

Appendix H: HLA Compile-time Functions

HLA Compile-Time Functions Appendix H

H.1 Conversion Functions

The conversion functions translate data from one format to another. For example, functions in this
group can convert integers to strings or strings to integers. These routines provide the compile-time equiva-
lent of the HLA Standard Library CONV module.

The compile-time conversion routines are unusual in the set of compile-time function insofar as they do
not require a leading "@" symbol. Instead, the conversion routines use the names of several of the built-in
data types. The following table describes each of these functions:

Table 1: Compile-Time Data Conversion Functions

Function Parametersa Description

boolean boolean(constExpr)

ConstExpr can be a bool-
ean, integer, character, or
string operand.

If constExpr is numeric, this function returns
false for zero and true for any other value. For
characters, "t" or "f" returns true or false
(respectively), anything else is an error. For
strings, the operands must be "true" or "false"
(else an error occurs). The boolean function
returns boolean values unchanged and returns
an error for any other type.

int8 xxxx(constExpr)

Note: xxxx represents one
of the function names to
the left.

constExpr can be any
constant expression that
evaluates to a numeric,
character, boolean, or
string operand.

These functions will convert their operand to
the specified data type. These functions gen-
erate an error if the resulting value will not fit
in the specified data type (e.g., int8(-1000)
will generate an error). Note that HLA treats
byte, word, and dword functions identically to
uns8, uns16, and uns32 (respectively).

For boolean operands, true returns one and
false returns zero.

If the operand is a real value, then these func-
tions truncate the value to obtain the corre-
sponding integer return value.

For character operands, these function return
the corresponding ASCII code of the charac-
ter.

For string operands, the string must be a legal
sequence of characters that form a decimal
number.

int16

int32

uns8

uns16

uns32

byte

word

dword
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1493

AppendixH

real32 xxxxxx(constExpr)

Note: xxxxxx represents
one of the function names
to the left.

constExpr can be any
constant expression that
evaluates to a numeric or
string operand.

These functions convert their specified oper-
and to the corresponding real value. These
functions convert integer operands to the cor-
responding real value. If the operand is a
string expression, it must be a valid sequence
of characters that corresponds to an HLA
floating point value. These functions convert
that string to the corresponding real value.

real64

real80

char char(constExpr)

constExpr must be a posi-
tive integer value, a char-
acter, or a string.

If the parameter is an integer value, this func-
tion returns the character with that ASCII
code. If the parameter is a string, this function
returns the first character of that string. If the
operand is a character, this function simply
returns that character value.

string string(constExpr)

constExpr can be any
legal constant data type.

This function returns the string representation
of the specified parameter. For real values,
this function returns the scientific notation
format for the value. For boolean expressions,
this function returns the value "true" or
"false". For character operands, this function
returns a string containing the single character
specified as the operand. For integer parame-
ters, this function returns a string containing
the decimal equivalent of that value. For char-
acter set operands, this function returns a
string listing all the characters in the character
set. If the operand is a string expression, this
function simply returns that string.

cset cset(constExpr)

constExpr can be a char-
acter, string, or a cset.

This function returns a character set contain-
ing the characters specified by the operand. If
the operand is a character, then this function
returns the singleton set containing that single
character. If the operand is a string, this func-
tion returns the union of all the characters in
that string. If the operand is a character set,
this function returns that character set.

Table 1: Compile-Time Data Conversion Functions

Function Parametersa Description
Page 1494 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions

r

n call

Internally, HLA generally maintains all numeric constant values as int32, uns32, dword, or real80.
Therefore, it is unlikely that you would want to use the int8, int16, uns8, uns16, real32, or real64 com-
pile-time functions in your program unless you want to force an error if a value is out of range.

Of these conversion functions, the string function is, perhaps, the most useful. Many compile-time
functions and statements accept only string operands. You can use the string function to translate other data
types to a string in a situation where you wish to use one of these other data types. For example, the
#ERROR statement only allows a single string parameter. However, you can construct complex error mes-
sages by using the string concatentation operator ("+") with the string function, e.g.,

#error("Constant value i32=" + string(i32) + " and that is out of range")

H.2 Numeric Functions

These functions provide common mathematical functions. Remember, these functions compute thei
values at compile-time. Their parameters are constants and they return constant values. These functions are
not useable with variables at run-time. See the HLA Standard Library for comparable functions you ca
from your assembly language programs while they are running.

text text(constExpr)

constExpr: same as for
string.

This function takes the same parameters as the
string function. Instead of returning a string
constant, however, this function expands the
text in-line at the point of the function. This
function is equivalent to the @text function.

@odd @odd(constExpr)

constExpr must be an
integer value.

This function returns true if the integer oper-
and is an odd number, it returns false other-
wise.

a. Integer operands can be any of the intXX, unsXX, byte, word, or dword types.

Table 2: Numeric Compile-Time Functions

Function Parametersa Description

@abs @abs(constExpr)

constExpr must be a
numeric value.

Returns the absolute value of the parameter.
The return type is the same as the parameter
type.

Table 1: Compile-Time Data Conversion Functions

Function Parametersa Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1495

AppendixH
@byte @byte(Expr, select)

Expr must be a 32-bit
ordinal expression, a real
expression (32, 64, or 80
bits), or a cset expres-
sion.

select must be less than
the size of Expr’s data
type.

This function exacts the specified byte from
the value of Expr as selected via the select
parameter. If select is zero, this function
returns the L.O. byte, higher values for select
return the corrsponding higher-order bytes of
the object.

Note that HLA usually extends literal con-
stants to the largest representation possible,
e.g., HLA treats 1.234 as a real80 value. Use
coercion to change this, if necessary (e.g.,
@byte(real32(1.234), 3))

@ceil @ceil(constExpr)

constExpr must be a
numeric value.

If the parameter is an integer value, this func-
tion simply converts it to a real value and
returns that value. If the parameter is a real
value, then this function returns the smallest
integer value larger than or equal to the
parameter’s value (i.e., this function rounds a
real value to the next highest integer if the
real value contains a fractional part).

@cos @cos(constExpr)

constExpr must be a
numeric value express-
ing an angle in radians.

