
I
I

l

<

J

PEEK[6S1
Summer 1966
Vol. 7 Nos. 5, 6, 7, & 8

The Unofficial OSI Journal

Column One

Despite appearances, thingS haven't
totally fallen apart here at PEEK165J.
Quite the contrary. If the size and
cover of this issue doesn't make it
obvious, this issue is covering· a

. multitude of sins. The next issue will
have a cover month of September, and
at that time we will go back to our
regular monthly schedule.

The reasons for this Summer issue are
many and varied. First of all, I wasn't
able to recover the original schedule.
Between all of my commitments and
other reasons, there just haven't been
enough hours in the week to make
much progress. But one of the most
important reasons for the delay of this
issue in particular has been the flurry
of activity that directly relates to our
discussions of new hardware for OSI
systems. Several new product
announcements were imminent and I
was hoping to include them in this
issue. Those announcements have not
been made public as yet. What I can
say is that all OSI owners will soon
have major upgrade paths available
within the next 30 to 60 days at very
reasonable prices. Everybody - from
Superboards to serial systems.

Even though this issue is more than
twice as large as normal, I realize that
it doesn't make up for the intervening
issues that would normally have been
published. Therefore, I have extended
the subscriptions of everyone Who
was current through June by two
months. I know this won't satisfy
everyone, but it is as fair as I can
make it. Note that the mailing labels
on this issue DO NOT reflect the
extension to your subscription, nor
did the recent renewal forms I
recently sent out to many of you.

Inside This Month:
User SlIVey Final Resuhs
16-bit 6502-alikes

page 2
page 3

Advenues on the OSI page 4 *" New 540 Video Driver page 5
DMS65D: True Random Access page 17 "* CREF: Cross Reference Utility page 23
A Better Random Number Gen_ page 33
4x4 Chcnder Set f(l' 540 page 34
ASM Symbol Table Dump page 35 .
OSI SIG Data Ubwy page 39
Inside OS-65U page 42
Letters to the Edler page 44

Back on the news front, this issue
contains a lot of articles that have
been in the PEEK library for some
time, but that we simply didn't have
room to publish before. It has been,
and remains my policy Where possible
to not break up articles over more
than one month. If I present the
article, then the entire program listing
should be printed as well. In addition,
and again Where possible, articles are
printed contiguously within each
issue, 90 you don't have to page back
and forth between the articles and the
listings. This has led to some of the
editor's curse known as -White space-,
but I think it makes PEEK eminently
more useful.

Cleaning·out the library in this fashion
means that I am in desparate need of
new material. The April issue contains
several topics that I hope youl1
consider. The library has a couple of
articles that are incomplete. I hope
those of you among those authors will
complete your work and send it in. It
will be most appreciated.

Special thanks goes out this month to
Larry Hinsley of Software Consultants
and Ed Richardson of the Autralian
group KAOS for their contribuijons to
this issue. Matt Holcomb shows us
how to list out the symbol table in the
OSI Assembler/Editor. Daniel
McDonald provides us with a nifty
random number generator. Doug
Johansen demonstrates a way to
display over -sized characters on video
systems.

Your humble editor has been busy as
well. I have included several articles
in this issue including instructions for
using the Data Library in OSI SIG, a
program for getting true random
access files under OS-65D, the start of
a series of articles on the innards of
OS-65U, and a few other things I hope
youl1 find interesting.

Thanks to all of you for your help and
patience over the past few months.
It's been a pleasure dealing with all of
you and writing in this forum. With
your continued support, the future
looks brighter for all of us than it has
in many years.

,< . ,

User Survey Final Results

The User Survey was a huge success
as far as I'm concerned. It really
hel~d me to get a good idea of what
PEEK[65J readers wanted and how
willing you are to part with your
hard-earned cash to get it.

40 ~ple mailed in responses. That's
about the number I expected
considering the number of subscribers
and the summer computer doldrums.
Of those, some 16 entries listed
multiple systems owned by the
submittor. The breakdown by model
went as follows:

8" Serial: 18
8" Video: 17
C4P-MF (or equivilent): 17
CIP-MF: 4

38 respondents had printers, and 25
owned modems. The vast majority
listed ownership of OS-65U V 1.44 and
OS-65DVJJ

OS-DMS was far and away the most
frequently mentioned commercial
software package, with 11 ~ple
naming it as their most often used
software. Close behind was DQFLS'
WP-6502 word processor at 8. OSl's
WP-2 and WP-3 came in third with 6
respondents, Fourth place went to my
own Term-Plus program. 9 people
mentioned various accounting
packages from other sources, but none
gained any significant following in our
survey.

CopI,jr9t 1986 PEDC(65) All r9ts rK«'Wd
pdllIsIIed mantII'.I
Editor: Riahwd L, T~

~/Qt6 Ai- SIri_
us $22
c..s. & MItXioo (I st olass) sa
EIrGI» $42 $48
0thIr Fer.. $47 $48

All sdIscr1ItIons lIT. fer GIlt V'" and PIIIablt In
*_ WI us dDlIIrs, Fer baok is_,
sdIscr1ItIons, er oa.r tnfcrmatIan, yrftf to:

PEDC(65)
PD.BoxB
P.nfloI, CA 94844 415-m9-578B

I1Intion of procbrts.." tr ___ WI editoriIl

matfr1al er *erttstments cantaInId berm In no
Will 0CIIIStituWs endarS4lllllllt of lit produot er
prcMb:ts .." this magazInt er tilt pdl1Isher.

Page 2 PEEK(6S] Summer 1966

Amazingly, interest in both new CPU
and graphics hardware waned in tne
final weeks. Much of that can be
attributed to the influx of a lot of
serial system o....mers. The final
tabulations went as follo\0'0'5:

New CPU
$0:8
$15:3
$ 100-$200: 15
$200-$500: 7
$500-$1000: 1

New Grap-hics
$0: 18
$50-$100: 13
$100-$200: 3
$200-$500: 5

Not all entries voted in the above
figures and many ~ple made
ambiguous comments that made it
hard to put their vote in any catagory.
The main reason for the confusion was
that a lot of people weren't sure why
they would want any new hardware.
Hopefully the rest of this issue will
clear up any such mysteries, 1 found it
interesting that within the above
ta11ies, some 18 people were willing to
commit to upgrading both their CPU
and graphics capabilities. The heavy
NO voting was almost all attributable
to serial system owners, which is
more than understandable in the OSI
world.

Toward the end of tallying up all of
the figures, it became clear that
~ple 's software wish lists and their
suggestions for topics for articles in
PEEK were closely related, It is
abundantly clear that owners of all
OSI systems are clamoring for new
word processing software, Many
included specific features they wanted
to see, such as disk-based software,
interchangeable fonts/type styles, and
the ability to do superscripts and
subscripts. 17 ~ple mentioned a
desire for a new WP. Second place
went to a desire for an assembler that
would be compatible with the new
CPU Chips we're all discussing. A good
number of ~ple also wanted better
terminal software.

Hardware articles dominated the
desires of the respondents. Some
wanted articles about interfacing

various peripherals., but a significant
number expressed an interest in ways
to add new and better disk drives to
their systems. I think the past 3
issues of PEEK demonstrate that these
desires have been heard for a long
time and something is being done to
help. On the software side, there was a
lot of interest in assembly language,
which 1 was pleased to see. There was
roughly a 50-50 mix of people
mentioning assembly language
information on the new CPUs and
interests in modifying either 65D or
65U. You can count on PEEK to be a
steady source of such information.

One area in which PEEK has been
weak is in the area of OS-65U articles
that deal with hard disk management,
Level 3 operations, and specific·
OS-DMS applications. While over the
years there have been a slew of
patches to EDMAFL, we haven't really
gone very deep. That situation is also
being addressed. It is clear to me that
as the PEEK[65J community matures,
they are becoming ever more
dominated by business users. There is
no doubt this trend will continue since
OSI no longer manufactures video
systems.

I was disappointed by the number oJ
people who expressed a desire for
software that is not only available, but
is adVertised here in PEEK. I'm the
first to admit that the software sold
here could be improved, and it will be,
but what is available often met the
specifications mentioned. So take a
closer look at those ads, folks!

Overall, I think the survey shows that
both PEEK[(5) and the commercial
vendors are on the right track. There
are ~ple addressing all of the
desires expressed and that tells me
that we have an exciting autumn to
look forward to. Thanks once again to
all of you who responded to the
survey.

16 Bits: TIle Hew Hortzoa

by Richard L. Trethewey

The discussions of new 16-bit
versions of the 6502 microprocessor
bave been brewing for several years
now. As I write this, many projects
both inside and outside the OSI
community are coming to fruition at a
most opportune time.

Of the enhanced versions of the 6502,
the 65(82 bas been the most popular
to date. When Apple Computer chose
this cbip to power its lIe, the cbip
began to be available in quantity and
at a price that was affordable. The
65(82 added a number of instructions
to the original 6502 that made it
attractive to the software buffs, and
since it was pin-compatible with its
predecessor, many OSI owners
adopted it and bave been using it for
sometime.

However, the 65(02 remains an a-bit
microprocessor and the world bas
been demanding more power than the
65(02 bas been able to prOvide. The
Western Design Center of Mesa,
Arizona bas designed two
microprocessors that bridge the & and
16 bit worlds, namely the W65(&16
and the W65(&02 (Which 111 refer to
as simply the 65&16 and 65&02,
respectively).

The 65&16 and 65&82 are true 16-bit
microprocessors with full 16-bit
registers that correspond to their 65XX
predecessors. The 65& 16 is capable of
24-bit external addressing for a range
of 16 megabytes of memory, and the
65&02 is capable of 16-bit external
addressing for a range of 64 kilobytes.
Both of these cbips have an emulation
mode that make them fully software
compatible with the 6582. The 65&02
is pin compatible with the 6502,
making it a natural replacement in
our systems. In addition, the two
cbips are compatible with each other,
save for the hardware differences.
Rather than get too deep into a

-- technic81 discussion of the cbips, I
thought it woUld be better to answer
some of the questions that people
asked in the User Survey.

When we speak of a 16-bit
microprocessor, we mean that the cbip
is capable of dealing with data in
16-bit chunks for all of its normal
operations including addition,
subtraction, and bit manipulation. It's
hard to generalize about what kinds of
speed gains the 16-bit cbips offer
over their &..,bit counterparts, but a
quick look at some typical assembly
language code shoUld be enlightening.

Consider the code to add two 16-bit
values. The 6582 code would look like
this:

Code
LOft $BIII
CLC
ftOC $B1I2
STft $B1I2
LOft $BIII
ftOC $B1I3
STft $B1I3

Total

Cyclep
1
2
1
1
1
1
1

26

Now for the 65& 16 in the 16-bit
mode, the code looks like this:

Code
LOft $BIII
CLC
ftOC $B1I2
STft $B1I2

Total

Cyclep
6
2
6

-L
21

Just in terms of raw speed, you're
getting a 231 increase. But in addition
to that, the 16-bit code saves 9 bytes
00 vs. 19}! These savings are not
always going to apply, especially
When the software bas to deal with
a-bit hardware. However, if we were
to stay coDservative and estimate a
general speed increase of 151 and a
siZe decrease of 301, there are some
clear advantages worth investigating.

Of course, in the near term we still
bave to deal with our regular
6582-based software that cannot take
advantage of these features without
modifying the hardware to use a
higher system clock speed. But the
advent of these two cbips allows us to
make incremental improvements in
our hardware and software to suit our
needs and pocketbooks. The size of
the leap you make is very much
under your control.

As mentioned at the start of this
article, the 65&02 is a pin-compatible
replacement for the 6582. Pop the old
one out and the new one in and you're
in business. Your current software
woUldn't know the difference,
although your hardware woUld
breathe a tad easier due to the CMOS
power savings.

In the near term, I woUld expect to
see patches to BASIC and the various
operating systems, much Uke my
Hooks into BASIC, Which will take
advantage of the 16-bit capabilities of
these cbips. It is the" longer term that
is really thrilling to me as a
programmer.

Two key elements of the OSI system
arcbitecture have hindered
development of sophisticated
software. First among these is the
system memory map. The hardware is
scattered all over the top of the
memory map limiting it to only 4&1 of
contiguous memory. The second
problem is the andent OSI disk
interface. By attackiDg the first
obstacle, we can do wonders for
making up for the second.

When you bave the ability to address
a lot of memory - contiguous memory,
many doors open up. Database
software can bold tinted lists in RAM
so that sorting, searching and otIler
operations are made significanUy
faster. Spreadsheets can be buge and
entirely RAM-resident for speed and
versatility. Word processing will no
longer be limited to 5 to 10 pages.
Those are real benefits and they're
just around the comer. The key is
moving to the 65& 16 and it's ability to
address memory beyond our
traditional base 64E. Many of these
programs will also be usefUl to those
Who choose the 65&02.

