds 1/2 as a weak attempt
 // to round the value up.

 int32(@sin(angle * pi / 180.0) * 1000 + 0.5),
 ?angle := angle + 1;

 #endwhile

 // Here's the 360th entry in the table. This code
 // handles the last entry specially because a comma
 // does not follow this entry in the table.

 int32(@sin(359 * pi / 180.0) * 1000 + 0.5)
];
Page 996 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

y
la

lphabetic
 correct
begin demoSines;

 // Simple demo program that displays all the values in the table.

 for(mov(0, ebx); ebx<360; inc(ebx)) do

 mov(sines[ebx*4], eax);
 stdout.put
 (
 "sin(",
 (type uns32 ebx),
 ")*1000 = ",
 (type int32 eax),
 nl
);

 endfor;

end demoSines;

Program 8.10 Generating a SINE Lookup Table with the Compile-time Language

Another common use for the compile-time language is to build ASCII character lookup tables for use b
the XLAT instruction at run-time. Common examples include lookup tables for alphabetic case manipu-
tion. The following program demonstrates how to construct an upper case conversion table and a lower case
conversion table6. Note the use of a macro as a compile-time procedure to reduce the complexity of the
table generating code:

// demoCase.hla
//
// This program demonstrates how to create a lookup table
// of alphabetic case conversion values using the HLA
// compile-time language.

program demoCase;
#include("stdlib.hhf")

const
 pi :real80 := 3.1415926535897;

// emitCharRange-
//
// This macro emits a set of character entries
// for an array of characters. It emits a list
// of values (with a comma suffix on each value)
// from the starting value up to, but not including,
// the ending value.

6. Note that on modern processors, using a lookup table is probably not the most efficient way to convert between a
cases. However, this is just an example of filling in the table using the compile-time language. The principles are
even if the code is not exactly the best it could be.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 997

Chapter Eight Volume Four
macro emitCharRange(start, last): index;

 ?index:uns8 := start;
 #while(index < last)

 char(index),
 ?index := index + 1;

 #endwhile

endmacro;

readonly

 // toUC:
 // The entries in this table contain the value of the index
 // into the table except for indicies #$61..#$7A (those entries
 // whose indicies are the ASCII codes for the lower case
 // characters). Those particular table entries contain the
 // codes for the corresponding upper case alphabetic characters.
 // If you use an ASCII character as an index into this table and
 // fetch the specified byte at that location, you will effectively
 // translate lower case characters to upper case characters and
 // leave all other characters unaffected.

 toUC: char[256] :=
 [
 // The following compile-time program generates
 // 255 entries (out of 256). For each entry
 // it computes toupper(index) where index is
 // the character whose ASCII code is an index
 // into the table.

 emitCharRange(0, uns8('a'))

 // Okay, we've generated all the entries up to
 // the start of the lower case characters. Output
 // Upper Case characters in place of the lower
 // case characters here.

 emitCharRange(uns8('A'), uns8('Z') + 1)

 // Okay, emit the non-alphabetic characters
 // through to byte code #$FE:

 emitCharRange(uns8('z') + 1, $FF)

 // Here's the last entry in the table. This code
 // handles the last entry specially because a comma
 // does not follow this entry in the table.

 #$FF
];

 // The following table is very similar to the one above.
 // You would use this one, however, to translate upper case
 // characters to lower case while leaving everything else alone.
 // See the comments in the previous table for more details.

Page 998 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

One

e is
 TOlc: char[256] :=
 [
 emitCharRange(0, uns8('A'))
 emitCharRange(uns8('a'), uns8('z') + 1)
 emitCharRange(uns8('Z') + 1, $FF)

 #$FF
];

begin demoCase;

 for(mov(uns32(' '), eax); eax <= $FF; inc(eax)) do

 mov(toUC[eax], bl);
 mov(TOlc[eax], bh);
 stdout.put
 (
 "toupper('",
 (type char al),
 "') = '",
 (type char bl),
 "' tolower('",
 (type char al),
 "') = '",
 (type char bh),
 "'",
 nl
);

 endfor;

end demoCase;

Program 8.11 Generating Case Conversion Tables with the Compile-Time Language

One important thing to note about this sample is the fact that a semicolon does not follow the emitChar-
Range macro invocations. Macro invocations do not require a closing semicolon. Often, it is legal to go
ahead and add one to the end of the macro invocation because HLA is normally very forgiving about having
extra semicolons inserted into the code. In this case, however, the extra semicolons are illegal because they
would appear between adjacent entries in the TOlc and toUC tables. Keep in mind that macro invocations
don’t require a semicolon, especially when using macro invocations as compile-time procedures.

8.3.2 Unrolling Loops

In the chapter on Low-Level Control Structures (see “Unraveling Loops” on page 800) this text points
out that you can unravel loops to improve the performance of certain assembly language programs.
problem with unravelling, or unrolling, loops is that you may need to do a lot of extra typing, especially if
many iterations are necessary. Fortunately, HLA’s compile-time language facilities, especially the #WHILE
loop, comes to the rescue. With a small amount of extra typing plus one copy of the loop body, you can
unroll a loop as many times as you please.

