

Arrays

rial

elec

ay

t

y

Arrays Chapter Four

4.1 Chapter Overview

This chapter discusses how to declare and use arrays in your assembly language programs. This is prob-
ably the most important chapter on composite data structures in this text. Even if you elect to skip the chap-
ters on Strings, Character Sets, Records, and Dates and Times, be sure you read and understand the mate
in this chapter. Much of the rest of the text depends on your understanding of this material.

4.2 Arrays

Along with strings, arrays are probably the most commonly used composite data type. Yet most begin-
ning programmers have a very weak understanding of how arrays operate and their associated efficiency
trade-offs. It’s surprising how many novice (and even advanced!) programmers view arrays from a com-
pletely different perspective once they learn how to deal with arrays at the machine level.

Abstractly, an array is an aggregate data type whose members (elements) are all the same type. S-
tion of a member from the array is by an integer index1. Different indices select unique elements of the arr.
This text assumes that the integer indices are contiguous (though this is by no means required). That is, if the
number x is a valid index into the array and y is also a valid index, with x < y, then all i such that x < i < y are
valid indices into the array.

Whenever you apply the indexing operator to an array, the result is the specific array element chosen by
that index. For example, A[i] chooses the ith element from array A. Note that there is no formal requiremen
that element i be anywhere near element i+1 in memory. As long as A[i] always refers to the same memor
location and A[i+1] always refers to its corresponding location (and the two are different), the definition of
an array is satisfied.

In this text, we will assume that array elements occupy contiguous locations in memory. An array with
five elements will appear in memory as shown in Figure 4.1

Figure 4.1 Array Layout in Memory

The base address of an array is the address of the first element on the array and always appears in the
lowest memory location. The second array element directly follows the first in memory, the third element
follows the second, etc. Note that there is no requirement that the indices start at zero. They may start with
any number as long as they are contiguous. However, for the purposes of discussion, it’s easier to discuss
accessing array elements if the first index is zero. This text generally begins most arrays at index zero unless

1. Or some value whose underlying representation is integer, such as character, enumerated, and boolean types.

A[0] A[1] A[2] A[3] A[4

A: array [0..4] of sometype;

Low memory
addresses

High memory
addressesBase address of A
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 463

Chapter Four

Volume Three

alue

ts

f

ents of
REA-

 real
 of con

. What
cify a
there is a good reason to do otherwise. However, this is for consistency only. There is no efficiency benefit
one way or another to starting the array index at zero.

To access an element of an array, you need a function that translates an array index to the address of the
indexed element. For a single dimension array, this function is very simple. It is

Element_Address = Base_Address + ((Index - Initial_Index) * Element_Size)

where Initial_Index is the value of the first index in the array (which you can ignore if zero) and the v
Element_Size is the size, in bytes, of an individual element of the array.

4.3 Declaring Arrays in Your HLA Programs

Before you access elements of an array, you need to set aside storage for that array. Fortunately, array
declarations build on the declarations you’ve seen thus far. To allocate n elements in an array, you would use
a declaration like the following in one of the variable declaration sections:

ArrayName: basetype[n];

ArrayName is the name of the array variable and basetype is the type of an element of that array. This se
aside storage for the array. To obtain the base address of the array, just use ArrayName.

The “[n]” suffix tells HLA to duplicate the object n times. Now let’s look at some specific examples:

static

CharArray: char[128]; // Character array with elements 0..127.
IntArray: integer[8]; // “integer” array with elements 0..7.
ByteArray: byte[10]; // Array of bytes with elements 0..9.
PtrArray: dword[4]; // Array of double words with elements 0..3.

The second example, of course, assumes that you have defined the integer data type in the TYPE section o
the program.

These examples all allocate storage for uninitialized arrays. You may also specify that the elem
the arrays be initialized to a single value using declarations like the following in the STATIC and
DONLY sections:

RealArray: real32[8] := [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
IntegerAry: integer[8] := [1, 1, 1, 1, 1, 1, 1, 1];

These definitions both create arrays with eight elements. The first definition initializes each four-byte
value to 1.0, the second declaration initializes each integer element to one. Note that the number-
stants within the square brackets must match the size you declare for the array.

This initialization mechanism is fine if you want each element of the array to have the same value
if you want to initialize each element of the array with a (possibly) different value? No sweat, just spe
different set of values in the list surrounded by the square brackets in the example above:

RealArray: real32[8] := [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
IntegerAry: integer[8] := [1, 2, 3, 4, 5, 6, 7, 8];

4.4 HLA Array Constants

The last few examples in the last section demonstrate the use of HLA array constants. An HLA array
constant is nothing more than a list of values (all the same time) surrounded by a pair of brackets. The fol-
lowing are all legal array constants:

[1, 2, 3, 4]
[2.0, 3.14159, 1.0, 0.5]
Page 464 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

e

Y sec-
s in an
ise, the

everal
 have
rray con-
one to
e an

n

e
gle

en

ays a

 of the
h

r than

e array
[‘a’, ‘b’, ‘c’, ‘d’]
[“Hello”, “world”, “of”, “assembly”]

(note that this last array constant contains four double word pointers to the four HLA strings appearing els-
where in memory.)

As you saw in the previous section you can use array constants in the STATIC and READONL
tions to provide initial values for array variables. Of course, the number of comma separated item
array constant must exactly match the number of array elements in the variable declaration. Likew
type of the array constant’s elements must match the type of the elements in the array variable.