If it isn't obvious by now, this article
is written with some spedfie
hardware in mind. The Toronto user
group roSIE, Who bave given us so
many treasures in the past, is working
on a 65& 16-based CPU board. Other
hardware announcements are most
certainly in the offing from many
sources. There is no doubt in my mind
that the 65&xx family will be the bot
topie in PEEEI65] for a long time and
I'm looking forward to it

Pllge 3 PEEKI65] Summer 1966

ADVENTURES AND THE OSI

By: Ed Richardson
Courtesy of SUPERBOARD
Newsletter of the Ohio Super-

board User Group
146 York Street, Nundah 4912
Queensland, Australia

AN INTRODUCTION TO ADVENTURE

Adventure games have been
played on computers of all
types for many years, and are
one of the most difficult
games to play, and certainly
the hardest to create. Essen
tially, the player is in a un
iverse of the writer's imagi
nation, questing for a goal
which is often obscure, and
having to solve problems which
should have logical solutions,
but sometimes don't. Usually,
the objectives are to survive,
and find some sort of treas
ure. The location can be
caves, castles, outer space,
or even in open surroundings.

The first adventure was simply
titled nAdventure n and was
written in Fortran, to run on
a DEC PDP-19 computer with
399k of memory. of cour se ,
the introduction of the micro
processor meant that adven
tures had to be crammed ,into
much smaller memory, usually
16k. Much of the magnificent
wording which described rooms
in the original Adventure had
to be left out. An example of
such wording follows: -

"You're at a low window over
looking a huge pit, which
extends up out of sight,. A
floor is indistinctly' visible
over 59 feet below. Traces of
white mist cover the floor of
the pit, becoming thicker to
the left. Marks in the dust
around the window would seem
to indicate that someone has
been her~ recently. Directly
acros~ the pit from you and 25
feet away, there is a similar
window looking into a lighted
room. A shadowy figure can be
seen there peering back at
you. What now?"

This is nowhere near the long
est room description in Adven
ture, but such descriptions
could not possibly be used in
even a 64k machine. The IBM,
of course, offers such possi
bilities. Other machines could
possibly call in the descrip
tion of the rooms from disk,
however, most adventures for
home computers merely truncate
the description drastically to
only the most essential de
tails.

Probably, the most advanced
and complex adventure game is
ZORl<, written entirely in com-

Page 4 PEEK(65) Summer 1966

piled code. While ZORl< does
not have enormous room des
criptions, it does accept al
most any answer. ZORK was
also written on a PDP-19, and
is usually supplied on 2 to 3
disks, which says something of
its size. ZORK has its own
interpreter, just like a BASIC
interpreter, which makes it
easier to adapt to different
processors. With ZORK, you
can say "Take the bomb and put
it at the foot of the door".
Almost all other adventures
would require "Take bomb","Put
bomb", WHERE?,"Door".

Of course, ZORK has already
been eclipsed by graphical ad
ventures and also role playing
games typified by Dungeons and
Dragons. The ultimate adven
tures will come when the Laser
video disk is coupled to home
computers. You will then see
the rooms through your char
acter's eyes. You will also
be able to select your char
acter's traits and .so the
adventure can be different
every time you play it, the
final outcome depending on the
role you have adopted. With
varying strengths of physical
and intellectual capacity,
several million different
characters would be possible.
A strong heart would also be
recommended for the player.
To see yourself about to be
destroyed would provide quite
a shock. The psychiatrists
might do well out of itl

However, we will have to wait
for this. For the moment, we
will be limited to simple S or
16k adventures for the OSlo
Although several quite good Sk
adventures have been written,
(even 5k onesl) I really think
16k is more appropriate. A
really good adv~nture should
have perhaps 49 or more rooms,
and this is simply not pos
sible with Sk.

SOLVING ADVENTURES

There are two cardinal rules
to observe when setting out on
a new adventure. The first
one is to look at everything,
and the second is to draw a
map as you travel. Most ob
jects you come across will
have some role to play, and
most will have only one role,
though this is never certain.
With the OSI adventures, you
won't find many red herrings
or dead ends, simply because
theSK memory doesn't allow
any space for it. However, in
16K games, you will find
routes which lead absolutely
nowhere, and objects which
have not the slightest use
except to annoy you and delay
the solving of the puzzle.

Drawing up a map will always
enable the adventure to be
solved much faster, as it pre
vents random wanderings over
the same ground. On your map,
you should name each room and
mark the contents as you first
find them, and also note the
exits. Wherever you start
drawing your map on the paper
will almost certainly be the
wrong place, so to avoid crun
ching up the last part into
some obscure corner, have a
second sheet ready to stick
on. Some adventures have one
way movement which is rather
hard to represent 011 a map.
Perhaps a different colour pen
might help there. If your
adventure contains anything
which suggests a maze, you
should most carefully document
your journey. This will save
much wandering in a later game
when you meet with that in
evitable nasty fate in early
games.

Some games have random dis
tribution of objects as in our
Treasure Quest game which will
follow, however, most real
adventures have a fixed and
log'ical method for solving the
puzzle. If you encounter a
problem, you will not be able
to solve it without the cor
rect object. Sometimes you
will not be able to return to
get it, and have to replay the
game over. Some adventures
have a "save the game" fea
ture, though I haven't seen
one for OSlo This enables you
to recall a partly completed
game, and is a very useful
thing to do before some heroic
but risky venture, such as
~ttacking a dragonl

ATTDTIOB: DEALERSI

PEEK(65) needs new subscribers and
you need new customers, and together
we can make it happen with our own
Co-op advertising program. This
program pays dealers for signing up
new subscribers with free ad space in
PEEK(65). just five paid subscriptions
will earn a 1/9th page advertising
credit in PEEK(65J.

can or write today for det8i1s and
your free promotional materials.
Making a PEEK(65) subscription a part
of every sale is painless and
prOfitable. This time, "Co-op. pays
you.

548 Video Driver
with Color Controls

by Software Consultants
6435 Summer Avenll~
Memphis, TN 38134

(Edit.or's Note: We are again indebted
to Software Consultants for making
this code available. The software and
accompanying article were originally
written some time ago and I bave
made cbanges to the article to reflect
tbe current state of the OSI
community. Ergo, any errors or
inconsistancies are my fault and not
Software Consultants'.)

Tbis routine \AlaS written to provide
the users of OSI video based systems
most of the features found in the
standard terminals in use on
microcomputers. In addition, it gives
you several options not available on
any terminal. Tbe program consists of
a macbine code routine tied into
OS-65D and as sucb may be used with
any of the languages presently
supported by OSI. Tbe routine takes
up 125K of memory and loads in the
top portion of the available memory.

The routine was designed to be as
easy to use as possible while still
allowing the utmost in end-user
flexibility. This is done by providing a
carefully cbosed set of command
codes that give you complete cont.rol
over all parameters associated with
the 540 video board. In addition,
other control functions can be easily
added and linked to the video system.

One concept that is used extensively
in this set of routines is that of
volindows and windowing. Tbis concept
\Alill be familiar to users of OS-65D
V 3.3, but may still be new to some of
you. A window is the area on the
display that is recognized and used by
the video driver software. The video
routine supplied with OS-65D V3.2
and earlier used all but the bottom
few lines of the 540's display area as
its "window" and all printing and
scrOlling was done wiUlin this area.
This new code allows you to define
any rectangular area on the display as
your "\Alindow" and then save and
enable these ·windows· as you wisb.

Most of the command codes operate
relative to the present window. Tbis
enables you to print something at one
place on the screen and then by
carefully cboosing your window
parameters you can print, dear, or do
anything else you like to other
portions of the screen \Alithout
affecting What you originally printed.
Wbile some of these concepts may
seem difficult at first, after a liWe use
you will wonder bow you ever did
without it.

We will now take each command code
and explain its function and use. Any
questions you bave can probably be
answered by sitting down at your
computer and experimenting. Tbe
ASCI I number of the command code is
sbown along \Alith its function and any
special instructions for its use. From
BASIC, you use these command codes
by simply printing the command code
\Alith the CHRS function of BASIC.

Command Codes and Function

(1) Set Master Window - Tbis
initializes the 540 video, setting it to
64 cbaracters per line with 25 lines
available. Tbis is a ·special· window
and is not considered part of the
define/set window routines. Any time
this command code is printed, a
window starting at $D 100 and ending
at $D7C0 with a line length of 64
characters will be set. Tbis command
code does not affect the color or the
sound.

(2) Set 64 - sets the video to the 64
cbaracters per line format. Does not
affect the color or sound.

(3) Set 32 - setS the video to 32
characters per line. Also, does not
affect the color or sound.

(4) Clear 540 -.c1ears the entire video
display without moving the cursor.

(5) Vertical Plot - used to plot a
vertical line from the present cursor
position. To use, print the . command
character followed by the number of
positions to plot, and then the
cbara.::t.er to draw While plotting. For
example, in a BASIC program the
statement:

PRINT CHR$(5);CHR$(20);CHR$(t6 1) .

will print a vertical line from the
present cursor poSition with a length
of 20. The character printed will be a
solid block. The cursor will be at the
end of the line.

(6) Horizontal Plot - same as the
vertical plot except that the line is
borizontal.

(7) Bell - This control code is not
implimented, but is reserved for the
bell function.

(8) Backspace this is a
non-destructive backspace.

(9) Set window to color - this sets the
present \Alindow to a certain color. To
use this feature from BASIC, y.ou;

PRINT CHR$(9);CHR$(x);

where ·x· is the desired color code.
Tbis also sets the individual cbaracter
color to the window color (see number
It).

(10) Line feed - advances the video
display down by one line. Will scroll if
at the bottom line of ,the window.

(1 I) Set character color - sets the
character color. Used from BASIC by;

PRINT CHR$(II);CHR$(x);

where ·x· is the desired color. From
this point on, anything you print.- 'I'lill
be printed in this color (provided the
color is enabled).

(12) Oear window - clears only the
present window without affecting the
rest of the video display. Also, homes
the cursor in the present window.

(13) Carriage Return - positions the
cursor at the front of the present line,
but does not print the cursor. Tbis is
useful in some grapbics applications
where you do not want the cursor
sbowing on the screen.

(14) Define as Home - uses the
present cursor position as the ·bome·
position or the upper left band corner
of the present window.

POQe 5 PEEK(65) Summer 1966

(15) Set lower right hand corner of
window - to use tllis command,
position the cursor. and print the
command. Using this command in
conjunction with the Define Home
command allo\'15 the programmer to
easily define a window anywhere on
the 540 display. The 2 command
codes when used together define a
box (window) giving starting and
ending address and the line length.
Remember that all cursor movement
is relative to the present "home"
position.

(16) Define Window - The video
system allo'n'S you to save up to 6
windo'n'S for instant recall. To use this
from BASIC, you;

PRINT CHR$(16);CHR$(x);

where "x" is a number between 0 and
5. This saves all current window
parameters (starting line, ending line,
color, and line length) in a table for
later recall. Window 0 is already
defined to be the entire 540 video
display and window 5 is used
internally by the set Window to color
command. You may use window 0 for
your own use, but you should know
that once that window's parameters
are changed you have no way to
access parts of the video screen
outside of this "master window"
(command code I). If you are not
using color or the set color controls,
then you may also use window 5. If
you are using color, don't use window

5·

(17) Set Window - This is the
command that allo'n'S you to recall
sa~ed window parameters. To recall a
window from BASIC, you;

PRINT CHR$(17);CHR$(x);

where "x" is a number between 0 and
5. This Will set the Window to the
saved parameters and home the
cursor in that window.

(~'8) Video Control - This command
code is used to control the video
board's color and sound. To use this
command from BASIC, you;

PRINT CHR$(18);CHR$(x);

where "x" is the desired function

Poge 6 PEEK(65J Summer 1966

number. Refer to the manual that
came with your system for the
desired function number. This
command also stores the last
command function entered at $259E
(decimal 9630) so that the present
video/sound/color attributes can be
read. For proper operation of the 540
Video Routine, you should no longer
POKE the color/sound/video control
function, but use this command
instead.

(19) Output Character - This command
allo\'15 you to print any of the graphics
characters, including control
characters. To use this command from
8ASIC, you;

PRINT CHR$(19);CHR$(x);

where "x" is the ASCII value from 0 to
255 of the character you wish to print.

(20) Direct Cursor Position - This
command is used to position the
cursor anywhere within the present
window. It is used by;

PRINT CHR$(20);CHR$(x);CHR$(y);

where "x" is the desired column and
"y" is the desired row. This routine
does range checking and will now
allow the cursor to move outside of
the presently defined window. All
movement is relative to the "home"
position.

(~ I) Cursor Up - This command moves
the cursor non -destructively up by
one line.

(22) - (23) Unused.

(24) Cursor Right - This command
moves the cursor non-destructively I
position to the right.

(25)-(28) Unused.

(29) Home - Homes the cursor in the
present window.

(30) Clear the rest of line - clear from
present cursor position to the end of
the line without affecting the cursor
position.

(31) Clear rest of window - clears
from the present cursor position to

the bottom of the Window without
affecting the cursor· position.

Installation

The first step is to make a new
OS-65D (version 3.2 or earlier)
diskette. On that disk create three
files: a two-track file named "8EXEC·",
a one-track file named "VIDEO·", and
a large file (10 tracks for 8", 15 for
mini's) named "VIDASM". Write down
the track number where the file
"VIDEO*" resides"on your disk. You'll
need it later.