If you simply want to repeat the same exact code sequence some number of times, unrolling the cod
especially trivial. All you’ve got to do is wrap an HLA #WHILE..#ENDWHILE loop around the sequence
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 999

Chapter Eight Volume Four

ur)
and count down a VAL object the specified number of times. For example, if you wanted to print "Hello
World" ten times, you could encode this as follows:

?count := 0;
#while(count < 10)

stdout.put("Hello World", nl);
?count := count + 1;

#endwhile

Although the code above looks very similar to a WHILE (or FOR) loop you could write in your pro-
gram, remember the fundamental difference: the code above simply consists of ten straight stdout.put calls
in the program. Were you to encode this using a FOR loop, there would be only one call to stdout.put and
lots of additional logic to loop back and execute that single call ten times.

Unrolling loops becomes slightly more complicated if any instructions in that loop refer to the value of
a loop control variable or other value that changes with each iteration of the loop. A typical example is a
loop that zeros the elements of an integer array:

mov(0, eax);
for(mov(0, ebx); ebx < 20; inc(ebx)) do

mov(eax, array[ebx*4]);

endfor;

In this code fragment the loop uses the value of the loop control variable (in EBX) to index into array.
Simply copying "mov(eax, array[ebx*4]);" twenty times is not the proper way to unroll this loop. You
must substitute an appropriate constant index in the range 0..76 (the corresponding loop indices, times fo
in place of "EBX*4" in this example. Correctly unrolling this loop should produce the following code
sequence:

mov(eax, array[0*4]);
mov(eax, array[1*4]);
mov(eax, array[2*4]);
mov(eax, array[3*4]);
mov(eax, array[4*4]);
mov(eax, array[5*4]);
mov(eax, array[6*4]);
mov(eax, array[7*4]);
mov(eax, array[8*4]);
mov(eax, array[9*4]);
mov(eax, array[10*4]);
mov(eax, array[11*4]);
mov(eax, array[12*4]);
mov(eax, array[13*4]);
mov(eax, array[14*4]);
mov(eax, array[15*4]);
mov(eax, array[16*4]);
mov(eax, array[17*4]);
mov(eax, array[18*4]);
mov(eax, array[19*4]);

You can do this more efficiently using the following compile-time code sequence:

?iteration := 0;
#while(iteration < 20)

mov(eax, array[iteration*4]);
?iteration := iteration+1;
Page 1000 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

e

e lan
86

ne

ros

can
#endwhile

If the statements in a loop make use of the loop control variable’s value, it is only possible to unroll such
loops if those values are known at compile time. You cannot unroll loops when user input (or other run-tim
information) controls the number of iterations.

8.4 Using Macros in Different Source Files

Unlike procedures, macros do not have a fixed piece of code at some address in memory. Therefore,
you cannot create "external" macros and link them with other modules in your program. However, it is very
easy to share macros with different source files – just put the macros you wish to reuse in a header file and
include that file using the #include directive. You can make the macro will be available to any source file
you choose using this simple trick.

8.5 Putting It All Together

This chapter has barely touched on the capabilities of the HLA macro processor and compile-tim-
guage. The HLA language has one of the most powerful macro processors around. None of the other 80x
assemblers even come close to HLA’s capabilities with regard to macros. Indeed, if you could say just o
thing about HLA in relation to other assemblers, it would have to be that HLA’s macro facilities are, by far,
the best.

The combination of the HLA compile-time language and the macro processor give HLA users the abil-
ity to extend the HLA language in many ways. In the chapter on Domain Specific Languages, you’ll get the
opportunity to see how to create your own specialized languages using HLA’s macro facilities.

Even if you don’t do exotic things like creating your own languages, HLA’s macro facilities and com-
pile-time language are really great for automating code generation in your programs. The HLA Standard
Library, for example, makes heavy use of HLA’s macro facilities; "procedures" like stdout.put and stdin.get
would be very difficult (if not impossible) to create without the power of HLA macro facilities and the com-
pile-time language. For some good examples of the possible complexity one can achieve with HLA’s mac-
ros, you should scan through the #include files in the HLA Standard Library and look at some of the mac
appearing therein.

This chapter serves as a basic introduction to HLA’s macro facilities. As you use macros in your own
programs you will gain even more insight into their power. So by all means, use macros as much as you
– they can help reduce the effort needed to develop programs.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1001

Chapter Eight Volume Four
Page 1002 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Macros Chapter Eight
	8.1 Chapter Overview
	8.2 Macros (Compile-Time Procedures)
	8.2.1 Standard Macros
	8.2.2 Macro Parameters
	8.2.2.1 Standard Macro Parameter Expansion
	8.2.2.2 Macros with a Variable Number of Parameters
	8.2.2.3 Required Versus Optional Macro Parameters
	8.2.2.4 The "#(" and ")#" Macro Parameter Brackets
	8.2.2.5 Eager vs. Deferred Macro Parameter Evaluation

	8.2.3 Local Symbols in a Macro
	8.2.4 Macros as Compile-Time Procedures
	8.2.5 Multi-part (Context-Free) Macros
	8.2.6 Simulating Function Overloading with Macros

	8.3 Writing Compile-Time "Programs"
	8.3.1 Constructing Data Tables at Compile Time
	8.3.2 Unrolling Loops

	8.4 Using Macros in Different Source Files
	8.5 Putting It All Together