This function returns the cosine of the speci-
fied parameter value.

@exp @exp(constExpr)

constExpr must be a
numeric value.

This function return e raised to the specified
power.

@floor @floor(constExpr)

constExpr must be a
numeric value.

This function returns the largest integer value
that is less than or equal to the numeric value
passed as a parameter. For positive real num-
bers this is equivalent to truncation (for nega-
tive numbers, it rounds towards negative
infinity).

@log @log(constExpr)

constExpr is a non-nega-
tive numeric value.

This function computes the natural (base e)
logarithm of its operand.

Table 2: Numeric Compile-Time Functions

Function Parametersa Description
Page 1496 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@log10 @log10(constExpr)

constExpr is a non-nega-
tive numeric value.

This function computes the base-10 loga-
rithm of its operand.

@max @max(list)

list is a list of two or
more comma separated
numeric expressions.

This function returns the maximum of a set
of numeric values. The values in the list
must all be the same type.

@min @min(list)

list is a list of two or
more comma separated
numeric expressions.

This function returns the minimum of a set of
numeric values. The values in the list must
all be the same type.

@random @random(intExpr)

intExpr must be a posi-
tive integer value.

This function returns a pseudo-random num-
ber between zero and intExpr-1. Currently
HLA uses the random function provided by
the C standard library; so don’t expect a high
quality random number generator here. In
particular, if intExpr is a small value, the
quality of the random number generator is
very low.

@randomize @randomize(intExpr)

intExpr must be a posi-
tive integer value.

This function attempts to "randomize" the
random number generator seed. Then it
returns a random number between zero and
intExpr-1. You should not call this function
multiple times in your source file.

@sin @sin(constExpr)

constExpr must be a
numeric value express-
ing an angle in radians.

This function returns the sine of the specified
parameter value.

@sqrt @sqrt(constExpr)

constExpr m ust be a
non-negative numeric
value.

This function returns the square root of the
specified operand value.

Table 2: Numeric Compile-Time Functions

Function Parametersa Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1497

AppendixH

., alpha

spec
g to the

le
 more
H.3 Date/Time Functions

The Date/Time compile-time functions return strings holding the current date and time.

H.4 Classification Functions

These functions test a character or string to see if the characters belong to a certain class (e.g-
betic characters). This functions return true or false depending upon the result of the comparison.

If the operand is a character expression, these functions return true if that character belongs to the -
ified class. If the operand is a string, these functions return true if all characters in the string belon
specified class.

Also see the HLA Compile-Time Pattern Matching Functions for some different ways to test characters
in a string. Remember, these are compile-time functions. The HLA Standard Library contains comparab
routines for use at run-time in your programs. See the HLA Standard Library documentation for
details.

@tan @tan(constExpr)

constExpr must be a
numeric value express-
ing an angle in radians.

This function returns the tangent of the speci-
fied parameter value.

a. Numeric parameters are intX, unsX, byte, word, dword, or realX values.

Table 3: HLA Compile-Time Date/Time Functions

Function Parameters Description

@date @date This function returns a string specifying the cur-
rent date. This string typically takes the form
"year/month/day", e.g., "2000/12/31".

@time @time This function returns a string specifying the cur-
rent time. This string typically takes the form
"HH:MM:SS xM" (x= A or P).

Table 2: Numeric Compile-Time Functions

Function Parametersa Description
Page 1498 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
Table 4: HLA Compile-Time Character Classification Functions.

Function Parameters Description

@isalpha @isalpha(constExpr)

constExpr must be a character
or a string expression.

This function returns true if the charac-
ter operand is an alphabetic character.

If the parameter is a string, this function
returns true if all characters in the string
are alphabetic.

@isalphanum @isalphanum(constExpr)

constExpr must be a character
or a string expression.

This function returns true if the charac-
ter operand is an alphanumeric charac-
ter.

If the parameter is a string, this function
returns true if all characters in the string
are alphanumeric.

@isdigit @isdigit(constExpr)

constExpr must be a character
or a string expression.

This function returns true if the charac-
ter operand is a decimal digit character.

If the parameter is a string, this function
returns true if all characters in the string
are digits.

@islower @islower(constExpr)

constExpr must be a character
or a string expression.

This function returns true if the charac-
ter operand is a lower case alphabetic
character.

If the parameter is a string, this function
returns true if all characters in the string
are lower case alphabetic characters.

@isspace @isspace(constExpr)

constExpr must be a character
or a string expression.

This function returns true if the charac-

ter operand is a space charactera.

If the parameter is a string, this function
returns true if all characters in the string
are spaces.

@isupper @isupper(constExpr)

constExpr must be a character
or a string expression.

This function returns true if the charac-
ter operand is an upper case alphabetic
character.

If the parameter is a string, this function
returns true if all characters in the string
are upper case alphabetic characters
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1499

AppendixH

es
H.5 String and Character Set Functions

The following functions provide a very powerful set of string manipulation functions to the HLA com-
pile-time language. These functions let you easily maniipulate data like macro parameters and #text..#end-
text blocks.

Remember, these are compile-time functions. The HLA Standard Library contains comparable routin
for use at run-time in your programs. See the HLA Standard Library documentation for more details.

The @extract function behaves a little differently than the cs.extract function in the HLA Standard
Library. @extract does not actually remove the specified character from the character set. Keep this in mind
if you use both @extract and cs.extract frequently.

@isxdigit @isxdigit(constExpr)

constExpr must be a character
or a string expression.

This function returns true if the charac-
ter operand is a hexadecimal digit char-
acter {0-9, a-f, A-F}.

If the parameter is a string, this function
returns true if all characters in the string
are hexadecimal digits.

a. "Space" means any white space character. This includes tabs, newlines, etc.

Table 5: HLA Compile-Time String Functions

Function Parameters Description

@delete @delete(strExpr, start, len)

strExpr must be a string expression.

start and len must be positive integer
expressions.

This function returns a string con-
sisting of the strExpr parameter with
len characters removed starting at
position start in the string. The first
character in the string is at position
zero. Therefore, @delete("Hello",
2, 3) returns the string "He".

Table 4: HLA Compile-Time Character Classification Functions.