Using array constants to initialize small arrays is very convenient. Of course, if your array has s
thousand elements in it, typing them all in will not be very much fun. Most arrays initialized this way
no more than a couple hundred entries, and generally far less than 100. It is reasonable to use an a
stant to initialize such variables. However, at some point it will become far too tedious and error-pr
initialize arrays in this fashion. It is doubtful, for example, that you would want to manually initializ
array with 1,000 different elements using an array constant2. However, if you want to initialize all the ele-
ments of an array with the same value, HLA does provide a special array constant syntax for doing so. Co-
sider the following declaration:

BigArray: uns32[1000] := 1000 dup [1];

This declaration creates a 1,000 element integer array initializing each element of the array with th
value one. The “1000 dup [1]” expression tells HLA to create an array constant by duplicating the sin
value “[1]” one thousand times. You can even use the DUP operator to duplicate a series of values (rather
than a single value) as the following example indicates:

SixteenInts: int32[16] := 4 dup [1,2,3,4];

This example initializes SixteenInts with four copies of the sequence “1, 2, 3, 4” yielding a total of sixte
different integers (i.e., 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4).

You will see some more possibilities with the DUP operator when looking at multidimensional arr
little later.

4.5 Accessing Elements of a Single Dimension Array

To access an element of a zero-based array, you can use the simplified formula:

Element_Address = Base_Address + index * Element_Size

For the Base_Address entry you can use the name of the array (since HLA associates the address
first element of an array with the name of that array). The Element_Size entry is the number of bytes for eac
array element. If the object is an array of bytes, the Element_Size field is one (resulting in a very simple com-
putation). If each element of the array is a word (or other two-byte type) then Element_Size is two. And so
on. To access an element of the SixteenInts array in the previous section, you’d use the formula:

Element_Address = SixteenInts + index*4

The 80x86 code equivalent to the statement “EAX:=SixteenInts[index]” is

mov(index, ebx);
shl(2, ebx); //Sneaky way to compute 4*ebx
mov(SixteenInts[ebx], eax);

There are two important things to notice here. First of all, this code uses the SHL instruction rathe
the INTMUL instruction to compute 4*index. The main reason for choosing SHL is that it was more effi-
cient. It turns out that SHL is a lot faster than INTMUL on many processors.

2. In the chapter on Macros and the HLA Run-Time Language you will learn how to automate the initialization of larg
objects. So initializing large objects is not completely out of the question.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 465

Chapter Four Volume Three

is is a
ddress

80x86
 Since
scaled

n you
ent size
e ele
iplica

ension
ou must
lts.

es and

and
per

to

n

n

e

The second thing to note about this instruction sequence is that it does not explicitly compute the sum of
the base address plus the index times two. Instead, it relies on the indexed addressing mode to implicitly
compute this sum. The instruction “mov(SixteenInts[ebx], eax);” loads EAX from location Sixteen-
Ints+EBX which is the base address plus index*4 (since EBX contains index*4). Sure, you could have used

lea(eax, SixteenInts);
mov(index, ebx);
shl(2, ebx); //Sneaky way to compute 4*ebx
add(eax, ebx); //Compute base address plus index*4
mov(SixteenInts[ebx], eax);

in place of the previous sequence, but why use five instructions where three will do the same job? Th
good example of why you should know your addressing modes inside and out. Choosing the proper a-
ing mode can reduce the size of your program, thereby speeding it up.

Of course, as long as we’re discussing efficiency improvements, it’s worth pointing out that the
scaled indexed addressing modes let you automatically multiply an index by one, two, four, or eight.
this current example multiplies the index by four, we can simplify the code even farther by using the
indexed addressing mode:

mov(index, ebx);
mov(SixteenInts[ebx*4], eax);

Note, however, that if you need to multiply by some constant other than one, two, four, or eight, the
cannot use the scaled indexed addressing modes. Similarly, if you need to multiply by some elem
that is not a power of two, you will not be able to use the SHL instruction to multiply the index by th-
ment size; instead, you will have to use INTMUL or some other instruction sequence to do the mult-
tion.

The indexed addressing mode on the 80x86 is a natural for accessing elements of a single dim
array. Indeed, it’s syntax even suggests an array access. The only thing to keep in mind is that y
remember to multiply the index by the size of an element. Failure to do so will produce incorrect resu

Before moving on to multidimensional arrays, a couple of additional points about addressing mod
arrays are in order. The above sequences work great if you only access a single element from the SixteenInts
array. However, if you access several different elements from the array within a short section of code,
you can afford to dedicate another register to the operation, you can certainly shorten your code and, -
haps, speed it up as well. Consider the following code sequence:

lea(ebx, SixteenInts);
mov(index, esi);
mov([ebx+esi*4], eax);

Now EBX contains the base address and ESI contains the index value. Of course, this hardly appears
be a good trade-off. However, when accessing additional elements if SixteenInts you do not have to reload
EBX with the base address of SixteenInts for the next access. The following sequence is a little shorter tha
the comparable sequence that doesn’t load the base address into EBX:

lea(ebx, SixteenInts);
mov(index, esi);
mov([ebx+esi*4], eax);
 .
 . //Assumption: EBX is left alone
 . // through this code.
mov(index2, esi);
mov([ebx+esi*4], eax);

This code is slightly shorter because the “mov([ebx+esi*4], eax);” instruction is slightly shorter tha
the “mov(SixteenInts[ebx*4], eax);” instruction. Of course the more accesses to SixteenInts you make
without reloading EBX, the greater your savings will be. Tricky little code sequences such as this one som-
times pay off handsomely. However, the savings depend entirely on which processor you’re using. Code
Page 466 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

r

is code
(which
 bytes
sequences that run faster on one 80x86 CPU might actually run slower on a different CPU. Unfortunately, if
speed is what you’re after there are no hard and fast rules. In fact, it is very difficult to predict the speed of
most instructions on the 80x86 CPUs.