Boot the Assembler/Editor and enter
the assembly language program given
in Listing 2. Change the origin address
on line #730 to reflect your system's

. memory size. On 24K systems, it
should remain at $5800, on 32K
systems set it to $7800, and on 48K
systems use $8800. Save this program
in the file named "VIDASM". Use the
"W command in the assembler to
protect the high end of memory (ie.
"H5A00", "H7A00", or "H8A00") and
assemble the file to memory With the
command "A3". If the assembly
proceeds without error, save the
machine code to disk With the
command;

!SA tt, I =xB00/5

where Ott" is the track number where
"VIDEO·" resides and "xB00" is the
origin address of the code (ie. "5800",
"7800", or "8800").

Now, leave the Assembler/Editor and
invoke 8ASIC. Enter the 8EXEC·
program given in Listing I. Note that
you'll have to also insert the track
number for "VIDEO·" in lines 10280
through 10300 as you did in the
above command. Finally, save it in the
file named "8EXEC·" (clever, eh?). Run
this program and . the new video
driver will be installed and ready for
use. When you want to install the
video driver on other diskettes, just
transfer the files "8EXEC·" and
"VIDEO·".

I
.1

,~

Programming Tips

Most of the command codes are easy
to understand and use However
several things need to be Pointed out:
Defining and setting windom is very
easy once you understand the step by
step procedure.

First, set the video parameters to the
master window using command code
I. Using direct cursor positioning,
CHR$(20), move the cursor to your
desired "home" location. Then print
the Define As Home command
CHR$(14). Position the cursor to th~
desired lower right hand corner
position of the window you wish to
define. Remember that all cursor
positioning is relative to the current
"home" position. Thus, if you want
your new window to be 10 lines by 20
characters long, print the cursor,
position command followed by the··
width and height you want and finally
print the Set Lower Right Hand Corner
Command as in;

PRINT CHR$(20);CHR$(10);CHR$(15);

You have just defined a new Window
on your video display. Try LISTing a
BASIC program, cursor positioning, set
window color, etc. and you will see
that you can do anything Witllout
affecting the rest of the video display.

If you wish to save this window
definition for later use, print the
Define Window command followed by
the number you wish to assign to this
window. Refer to the Define Window
command (code 16). To recall this
window, print the Set Window
command (code 17) followed by the
window number you chose.

Usttnq 1

BEXEC* : BASIC EXECUTIUE
OS65D U3.2

18 REM
12 REM
15 REM
16 REM
17 REM

LAST MODIFIED: 87/82/86 BY RICHARD L. TRETHEUEY
URITTEN BY SHOF BEAUERS 81/06/81

18 REM
19 REM
28 REM
21 REM
22 REM

SOFTUARE CONSULTANTS
7053 ROSE TRAIL

MEMPHIS, TN 38134
(901) 377-3503

24 REM SET UP INFLAG AND OUFLAG FROM DEFALT
25 X = PEE~(18950): PO~E 8993,X: PO~E 8994,X
26 IF PEE~(57888)=223 THEN PO~E 9794,37
38 GOSUB 18888: PRINT CHR$(12)j: END
18888 REM ROUTINE TO UNLOC~ AND MODIFY BASIC OS
18818 REM)
18020 REM ENABLE <CTRL>'C'
18838 PO~E 2873,173
18040 REM ALLOU NULL INPUT TO STRINGS AND NUMERICS
18858 PO~E 2888,8: PO~E 8722,8
18868 REM CHANGE "REDO FROM START?" MESSAGE
18870 REM TO "MUST BE NUMERIC?"
18088 FOR I = 3129 TO 3143: READ U: PO~E I,U: NEXT I
10090 DATA 77,85,83,84,32,66,69,32
18100 DATA 78,85,77,69,82,73,67
18118 REM ALLOU COMMA AND COLON IN INPUTS
10120 PO~E 2972,13: PO~E 2976,13
18130 REM ALLOU "NEU" AND "LIST"
18140 PO~E 741,76: PO~E 758,78
18150 REM DELETE "?" INPUT STATEMENT PROMPT
18168 FOR I = 2895 TO 2898: PO~E 1,234: NEXT I
18178 PO~E 2899,168: PO~E 2908,0
18180 PO~E 2948,234: PO~E 2949,234: PO~E 2950,234
18198 REM ~ILL AUTO CR/LF FROM PRINT
18208 PO~E 2813,234: PO~E 2814,234: PO~E 2815,234
18218 PO~E 2658,234: PO~E 2659,234: PO~E 2668,234
18220 PO~E 23,63: PO~E 24,49
18238 REM CHANGE INDIRECT FILE LOAD COMMAND TO <CTRL>'Z'
18248 PO~E 9594,26: PO~E 9554, 118: PO~E 9368,118: REM MOUE TO $6E00
18258 X=PEEK(8968): IF X=>95 THEN TA=90 .
18268 IF X=>127 THEN TA=122
18270 IF X=>191 THEN TA=186
18288 IF TA=98 THEN DIS~!"CA 5688=TT,I"
18290 IF TA-122 THEN DIS~'"CA 7B88-TT I"

o ,

18388 IF TA=186 THEN DISK'"CA BB80=TT, I"
18318 POKE 9628,32: REM CLEAR CHARACTER
18328 POKE 9629,15: REM COLOR CHARACTER
18338 PO~E 9638,1 : REM SET UIDEO TO 64 CHAR/LINE
18348 PO~E 56908,1: PO~E 9643,32: PO~E 9646,8: PO~E 9647,8
18350 PO~E 9645,161: REM CURSOR CHARACTER
18368 REM POINT 05-650 TO NEU UIDEO DRIUER
18378 PO~E 8979,255: PO~E 8988,TA
18380 REM PROTECT UIDEO DRIUER FROM BASIC
18390 POKE 132,255: POKE 133,TA: POKE 8960,TA
18400 PRINT CHR$(I)jCHR$(4)j: RETURN

Page 7 PEEK(65] Summer 1966

HI
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170 0·050
180 0050=
190 0050=
200 0051=
210
220
230
240
250 0014=
260 0005=
270 0006=
280 0010=
290 0011=
300 0012=
310 0009=
320 000B=
J30 0013=
J40 0006=
J 50
360
370
380
390 DF00=
400 DE44=
AU'
420
430
440
450
460
470 2599=
480 25913=
490 259C=
500 259D=
5l11l 259E=
520 259F=
530 251\4=
540 25M=
550 25M
560 25M=
570 25A7=
580 25A8=
590 25A9=
600 25M=
6l11l 25AB=
620 25AC=
630 25AD=
640 25AE=
650 25AF=
660 25B0=
670 25Bl=
680 25B0=
690 25Bl=
700
7H1
720
730 5B00
740
750
760
770
780 5B00 8DAE25
790 5B03 A002
800 5805 B94F00
810 5B08 999825

.PAGE ' 540 VIDEO ROUTINE WITH COLOR'

540 VIDEO DRIVER WITH
COLOR CONTROLS FOR OS65DV 3.X
REVISION 1.1

WRITTEN BY SHOF BEAVERS
SOFTWARE CONSULTANTS
7053 ROSE TRAIL
MEMPHIS, TN. 38134
(901) -371-3503

ZERO PAGE USED

*=$0050
ZPAGE=*
CLAL=*
CLAH=*+l

CONSTANTS

CPOS=$14
PLOTV=$05
PLOTH=$06
DEFW=$Hl
SETW=$l1
VCNTRL=18
BCOLOR=9
FCOLOR=l1
CHROUT=19
~1AXWIN=6

CURSOR POSITION CHARACTER
VERTICAL PLOT CHARACTER
HORIZONTAL PLOT CHARACTER
DEFINE WINDOW CHARACTER
SET WINDON CHARACTER
VIDEO CONTROL CODE
BACKGROUND COLOR CODE'
CHARACTER COLOR CODE
OUTPUT CHARACTER (X)
MAXIMUM NUMBER OF WINDOWS-l

SYSTEM ADDRESSES AND SUBROUTINES

KPORT=$DF00
VSIZE=$DE44
• PAGE

POLLED KEYBO,V,u PORT
V IDEO CON'l'ROL (32/64)

OTHER ADDRESSES USED BY VIDEO DRIVER
$2599 UP TO $2643 USED BY S'l'ANDARD VIDEO

STORI=$2599
CN'l'RLC=$259B
CLEARC=$259C
COLORC=$259D
VREG=$259E
WCOLOR=$259F
VPARM=$25A4
CRLINE=VPARM
*=VPARM
HAL=*+2
I1MI=*+3
£LAL=*+4
ELAH=*+5
LEN=*+6
CSAV=*+7
CURSOR=*+8
CCHAR=*+9
TEMP=*+Hl
CCOUNT=*+l1
COLM=*+12
RC\v=*+13
CHARl=COLM
CHAR2=ROW

STORAGE FOR ZERO PAGF
CONTROL CHAHACTER SAV I:;
CLEAR SCREEN/WINDOW CHARAC'l'ER

'COLOR CHARACTER
R/W VIDEO REGISTER
WINDOW COLOR
V IDEO PARMIETERS SAVE
CURRENT LINE

Hor'lE ADDRESS LOW
HOME ADDRESS HIGH
ENDING ADDHESS LCx-!
ENDING ADDRESS HIGH.
LINE LENGTH
CHARACTER UNDER CURSOR
CURSOR POSITION IN LINE
CURSOR CHARACTER
TEr1PORARY
COUNT FOR GET PARM
COLUMN FOR XY PUSITIONING
Rc\v FOR XY POSITIONING
FIRST CHARACTER FROM GET PARM
SECOND CHARACTER FROM GET PARM

THERE IS NOW OPEN MEMORY FRO~1 $25B2 TO $2643

*=$5B00

START OF VIDEO DRIVER

WRITE STA TEMP ;VIDEO OUTPUT ROUTINE
LOY #$02 ;SWAP OUT 2 BYTES PROM ZERO PAGE

SWAPIN LOA ZPAGE-l,Y
STA STORl-l,Y

Pooe 6 PEEK(6S] Summer 1966

8213 5BeB B9A325
8313 5B0E 994Fee
8413 51311 88
8513 51312 D0Fl
8613 51314 2e295B
8713 5B17 Aee2
880 51319 B94Fe0
890 5BIC 99A325
900 5BIF 1399825
910 51322 994F00
920 51325 88
930 51326 D0Fl
940 51328 60
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
HJ70
1080
1090
1100
1110
1120
1130
1140
l1S0
1160
1170
1180
1190

51329 AOAF25
5B2C 006C
5B2E AOAE25
51331 F049
51333 C92e
51335 9053

51337 ACAC25
5B3A 91513
5B3C 2136050
5B3F AD9D25
51342 91513
51344 21361350
51347 C8
5B48 CCAA25
5B4B D008
5134D M00
5B4F 8CAC25
51352 4CCF5B
5B55 8CAC25

1200 51358 A901
1210 5B5A 8D00DF
1220 5B5D AD00DF
12313 51360 C941
1240 51362 D018
1250 51364 A908
1260 51366 8D00DF
1270 SB69 AD00DF
1280 SB6C C980
1290 5B6E D00C
1300 51370 A902
1310 51372 8D00DF
1320 51375 AD00DF
1330 51378 C980
1340 5B7A D0F9
13se
1360
13713
13813
13913 SB7C ACAC25
1400 SB7F B150
1410 51381 8DAB25
1420 51384 ADAD25
1430 5B87 9150
1440 5B89 60
1450
1460
1470
1480
1490
1500 5B8A 8D9B25
1510 5B8D 0A
1520 SB8E A8
1530 5B8F 88
1540 513913 88
1550 51391 B9F45E
1560 5B94 48
1570 51395 B9F35E
15813 51398 48
1590 51399 613
1600
16113
1620

LDA VPARM-l,Y
STA ZPAGE-l,Y
DEY
BNE SWAPIN
JSR WRT ;USE THE OUTPUT BYTE
LOY #$02 ;RESTORE ZERO PAGE

SWAPOT LDA ZPAGE-l,Y
STA VPARM-l,Y
LDA STORl-l,Y
STA ZPAGE-l,Y
DEY

\,lRT

OISPLY

BACK

BNE SWAPOT
RTS

LDA CCOUNT
BNE GPARM
LOA TEMP
BEQ RETURN
CMP #$20
BCC CNTL

LOY CURSOR
STA (CLAL) , Y
JSR COLAOJ
LDA COLORC
STA (CLAL) ,Y
JSR COLADJ
INY
CPY LEN
BNE BACK
LDY #$130
STY CURSOR
JMP LF
S'l'Y CURSOR

;IS THE BYTE A PARAMETER
;YES, SAVE IT

;IF NULL GO BACK
;IS IT A CONTROL COOE
;YES, 00 IT

;GET INOEX INTO LINE
;OUTPUT THE CHARACTER
;CHANGE $OX TO $EX
;GET COLOR
;OUTPUT TO COLOR MEMORY
;CHANGE $EX TO $DX
;BmlP THE INDEX
;END OF LINE
;NO, GO BACK
;SET INDEX INTO LINE=0