Function Parameters Description
Page 1500 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@extract @extract(csetExpr)

csetExpr must be a character set value.

This function returns an arbitrary
character from the specified charac-
ter set. Note that this function does
not remove that character from the
set. You must manually remove the
character if you do not want the next
call to @extract (with the same
parameter) to return the same char-
acter, e.g.,

val
 c := @extract(someSet);
 someSet := someSet - {c};

@index @index(strExpr, start, findStr)

strExpr and findStr must be string
expressions.

start must be a non-negative integer
value.

This function searches for the string
specified by findStr within the str-
Expr string starting at character
position start. If this function finds
the string, it returns the index into
strExpr where it located findStr. If it
does not find the string, it returns -1.

@insert @insert(destStr, start, strToIns)

destStr and strToIns must be string
expressions.

start must be a non-negative integer
expression.

This function returns a string con-
sisting of the combination of the
destStr and strToIns strings. This
function inserts strToIns into destStr
at the position specified by start.

@length @length(strExpr)

strExpr must be a string expression.

This function returns the length of
the specified string as an integer
result.

@lowercase @lowercase(strExpr, start)

strExpr must be a string expression.

start must be a non-negative integer
expression.

This function translates all charac-
ters from position start to the end of
the string to lower case (if they were
previously upper case alphabetic
characters).

Table 5: HLA Compile-Time String Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1501

AppendixH

@rindex @rindex(strExpr, start, findStr)

strExpr and findStr must be string
expressions.

start must be a non-negative integer
value.

This function searches backwards to
find the last occurrence of the string
specified by findStr within the str-
Expr string. This function will only
search back to position start. If this
function finds the string, it returns
the index into strExpr where it
located findStr. If it does not find the
string, it returns -1.

@strbrk @strbrk(strExpr, start, csetExpr)

strExpr must be a string expression.

start must be a non-negative integer
expression.

csetExpr must be a character set
expression.

Starting at position start within str-
Expr, this function searches for the
first character of strExpr that is a
member of the csetExpr character
set. It returns -1 if no such charac-
ters exist.

@strset @strset(charExpr, len)

charExpr must be a character value.

len must be a non-negative integer
value.

This function returns the string con-
sisting of len copies of charExpr
concatenated together.

@strspan @strspan(strExpr, start, csetExpr)

strExpr must be a string expression.

start must be a non-negative integer
expression.

csetExpr must be a character set
expression.

Starting at position start within str-
Expr, this function searches for the
first character of strExpr that is not a
member of the csetExpr character
set. It returns the length of the string
if all remaining characters are in the
specified character set.

@substr @substr(strExpr, start, len)

strExpr must be a string expression.

start and len must be non-negative
integer values.

This function returns the sequence
of len characters (the "substring")
starting at position start in the str-
Expr string.

Table 5: HLA Compile-Time String Functions

Function Parameters Description
Page 1502 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions

@tokenize @tokenize(strExpr, start, Delims,
Quotes)

strExpr must be a string expression.

start must be a non-negative integer
value.

Delims and Quotes must be character
set expressions.

This function returns an array of
strings consisting of the various sub-
strings in strExpr obtained by sepa-
rating the substrings using the
Delims character set.

This "lexical scan" operation begins
at position start in strExpr. The
function first skips over all charac-
ters in Delims and the collects all
characters until it finds another
delimiter character from the Delims
set. It repeats this process, adding
each scanned string to the array it
returns, until it reaches the end of
the string.

The fourth parameter, Quotes, speci-
fies special quoting characters. Typ-
ically, this character set is the empty
set. However, if it contains a charac-
ter, then that character is a quote
character and all characters between
two occurrences of the quote symbol
constitute a single string, even if
delimiters appear within that string.
Typical characters in the Quotes
character set would be apostrophes
or quotation marks. If "(", "[", or
"{" appears in the Quotes set, then
the corresponding closing symbol
must also appear and tokenize uses
the pair of quote objects to surround
a quoted item.

This function is unusual insofar as it
returns an array constant as its
result. Typically you would assign
this to a VAL or CONST object so
you can gain access to the individual
items in the array. To determine the
number of elements in this array, use
the @elements function.

Table 5: HLA Compile-Time String Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1503

AppendixH

e

age.

ng

meter

rs in

eter.
H.6 Pattern Matching Functions

The HLA compile-time language provides a large set of pattern matching functions similar to th
run-time functions available in the PATTERNS.HHF module of the HLA Standard Library. These pattern
matching functions, combined with the string processing functions of the previous section, provide you with
the ability to write your own scanners and parsers (i.e., compilers) within the HLA compile-time langu
Indeed, one of the primary purposes of the HLA compile-time language is to let you expand the HLA lan-
guage to suit your needs. The pattern matching functions, along with macros, provide the backbone for this
capability in HLA.

Note that there are some pretty serious differences between the HLA compile-time pattern matchi
functions and the routines in the PATTERNS.HHF module. Perhaps the biggest difference is the fact that the
compile-time functions do not support backtracking while the run-time routines do. Fortunately, it is not
that difficult to simulate backtracking on your own within the compile-time language.

Another difference between the comile-time functions and their run-time counterparts is the para
list. The compile-time functions typically have a couple of optional parameters that let you extract informa-
tion about the pattern match if it was successful. Consider, for a moment, the @matchStr function:

@matchStr(Str, tstStr)

When you call this function using the syntax above, this function will return true if the string expression
Str begins with the sequence of characters found in tstStr. It returns false otherwise. Now consider the fol-
lowing invocation:

@matchStr(Str, tstStr, remainder)

This call to the function also returns true if Str begins with the characters found in the tstStr string. If
this function returns true, then this function also copies the remaining charactes (i.e., those characteStr
that following the tstStr characters at the beginning of Str) to the remainder VAL object. If @matchStr
returns false, the value of remainder is undefined (with the single exception noted below).

It is perfectly legal to specify the same string as the Str and remainder parameters. For example, con-
sider the following invocation:

@matchStr(str, "Hello ", str)

If str begins with the string "Hello " then this function will return true and replace str’s value with the string
containing all characters beyond the sixth character of the string. If str does not begin with "Hello " then this
function does not modify str’s value.