4.5.1 Sorting an Array of Values

Almost every textbook on this planet gives an example of a sort when introducing arrays. Since you’ve
probably seen how to do a sort in high level languages already, it’s probably instructive to take a quick look
at a sort in HLA. The example code in this section will use a variant of the Bubble Sort which is great fo
short lists of data and lists that are nearly sorted, but horrible for just about everything else3.

const
 NumElements:= 16;

static
 DataToSort: uns32[NumElements] :=
 [
 1, 2, 16, 14,
 3, 9, 4, 10,
 5, 7, 15, 12,
 8, 6, 11, 13
];

 NoSwap: boolean;

.

.

.

 // Bubble sort for the DataToSort array:

 repeat

 mov(true, NoSwap);
 for(mov(0, ebx); ebx <= NumElements-2; inc(ebx)) do

 mov(DataToSort[ebx*4], eax);
 if(eax > DataToSort[ebx*4 + 4]) then

 mov(DataToSort[ebx*4 + 4], ecx);
 mov(ecx, DataToSort[ebx*4]);
 mov(eax, DataToSort[ebx*4 + 4]); // Note: EAX contains
 mov(false, NoSwap); // DataToSort[ebx*4]

 endif;

 endfor;

 until(NoSwap);

The bubble sort works by comparing adjacent elements in an array. The interesting thing to note in th
fragment is how it compares adjacent elements. You will note that the IF statement compares EAX
contains DataToSort[ebx*4]) against DataToSort[EBX*4 + 4]. Since each element of this array is four
(uns32), the index [EBX*4 + 4] references the next element beyond [EBX*4].

3. Fear not, you’ll see some better sorting algorithms in the chapter on procedures and recursion.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 467

Chapter Four Volume Three

f

ue
p
at

e

As is typical for a bubble sort, this algorithm terminates if the innermost loop completes without swap-
ping any data. If the data is already presorted, then the bubble sort is very efficient, making only one pass
over the data. Unfortunately, if the data is not sorted (worst case, if the data is sorted in reverse order), then
this algorithm is extremely inefficient. Indeed, although it is possible to modify the code above so that, on
the average, it runs about twice as fast, such optimizations are wasted on such a poor algorithm. However,
the Bubble Sort is very easy to implement and understand (which is why introductory texts continue to use it
in examples). Fortunately, you will learn about more advanced sorts later in this text, so you won’t be stuck
with it for very long.

4.6 Multidimensional Arrays

The 80x86 hardware can easily handle single dimension arrays. Unfortunately, there is no magic
addressing mode that lets you easily access elements of multidimensional arrays. That’s going to take some
work and lots of instructions.

Before discussing how to declare or access multidimensional arrays, it would be a good idea to figure
out how to implement them in memory. The first problem is to figure out how to store a multi-dimensional
object into a one-dimensional memory space.

Consider for a moment a Pascal array of the form “A:array[0..3,0..3] of char;”. This array contains 16
bytes organized as four rows of four characters. Somehow you’ve got to draw a correspondence with each o
the 16 bytes in this array and 16 contiguous bytes in main memory. Figure 4.2 shows one way to do this:

Figure 4.2 Mapping a 4x4 Array to Sequential Memory Locations

The actual mapping is not important as long as two things occur: (1) each element maps to a uniq
memory location (that is, no two entries in the array occupy the same memory locations) and (2) the ma-
ping is consistent. That is, a given element in the array always maps to the same memory location. So wh
you really need is a function with two input parameters (row and column) that produces an offset into a lin-
ear array of sixteen memory locations.

Now any function that satisfies the above constraints will work fine. Indeed, you could randomly choos
a mapping as long as it was unique. However, what you really want is a mapping that is efficient to compute
at run time and works for any size array (not just 4x4 or even limited to two dimensions). While there are a

0
1
2
3

0 1 2 3

Memory
Page 468 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

large number of possible functions that fit this bill, there are two functions in particular that most program-
mers and most high level languages use: row major ordering and column major ordering.

4.6.1 Row Major Ordering

Row major ordering assigns successive elements, moving across the rows and then down the columns,
to successive memory locations. This mapping is demonstrated in Figure 4.3:

Figure 4.3 Row Major Array Element Ordering

Row major ordering is the method employed by most high level programming languages including Pas-
cal, C/C++, Java, Ada, Modula-2, etc. It is very easy to implement and easy to use in machine language.The
conversion from a two-dimensional structure to a linear array is very intuitive. You start with the first row
(row number zero) and then concatenate the second row to its end. You then concatenate the third row to the
end of the list, then the fourth row, etc. (see Figure 4.4).