;00 LINE FEEO
; SAVE 'l'HE INDEX

CHECK FOR CNTRL S ANO CNTRL Q

LOA #$1
STA KPORT
LOA KPORT
CMP #$41
BNE RETURN
LDA # $8
S'l'A KPORT
LDA KPORT
CMP #$80
BNE RETURN
LDA #$2
STA KPORT

STOP LDA KPORT
CMP #$80
BNE STOP

;CHECK FOR THE 'CNTRL' KEY
;LATCH THE PORT
;REAO THE CHARACTER
;IS IT THE CONTROL
;NO, GO BACK
;YES, CHECK FOR'S'
;LATCH THE PORT
;READ THE KEYBOARD
;IS IT THE'S' KEY
;NO, GO BACK
;CHECK FOR THE 'Q'
;LATCH THE PORT
;READ THE KEYBOARD
;IS IT THE 'Q'
;NO, KEEP LOOPING

RETURN: NORMAL EXIT, OUTPUTS CURSOR

RETURN LDY CURSOR
LDA (CLAL), Y
STA CSAV
LDA CCHAR
STA (CLAL),Y
RTS

;GET INDEX TO LINE
;GET CHARACTER UNDER CURSOR
; SAVE THE CHARACTER
;GET THE CURSOR CHARACTER
;OUTPUT IT
;GO BACK FROM OUTPUT ROUTINE

CNTL: GET CONTROL CODE ROUTINE ADDRESS FROM
TABLE AND EXECUTE

CNTL STA CNTRLC ;SAVE THE CONTROL CODE
ASL A
TAY ;SET TO INDEX TABLE
DEY
DEY
LDA CNTLTB+l,Y ;GET HfGH BYTE
PHA ; PU SH ON STACK
LOA CNTLTB,Y ;GET LOW BYTE
PHA ; PUSH
RTS ;EXECUTE THE ROUTINE

GPARM: GBT PnRAMETERS FOR CURSOR POSITIONING,WINOOWS

Page 9 PEEK(65) Summer 1966

1631l
1641l SB9A ADAF2S
16SIl SB9D C91l1
1661l SB9F FIlIlA
1671l SBAI ADAE2S
1681l SBA4 8DBIl2S
1691l SBA7 CEAF2S
171l1l SBM 61l
1711l SBAB ADAE2S
1721l SBAE 8DB12S
1731l SBBI CEAF2S
1741l SBB4 4C67SD
17SIl
1761l
1771l
1781l
.1791l SBB7 21l12SD
181l1l SBBA ACAC2S
1811l SBBD FIlBD
1821l SBBF 88
1831l SBCIl 8CAC2S
1841l SBC3 4C7CSB
18SIl
1861l
1871l
1881l
1891l SBC6 21l12SD
19111l SBC9 AIlIlIl
1911l 5BCB 8CAC25
1921l 5BCE 61l
1931l
1941l
1951l
196.1l
1971l 5BCF 20125D
1980 SBD2 20F6SC
1990 SBD5 91lA5
21l1l1l 5BD7 ADA625
21l11l 5BDA 8S50
21l21l 5BDC ADA72S
2031l SBDF 8551
21140 5BEI ADAA25
2050 5BE4 8DAE25
21l61l 5BE7 18
21170 5BE8 6941l
21l81l 5BEA'AA
2090 SBEB CEAE25
211l1l 5BEE CA
2111l 5BEF 8A
2120 5SFil A8
2130 5BFl B150
2140 5BF3 ACAE25
2151l 5BF6 9150
2161l 5BF8 DIlFl
2170 5BFA 21lF65C
2180 5BFD 90E2
2191l SBFF ACAA25
2200 5CIl2 A920
2210 5C04 88
2220 5C05 9151l
2230 5C07 D0FB
2241l 5CIl9 4C7C5B
2251l
2261l
2271l
2281l
2291l SCIlC 21lC65B
231l1l 5CIlF ADA625
2311l 5C12 8550
2321l 5C14 ADA725
2331l 5C17 8551
2341l 5C19 61l
2351l
2360
2371l
2381l
2391l SCIA 200C5C
2400 5CID AD9C25
2411l SC21l 9151l
2421l 5C22 C8
2431l 5C23 CCAA25

GPARM LDA CCOUNT
CMP #$Ill
BEQ SPARM
LDA TEMP
STA CHARI
DEC CCOUNT
RTS

SPARM LDA TEMP
STA CHAR2
DEC CCOUNT
JMP WHICHI

;GET CHARACTER COUNT
;IS THIS THE SECOND CHARACTER
;YES
;GET THE BYTE
;SAVE IT AT CHARI (COLM)
;ADJUST COUNT

;GET THE BYTE
iSAVE IT (RCM)
iSET CCOUNT = Il
;GO DO THE CONTROL FUNCTION

BSPACE: BACKSPACE ROUTINE

BSPACE JSR DELCUR
LDY CURSOR
BEQ RETURN
DEY
STY CURSOR
JMP RETURN

iDELETE CURSOR
;GET CURSOR POSITION
;IF AT FRONT OF LINE RETURN
; DECRE~lENT INDEX
iAND SAVE
;GO BACK AND PRINT NEW CURSOR

CR: CARRIAGE RETURN ROUTINE

CR JSR DELCUR
LDY #$1l0
STY CURSOR
RTS

;DELETE CURSOR
;RESET INDEX

LF: LINE FEED ROUTINE (SCROLLS IF NEEDED)

LF JSR DELCUR
JSR INCL
BCC RETURN

SCROLL LDA HAL
STA CLAL
LDA HAH
STA CLAH

LINE LDA LEN
STA TEMP
CLC

OFFSET ADC #$41l
TAX

COPY DEC TEMP
DEX
TXA
TAY
LDA (CLAL),Y
LOY TEMP
STA (CLAL),Y
BNE COpy
JSR INCL
BCC LINE
LDY LEN
LDA #$20

SPLOOP DEY
STA (CLAL), Y
BNE SPLOOP
JMP RETURN

iDELETE CURSOR
iINCREMENT THE LINE COUNT
iIF NOT AT END RETURN
iLAST LINE, DO SCROLL
;RESET CURRENT LINE ADDRESS

;A= LINE LENG'l'H
iSET TEMP TO LINE LENGTH
iSET TO ADD
iA=LINE LENGTH + $41l

iDECRE~lENT LINE COUNT
iDECREMENT INDEX INTO LINE
iMOVE X TO Y THROUGH A

;GET CHARACTER FROM LINE + $40
iGET LINE INDEX
iSTORE CHARACTER (MOVE BY $40)
iNOT DONE WITH THIS LINE SO LOOP
;INCREMENT CURRENT LINE
iNOT DONE YET SO LOOP BACK
;RESET INDEX TO LINE
;SET A TO CLEAR LAST LINE
i DECRE~1ENT INDEX
iOUTPUT 'l'HE SPACE
iNOT DONE KEEP LOOPING
iGO BACK AND PRINT CURSOR

HOME: HOME CURSOR IN WINDOlv

HOME JSR CR
LOA HAL
STA CLAL
LDA HAH
STA CLAH
RTS

iDO CARRIAGE RETURN
iRESET CURRENT LINE TO HOME LINE

CLEAR: CLEAR PRESENT WINDON AND HOME CURSOR

CLEAR
NXTLIN
NXTSP

JSR HOME
LOA CLEARC
STA (CLAL),Y
INY
CPY LEN

;HOME CURSOR
iGET CLEAR CHARACTER
lAND OUTPUT IT
lBUMP THE INDEX
lY=LINE LENGTH?

. p~ge 1 e PEEK(65] Summer 1966

244"
245"
2460
2470
2480
2490
2500
2510
2520
2530
2540
255"
2560
2570
258"
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
273"
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
304"
3050
3060
3"70
3080
3090
3100
311"
3120
313"
314"
3150
3160
317"
318"
3190
3200
321"
322"
323"
3240

5C26 D0FS
5C28 A1100
5C2A 20F65C
5C2D 90EE
5C2F 8CAC25
5C32 200C5C
5C35 60

5C36 20125D
5C39 CS
5C3A CCAA25
5C3D B003
5C3F 8CAC25
5C42 4C7C5B

5C45 A1100
5C47 AD9C25
5C4A 9900D7
5C4D 9900D6
5C50 9900D5
5C53 9900D4
5C56 9900D3
5C59 9900D2
5C5C 9900Dl
5C5F 9900D0
5C62 C8
5C63 DOES
5C65 60

5C66 ACAC25
5C69 A920
5C6B 9150
5C6D C8
5C6E CCAA25
5C7l D0F8
5C73 4C7C5B

5C76 A902
5C78 SDAF25
5C7B 60

5C7C ACAC25
5C7F SCB025
5C82 A550
5C84 8DB125
5C87 A551
5C89 8DAE25
5CSC 201D5C
5C8F ADB"25
5C92 8DAC25
5C95 ADAE25
5C9S 8551
5C9A ADB125
5C9D S550
5C9F 4C7C5B

5CA2 AD9E25
5CA5 0901
5CA7 SD44DE
5CAA SD9E25
SCAD A940

BNE NXTSP ; NO LOOP BACK
LDY #$00 ;YES, RESET Y
JSR INCL ;INCREMENT THE CURRENT LINE
BCC NXTLIN iNOT DONE, LOOP BACK
STY CURSOR ;RESET INDEX TO LINE
JSR HOME i HOME CU RSOR

RET RTS'
i
i FORWRD: MOVE CURSOR RIGHT 1 POSITION
; ------------------------------------

i
i
i

i

FORWRD JSR DELCUR i DELETE CURSOR
INY iBUMP LINE INDEX
CPY LEN ;AT END OF LINE
BCS RET3 ;YES, GO BACK
STY CURSOR ;SAVE NEW INDEX

RET3 JMP RETURN iGO BACK AND PRINT CURSOR

CSCRN: CLEAR 540 VIDEO DISPLAY

CSCRN LDY #$00
LDA CLEARC

CSLOP STA $D700,Y
STA $D600,Y
STA $D500, Y
STA $D40", Y
S'I'A $D3'00, Y
STA $D200,Y
STA $D100, Y
STA $D000,Y
INY
BNE CSLOP
RTS

CLINE: CLEAR REST

iSET INDEX TO 0
;GET CLEAR CHARACTER
iOUTPUT IT TO ALL LINES

iBUMP THE INDEX
iLOOP IF NOT DONE

OF LINE

CLINE LDY CURSOR iGET INDEX IN LINE
LDA # $20 iA='SPACE'

CLOOP STA (CLAL) , Y iOUTPUT SPACE
INY ;BUMP THE INDEX
CPY LEN iAT END OF LINE?
BNE CLOOP iNO, KEEP LOOPING
JMP RETURN ;GO BACK AND PRINT CURSOR

CURPOS,PLOT: SAVE CONTROL CODE AND
SET CCOUNT FOR 2 PARAMETERS

PLOT
CURPOS LDA #$02

STA CCOUNT
RTS

;SET CCOUNT TO 2 FOR GETPARM

CRWIN: CLEAR REST OF WINDOW

CRWIN LDY
STY
LDA
STA
LDA
STA
JSR
LDA
STA
LDA
STA
LDA
STA
JMP

CURSOR
COLM
CLAL
ROW
CLAH
TEMP
NXTLIN
COLM
CURSOR
TEMP
CLAH
ROW
CLAL
RETURN

iGET INDEX IN LINE
iSAVE CURRENT LINE PARAMETERS

iJUMP TO MIDDLE OF CLEAR WINDOW
~iRESTORE LINE PARAMETERS

iGO BACK AND PRINT CURSOR

SET64: SET VIDEO TO 64 CHARACTERS PER LINE

SET64 LOA VREG
ORA #$01
STA VSIZE
STA VREG
LDA #$4"

;SET 540 FOR 64 CHARACTER/LINE

;SET LINE LENGTH

Page 11 PEEK(65) Summer 1986

3251:l
3261:l
3270
3280
3291:l
331:l0
3310
3321:l
3330
D40
D50
D60
3370
3381:l
3391:l
3401:l
1411:l
1421:l
1430
1441:l
1451:l
3460
1470
3480
3490
3500
3510
3521:l
1531:l
1541:l
1551:l
3561:l
3570
3581:l
3591:l
1600
1611:l
!621:l
1631:l
1640
1651:l
1660
1670
1681:l
\690
1701:l
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
i810
1820
1831:l
1841:l
\851:l
1861:l
1871:l
1881:l
i891:l

[
91:l1:l
911:l
921:l

1931:l

1
94 1:l
950

/
960
971:l

1981:l
1991:l
11:l.1:l1:l
II:llI:l
11:l21:l
l031:l
ll:l41:l
ll:l51:l

5CAF 8DAA25
5CB2 61:l

5CB3 AD9E25
5CB6 29FE
5CB8 8D44DE
5CBB 8D9E25
5CBE A921:l
5CC0 8DAA25
5CC3 60

5CC4 21:l125D
5CC7 20445D
5CCA 4C7C5B

5CCD A551:l
5CCF 18
5CD0 6DAC25
5CD3 8DA625
5CD6 A551
5CD8 8DA725
5CDB 200C5C
5CDE 60

5CDF ADAC25
5CE2 8DAA25
5CE5 A550
5CE7 8DA825
5CEA A551
5CEC 8DA925
5CEF 60

5CFB A901
5CF2 8DAF25
5CF5 60

5CF6 18
5CF7 A551
5CF9 CDA925
5CFC 91:l1:l8
5CFE A551:l
5DI:ll:l CDA825
5DI:l3 9001
5DI:l5 61:l
5DI:l6 A551:l
5DI:l8 6941:l
5DI:lA 8551:l
5DI:lC 91:l1:l3
5DI:lE E651
5D10 18
5Dll 61:l