Most of the HLA compile-time pattern matching functions also allow a second optional param
Consider the following invocation of the @oneOrMoreCset function:

@trim @trim(strExpr)

strExpr must be a string expression.

This function returns the specified
string operand with leading and
trailing spaces removed.

@uppercase @uppercase(strExpr)

strExpr must be a string expression.

The function returns a copy of its
string operand with any lower case
alphabetic characters converted to
upper case.

Table 5: HLA Compile-Time String Functions

Function Parameters Description
Page 1504 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions

s

racters
@oneOrMoreCset(str, {’0’..’9’}, remainder, matched)

If this function returns true it will copied the sequence of characters at the beginning of str that are members
of the specified character set (i.e., digits) to the matched VAL object. This function returns all character
beyond the digits in the remainder VAL object. If this function returns false, then remainder and matched
will contain undefined values and this function will not affect str.

H.6.1 String/Cset Pattern Matching Functions

Among the most useful of the pattern matching functions are those that checking the leading cha
of a string to see if they are members of a particular character set. The following rich set of functions pro-
vides this capability in the compile-time language.

Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description

@peekCset @peekCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function returns true
if the first character of str
is a member of cset; it
returns false otherwise.

If rem is present, this func-
tion copies str to rem upon
return. If matched is
present and the function
returns true, this function
stores a copy of the first
character into the matched
VAL object. The value of
matched is undefined if
this function returns false.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1505

AppendixH

@oneCset @oneCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function returns true
if the first character of str
is a member of cset; it
returns false otherwise.

If rem is present, this func-
tion copies all characters
of str beyond the first char-
acter to rem upon return.
If matched is present and
the function returns true,
this function stores a copy
of the first character into
the matched VAL object.
The value of matched is
undefined if this function
returns false.

@uptoCset @uptoCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function copies all
characters up to, but not
including, a single charac-
ter from the cset parame-
ter. If the str parameter
does not contain a charac-
ter in the cset set, this
function returns false. If it
succeeds, and the matched
parameter is present, it
copies all characters it
matches to the matched
parameter and it copies all
remaining characters to the
rem parameter (if present).

@zeroOrOneCset @zeroOrOneCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function always
returns true. This function
copies the single character
it matches (if any) to the
matched string and any
remaining characters in the
string to the rem object
(assuming rem and
matched appear in the
parameter list).

Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description
Page 1506 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@exactlyNCset @exactlyNCset(str, cset, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function returns true
if the first n characters of
str are members of cset.
The character at position
n+1 must not be a member
of cset.

If this function returns
true, it copies the first n
characters of str to
matched and copies any
remaining characters to
rem (assuming rem and
matched are present).

@firstNCset @firstNCset(str, cset, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function returns true
if the first n characters of
str are members of cset.
The character at position
n+1 may or may not be a
member of cset.

If this function returns
true, it copies the first n
characters of str to
matched and copies any
remaining characters to
rem (assuming rem and
matched are present).

Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1507

AppendixH
@nOrLessCset @nOrLessCset(str, cset, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function always
returns true. This function
matches up to the first n
characters of str are mem-
bers of cset. The character
at position n+1 may or
may not be a member of
cset.

If this function returns
true, it copies the matching
(up to n) characters of str
to matched and copies any
remaining characters to
rem (assuming rem and
matched are present).

@nOrMoreCset @nOrMoreCset(str, cset, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function returns true
if it matches at least n
characters from str in cset.

If rem and matched appear
in the parameter list, this
function will copy all char-
acters it matches to
matched and copy any
remaining characters into
rem.

Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description
Page 1508 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions

@nToMCset @nToMCset(str, cset, n, m, rem, matched)

str must be a string expression.
cset must be a character set expression.

n and m must be non-negative integer val-
ues.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function returns true
if there are at least n char-
acters in cset at the begin-
ning of str. If rem and
matched are present, this
function will copy all the
characters it matches (up

to the mth position) into
the matched string and
copy any remaining char-
acters into the rem string.
The character at position
m+1 may or may not be a
member of cset.

@exactlyNToMC-
set

@ExactlyNToMCset(str, cset, n, m, rem,
matched)

str must be a string expression.
cset must be a character set expression.

n and m must be non-negative integer val-
ues.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function returns true
if there are at least n char-
acters in cset at the begin-
ning of str. If rem and
matched are present, this
function will copy all the
characters it matches (up

to the mth position) into
the matched string and
copy any remaining char-
acters into the rem string.
If this function matches m
characters, the character at
position m+1 must not be
a member of cset or else
this function will return
false.

@zeroOrMoreCset @zeroOrMoreCset(str, cset, rem, matched
)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function always
returns true. If rem and
matched are present, this
function will copy all char-
acters from the beginning
of str that are members of
cset to the matched string.
It will copy all remaining
characters to the rem
string.

Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1509

AppendixH

-time
rac

H.6.2 String/Character Pattern Matching Functions

Though not always as useful as the character set pattern matching functions, the HLA compile
character matching functions are more efficent than the character set routines when matching single cha-
ters.

@oneOrMoreCset @OneOrMoreCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This func-
tion stores a result into these two objects.

This function returns true
if the first character of set
is a member of cset. If rem
and matched are present,
this function will copy all
characters from the begin-
ning of str that are mem-
bers of cset to the matched
string. It will copy all
remaining characters to the
rem string.

Table 7: HLA Compile-time Character Matching Functions

Function Parameters Description

@peekChar @peekChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function returns true
if the first character of str
is equal to char. If rem
and matched are present
and this function returns
true, it also returns str in
rem and char in matched.

Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description
Page 1510 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@oneChar @oneChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function returns true
if the first character of str
is equal to char. If rem
and matched are present
and this function returns
true, it also returns all the
characters str beyond the
first character in rem and
char in matched.

@uptoChar @uptoChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function returns true
if the char exists some-
where in str. If rem and
matched are present and
this function returns true,
it also returns, in rem, all
the characters in str start-
ing with the first instance
of char. It also returns all
the characters up to (but
not including) the first
instance of char in
matched.