0
1
2
3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A[2,1]
8 A[2,0]
7 A[1,3]
6 A[1,2]
5 A[1,1]
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

A:array [0..3,0..3] of char;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 469

Chapter Four Volume Three

at
t
e

of
Figure 4.4 Another View of Row-Major Ordering for a 4x4 Array

For those who like to think in terms of program code, the following nested Pascal loop also demon-
strates how row major ordering works:

index := 0;
for colindex := 0 to 3 do

for rowindex := 0 to 3 do
begin

memory [index] := rowmajor [colindex][rowindex];
index := index + 1;

end;

The important thing to note from this code, that applies regardless of the number of dimensions, is th
the rightmost index increases the fastest. That is, as you allocate successive memory locations you incremen
the rightmost index until you reach the end of the current row. Upon reaching the end, you reset the indx
back to the beginning of the row and increment the next successive index by one (that is, move down to the
next row.). This works equally well for any number of dimensions4. The following Pascal segment demon-
strates row major organization for a 4x4x4 array:

index := 0;
for depthindex := 0 to 3 do

for colindex := 0 to 3 do
 for rowindex := 0 to 3 do begin

memory [index] := rowmajor [depthindex][colindex][rowindex];
index := index + 1;

 end;

The actual function that converts a list of index values into an offset doesn’t involve loops or much in
the way of fancy computations. Indeed, it’s a slight modification of the formula for computing the address
an element of a single dimension array. The formula to compute the offset for a two-dimension row major
ordered array declared in Pascal as “A:array [0..3,0..3] of integer” is

Element_Address = Base_Address + (colindex * row_size + rowindex) * Element_Size

As usual, Base_Address is the address of the first element of the array (A[0][0] in this case) and
Element_Size is the size of an individual element of the array, in bytes. Colindex is the leftmost index, rowin-
dex is the rightmost index into the array. Row_size is the number of elements in one row of the array (four, in

4. By the way, the number of dimensions of an array is its arity.

0 1 2 3

8 9 10 11

12 13 14 15

4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low Addresses High Addresses
Page 470 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

e

ing

e off-

o

this case, since each row has four elements). Assuming Element_Size is one, this formula computes the fol-
lowing offsets from the base address:

Column Row Offset into Array
index Index
0 0 0
0 1 1
0 2 2
0 3 3
1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13
3 2 14
3 3 15

For a three-dimensional array, the formula to compute the offset into memory is the following:

Address = Base + ((depthindex*col_size+colindex) * row_size + rowindex) * Element_Size

Col_size is the number of items in a column, row_size is the number of items in a row. In C/C++, if you’v
declared the array as “type A[i] [j] [k];” then row_size is equal to k and col_size is equal to j.

For a four dimensional array, declared in C/C++ as “type A[i] [j] [k] [m];” the formula for comput
the address of an array element is

Address =
Base + (((LeftIndex * depth_size + depthindex)*col_size+colindex) * row_size +
rowindex) * Element_Size

Depth_size is equal to j, col_size is equal to k, and row_size is equal to m. LeftIndex represents the value of
the leftmost index.

By now you’re probably beginning to see a pattern. There is a generic formula that will compute th
set into memory for an array with any number of dimensions, however, you’ll rarely use more than four.

Another convenient way to think of row major arrays is as arrays of arrays. Consider the following sin-
gle dimension Pascal array definition:

A: array [0..3] of sometype;

Assume that sometype is the type “sometype = array [0..3] of char;”.

A is a single dimension array. Its individual elements happen to be arrays, but you can safely ignore that
for the time being. The formula to compute the address of an element of a single dimension array is

Element_Address = Base + Index * Element_Size

In this case Element_Size happens to be four since each element of A is an array of four characters. S
what does this formula compute? It computes the base address of each row in this 4x4 array of characters
(see Figure 4.5):
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 471

Chapter Four Volume Three

to

 a

uta

al

o com-
Figure 4.5 Viewing a 4x4 Array as an Array of Arrays

Of course, once you compute the base address of a row, you can reapply the single dimension formula
get the address of a particular element. While this doesn’t affect the computation at all, conceptually it’s
probably a little easier to deal with several single dimension computations rather than a complex multidi-
mensional array element address computation.

Consider a Pascal array defined as “A:array [0..3] [0..3] [0..3] [0..3] [0..3] of char;” You can view this
five-dimension array as a single dimension array of arrays. The following Pascal code demonstrates such
definition:

type
OneD = array [0..3] of char;
TwoD = array [0..3] of OneD;
ThreeD = array [0..3] of TwoD;
FourD = array [0..3] of ThreeD;

var
A : array [0..3] of FourD;

The size of OneD is four bytes. Since TwoD contains four OneD arrays, its size is 16 bytes. Likewise,
ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD is four ThreeDs, so it is 256 bytes long. To com-
pute the address of “A [b, c, d, e, f]” you could use the following steps:

• Compute the address of A [b] as “Base + b * size”. Here size is 256 bytes. Use this result as the
new base address in the next computation.

• Compute the address of A [b, c] by the formula “Base + c*size”, where Base is the value
obtained immediately above and size is 64. Use the result as the new base in the next comp-
tion.

• Compute the address of A [b, c, d] by “Base + d*size” with Base coming from the above com-
putation and size being 16.

• Compute the address of A [b, c, d, e] with the formula “Base + e*size” with Base from above
and size being four. Use this value as the base for the next computation.

• Finally, compute the address of A [b, c, d, e, f] using the formula “Base + f*size” where base
comes from the above computation and size is one (obviously you can simply ignore this fin
multiplication). The result you obtain at this point is the address of the desired element.

Not only is this scheme easier to deal with than the fancy formulae given earlier, but it is easier t
pute (using a single loop) as well. Suppose you have two arrays initialized as follows

A1 = [256, 64, 16, 4, 1] and A2 = [b, c, d, e, f]

then the Pascal code to perform the element address computation becomes:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

A[0]

A[1]

A[2]

A[3]

(A[0]) [0]
(A[0]) [1]
(A[0]) [2]
(A[0]) [3]

Each elemen
of A is four
bytes long.
Page 472 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

 easily

e. You
 at run
 is that

thing like

en

ay ele

is v
for i := 0 to 4 do
base := base + A1[i] * A2[i];

Presumably base contains the base address of the array before executing this loop. Note that you can
extend this code to any number of dimensions by simply initializing A1 and A2 appropriately and changing
the ending value of the for loop.