5D12 ACAC25
5D15 B151:l
5D17 CDAD25
5D1A DI:lI:lA
5D1C ADAB25
5D1F 9151:l
5D21 A920

STA LEN
RTS

SET32: SET TO 32 CHARACTERS/LINE

SET32 LDA VREG
AND #$FE
STA VSIZE
STA VREG
LDA #$20
STA LEN
RTS

;SET TO 32 CHARACTERS PER LINE
;TURN OFF 1 BIT

;SET LINE LENGTH

CUP: MOVE CURSOR UP

CUP JSR DELCUR
JSR SUB
JMP RETURN

; DELETE CURSOR
;SUBTRACT $41:l FROM CL ADDRESS
;GO BACK AND PRINT CURSOR

DHOME: DEFINE PRESENT CURSOR POSITON AS HOME

DHOME LDA CLAL
CLC
ADC CURSOR
STA HAL
LDA CLAH
STA HAH
JSR HOME
RTS

;SET HOME TO CURRENT LINE

;ADD LINE INDEX
;AND SAVE LOO BYTE
;SET HIGH BYTE

;HOME CURSOR TO SET PARAMETERS

DLRCW: SET LOWER RIGHT CORNER OF WINDOW

DLRCW LDA CURSOR
STA LEN
LDA CLAL
STA ELAL
LDA CLAH
STA ELAH
RTS

;GET INDEX IN LINE
;PRESENT INDEX=NEW LINE LENGTH
;CURRENT LINE=NEW LAST LINE

WINDOW: SET PARM1ETERS FOR WINDOW CONTROLS
ALSO USED FOR ANY COM~mND WITH 1 PARAMETER

WINDOW LDA #$01 ;SET GET PARM FOR 1 PARAMETER
STA CCOUNT
RTS

INCL: INCREMENT CURRENT LINE. CARRY SET IF AT LAST

INCL

INCH

INCEND

CLC
LDA
CMP
BCC
LDA
CMP
BCC
RTS
LDA
ADC
STA
BCC
INC
CLC
RTS

CLAH
ELAH
INCH
CLAL
ELAL
INCH

CLAL
#$41:l
CLAL
INCEND
CLAH

;GET SET TO ADD

;LESS THAN ENDING ADDRESS
; YES, DO INCRE~IENT

;CHECK THE LOW BYTES

;DO INCREMENT
;RETURN WITH CARRY SET
;INCRE~IENT CURRENT LINE

; t.

.•.

; DELCUR: DELETE CURSOR, RESTORE CHARACTER UNDER CURSOR
; --~~----~----

DELCUR LDY CURSOR
LDA (CLAL), Y
CMP CCHAR
BNE RET2
LDA CSAV
STA (CLAL),Y
LDA #$20

;GET INDEX IN LINE
;GET CHARACrER
; IS IT THE CURSOR
;NO, GO BACK
;YES, GET CHAR UNDER CURSOR
;AND RESTORE
;CLEAR CSAV

Page 12 PEEk(65) 'Summer 1966 .
' ..

.. , ..

4969 5023 80AB25
4979 5026 69
4989
4999
4199
4119
4129
4139
4149
4159
4169
4179
4189
4199
4299
4219
4229
4239
4249
4259
4269
4279
4289
4299
4399

5027 A999
5029 8559
502B 8DA625
502E 80A825
5031 80AC25
5034 A9Dl
5036 8551
5D38 80A725
503B A907
5030 80A925
5D49 29A25C
5043 69

4319 5D44 A551
4329 5D46 CDA725
4339 5D49 D997
4349 504B A559
4359 5D40 CDA625
4369 5D59 F990
4379 5052 A559
4389 5D54 38
4399 5055 E949
4499 5D57 8559
4419 5059 A551
4429 505B E999
4439 5050 8551
4449 505F 69
4459
4469
4479
4489
4499
4599
4519
4529
4539
4549
4559
4569
4579
4589
4599
4699
4619
4629
4639
4649
4659
4669
4679
4689
4699
4799
4719
4729
4739
4749
4759
4769
4779
4789
4799
4899
4819
4829
4839
4849
4859
4869

5069 A551
5062 4939
5D64 8551
5066 69

5D67 AD9B25
5D6A C914
5D6C 0993
506E 4CAC50
507l C995
5073 D993
5075 4C0250
5078 C996
507A 0993
507C 4CEF50
507F C919
5081 0993
5083 4C9A5E
5086 C911
5088 D993
508A 4C365E
5080 C999
5D8F D993
5D91 4C745E
5094 C99B
5096 0993
5D98 4CB55E
509B C913
509D 0993
509F 4CBC5E
5DA2 C912
50A4 D993

STA CSAV
RET2 RTS

MASWIN: SET VIOEO PARAMETERS TO 64 CHAR/LINE
WITH 25 LINES TO THE SCREEN
TURNS OFF COLOR AND SOUNO

MASWIN LOA #$99 ;RESET VIOEO PARAMETERS
STA CLAL
STA HAL
STA ELAL
STA CURSOR
LOA #$01
STA CLAH
STA HAH
LOA #$07
STA ELAH
JSR SET64 ;SET FOR 64 CHAR/LINE
RTS

SUB: AOJUST PRESENT CURSOR POSITION
UP BY 1 LINE

SUB LDA CLAH
CI1P HAH
BNE DOlT
LOA CLAL
CI1P HAL
BEQ RET4

OOIT LOA CLAL
SEC
SBC #$49
STA CLAL
LOA CLAH
SBC #$99
STA CLAH

RET4 RTS

;CHECK TO SEE IF AT TOP

;NO, AOJUST POSITION

; COLAOJ: INTERNAL SUBROUTINE TO AOJUST AODRESS FOR
; COLOR CONTROLS. CHANGES $OX TO $EX OR $EX TO SOX.
; ---

COLAOJ LOA CLAH ;GET PRESENT ADORESS
EOR #$39 ;CHANGE HIGH BYTE
STA CLAH ;AND SAVE
RTS

WHICHl: OETERMINE WHICH CONTROL CODE
SET CCOUNT FOR GET PARM AND EXECUTE
THE PROPER ROUTINE

WHICHI LOA CNTRLC
CMP #CPOS
BNE WI
JMP POSCUR

WI CMP #PLOTV
BNE w2
JMP VLINE

W2 CMP #PLOTH
BNE W3
JMP HLINE

W3 CMP #OEFW
BNE W4
JMP OEFWI

W4 CMP #SETW
BNE W5
JMP SETWI

W5 CMP #BCOLOR
BNE W6
JMP COLOR

W6 CMP #FCOLOR
BNE W7
JMP SCOLOR

W7 CMP #CHROUT
BNE W8
JMP COUT

W8 CMP #VCNTRL
BNE W9

Page 13 PEEK(65) Summer 1966

4B7~ 5DA6 4CC55E
4BB~ 5DA9 4C7C5B
4B9~
49~~
49U
492~
493~ 5DAC 2~125D
494~ 5DAF 2~B55D
495~ 5DB2 4C7C5B
496~
497~
49B~

499~
5000 5DB5 200C5C
5010 5DB8 AEB125
5020 5DBB F006
5D3~ 5DBD 20F65C
5040 5DC~ CA
5050 5DCl D0FA
5060 5DC3 ADB025
5070 5DC6 CDAA25
50B0 5DC9 9003
5090 5DCB ADAA25
5100 5DCE 8DAC25
5110 5DDl 60
5120
5130
5140
5150
5160 5DD2 ACAC25
5170 5DD5 AEB025
5180 5DDB BEAF25
5190 5DDB ADB125
52~0 5DDE 9150
5210 5DE0 CEAF25
5220 5DE3 F~06
5230 5DE5 2~445D
524~ 5DB8 4CDB5D
5250 5DEB 8CAC25
5260 5DEE 60
527~
5280
5290
5300
5310 5DEF ACAC25
5320 5DF2 AEB025
5330 5DF5 BEAF25
5340 5DF8 ADB125
5350 5DFB 9150
5360 5DFD CCAA25
5370 5E00 F0E9
53B0 5E02 CB
5390 5E03 CEAF25
540~ 5ED6 F0E3
541~ 5E08 D0Fl
5420
5430
5440
5450
546~ 5E0A ACB125
5470 5E0D C006
5480 5E0F B024
5490 SEll ADA625
5500 5E14 99CF5E
5510 5EI7 ADA725
5520 5EIA 99D55E
553~ 5EID ADA825
5540 5E20 99DB5E
5550 5E23 ADA925
5560 5E26 99EI5E
5570 5E29 ADAA25
5580 5E2C 99E75E
559~ 5E2F AD9F25
560~ 5E32 99ED5E
561~ 5E35 6~
562~
5630
564~
5650
566~
567~ 5E36 20455E

JMP SETVID
W9 JMP RETURN

; POSCUR: DIRECT CURSOR POSITIONING
; ---------------------------------

;

;

POSCUR JSR DELCUR
JSR POSI
JMP RETURN

;DELETE CURSOR
;FIND CURSOR POSITION
;GO BACK AND OUTPUT CURSOR

POSI: FIND POSITION ON SCREEN

POSI JSR HOME
LDX RCM
BEQ SETCOL

ROWLP J SR INCL
DEX
BNE ROWLP

SETCOL LDA COLM
CMP LEN
BCC SETCI
LDA LEN

SETCI STA CURSOR
RTS

;HOME CURSOR POSITION
;GET THE RCM INFORMATION
;IF 0 THEN SET THE COLUMN
;INCREMENT LINE
;ADJUST RCM COUNT
;NOT DONE, KEEP LOOPING
;GET COLUMN INFORMATION
;AT END OF LINE
;NO, SET COLUMN
;GET LINE LENGTH
;SAVE INDEX IN LINE

; VLINE: PLOT VERTICAL LINE
; -------------------------

;

VLINE LDY CURSOR
LDX CHARI
STX CCOUNT

VLINEI LDA CHAR2
STA (CLALl,Y
DEC CCOUNT
BEQ DPLOT
JSR SUB
JMP VLINEI

DPLOT STY CURSOR
RTS

;GET INDEX IN LINE
;GET NUMBER OF BLOCKS
;AND SAVE
;GET OUTPUT CHARACTER
;OUTPUT IT
;ADJUST COUNT
;EXIT IF DONE
;MOVE UP BY I LINE
,LOOP BACK FOR NEXT CHARACTER
;SAVE INDEX IN LINE

; HLINE: PLOT HORIZONTAL LINE
i ---------------------------

;

HLINE LDY CURSOR
LDX CHARI
STX CCOUNT
LDA CHAR2

HLINEI STA (CLALl,Y
CPY LEN
BEQ DPLOT
INY
DEC CCOUNT
BEQ DPLOT
BNE HLINEI

;GET INDEX IN LINE
;GET NUMBER OF BLOCKS
;AND SAVE
;GET OUTPUT CHARACTER
;OUTPUT IT
;ARE WE DONE
;YES, GO BACK
;BUMP THE INDEX
;DECREMENT THE COUNT
;BRANCH IF DONE
;LOOP BACK FOR NEXT CHARACTER

DEFWI: DEFINE WINDOW (Xl

DEFWI LDY CHAR2 ;GET WINDOW NUMBER
CPY #MAXWIN
BCS RETI
LDA HAL ;SAVE VIDEO PARMS IN TABLES
STA HALTB, Y
LDA HAH
STA HAHTB, Y
LDA ELAL
STA ELALTB, Y
LDA ELAH
STA ELAHTB,Y
LDA LEN
STA LENTB,Y
LDA WCOLOR
STA COLRTB, Y

RETI RTS

; SETWI: SET WINDOW (Xl
; AND SET COLOR
; ---------------------,

SETWI JSR SETW2 ;SET WINDOW PARAMETERS

Page 14 PEEK(6S] Summer 1966

5689
569"
570"
5710
572"
573"
5740
5750
5760
5770
5780
5790
5800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5900
5910
5920
5930
5940
5950
5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
615"
616"
6170
6180
6190
6200
6210
6220
623"
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
637"
6380
6390
64"0
6 410
6420
6430

5E39 AD9F25
5E3C 8DB125
5E3F 20745E
5E42 4C7C5B

5E45 ACB125
5E48 C006
5E4A B0E9
5E4C B9DB5E
5E4F 8DA825
5E52 B9E15E
5E55 8DA925
5E58 B9CF5E
5E5B 80A625
5E5E B9D55E
5E61 8DA725
5E64 B9E75E
5E67 8DAA25
5E6A B9ED5E
5E60 8D9F25
5E70 200C5C
5E73 60

5E74 AD9C25
5E77 48
5E78 ADB125
5E7B 8D9C25
5E7E 8D9F25
5E81 8D9D25
5E84 A905
5E86 80B125
5E89 200A5E
5E8C ADA725
5E8F 4930
5E91 8DA 725
5E94 ADA925
5E97 4930
5E99 BOA925
5E9C 201A5C
5E9F A905
5EAl 8DB125
5EM 20455E
5EA7 A09C25
5EAA 8D9F25
5EAD 68
5EAE 8D9C25
5EBI 20"C5C
5EB4 60

5EB5 ADB125
5EB8 8D9D25
5EBB 60

5EBC AOB125
5EBF 80AE25
5EC2 4C375B

5EC5 ADB125
5EC8 8D44DE
5ECB 8D9E25
5ECE 60

; ..