@zeroOrOneChar @zeroOrOneChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function always
returns true. If rem and
matched are present, it
sets matched to the
matched string (i.e., an
empty string or the single
character char) and it sets
rem to the characters after
the matched character
value (the whole string if
the first character of str is
not equal to char).

Table 7: HLA Compile-time Character Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1511

AppendixH
@zeroOrMore-
Char

@zeroOrMoreChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function always
returns true. If the first
character of str does not
match char, then this
function returns the empty
string in matched and it
returns str in rem. If str
begins with a sequence of
characters all equal to
char, then this function
returns that sequence in
matched and it returns the
remaining characters in
rem.

@oneOrMoreChar @oneOrMoreChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function returns true
if the first character in str
is equal to char; other-
wise it returns false.

If this function returns
true, it copies all leading
occurrences of char into
matched and any remain-
ing characters from str
into rem.

@exactlyNChar @exactlyNChar(str, char, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function returns true
if the first n characters of
str all match char. The

n+1th character must not
be equal to char.

If this function returns
true, it returns a string of n
copies of char in matched
and all remaining charac-
ters (position n and
beyond) in rem.

Table 7: HLA Compile-time Character Matching Functions

Function Parameters Description
Page 1512 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@firstNChar @firstNChar(str, char, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function returns true
if the first n characters of
str all match char. The

n+1th character may or
may not be equal to char.

If this function returns
true, it returns a string of n
copies of char in matched
and all remaining charac-
ters (position n and
beyond) in rem.

@nOrLessChar @nOrLessChar(str, char, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function returns true
as long as str begins with
n or fewer (including
zero) copies of char. It
fails if str begins with
more than n copies of
char.

If this function returns
true, it returns a string, in
matched, containing all
copies of char that appear
at the beginning of str. It
returns all remaining char-
acters in rem.

@nOrMoreChar @nOrMoreChar(str, char, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function returns true
if str begins with at least n
copies of char. It returns
false otherwise.

If this function returns
true, then it returns the
leading characters that
match char in matched
and all following charac-
ters in rem.

Table 7: HLA Compile-time Character Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1513

AppendixH

r

H.6.3 String/Case Insenstive Character Pattern Matching Functions

HLA provides two sets of character matching routines: the previous section described the standard cha-
acter matching routines, this section presents the case insensitive versions of those same routines.

@nToMChar @nToMChar(str, char, n, m, rem, matched)

str must be a string expression.
cset must be a character set expression.

n and m must be non-negative integer values.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function matches any
string that has at least n
copies of char at the
beginning of str. It will
match up to m copies of
char. The character at
position m+1 may be
equal to char, but this
function will not match
that character. If this
function returns true, it
returns the string of
matched characters in
matched and any remain-
ing characters in rem.

@exactlyNToM-
Char

@exactlyNToMChar(str, char, n, m, rem,
matched)

str must be a string expression.
cset must be a character set expression.

n and m must be non-negative integer values.

rem and matched are optional arguments
(both are optional, but if matched is present,
rem must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function matches any
string that has at least n
copies of char at the
beginning of str. It will
match up to m copies of
char. The character at
position m+1 must not be
equal to char. If this func-
tion returns true, it returns
the string of matched
characters in matched and
any remaining characters
in rem.

Table 7: HLA Compile-time Character Matching Functions

Function Parameters Description
Page 1514 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
Table 8: HLA Compile-time Case Insensitive Character Matching Functions

Function Parameters Description

@peekiChar @peekiChar(str, char, rem, matched)
See @peekChar for details.

Case insensitive version
of @peekChar. See
@peekChar for details.

@oneiChar @oneiChar(str, char, rem, matched)
See @oneChar for details.

Case insensitive version
of @oneChar. See
@oneChar for details.

@uptoiChar @uptoiChar(str, char, rem, matched)
See @uptoChar for details.

Case insensitive version
of @uptoChar. See
@uptoChar for details.

@zeroOrOneiChar @zeroOrOneiChar(str, char, rem, matched)
See @zeroOrOneChar for details.

Case insensitive version
of @zeroOrOneChar.
See @zeroOrOneChar
for details.

@zeroOrMorei-
Char

@zeroOrMoreiChar(str, char, rem, matched)
See @zeroOrMoreChar for details.

Case insensitive version
of @zeroOrMoreChar.
See @zeroOrMoreChar
for details.

@oneOrMoreiChar @OneOrMoreiChar(str, char, rem, matched)
See @OneOrMoreChar for details.

Case insensitive version
of @OneOrMoreChar.
See @OneOrMoreChar
for details.

@exactlyNiChar @exactlyNiChar(str, char, n, rem, matched)
See @exactlyNChar for details.

Case insensitive version
of @exactlyNChar. See
@exactlyNChar for
details.

@firstNiChar @firstNiChar(str, char, n, rem, matched)
See @firstNChar for details.

Case insensitive version
of @firstNChar. See
@firstNChar for details.

@nOrLessiChar @nOrLessiChar(str, char, n, rem, matched)
See @nOrLessChar for details.

Case insensitive version
of @nOrLessChar. See
@nOrLessChar for
details.

@nOrMoreiChar @nOrMoreiChar(str, char, n, rem, matched)
See @nOrMoreChar for details.

Case insensitive version
of @nOrMoreChar. See
@nOrMoreChar for
details.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1515

AppendixH

atch

ng func
H.6.4 String/String Pattern Matching Functions

Another set of popular pattern matching routines in the compile-time function set are the string m-
ing routines. These routines check to see if a string begins with some specified sequence of characters. Next
to the character set matching functions, these are probably the most commonly used pattern matchi-
tions.

@nToMiChar @nToMiChar(str, char, n, m, rem, matched)
See @nToMChar for details.

Case insensitive version
of @nToMChar. See
@nToMChar for details.

@exactlyNToMi-
Char

@exactlyNToMiChar(str, char, n, m, rem,
matched)
See @exactlyNToMChar for details.

Case insensitive version
of @exactlyNToM-
Char. See @exactlyN-
ToMChar for details.

Table 9: Compile-Time String Matching Functions

Function Parameters Description

@matchStr @matchStr(str, tstStr, rem, matched)

str must be a string expression.
tstStr must be a string expression.

rem and matched are optional argu-
ments (both are optional, but if
matched is present, rem must also be
present).
The types of rem and matched are
irrelevant but they must be VAL
objects. This function stores a result
into these two objects.