As it turns out, the computational overhead for a loop like this is too great to consider in practic
would only use an algorithm like this if you needed to be able to specify the number of dimensions
time. Indeed, one of the main reasons you won’t find higher dimension arrays in assembly language
assembly language displays the inefficiencies associated with such access. It’s easy to enter some
“A [b,c,d,e,f]” into a Pascal program, not realizing what the compiler is doing with the code. Assembly lan-
guage programmers are not so cavalier – they see the mess you wind up with when you use higher dim-
sion arrays. Indeed, good assembly language programmers try to avoid two dimension arrays and often
resort to tricks in order to access data in such an array when its use becomes absolutely mandatory. But more
on that a little later.

4.6.2 Column Major Ordering

Column major ordering is the other function frequently used to compute the address of an arr-
ment. FORTRAN and various dialects of BASIC (e.g., older versions of Microsoft BASIC) use this method
to index arrays.

In row major ordering the rightmost index increased the fastest as you moved through consecutive
memory locations. In column major ordering the leftmost index increases the fastest. Pictorially, a column
major ordered array is organized as shown in Figure 4.6:

Figure 4.6 Column Major Array Element Ordering

The formulae for computing the address of an array element when using column major ordering ery
similar to that for row major ordering. You simply reverse the indexes and sizes in the computation:

For a two-dimension column major array:

Element_Address = Base_Address + (rowindex * col_size + colindex) * Element_Size

For a three-dimension column major array:

0
1
2
3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

Memory

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]
9 A[1,2]
8 A[0,2]
7 A[3,1]
6 A[2,1]
5 A[1,1]
4 A[0,1]
3 A[3,0]
2 A[2,0]
1 A[1,0]
0 A[0,0]

A:array [0..3,0..3] of char;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 473

Chapter Four Volume Three

s

e word

pecific
nstants
t corre-

this
ret the

 lay out
ll that
Address = Base + ((rowindex*col_size+colindex) * depth_size + depthindex) *
Element_Size

For a four-dimension column major array:

Address =
Base + (((rowindex * col_size + colindex)*depth_size + depthindex) *

Left_size + Leftindex) * Element_Size

The single Pascal loop provided for row major access remains unchanged (to access A[b][c][d][e][f]):

for i := 0 to 4 do
base := base + A1[i] * A2[i];

Likewise, the initial values of the A1 array remain unchanged:

A1 = {256, 64, 16, 4, 1}

The only thing that needs to change is the initial values for the A2 array, and all you have to do here i
reverse the order of the indices:

A2 = {f, e, d, c, b}

4.7 Allocating Storage for Multidimensional Arrays

If you have an m x n array, it will have m * n elements and require m*n*Element_Size bytes of storage.
To allocate storage for an array you must reserve this amount of memory. As usual, there are several different
ways of accomplishing this task. Fortunately, HLA’s array declaration syntax is very similar to high level
language array declaration syntax, so C/C++, BASIC, and Pascal programmers will feel right at home. To
declare a multidimensional array in HLA, you use a declaration like the following:

ArrayName: elementType [comma_separated_list_of_dimension_bounds];

For example, here is a declaration for a 4x4 array of characters:

GameGrid: char[4, 4];

Here is another example that shows how to declare a three dimensional array of strings:

NameItems: string[2, 3, 3];

Remember, string objects are really pointers, so this array declaration reserves storage for 18 doubl
pointers (2*3*3=18).

As was the case with single dimension arrays, you may initialize every element of the array to a s
value by following the declaration with the assignment operator and an array constant. Array co
ignore dimension information; all that matters is that the number of elements in the array constan
spond to the number of elements in the actual array. The following example shows the GameGrid declara-
tion with an initializer:

GameGrid: char[4, 4] :=
[

‘a’, ‘b’, ‘c’, ‘d’,
‘e’, ‘f’, ‘g’, ‘h’,
‘i’, ‘j’, ‘k’, ‘l’,
‘m’, ‘n’, ‘o’, ‘p’

];

Note that HLA ignores the indentation and extra whitespace characters (e.g., newlines) appearing in
declaration. It was laid out to enhance readability (which is always a good idea). HLA does not interp
four separate lines as representing rows of data in the array. Humans do, which is why it’s good to
the initial data in this manner, but HLA completely ignores the physical layout of the declaration. A
Page 474 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

 really
yte

g the
is initial

ves the
tant. For

nsional
ta in each
 for the

ment
prove
matters is that there are 16 (4*4) characters in the array constant. You’ll probably agree that this is much
easier to read than

GameGrid: char[4,4] :=
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’, ‘m’,
 ‘n’, ‘o’, ‘p’];

Of course, if you have a large array, an array with really large rows, or an array with many dimensions,
there is little hope for winding up with something reasonable. That’s when comments that carefully explain
everything come in handy.

As with single dimension arrays, you can use the DUP operator to initialize each element of a
large array with the same value. The following example initializes a 256x64 array of bytes so that each b
contains the value $FF:

StateValue: byte[256, 64] := 256*64 dup [$ff];

Note the use of a constant expression to compute the number of array elements rather than simply usin
constant 16,384 (256*64). The use of the constant expression more clearly suggests that this code -
izing each element of a 256x64 element array than does the simple literal constant 16,384.