LOA WCOLOR
STA CHAR2
JSR COLOR
JMP RETURN

;NOW SET COLOR

SETW2: SET WINDOW PARAMETERS

SETW2 LDY CHAR2 ;GET WINDOW NUMBER
CPY #MAXWIN
BCS RET1
LOA ELALTB,Y ;LOAD VIDEO PARMS FROM TABLES
STA ELAL
LOA ELAHTB, Y
STA ELAH
LDA HALTB, Y
STA HAL
LDA HAHTB, Y
STA HAH
LOA LENTB,Y
STA LEN
LDA C0LRTB, Y
STA WCOLOR
JSR HOME
RTS

COLOR: SET WINDOW TO COLOR (Xl

COLOR LOA CLEARC
PHA
LDA CHAR2
STA CLEARC
STA WCOLOR
STA COLORC
LOA #5
STA CHAR2
JSR OEFWI
LDA HAH
EOR #$30
STA HAH
LOA ELAH
EOR #$30
STA ELAH
JSR CLEAR
LOA #5
STA CHAR2
JSR SETW2
LOA CLEARC
STA WCOLOR
PLA
STA CLEARC
JSR HOME
RTS

;SAVE CLEAR CHARACTER

;GET COLOR NUMBER
;AND SAVE
; SAVE IHNDOW COLOR
;SET CHARACTER COLOR
;SAVE CURRENT WINDOW

;CHANGE $DXXX TO $EXXX

;OUTPUT THE COLOR
;RESTORE WINDOW PARMS

;SET WINDOW COLOR REG.

;RESTORE CLEAR CHARACTER

SCOLOR: SET CHARACTER COLOR

SCOLOR LDA CHAR2
STA COLORC
RTS

;GET COLOR NUMBER
;AND SET

COUT: OUTPUT CHARACTER (Xl

COUT LOA CHAR2
STA TE~lP
JMP DISPLY

;GET THE CHARACTER
;AND SAVE
;OUTPUT THE CHARACTER

SETVID: SET VIDEO, COLOR, AND SOUND REGISTER
SET VREG SO PRESENT STATUS CAN BE READ

SETVID LDA CHAR2
STA VSIZE
STA VREG
RTS

GET THE CONTROL BYTE
OUTPUT TO VIDEO BOARD
SAVE AT VREG

Page 15 PEEK(65] Summer 1986

6440
6450 START OF TABLES FOR DEFINED WINDOWS
6460 -----------------------------------
6470
6480 5ECF 00 HALTB .BYTE 00
6490 5ED0 00 .BYTE 0
6500 5EDI 00 .BYTE 0
6510 5ED2 00 .BYTE 0
6520 5ED3 00 .BYTE 0
6530 5ED4 00 .BYTE e
6540 5ED5 De HAHTB .BYTE $D0
6550 5ED6 ee .BYTE e
656e 5ED7 ee .BYTE e
657e 5ED8 00 .BYTE e
6580 5ED9 00 .BYTE 0
6590 5EDA 00 .BYTE 0
6600 5EDB C0 ELALTB .BYTE $C0
6610 5EDC 00 .BYTE 0
6620 5EDD 00 .BYTE 0
6630 5EDE 00 .BYTE 0
6640 5EDF 00 .BYTE 0
6650 5EE0 00 .BYTE 0
6660 5EEI D7 ELAHTB .BYTE $07
6670 5EE2 00 .BYTE 0
6680 5EE3 00 .BYTE 0
6690 5EE4 00 .BYTE 0
6700 SEES 00 .BYTE 0
6710 5EE6 00 .BYTE 0
6720 5EE7 40 LENTB .BYTE 64
6730 5EE8 00 .BYTE 0
6740 5EE9 00 .BYTE 0
6750 5EEA 00 .BYTE 0
6760 5EEB 00 .BYTE 0
6770 5EEC 00 .BYTE 0
6780 SEED 0F COLRTB .BYTE 15
6790 5EEE 00 .BYTE

'" 6 8~'" 5EEF 00 .BYTE 0
6810 5EF0 00 .BYTE 0
6820 5EFI 00 .BYTE

'" 6830 5EF2 00 .BYTE
'" 6840

6850 CNTLTB: CONTROL CODE TABLE. CONTAINS THE
6860 THE ADDRESS OF THE ROUTINE-I. ADDRESS IS
6870 PUSHED ON THE STACK AND THEN CALLED BY
6880 DOING AN RTS.
6890 --
6900
6910 5EF3 2650 CNTLTB • WORD MASWIN-l ; 1 SET MASTER \,lINDOW
6920 5EF5 A15C • WORD SET64-1 ; 2 SET TO 64 CHAR/LINE
6930 5EF7 B25C .WORD SET32-1 ; 3 SET TO 32 CHAR/LINE
6940 5EF9 445C • WORD CSCRN-l ; 4 CLEAR 540 VIDEO
6950 5EFB 755C • WORD PLOT-l ; 5 VERTICAL PLOT
6960 5EFD 755C • WORD PLOT-l ;6 HORIZONTAL PLOT
6970 5EFF 7B5B • WORD RETURN-l ; 7 BELL(NOT IMPLEMENTED)
6980 5F01 B65B .WORD BSPACE-l ; 8 BACKSPACE
6990 5F03 EF5C .WORD WINDOW-l ; 9 SET WINDOW TO COLOR
7000 5F05 CE5B • WORD LF-l ;10 LINE FEED
7010 5F07 EF5C .WORD WINDOW-l ;11 SET CHAR COLOR
7020 5F09 195C .WORD CLEAR-l ; 12 CLEAR WINDOW
7030 5F0B C55B .WORD CR-l ;13 CARRIAGE RETURN
7040 5F0D CC5C • WORD DHOt1E-l ;14 DEFINE AS HOME
7050 5F0F DE5C .WORD DLRCW-l ;15 SET LOWER R CORNER
7060 5Fll EF5C • WORD WINDOW-l ; 16 DEFINE WINDOW
7070 5F13 EF5C • WORD \,lINDOW-l ; 17 SET WINDOW
7080 5F15 EF5C • WORD WINDOW-l ; 18 VIDEO CONTROL
7090 5F17 EF5C .WORD WINDOW-l ;19 CHARACTER OUT
7100 5F19 755C .WORD CURPOS-l ; 20 CURSOR POSITION
7110 5FIB C35C .WORD CUP-l ; 21 CURSOR UP
7120 .5FID 7B5B .WORD RETURN-l ; 22 (UNUSED)
7130 5FIF 7B5B .WORD RETURN-l ; 23 (UNUSED)
7140 5F21 355C .WORD FORWRD-l ; 24 CURSOR RIGHT
7150 5F23 7B5B .WORD RETURN-l ; 25 (UNUSED)
7160 5F25 7B5B .WORD RETURN-l ; 26 (UNUSED)
7170 5F27 7B5B .WORD RETURN-l ; 27 (UNUSED)
7180 5F29 7B5B .WORD RETURN-l ; 28 (UNUSED)
7190 5F2B 0B5C .WORD HOME-l ; 29 HOME CURSOR
7200 5F2D 655C .WORD CLINE-l ;30 CLEAR REST OF LINE
7210 5F2F 7B5C .WORD CRWIN-l ; 31 CLEAR REST OF WINDOW
7220
7230 5F31= ZZZZ=*
7240 .END

PDge 16 PEEK(65) Summer 1966

DIIS-65D: True aa.elom A~
Flies for OS-65D V3.3

One of the biggest draWbacks of
OS-65D is the way it handles data files
in general, and random access data
files in particular. If you go by the
book, 65D limits you to record sizes
that are powers of two in length. That
is, 2, 4, 8, 16, 32, 64, 128, or 256. If
your data file needs records that are
129 bytes long, 650 forces you to the
next larger record size, 256 bytes,
thus wasting 127 bytes of disk space
between each record. Even worse
perhaps, is that fields within records
are stored sequentially, forcing the
user to read and write the entire
record even wtlen manipulating only
one field.

8· disk systems have always had the
advantage of being able to use OS-65U
wtlich allows direct access to each
byte on the diskette as well as having
simultaneous access to up to 8
different files. In conjunction with this
ability, Ohio Scientific developed their
OS-DMS series of software. OS-DMS is
a mUCh-maligned data base
management system that many 65U
packages have been based upon. Most
of the criticism centers around the
application software from OSI, not the
structure of the system. While not as
sophisticated as much of the data base
software for other systems, OS-DMS is
a functional file structure that
remains the standard for most of the
65U users.

DMS65D is an out and out copy of the
OS-DMS file structure and I used it for
two reasons. First, I have used
OS-DMS heavily and so have a lot of
others. Second, it's an easy structure
to understand. Let's take a look at that
structure;

Imagine a sheet of graph paper.
Instead of looking at it as a grid of
intersecting lines, look at it as a series
of boJreS, with the box at the upper
left hand corner being box -0 and
each box after that being numbered
consecutively higher to the bottom of
the page. These boJreS are our data file
with each box holding a single
character. The capacity of our data file
is equal to the number of boxes on the

18 REn- Data File nanager for OS-65D U3,3
28 GOTOl888
38 :
18 REn- Construct Device 6 Current Track String
58 c6-FHa(PEEK(9881»:t6$mRIGHT$(STR$(c6+kh),k2):RETURH
68 :
78 REn- Construct Device 7 Current Track String
68 c7-FHa(PEEK(9812»:t7$-RIGHT$(STR$(c7+kh),k2):RETURH
98 :
188 REn- Get Record 'r6 for Device '6
118 16-bodf+C(r6-kl)*rl):.t-IHT(16/ts)+at(k6)
128 GOSUB58:IFc6-.tTHEHI68
138 d6-PEEK(9885):IFd6-k8THEHI58
118 DISKI"sa "+t6$+",1-3a7e/"+pg$:POKE9885,k8
158 DISKI"ca 3a7e."+t6$+",I":POKE 9881,FHb(c6)
168 l-i6-«.t-c6)*ts)+bs(k6):ih-IHT(I/pg):il-i-ih*pg
178 POKEip(k6),il:POKEip(k6)+kl,lh
175 POKEop(k6),ll:POKEop(k6)+kl,lh
168 RETURH
198 :
288 REn- Set Device 6 I/O Pointers to Index(6)
218 l-i6+bs(k6)-(FHa(PEEK(9881»-st(k6»*ts
215 Ih-IHTCI/pg):ll-i-ih*pg
228 POKElp(k6),ll:POKEip(k6)+kl,ih
225 POKEop(k6),il:PO~Eop(k6)+I,lh:RETURH
238 :
218 REn- Set Device 7 I/O Pointers to Index(7)

. 258 1-17+bs(k7)-(fHa(PEEK(9812»-st(k7»*ts
255 Ih-IHT(i/pg):il=i-ih*pg
268 POKE9213,il:PO~E9211,ih:PO~E9236,il:POKE9239,lh:RETURH
278 :
388 REn- fetch Record fro. Device '6
318 GOSUBI88:fORk-kITOnf:i6=bodf+«r6-kl)*rl)+16(k)
338 GOSUB288:IHPUT'k6,a$(k):HEXTk:RETURH
318 :
188·REn- Put Record Out to Device '6
118 GOSUB 188
128 fORk=kITOnf:16=bodf+«r6-kl)*rl)+I6(k):GOSUB288
138 PRIHT'k6,a$(k):HEXTk:RETURH
118 :
788 REn- Display Record Contents
718 PRIHT'dv," '"jTAB(k1)j"field Ha.e"jTRB(32)j"Contents"
728 PRIHT:FORk-klTOnf
738 PRIHT'du,kjTRB(k1)jn$Ck)jTRB(32)ja$(k):HEXTk:PRIHT'dv
718 RETURH
758 :
688 REn-·nain nenu
818 :
828 PRIHTI(26)j&(k9,k8)j"DnS-65D Data file nanager"
838 PRIHT&Ck5,k2)j"(I) Directory"
618 PRIHT&(k5,k3)j"(2) Create a DnS-65D naster File"
658 PRIHT&(k5,k1)j"C3) Edit a DnS-65D naster File"
668 PRIHT&(k5,k5)j"C1) Print a DnS-65D noster file"
988 PRIHT&Ck9,kt)j"Your Choice "j:IHPUTy$:k-UAL(y$):TRAP8
918 PRIHTI(26)j:IFk-kOTHEHEHD
928 IFk<kIORk>k10Rk<>IHT(k)THEH628
938 OH k GOTO 2888,3888,1888,5888
998 :
1888 k8-8:kl-l:k2-2:k3-3:k1-1:k5-5:k6-6:k7-7:k6-0:k9a 9:kt a l8
1818 oo-ASCC"A"):oz-ASC("Z"):o8=ASC("8"):o9-ASC("9"):kh-188
1828 pg-256:hex$-"81231567890bcdef":sx-16:tt-32:dl-11897

Pnge 17 PEEK(65) Summer 1966

sheet of graph paper.