This function returns true if str
begins with the characters
found in tstStr.

If this function returns true, it
also returns tstStr in matched
and all characters in str follow-
ing the tstStr characters in rem.

@matchiStr @matchiStr(str, tstStr, rem, matched)

Same parameters as matchStr, see that
function for details.

This is a case insensitive ver-
sion of @matchStr.

Table 8: HLA Compile-time Case Insensitive Character Matching Functions

Function Parameters Description
Page 1516 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions

trings,
H.6.5 String/Misc Pattern Matching Functions

This last group of compile-time pattern matching functions check for certain special types of s
such as HLA identifiers, numeric constants, whitespace, and the end of the string.

@uptoStr @uptoStr(str, tstStr, rem, matched)

Same parameters as matchStr, see that
function for details.

This function returns true if tst-
Str appears somewhere within
str, it returns false otherwise.

If this function returns true,
then it returns all characters up
to, but not including, the char-
acters from tstStr in matched.
It returns all following charac-
ters (including the tstStr sub-
string) in rem.

@uptoiStr @uptoiStr(str, tstStr, rem, matched)

Same parameters as matchStr, see that
function for details.

This is a case insensitive ver-
sion of @uptoStr.

@matchToStr @matchToStr(str, tstStr, rem, matched
)

Same parameters as matchStr, see that
function for details.

This function is similar to
@uptoStr except if it returns
true it will copy all characters
up to and including tstStr to
matched and all following
characters to rem.

@matchToiStr @matchToiStr(str, tstStr, rem,
matched)

Same parameters as matchStr, see that
function for details.

This is a case insensitive ver-
sion of @matchToStr.

Table 9: Compile-Time String Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1517

AppendixH

Table 10: Miscellaneous Compile-time Pattern Matching Functions

Function Parameters Description

@matchID @matchID(str, rem, matched)

str must be a string expression.

rem and matched are optional arguments
(both are optional, but if matched is
present, rem must also be present).
The types of rem and matched are irrele-
vant but they must be VAL objects. This
function stores a result into these two
objects.

This function returns true
if the first sequence of
characters in str match the
definition of an HLA iden-
tifier.

An HLA identifier is any
sequence of characters that
begins with an underscore
or an alphabetic character
that is followed by zero or
more underscore or alpha-
numeric characters.

If this function returns
true, it copies the identifier
to matched and all follow-
ing characters to rem.

@matchIntConst @matchIntConst(str, rem, matched)

str must be a string expression.

rem and matched are optional arguments
(both are optional, but if matched is
present, rem must also be present).
The type of rem is irrelevant but it must
be a VAL object. If matched is present,
it must be an int32 or uns32 object.

Note: unlike most pattern matching
functions, matched is not a string
object.

This function returns true
if the leading characters of
str are decimal digits (as
per HLA, underscores are
legal in the interior of the
integer string).

If this function returns
true, it converts the
matched integer string to
integer form and stores
this value in matched.
This function returns the
remaining characters after
the numeric digits in rem.
Page 1518 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions

@matchRealConst @matchRealConst(str, rem, matched)

str must be a string expression.

rem and matched are optional arguments
(both are optional, but if matched is
present, rem must also be present).
The type of rem is irrelevant but it must
be a VAL object. If matched is present,
it must be an real80 object.

Note: unlike most pattern matching
functions, matched is not a string
object.

This function returns true
if the leading characters of
str correspond to the HLA
definition of a real literal
constant.

If this function returns
true, it also returns the
remaining characters in
rem and it converts the real
string to real80 format and
stores this value in
matched.

@matchNumericCo-
nst

@matchNumericConst(str, rem,
matched)

Same parameters as @matchIntConst or
@matchRealConst; see those functions
for details.

This is a combination of
@matchIntConst and
@matchRealConst. If this
function matches a string
at the beginning of str that
is a legal numeric con-
stant, it will convert that
value to numeric form
(int32 or real80) and store
the value into matched.
This function returns any
following characters in
rem.

@matchStrConst @matchStrConst(str, rem, matched)

Same parameters as @matchID; see
@matchID for details.

This function returns true
if str begins with an HLA
compatible literal string
constant. If this function
matches such a constant, it
will store the matched
string, minus the delimit-
ing quotes, into the
matched variable. It will
also store any following
charcters into rem.

Table 10: Miscellaneous Compile-time Pattern Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1519

AppendixH
@zeroOrMoreWS @zeroOrMoreWS(str, rem)

str must be a string expression.

rem is an optional argument.
The type of rem is irrelevant but it must
be a VAL object.

This function always
returns true. It matches
zero or more "whitespace"
characters at the beginning
of str.

Whitespace includes
spaces, newlines, tabs, and
certain other special char-
acters.

Note that this function
does not return the
matched string. To return
matched whitespace char-
acters, use @zeroOr-
MoreCset.

@oneOrMoreWS @oneOrMoreWS(str, rem)

str must be a string expression.

rem is an optional argument.
The type of rem is irrelevant but it must
be a VAL object. This function stores a
result into this object.

This function returns true
if it matches at least one
whitespace character. If it
returns true, it also returns
any characters following
the leading whitespace
characters in the rem vari-
able.

@wsOrEOS @wsOrEOS(str, rem)

str must be a string expression.

rem is an optional argument.
The type of rem is irrelevant but it must
be a VAL object. This function stores a
result into this object.

This function succeeds if
there is whitespace at the
beginning of str or if str is
the empty string. If it suc-
ceeds and there is leading
whitespace, this function
returns the remaining
characters in rem. If this
function succeeds and the
string was empty, this
function returns the empty
string in rem. This func-
tion fails if the string is not
empty and it begins with
non-whitespace charac-
ters.

Table 10: Miscellaneous Compile-time Pattern Matching Functions

Function Parameters Description
Page 1520 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions

.
r

H.7 HLA Information and Symbol Table Functions

The symbol table functions provide access to information in HLA’s internal symbol table database
These functions are particularly useful within macros to determine how to generate code for a particula
macro parameter.