Another HLA trick you can use to improve the readability of your programs is to use nested array con-
stants. The following is an example of an HLA nested array constant:

[[0, 1, 2], [3, 4], [10, 11, 12, 13]]

Whenever HLA encounters an array constant nested inside another array constant, it simply remo
brackets surrounding the nested array constant and treats the whole constant as a single array cons
example, HLA converts the nested array constant above to the following:

[0, 1, 2, 3, 4, 10, 11, 12, 13]

You can take advantage of this fact to help make your programs a little more readable. For multidime
array constants you can enclose each row of the constant in square brackets to denote that the da
row is grouped and separate from the other rows. As an example, consider the following declaration
GameGrid array that is identical (as far as HLA is concerned) to the previous declaration:

GameGrid: char[4, 4] :=
[

[‘a’, ‘b’, ‘c’, ‘d’],
[‘e’, ‘f’, ‘g’, ‘h’],
[‘i’, ‘j’, ‘k’, ‘l’],
[‘m’, ‘n’, ‘o’, ‘p’]

];

This declaration makes it clearer that the array constant is a 4x4 array rather than just a 16-ele
one-dimensional array whose elements wouldn’t fit all on one line of source code. Little aesthetic im-
ments like this are what separate mediocre programmers from good programmers.

4.8 Accessing Multidimensional Array Elements in Assembly Language

Well, you’ve seen the formulae for computing the address of an array element. You’ve even looked at
some Pascal code you could use to access elements of a multidimensional array. Now it’s time to see how to
access elements of those arrays using assembly language.

The MOV, SHL, and INTMUL instructions make short work of the various equations that compute off-
sets into multidimensional arrays. Let’s consider a two dimension array first:

static
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 475

Chapter Four Volume Three

e in a

ar

mble

T

 to
i: int32;
j: int32;
TwoD: int32[4, 8];

 .
 .
 .

// To peform the operation TwoD[i,j] := 5; you’d use code like the following.
// Note that the array index computation is (i*8 + j)*4.

mov(i, ebx);
shl(3, ebx); // Multiply by eight (shl by 3 is a multiply by 8).
add(j, ebx);
mov(5, TwoD[ebx*4]);

Note that this code does not require the use of a two register addressing mode on the 80x86. Although
an addressing mode like TwoD[ebx][esi] looks like it should be a natural for accessing two dimensional
arrays, that isn’t the purpose of this addressing mode.

Now consider a second example that uses a three dimension array:

static
i: int32;
j: int32;
k: int32;
ThreeD: int32[3, 4, 5];

.

.

.

// To peform the operation ThreeD[i,j,k] := ESI; you’d use the following code
// that computes ((i*4 + j)*5 + k)*4 as the address of ThreeD[i,j,k].

mov(i, ebx);
shl(2, ebx); // Four elements per column.
add(j, ebx);
intmul(5, ebx); // Five elements per row.
add(k, ebx);
mov(esi, ThreeD[ebx*4]);

Note that this code uses the INTMUL instruction to multiply the value in EBX by five. Remember, the SHL
instruction can only multiply a register by a power of two. While there are ways to multiply the valu
register by a constant other than a power of two, the INTMUL instruction is more convenient5.

4.9 Large Arrays and MASM

There is a defect in later versions of MASM v6.x that create some problems when you declare lge
static arrays in your programs. Now you may be wondering what this has to do with you since we’re using
HLA, but don’t forget that HLA v1.x compiles to MASM assembly code and then runs MASM to asse
this output. Therefore, any defect in MASM is going to be a problem for HLA users.

The problem occurs when the total number of array elements you declare in a static section (SATIC,
READONLY, or STORAGE) starts to get large. Large in this case is CPU dependent, but it falls somewhere
between 128,000 and one million elements for most systems. MASM, for whatever reason, uses a very slow
algorithm to emit array code to the object file; by the time you declare 64K array elements, MASM starts
produce a noticeable delay while compiling your code. After that point, the delay grows linearly with the

5. A full discussion of multiplication by constants other than a power of two appears in the chapter on arithmetic.
Page 476 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

ly time)

ts

ays

r

rrays

ll
nami

e

s

ti
 a
number of array elements (i.e., as you double the number of array elements you double the assemb
until the data saturates MASM’s internal buffers and the cache. Then there is a big jump in execution time.
For example, on a 300 MHz Pentium II processor, compiling a program with an array with 256,000 elemen
takes about 30 seconds, compiling a program with an array having 512,000 element takes several minutes.
Compiling a program with a one-megabyte array seems to take forever.

There are a couple of ways to solve this problem. First, of course, you can limit the size of your arr
in your program. Unfortunately, this isn’t always an option available to you. The second possibility is to use
MASM v6.11; the defect was introduced in MASM after this version. The problem with MASM v6.11 is
that it doesn’t support the MMX instruction set, so if you’re going to compile MMX instructions (or othe
instructions that MASM v6.11 doesn’t support) with HLA you will not be able to use this option. A third
option is to put your arrays in a VAR section rather than a static declaration section; HLA processes a
you declare in the VAR section so MASM never sees them. Hence, arrays you declare in the VAR section
don’t suffer from this problem.

4.10 Dynamic Arrays in Assembly Language

One problem with arrays up to this point is that their size is static. That is, the number of elements in a
of the examples is chosen when writing the program, it is not set while the program is running (i.e., dy-
cally). Alas, sometimes you simply don’t know how big an array needs to be when you’re writing the pro-
gram; you can only determine the size of the array while the program is running. This section describes
how to allocate storage for arrays dynamically so you can set their size at run time.