Now, let's define what a random
a<:<:ess data file is. A random a<:<:ess
data file is a file in which each piece
of data within the file is positioned in
a defined location. This allo'ft'S the
programmer to immediately "jump" to
the Nth piece of data without having
to read in N - 1 pi<:es of data, as is
necessary with sequential files. Most
often, but not always, random a<:<:ess
data files are composed of groups of
related information. These groups are.
called records. The easiest way to
illustrate a record is a mailing list. A
typical mailing list entry would
contain the following information:

Name, Address, City, State, Zip Code

Each entry within a record is called a
field. In this example, each record
contains 5 fields. Wben a random
access data file is being created, the
programmer defines the maximum
number of cbaracters eacb field will
be allowed to hold. This allO'ft'S bim to
calculate precisely the size of the each
record and thus, the position of each
record and each field within the file.
For example, if we know that each
reeor-d is 50 bytes long, multiplying
50 by the number of the record to be
manipulated, yields the position of the
beginning of that record number.
Going back to our sbeet of grapb
paper, the position of a record or field
corresponds to the box number we
defined earlier. Tbe software used to
manipulate the data file maintains a
position pointer to the file. The value
of this position pointer is called an
INDEX. Under DMS65D, or more
accurately under OS-65O, a separate
pointer is maintained for both input
from and output to the data file. In
the program presented here, the
indeces are stored in the variables
"ip(k6)" and "op(k6)".

When creating a data file application,
the specifications of the data file must
either be incorporated into the
application software, or be included in
the data file itself. It is apparent that
the most efficient method is to
incorporate the file specifications into
each data file so that the same
application software can be used with
many different files. However, this

Page 16 PEEK[65] Summer 1966

1138 POKE2912,13:POKE2976,13:AEn- Disable Co •• a a.. Colon
1811 DEF FHa(x)-kt*IHT(x/sx)+x-IHT(x/sx)*sx
1858 DEF FHb(x)- sx*IHT(x/kt)+x-IHT(x/kt)*kt
1868 ht-FHa(PEEK(11661»:dt-FHa(PEEK(11116»:ea35
1818 Din Index(k1),bs(k1),be(k7),st(k1),et(k7),cu(k7),df(k7)
1868 Din ip(k7),op(k7),f$(ht),ut(ht)
1891 bs(k6)-PEEK(6996)+PEEK(6999)*pg:AEn- Buffer Start Address
1188 bs(k7)aPEEK(9186)+PEEK(9187)*pg
1118 be(k6)-PEEK(9888)+PEEK(9881)*pg:AEn- Buffer End Address
.1128 be(k7)cPEEK(9886)+PEEK(9889)'pg
1138 ts-(be(k6)-bs(k6»:pg$anID$(hex$,ts/pg+kl,kl)
1118 dt$-AIGHT$(STA$(dt+kh),k2)+","
1158 ip(k6)-9132:op(k6)-9155:ip(k7)a9213:op(k7)-9236
1161 GOT0688
1999 :
2888 AEn- Directory Printer
2811 GOSUB58888:GOSUBII188
2828 PRIHTI(26)jTAB(21)j"Directory":PRIHT
2838 FOAk-k8TOht:IFLEH(f$(k»-k8THEH2868
2818 PAIHTTAB(x'19)jLEFT$(f$(k),k6)j
2811 p=k6: IFk>k9THEHp-k7
2858 PAIHTTAB(x'19+p)jASC(nID$(f$(k),k7,kl»j
2851 paI2:IFk>k9THEHp=18
2868 PRIHTTAB(x*19+p)jASC(RIGHT$(f$(k),kl»j
2878 x-x+kl:IFx-k3THEHxak8:PAIHT
2868 HEXTk:PAIHT:PAIHT
2898 IHPUT"Press <AETURH> to Continue "jy$
2188 PRIHT!(26)j:GOT0688
2118 :
3888 REn- Create Heg DnS-65D naster File
3811 PRIHT"DnS-65D naster File Creation Utlllty":PAIHT
3828 GOSUB51888:GOSUBII188
3821 PAIHT"File Hames .ay be up to 5 characters long":PRlflT
3838 IHPUT"Enter the name for this neg noster File "jy$
3835 PAIHT:IFLEH(y$»k5THEHPAIHT"TOO LDHG!":PAIHT:GOT03838
3818 FOAk-kITOLEH(y$):c-ASC(nID$(y$,k,kl»
3858 IFc->ASC("a")AHDc<-ASC("z")THEHcac-tt
3868 f$-f$+CHA$(c):HEXTk
3878 IFLEH(f$)<k5THEHfS-fS+" ":GOT03878
3868 f$-f$+"8":PAIHT
3898 FOAk-k8TOht:IFfS<>LEFT$(f$(k),k6)THEHHEXTk:GOT03128
3188 PAIHT"THE HAnE "jCHR$(31)jF$jCHA$(31)j"IS IH USE"
3118 GOT059888
3128 PAIHT"Hog .any FIELDS did you gant in "jfSj

3138 IHPUTy$:nf=UAL(y$):IFnf<=k80Anf<>IHT(nf)THEH3121
3111 Din n$(nf),fl(nf):PAIHT
3158 FOAk-kITOnf
3168 PAIHT"FIELD '"jk:PAIHT
3178 IHPUT"Enter the FIELD HAnE "jn$(k):PAIHT
3161 IHPUT"Enter the FIELD LEHGTH "jfl(k):PRIHT
3198 IFfl(k»7ITHEH3168
3281 fl(k)-fl(k)+kl:HEXTk
3211 PAIHTI(26)j"File: "jf$:PAIHT
3228 PRIHT"' Field Hale"jTAB(32)j"Field Length":PAIHT
3238 FORk-kITOnf:PAIHTnID$(STR$(k),k2)j","jTAB(k6)jnS(k)j
3211 PAIHTTAB(36)jfl(k)-kl:HEXTk:PAIHT
3258 I HPUT"Are these aIr i ght • j yS: y$a.LEFT$(y$+" ", k I)
3268 PAIHT:IFy$<>"y"THEHRUH
3278 PAIHT"Hog .any AECORDS did you .ant in "jfSj

3268 IHPUTy$:PAIHT:nr-UAL(yS):IFnr<-kITHEH3278
3298 rl-kl:FOAk-kITOnf:rl-rl+fl(k):HEXTk

\
\

method also dictates that all of the
data files to be used by the
application software must store the
file specifications in a uniform
manner. We have already defined the
critical elements of the file
specifications; the number of fields in
each record, the length of each field,
and the number of records the file can
hold. On the surface, this wOUld
appear to be enough information to
use the data tile, but that's not the
case. We also need to know Where the
first piece of data has been stored in
the file, and how many pieces have
been stored in the file. These extra
parts of the file specification are
incorporated into two numbers; the
beginning of the data file and the end

. of the data file. In DMS65D, all of this
information is stored at the front of
the file in an area called the "header".
The following table illustrates the
contents of the header:

INDEX DESCRIPTION
o File Name. Allows

double-check.ing for proper
file being opened.

6 File Type. Allows file
typing for by files.

9 EODF - Index to End of Data
File.

20 BODF - Index to Beginning
of Data File.

,31 RL - Record Length.
42 NR - Number of Records

allowed in file.
53 Start of storage of Field

Names and Field Lengths.

BODF will be the first free byte after
the last field name /field length entry.
When the software first opens the
data file, it reads in the values of
"eodf", "bod!", "rl", and "nr". The
following calculation determines how
many records have been stored in the
file:

tn = int«eodf -bodO/rl)

Where "tn" equals the total number of
records. Following that, a counter is
initialized to zero and a field
name/field length pair is read. After
each pair is read, the counter is
incremented by one and the current
input pointer (or index) is checked.
The program continues to read ~n field
name/field length pairs until the

3311 REn- Co.pute Header Length
3311 1-53:FORk-kiTOnf:I-I+LEH(n$(~»+kl
33211-I+lEH(STR$(fl(k»)+kl:HEXTk
3331 REn- Co.pute File Length (in TRRCKs)
3311 bodf-l:hl-l+nr*rl:nt-IHT(hl/ts)+kl:t-dt+kl
3351 IFnt>(ht-dt)+klTHEHPRIHT"TOO lOHG!":PRIHT:GOT03271
3371 tk-kl
3361 IFut(t)-klTHEH3111
3361 tk-tk+kl:IFtk-ntTHEH3121
3391 tut+kl:IFt>htTHEHPRIHT"HOT EHOUGH ROOnl":GOT059111
3391 GOT03381
3111 t-t+kl:IFt>htTHEH3391
3111 GOT03371:REn-.Reset "tk"
3121 sakl:st-t-tk+kl:et-t:st(k6)ast:et(k6)-et
3131 DISK!"ca 2e79-"+dt$+RIGHT$(STR$(s),kl)
3111 FORI-dITOdl+pg-kiSTEPk6:IFPEEK(i)-eTHEH3161
3151 HEXTi:s-s+kl:IFs-k2THEH3131 ..
3151 PRIHT"DIRECTORY FULL! ":GOT059811
3161 t-i:iudi+pg:HEXTI
3178 FORk-klTOk6:POKEt+k-kl,RSC(nID$(f$,k,kl»:HEXTk
3188 POKEt+k-kl,FHb(st):POKEt+k,FHb(et)
3191 DISK!"sa "+dt$+RIGHT$(STR$(s),kl)+"-2e79/I":GOSU811811
3511 FORk-stTOet:t$mRIGHT$(STR$(k+kh),k2):DISKI"in "+t$
3511 DISKI"sa "+t$+",I=3a7e/"+pg$

t. 3528 HEXTk:DISK open,k6, f$:DISK get,k8
3538 PRIHT'k6,f$:PRIHT'k6,"I"
3511 i6-53:GOSUB211
3561 FORk-kITOnf:PRIHT'k6,n$(k):PRIHT'k6,fl(k):HEXTk
3571 bodf-PEEK(op(k6»+(PEEK(op(k6)+kl)*pg)-bs(k6):eodf-bodf
3561 i6-k9:GOSUB211:PRIHT'k6,eodf
3591 i6-28:GOSUB218:PRIHT'k6,bodf
3688 16~I:GOSUB218:PRIHT'k6,rl

3611 16-12:GOSUB218:PRIHT'k6,nr
3628 DISK close,k6:RUH
3638 :
1888 REn- Edit DnS-65D noster File
1818 60SUBI3888
1128 PRIHTI(26)j"DnS-65D noster File Edltor":PRIHT
1838 PRIHT"(I) Rdd a He. Record"
1818 PRIHT"(2) Change on Old Record"
i851 PRIHT"(3) Delete a Record"
1851 PRIHT"(1) Return to nain nenu"
1861 PRIHT:IHPUT" Your Choice "jy$:k-URL(y$)
1871 IFk<kIORk>kiORk<>IHT(k)THEH1121
1161 OH k 60TO 1111, 1188, 1611, 1981
1898 :
1181 REn Rdd a Record
1111 IFtn-nrTHEHPRIHT"FILE FULL":GOSUB68188:GOT01128
1121 FORk-kiTOnf:PRIHT
1131 PRIHT"Enter "jn$(k):PRIHTTRB(k2)j
1111 FORI-kITOfl(k)-kl:PRIHT"-"j:HEXTI:PRIHT
1151 IHPUTa$(k):I-LEH(a$(k»
1161 IFI<fl(k)THEHHEXTk:60T01168
1178 PRIHT"TOO LOHG 1":PRIHT:GOT01131
1168 PRIHTI(26)j" '"jTAB(k1)j"Hame"jTRB(32)j"Contents":PRIHT
1198 FORk-kITOnf:PRIHTkjTAB(k1)jn$(k)jTRB(32)ja$(k):HEXTk
1281 PRIHT:IHPUT"Are These Rlright "jy$:y$-LEFT$(y$+" ",kl)
1218 PRIHT:IFy$-"y"THEH1388
1221 IHPUT"Uhich one did you .ant to change "jy$:k-URl(y$)
1231 IFk<kIORk>nfTHEHPRIHT"UHAT ??":PRIHT:GOT01188
1211 PRIHT"Enter "jn$(k):PRIHTTAB(k2)j

Page 19 PEEK[65] Summer 1986

index is equal to bodf. When BODF is
reached, the counter equals the.
number of fields in each record. At
this point, four arrays are
dimensioned, each equal in size to the
number of fields.

The arrays are:
n$(x) - Field Name Storage
fI(x) - Field Length Storage
i6(X) - Field Index Storage
aSCx) - Field Contents Storage

After the arrays are set up, the input
index is reset to 53 and the field
name/field length pairs. are re-read
and stored in the proper arrays. Along
the way, the variable "r is used to
calculate the index of each field within
each record. This allows us to
immediately set either the input or
output index to an individual field.
This last J~ture is not completely
impJimented in this program, but it is
available for your use.

With the information described so far,
we can find the absolute position
within the file of any pie<:e of data we
want to get aMId of. However, the job
isn't done yet. We also need to
determine t"wo other values. The first
is the track number on which the data
we want resides and the memory
address it will be called into when the
track is read by our software. The
BASIC command "DISK OPEN" under
OS-65D performs much of the dirty
work for us automatically. Once 65D
locates the file to be opened, it stores
three track numbers in a table. Also
included on this table are three other
vital pieces of information. This table
is shown in Table 1.