@wsThenEOS @wsThenEOS(str)

str must be a string expression.

This function returns true
if str contains zero or more
whitespace characters fol-
lowed by the end of the
string. If fails if there are
any other characters in the
string.

@peekWS @peekWS(str, rem)

str must be a string expression.

rem is an optional argument.
The type of rem is irrelevant but it must
be a VAL object. This function stores a
result into this object.

This function returns true
if the next character in str
is a whitespace character.
This function returns a
copy of str in rem if it is
successful.

@eos @eos(str)

str must be a string expression.

This function returns true
if and only if str is the
empty string.

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description

@name @name(identifier)

identifier must be a defined sym-
bol in the HLA program.

This function returns a string speci-
fying the name of the specified
identifier. The name this function
returns is computed after macro and
text constant expansion. This func-
tion is useful mainly in macros to
determine the name of a macro
parameter.

Table 10: Miscellaneous Compile-time Pattern Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1521

AppendixH
@type @type(identifier)

identifier must be a defined sym-
bol in the HLA program.

This function returns a dword con-
stant that should be unique for any
given type in the program. You can
use this to compare the types of two
different objects. For guaranteed
uniqueness, see @typeName.

@typeName @typeName(identifier)

identifier must be a defined sym-
bol in the HLA program.

This function returns a string that
specifies the type of of the parame-
ter.

@pType @pType(identifierOrExpres-
sion)

identifierOrExpression may be a
defined symbol in the HLA pro-
gram or a constant expression.

This function returns a small
numeric constant that specifies the
primitive type of the object. See the
ptXXXXX constants in the
HLA.HHF header file for the actual
values this function returns.

@class @class(identifierOrExpression)

identifierOrExpression may be a
defined symbol in the HLA pro-
gram or a constant expression.

This function returns a small
numeric constant that classifies the
identifier or expression as to
whether it is a constant, VAL, vari-
able, parameter, static object, pro-
cedure, etc. See the cXXXX
constants in the HLA.HHF header
file for a list of the possible return
values.

@size @size(identifierOrExpression)

identifierOrExpression may be a
defined symbol in the HLA pro-
gram or a constant expression.

This function returns the size, in
bytes of the specified object.

@offset @offset(identifier)

identifier must be a defined VAR
or parameter symbol in the HLA
program.

This function returns a numeric
constant providing the offset into a
procedure’s activation record for a
VAR or parameter object.

@staticName @staticName(identifier)

identifier must be a defined
static, procedure, method, itera-
tor, or external symbol in the
HLA program.

This function returns a string that
specifies the internal name that
HLA uses for the object.

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Page 1522 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@lex @lex(identifier)

identifier must be a defined sym-
bol in the HLA program.

This function returns a small inte-
ger constant the specifies the static
nesting level for the specified sym-
bol. All symbols appearing in the
main program have a lex level of
zero. Symbols you define in proce-
dures within the main program have
a lex level of one. Higher lex level
values are possible if you define
procedures inside procedures.

@isExternal @isExternal(identifier)

identifier must be a defined sym-
bol in the HLA program.

This function returns true if the
specified identifier is an external
symbol. Note that this function will
return true if the symbol is defined
external and a declaration for the
symbol appears later in the code.

@arity @arity(identifier)

identifier must be a defined sym-
bol in the HLA program.

This function returns zero if the
specified symbol is not an array. It
returns a small integer constant
denoting the number of dimensions
if the identifier is an array object.

@dim @dim(identifier)

identifier must be a defined sym-
bol in the HLA program.

If the specified identifier is an array
object, this function returns an array
constant with one element for each
dimension in the array. Each ele-
ment of this array constant specifies
the number of elements for each
dimension of the array. If the iden-
tifier is not an array object, this
function returns an array with a sin-
gle element and that element’s
value will be zero.

@elements @elements(identifier)

identifier must be a defined sym-
bol in the HLA program.

This function returns the number of
elements in an array object. If the
specified identifier is not an array
object, this function returns zero.
For multi-dimensional arrays, this
function returns the product of each
of the dimensions.

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1523

AppendixH
@elementSize @elementSize(identifier)

identifier must be a defined sym-
bol in the HLA program.

This function returns the size, in
bytes, of an element of the specified
array.

@defined @defined(identifier)

identifier must be a defined sym-
bol in the HLA program.

This function returns true if the
specified symbol is defined prior to
that point in the program.

@pClass @pClass(identifier)

identifier must be a parameter in
the current procedure of an HLA
program.

This function returns a small inte-
ger constant specifying the parame-
ter passing mechanism for the
specified parameter. The
HLA.HHF header file defines the
return values for this function (see
the XXXX_pc constant declara-
tions).

@isConst @isConst(identifierOrExpres-
sion)

identifierOrExpression may be a
defined symbol in the HLA pro-
gram or a constant expression.

This function returns true if the
expression is a constant expression
that HLA can evaluate at that point
in the program.

@isReg @isReg(Expression)

Expression may be arbitrary text,
but it is typically a register
object.

This function returns true if the
operand corresponds to an 80x86
general purpose register.

@isReg8 @isReg8(Expression)

Expression may be arbitrary text,
but it is typically a register
object.

This function returns true if the
operand corresponds to an eight-bit
80x86 general purpose register.

@isReg16 @isReg16(Expression)

Expression may be arbitrary text,
but it is typically a register
object.

This function returns true if the
operand corresponds to a 16-bit
80x86 general purpose register.

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Page 1524 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions

@isReg32 @isReg32(Expression)

Expression may be arbitrary text,
but it is typically a register
object.

This function returns true if the
operand corresponds to a 32-bit
80x86 general purpose register.

@isFReg @isFReg(Expression)

Expression may be arbitrary text,
but it is typically a register
object.

This function returns true if the
operand corresponds to an FPU reg-
ister.

@isMem @isMem(Expression)

Expression may be arbitrary text,
but it is typically a memory
object (including various
addressing modes).

This function returns true if the
specified parameter corresponds to
a legal 80x86 memory address.

@isClass @isClass(Text)

Text may be arbitrary text, but it
is typically a class object.

This function returns true if the text
parameter is a class name or a class
object.