Allocating storage for a single dimension array, and accessing elements of that array, is a nearly trivial
task at run time. All you need to do is call the HLA Standard Library malloc routine specifying the size of
the array, in bytes. Malloc will return a pointer to the base address of the new array in the EAX register.
Typically, you would save this address in a pointer variable and use that value as the base address of th
array in all future array accesses.

To access an element of a single dimensional dynamic array, you would generally load the base addres
into a register and compute the index in a second register. Then you could use the based indexed addressing
mode to access elements of that array. This is not a whole lot more work than accessing elements of a sta-
cally allocated array. The following code fragment demonstrates how to allocate and access elements of
single dimension dynamic array:

static
ArySize: uns32;
BaseAdrs: pointer to uns32;

.

.

.
stdout.put(“How many elements do you want in your array? “);
stdin.getu32();
mov(eax, ArySize; // Save away the upper bounds on this array.
shl(2, eax); // Multiply eax by four to compute the number of bytes.
malloc(eax); // Allocate storage for the array.
mov(eax, BaseAdrs); // Save away the base address of the new array.

.

.

.

// Zero out each element of the array:

mov(BaseAdrs, ebx);
mov(0, eax);
for(mov(0, esi); esi < ArySize; inc(esi)) do

mov(eax, [ebx + esi*4]);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 477

Chapter Four Volume Three

e
of

e v

t

r, if you
ound at
endfor;

Dynamically allocating storage for a multidimensional array is fairly straight-forward. The number of
elements in a multidimensional array is the product of all the dimension values; e.g., a 4x5 array has 20 el-
ments. So if you get the bounds for each dimension from the user, all you need do is compute the product
all of these bound values and multiply the final result by the size of a single element. This computes the total
number of bytes in the array, the value that malloc expects.

Accessing elements of multidimensional arrays is a little more problematic. The problem is that you
need to keep the dimension information (that is, the bounds on each dimension) around because thesalues
are needed when computing the row major (or column major) index into the array6. The conventional solu-
tion is to store these bounds into a static array (generally you know the arity, or number of dimensions, a
compile-time, so it is possible to statically allocate storage for this array of dimension bounds). This array of
dynamic array bounds is known as a dope vector. The following code fragment shows how to allocate stor-
age for a two-dimensional dynamic array using a simple dope vector.

var
 ArrayPtr: pointer to uns32;
 ArrayDims: uns32[2];

.

.

.
 // Get the array bounds from the user:

 stdout.put("Enter the bounds for dimension #1: ");
 stdin.get(ArrayDims[0]);

 stdout.put("Enter the bounds for dimension #2: ");
 stdin.get(ArrayDims[1*4]);

 // Allocate storage for the array:

 mov(ArrayDims[0], eax);
 intmul(ArrayDims[1*4], eax);
 shl(2, eax); // Multiply by four since each element is 4 bytes.
 malloc(eax); // Allocate storage for the array and
 mov(eax, ArrayPtr); // save away the pointer to the array.

 // Initialize the array:

 mov(0, edx);
 mov(ArrayPtr, edi);
 for(mov(0, ebx); ebx < ArrayDims[0]; inc(ebx)) do

 for(mov(0, ecx); ecx < ArrayDims[1*4]; inc(ecx)) do

 // Compute the index into the array
 // as esi := (ebx * ArrayDims[1*4] + ecx) * 4
 // (Note that the final multiplication by four is
 // handled by the scaled indexed addressing mode below.)

 mov(ebx, esi);
 intmul(ArrayDims[1*4], esi);
 add(ecx, esi);

 // Initialize the current array element with edx.

6. Technically, you don’t need the value of the left-most dimension bound to compute an index into the array, howeve
want to check the index bounds using the BOUND instruction (or some other technique), you will need this value ar
run-time as well.
Page 478 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

of the
In f
the

 arrays

 the

r of the

n func

umber
ch

ype of
til you

 mov(edx, [edi+esi*4]);
 inc(edx);

 endfor;

 endfor;

4.11 HLA Standard Library Array Support

The HLA Standard Library provides an array module that helps reduce the effort needed to support
static and dynamic arrays in your program. The “arrays.hhf” library module provides code to declare and
allocate dynamic arrays, compute the index into an array, copy arrays, perform row reductions, transpose
arrays, and more. This section will explore some of the more useful features the arrays module provides.

One of the more interesting features of the HLA Standard Library arrays module is that most
array manipulation procedures support both statically allocated and dynamically allocated arrays. act,
the HLA array procedures can automatically figure out if an array is static or dynamic and generate
appropriate code for that array. There is one catch, however. In order for HLA to be able to differentiate
statically and dynamically allocated arrays, you must use the dynamic array declarations found in the
package. This won’t be a problem because HLA’s dynamic array facilities are powerful and very easy to
use.