@isType @isClass(Text)

Text may be arbitrary text, but it
is typically a type name.

This function returns true if the
specified text is a type identifier.

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1525

AppendixH
@section @section This function returns a 32-bit value
that specifies which portion of the
program HLA is currently process-
ing. This information is mainly
useful in macros to determine
where a macro expansion is taking
place. This function returns the fol-
lowing bit values:

Bit 0: Currently in the CONST sec-
tion.
Bit 1: Currently in the VAL section.
Bit 2: Currently in the TYPE sec-
tion.
bit 3: Currently in the VAR section.
bit 4: Currently in the STATIC sec-
tion.
bit 5: In the READONLY section.
Bit 6: In the STORAGE section.
Bit 7: Currently in the DATA sec-
tion.

Bits 8-11: reserved.

Bit 12: Processing statements in
main.
Bit 13: Statements in a procedure.
Bit 14: Statements in a method.
Bit 15: Statements in an iterator.
Bit 16: Statements in a macro.
Bit 17: Statements in a keyword
macro.
Bit 18: In a Terminator macro.
Bit 19: Statements in a Thunk.

Bits 20-22: reserved.

Bit 23: Processing statements in a
Unit.
Bit 24: Statements in a Program.

Bit 25: Processing a Record decla-
ration.
Bit 26: Processing a Union declara-
tion.
Bit 27: Processing a Class declara-

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Page 1526 © 2001, By Randall Hyde Beta Draft - Do not distribute
tion.
Bit 28: Processing a Namespace
declaration.

Appendix H: HLA Compile-time Functions
H.8 Compile-Time Variables

The HLA compile-time variables are special symbols that not only return values, but allow you to mod-
ify their internal values as well. You may use these symbols exactly like any VAL object in your program
with the exception that you cannot change the type (generally int32 or boolean) of these objects. By chang-
ing the values of these pseudo-variables, you can affect the way HLA generates code in your programs.

@curLex @curLex Returns the current lex level of this
statement within the program.

@curOffset @curOffset Returns the current offset into the
activation record. This is the offset
of the last VAR object declared in
the current program/procedure.

@curDir @curDir Returns +1 if processing parame-
ters, -1 otherwise. This corre-
sponds to whether offsets are
increasing or decreasing in an acti-
vation record during compilation.
This function also returns +1 when
processing fields in a record or
class; it returns zero when process-
ing fields of a union.

@addofs1st @addofs1st This function returns true when
processing local variables, it returns
false when processing parameters
and record/class/union declarations.

@lastObject @lastObject This function returns a string con-
taining the name of the last macro
object processed.

@lineNumber @lineNumber This function returns an uns32
value specifying the current line
number in the file.

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1527

AppendixH

ms.
H.9 Miscellaneous Compile-Time Functions

This last category contains various functions and objects that are quite useful in compile-time progra

Table 12: HLA Compile-time Variables

Pseudo-Variable Description

@parmOffset This variable specifies the starting offset for parameters in a function.
This should be eight for most procedures. If you change this value,
HLA’s automatic code generation for procedure calls may fail.

@localOffset This variable specifies the starting offset for local variables in a pro-
cedure. This is typically zero. If you change this value, it will affect
the offsets of all local symbols in the activation record, hence you
should modify this value only if you really know what you’re doing
(and have a good reason for doing it).

@enumSize This variable specifies the size (in bytes) of enum objects in your
program. By default, this value is one. If you want word or dword
sized enum objects you can change this variable to two or four.
Other values may create problems for the compiler.

@minParmSize This variable specifies the minimum number of bytes for each
parameter. Under Windows, this should always be four.

@bound This boolean variable, whose default value is true, controls the com-
pilation of the BOUND instruction. If this variable contains false,
HLA does not compile BOUND instructions. You can set this value
to true or false throughout your program to control the emission of
bound instructions.

@into This boolean variable, whose default value is false, controls the com-
pilation of the INTO instruction. If this variable contains false, HLA
does not compile INTO instructions. You can set this value to true or
false throughout your program to control the emission of INTO
instructions.

@trace Enables HLA’s statement tracing facilities. See the separate appendix
for details.

@exceptions If true (the default) then HLA uses the full exception handling pack-
age in the HLA Standard Library. If false, HLA uses a truncated ver-
sion. This allows programmers to write their own exception handling
code.
Page 1528 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
Table 13: Miscellaneous HLA Compile-time Functions and Objects

Function Parameters Description

@text @text(str)

str must be a string constant expres-
sion.

This function expands the string
constant in-line as text, replacing
this function invocation with the
specified text.

@eval @eval(text)

text is an arbitrary sequence of tex-
tual characters.

This function is useable only
within macro invocation parame-
ter lists. It immediately evaluates
the text object and passes the
resulting text as the parameter to
the macro. This provides eager
evaluation capabilities for macro
parameters.

@string:identifier @string:identifier

identifier must be a text constant.

This function returns a string con-
stant corresponding to the string
data in the specified identifer. It
does not otherwise affect the
value or type of identifier.

@toString:identi-
fier

@string:identifier

identifier must be a text constant.

This function converts the type of
identifier from text to string and
then returns the value of that
string object.

@global:identifier @string:identifier

identifier must be an HLA identifier
declared outside the current
namespace.

@global is legal only within a
namespace declaration. It pro-
vides access to identifiers outside
the namespace.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1529

AppendixH
Page 1530 © 2001, By Randall Hyde Beta Draft - Do not distribute

	HLA Compile-Time Functions Appendix H
	H.1 Conversion Functions
	H.2 Numeric Functions
	H.3 Date/Time Functions
	H.4 Classification Functions
	H.5 String and Character Set Functions
	H.6 Pattern Matching Functions
	H.6.1 String/Cset Pattern Matching Functions
	H.6.2 String/Character Pattern Matching Functions
	H.6.3 String/Case Insenstive Character Pattern Matching Functions
	H.6.4 String/String Pattern Matching Functions
	H.6.5 String/Misc Pattern Matching Functions

	H.7 HLA Information and Symbol Table Functions
	H.8 Compile-Time Variables
	H.9 Miscellaneous Compile-Time Functions