To declare a dynamic array with the HLA arrays package, you use a variable declaration like the follow-
ing:

variableName: array.dArray(elementType, Arity);

The elementType parameter is a regular HLA data type identifier (e.g., int32 or some type identifier
you’ve defined in the TYPE section). The Arity parameter is a constant that specifies the number of dimen-
sions for the array (arity is the formal name for “number of dimensions”). Note that you do not specify
bounds of each dimension in this declaration. Storage allocation occurs later, at run time. The following is
an example of a declaration for a dynamically allocated two-dimensional matrix:

ScreenBuffer: array.dArray(char, 2);

The array.dArray data type is actually an HLA macro7 that expands the above to the following:

ScreenBuffer: record
dataPtr: dword;
dopeVector: uns32[2];
elementType: char;

endrecord;

The dataPtr field will hold the base address of the array once the program allocates storage for it. Thedope-
Vector array has one element for each array dimension (the macro uses the second paramete
array.dArray type as the number of dimensions for the dopeVector array). The elementType field is a single
object that has the same type as an element of the dynamic array. HLA provides a couple of built-i-
tions that you can use on these fields to extract important information. The @Elements function returns the
number of elements in an array. Therefore, “@Elements(ScreenBuffer.dopeVector)” will return the n
of elements (two) in the ScreenBuffer.dopeVector array. Since this array contains one element for ea
dimension in the dynamic array, you can use the @Elements function with the dopeVector field to determine
the arity of the array. You can use the HLA @Size function on the ScreenBuffer.elementType field to deter-
mine the size of an array element in the dynamic array. Most of the time you will know the arity and t
your dynamic arrays (after all, you declared them), so you probably won’t use these functions often un
start writing macros that process dynamic arrays.

7. See the chapter on Macros and the HLA Compile-Time Language for details on macros.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 479

Chapter Four Volume Three

use

w

ray into

e

an

After you declare a dynamic array, you must initialize the dynamic array object before attempting to
the array. The HLA Standard Library array.daAlloc routine handles this task for you. This routine uses the
following syntax:

array.daAlloc(arrayName, comma_separated_list_of_array_bounds);

To allocate storage for the ScreenBuffer variable in the previous example you could use a call like the follo-
ing:

array.daAlloc(ScreenBuffer, 20, 40);

This call will allocate storage for a 20x40 array of characters. It will store the base address of the ar
the ScreenBuffer.dataPtr field. It will also initialize ScreenBuffer.dopeVector[0] with 20 and ScreenBuf-
fer.dopeVector[1*4] with 40. To access elements of the ScreenBuffer array you can use the techniques of th
previous section, or you could use the array.index function.

The array.index function automatically computes the address of an array element for you. This function
uses the following call syntax:

array.index(reg32, arrayName, comma_separated_list_of_index_values);

The first parameter must be a 32-bit register. The array.index function will store the address of the spec-
ified array element in this register. The second array.index parameter must be the name of an array; this c
be either a statically allocated array or an array you’ve declared with array.dArray and allocated dynami-
cally with array.daAlloc. Following the array name parameter is a list of one or more array indices. The
number of array indices must match the arity of the array. These array indices can be constants, dword mem-
ory variables, or registers (however, you must not specify the same register that appears in the first parameter
as one of the array indices). Upon return from this function, you may access the specified array element
using the register indirect addressing mode and the register appearing as the first parameter.

One last routine you’ll want to know about when manipulating HLA dynamic arrays is the array.daFree
routine. This procedure expects a single parameter that is the name of an HLA dynamic array. Calling
array.daFree will free the storage associated with the dynamic array. The following code fragment is a
rewrite of the example from the previous section that uses HLA dynamic arrays:

var
 da: array.dArray(uns32, 2);
 Bnd1: uns32;
 Bnd2: uns32;

.

.

.
 // Get the array bounds from the user:

 stdout.put("Enter the bounds for dimension #1: ");
 stdin.get(Bnd1);

 stdout.put("Enter the bounds for dimension #2: ");
 stdin.get(Bnd2);

 // Allocate storage for the array:

 array.daAlloc(da, Bnd1, Bnd2);

 // Initialize the array:

 mov(0, edx);
 for(mov(0, ebx); ebx < Bnd1; inc(ebx)) do

 for(mov(0, ecx); ecx < Bnd2; inc(ecx)) do

Page 480 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

cedures
 mod
 the

your
 // Initialize the current array element with edx.
 // Use array.index to compute the address of the array element.

 array.index(edi, da, ebx, ecx);
 mov(edx, [edi]);
 inc(edx);

 endfor;

 endfor;

Another extremely useful library module is the array.cpy routine. This procedure will copy the data
from one array to another. The calling syntax is:

array.cpy(sourceArrayName, destArrayName);

The source and destination arrays can be static or dynamic arrays. The array.cpy automatically adjusts and
emits the proper code for each combination of parameters. With most of the array manipulation pro
in the HLA Standard Library, you pay a small performance penalty for the convenience of these library-
ules. Not so with array.cpy. This procedure is very, very fast; much faster than writing a loop to copy
data element by element.

4.12 Putting It All Together

Accessing elements of an array is a very common operation in assembly language programs. This chap-
ter provides the basic information you need to efficiently access array elements. After mastering the material
in this chapter you should know how to declare arrays in HLA and access elements of those arrays in
programs.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 481

Chapter Four Volume Three
Page 482 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Arrays Chapter Four
	4.1 Chapter Overview
	4.2 Arrays
	4.3 Declaring Arrays in Your HLA Programs
	4.4 HLA Array Constants
	4.5 Accessing Elements of a Single Dimension Array
	4.5.1 Sorting an Array of Values

	4.6 Multidimensional Arrays
	4.6.1 Row Major Ordering
	4.6.2 Column Major Ordering

	4.7 Allocating Storage for Multidimensional Arrays
	4.8 Accessing Multidimensional Array Elements in Assembly Language
	4.9 Large Arrays and MASM
	4.10 Dynamic Arrays in Assembly Language
	4.11 HLA Standard Library Array Support
	4.12 Putting It All Together