These addresses are stored in
"bsCk6)", "be(k6)", "st(k6)", "et(k6)",
"cu (k 6)", and "df(k6)", respectively.
The defined functions FNa(x) and
FNb(x) translate BCD values to decimal
and decimal to BCD respectively. Youll
note the discrepency between the
labels using the suffix "5" and the
device number "6". This is due to the
way BASIC calculates the device
number for OS-65O. In OS-65D, the
input or output device number is
stored in a single byte. More than one
output device can be made active
simultaneously, but only one active
input device is allowed. The "5" for

Page 28 PEEK(65) Summer 1966

1258 FORI-kITOfl(k)-kl:PRIHT"-"i:HEHTI:PRIHT
1268 IHPUTa$(k):I-LEH(a$(k»:IFI<fl(k)THEH1188
1278 PRIHT"TOO LOHG":PRIHT:GOT01218
1288 :
1388 tn-tn+kl:r6-tn:GOSUB188:GOT01828
1388 :
1188 REn- Change on Old Record
1118 PRIHT:PRIHT"Flle Contains"jtni"Reco~d(s)":PRIHT
1128 IFtn-kITHEHPRIHT"HO RECORDS OH FILE":GOSUB68111:GOT01828
1121 PRIHT"(I) Edit by Record Huaber"
1122 PRIHT"(2) Edit by Searching File":PRIHT
1123 IHPUT" Your Choice "iy$:k-URl(y$):PRIHT
1121 IFk<kIORk>k20Rk<>IHT(k)THEH1118
1125 OHk GOTO 1138,1688
1138 IHPUT"Uhlch RECORD HUnBER did you .ant to see "jYS
1118 PRIHT:k-URL(y$):IFk<kIORk>tnORk<>iHT(k)THEH1138
1158 r6-k:GOSUB388
1168 PRIHT!(28)j:dv-PEEK(8993):GOSUB788
1188 IHPUT"Dld you .ant to change this record "iy$
1198 PRIHT:IFLEFT$(y$+" ",kl)<>"y"THEH1568
1588 IHPUT"Enter the FIELD HUnBER you .anted to change "jy$
1518 PRIHT:k=URl(y$):IFk<kIOR(k>nf)ORk<>IHT(k)THEH1511
1528 PRIHT"Enter "jnS(k):PRIHT:PRIHTTRB(k2)j
1538.FORI-kITOfl(k)-kl :PRIHT"-"j:HEHTI:PRIHT
1518 IHPUTa$(k):PRIHT:I-LEH(a$(k»:IFI<fl(k)THEH1568
1558 PRIHT"TOO LOHG!":PRIHT:GOT01528
1568 GOSUB181:GOT01828
1578 :
1688 REn- Search File for Editing
1618 GOSUD6888:PRIHT
1628 IHPUT"Uhlch FIELD HUnBER did you .ant to search In "jy$
1638 PRIHT:k-URLtyS):IFk<kl0R(k>nf)ORk<>IHT(k)THEH1618
1618 PRIHT"Uhat STRIHG did you .ant to find in "jn$(k)j
1658 IHPUT" "jssS:PRIHT:I=LEH(ss$):IFI<fl(k)THEH1678
1668 PRIHT"TOO LOHG !":GOSUB68888:GOT01618
1678 sf-k:sl-LEH(ss$) ,
1671 GOT06888:REn- Reaove this if Searches FRIL
1675 FORr6-kITOtn:GOSUB388
1679 x=LEH(a$(sf»:FORI=klTOx
1688 IFnIDS(a$(sf),I,sl)=ss$THEHI=x:HEHTI:GOT01788
1661 HEHTl
1698 HEXTr6:PRIHT"STRIHG HOT FOUHD":GOSUB68888:GOT01828
1788 PRIHT!(26)j:dv=PEEK(8993):GOSUB788
1718 IHPUT"ls this the right record "jYS
1728 IFLEFTS(y$+" ",kl)<>"y"THEH1698
1738 xc r6:r6-tn:HEHTr6:r6=x:GOT01168
1718 :
1688 REn- nark a Record for Deletion
1818 PRIHT"File contains"jtnj"record(s)":PRIHT
1628 IFtn~k8THEHGOSUB68888:GOT01828

1638 IHPUT"Uhich RECORD HUnBER did you .ant to delete "jy$
1818 PRIHT:k-URl(yS):IFk<kl0Rk>tnORk<>IHT(k)THEH1638
1658 r6=k:GOSU~388:aS(kl)-"AP":GOSUB188:GOT01828
1668 :
1988 REM- Close DnS-65D Moster File
1918 DISK get,k8:eodf-bodf+(tn*rl)
1928 16-bs(k6)+k9:ih-IHT(i6/pg):il-i6-ih*pg
1938 POKEop(k6),II:POKEop(k6)+kl,lh
1918 PRIHT1 k6,eodf: DISK close,k6: RUH
1958 :

65D refers to the bit number within
that byte. More details on this are
available in the OS-65D V3.3 Tutorial
Manual.

Alright, getting back to the subject,
the calculation to determine which
track holds the record we want is
done by first calculating the index to
the start of the record and putting it
in "i6". Then, the size of the buffer is
calculated by subtracting "bs(k6)"
from "be(k6)" and storing it in ts.
Since the size of both buffer -6 and
buffer -7 is identical, we don't need to
put it in an array. The calculation to
determine the track that holds the
record we want is as follows:

r6 .. desired record number
i6 .. bodf + r6*rl
wt II st(k6) + int(i6/ts)

Where "wt" is the wanted track. After
we have calculated the track we want,
the program checks to see if that track
is already in the buffer. If it is not, the
program first checks to see if the
buffer is "dirty" and if so, the contents
are written out to disk - then the
wanted track is called into the buffer.
When the program determines that
the proper track is in the buffer, it
goes on to find the individual record
within the buffer.

The calculation for the actual RAM
address where the record will start is
a bit stickier. IUs:

i .. i6 - ((cu(k6)-st(k6» *ts) + bs(k6)

In the program, "il" holds the least
significant byte and ih holds the most
signifcant byte of the memory
address. The calculation is the record
index, less the number of bytesheld
on disk in front of the track currently
in the buffer, plus the address of the
start of the buffer. Once the
calculation is completed, "iI" and "ih"
are passed to OS-65D so that BASIC
can use INPUT-k6, or PRINT-k6, for
reading and writing and also so that if
the contents of a field crosses a track
boundary, BASIC will handle calling
the next track into memory
automatically.

The Edit function of DMS65D allows
you to add new records, alter current

5888 REn- File Duap Routine
5818 GOSUBI3888:PRIHT
5828 PRIHT"File contains"jtnj"record(s)":PRIHT
5838 IFtn-k8THEHPRIHT"FllE EnPTY":SOT059888
5818 IHPUT"Uhlch RECORD HUnBER did you .ant to start .ith "jy$
5858 PRIHT:sr-UAl(y$)':IFsr<kIORsr>tnORsr<>IHT(sr)THEH5828
5868 IHPUT"Uhich RECORD HUnBER did you .ant to end .ith "jy$
5878 PRIHT:er-URl(y$):IFer<srORer>tnORer<>IHT(er)THEH5828
5888 IHPUT"Enter the OUTPUT DEUICE HUnBER "jy$
5898 PRIHT:dv-URl(y$):IFdv<kIORdv>k8THEH5888
5188 FORr6-srTOer:GOSUB388:GOSUB788:HEXTr6
5118 PRIHT:IHPUT"Press <RETURH> to continue "jy$
5128 DISK close,k6:GOT0888
6888 REn- Fast Device 16 Search Routine
6818 r6-kl:GOSUBI88:REn- Initialize Pointer to BODF
6828 TRRP6288:DISK flnd,ss$
6838 i6-PEEK(lp(k6»+(PEEK(lp(k6)+kl)*pg)-bs(k6)-kl
6818 i6-i6+(FHa(PEEK(9881»-st(k6»*ts
6858 r6-IHT«i6-bodf)/rl)+kl
6852 GOSUB388:l-lEH(a$(sf»
6868 FORk-k ITOI
6878 IFnID$(a$(sf),k,sl)-ss$THEH6898
6888 HEXTk:r6-r6+kl:GOSUBI88:GOT06828
6898 k-l:HEXTk:dv-PEEK(8993):GOSUB788
6188 IHPUT"ls this the correct record "jy$
6118 IFlEFT$(y$+" ",kl)<>"y"THEHr6-r6+kl:GOSUBI88:GOT06828
6138 TRRP8:GOT01168
6118 :
6288 TRAP8:PRIHT"STRIHG HOT FOUHD":GOSUB68888:GOT01828
6218 :
7999 :
8888 REn- Display Fields
8818 PRIHTI(26)j"File: "jf$:PRIHT
8811 PRIHT" l"jTAB(k1)j"Field Hoae"jTRB(32)j"length":PRIHT
6828 FORk=kITOnf:PRIHTkjTAB(k1)jn$(k)jTRB(31)jfl(k)-kl
6838 HEHTk:RETURH
6818 :
18888 REn- Fill Buffer 16 .ith Zeroes
18818 FORk=k8TOI7:RERDa:POKEdi+k,a:HEXTk
18828 POKE di+kl,IHT(ts/pg)
18838 POKE6955,121:POKE8956,16:x"USR(x):RESTORE:RETURH
18818DRTA 162,12 :REn- lOX 1$8C
18858 DRTR 168,8 :REn- lOY 1$88
18868 DRTA 152 :REn- TYA
18878 DRTR 1'53,126,858 :REn- STR $3R7E,Y
18888 DRTR 288 : REn- I HY
18898 DRTR 288,258 :REn- BHE *-1
18188 DRIR 238,128,816 :REn- IHC $2E88
18128 DRTR 282 :REn- DEH
18138 DATR 286,211 :REn- BHE *-18
18118 DRTR 96 :REn- RTS
11188 s-kl:REn- Gather Directory
11181 FORk-k8TOht:ut(k)-k8:f$(k)·"":HEXTk
11185 DISK!"co 2e79-"+dt$+RIGHT$(STR$(s),kl)
11118 FORI=dITOdi+pg-kISTEPk6:IFPEEK(i)"eTHEHII158
11.128 st-FHo(PEEK(i+k6»:et-FHa(PEEK(i+k7»
11138 FORj=k8TOk5:f$(st)-f$(st)+CHR$(PEEK(i+j»:HEXTj
11118 f$(st)-f$(st)+CHR$(st)+CHR$(et)
11116 FORk-stTOet:ut(k)=kl:HEXTk
11158 HEXTi:IFs-kITHEHs-k2:GOTOII185
11168 RETURH

Poge 21 PEEK[65] Summer 1986

records, and to mark records fot
deletion. When a record is marked for
deletion, _po is written in field • 1 of
that record, but the rest of the record
is left intact The add a new record
function asks you to make entries for
each field in a record. Then it
redisplays your entries for your
approval before actually writing them -
out to disk. You may make as many
changes as you like before approving
a record. There are two ways of
choosing a curreut record to be edited.
The first is to select a record by it's
record number. Howrever, since you
may not know the record number but
you will likely know the current
contents of a record you want to
change, a field search function is
available.

The search function asks you which
field number to search in and what
should be searched for in that field.
Youll note that the software actually
includes two different search routines.
The one that is enabled uses the
OS-65D "DI SK FIND" command. This is
a fast machine code search, but it does
have one drawback.. The software will
search the entire file for the string to
the last track, even it it has to look
beyond the last record stored in the
tile. Another search routine written
entirely in BASIC is also included in
the code and requires only that the
"GOT06eee" statement be removed for
it to be enabled. The BASIC routine
will be slowrer it there are many
records to be searched, but it will also
discover that it cannot find the search
string faster it there are very few
records currently in the tile. The
BASIC routine demonstrates more
clearly how a field search Would work.

I hope you enjoy DMS65D and-begin
to build your own data files and
application software. BE SUll TO
RUB THE "CHAIfGE" PROGRAM TO
CHATI AT LL\ST OIfE DISK
BUFFER BEFOll EBTERIIfG
DMS65D IBTO YOUR SYSTEMI Next
month, wrell discuss a simple mailing
list manager program which is based
on DMS65D. For exercise, try writing a
routine that removes records marked
for deletion from a data tile and frees

. ·up space in the data fOe. Good luck
and have funl

Page 22 PEEK(65) Summer 1966

13888 REn- Open a onS-65o na~ter File on Device 6
13818 TRAP58888:GOSUB58888
13828 IHPUT"File Ha.e "if$:PRIHT:IFlEH(f$»k5THEHI3828
13838 IFlEH(f$)<k5THEHf$-f$+" ":60TOI3838
13818 f$-f$+"8":oISK open,k6,f$:TRAP8
13858 3t(k6)-FHa(PEEK(9882»:el(k6)-FHa(PEEK(9883»
13888 i6-k9:60SUB218:IHPUT1 k6,eodf
13898 i6m28:GOSUB218:IHPUT1k6,bodf
13188 i6-31:GOSUB218: IHPUT1 k6,rl
13118 i6-12:GOSUB218:IHPUT1 k6,nr
13128 i6=53:GOSUB218:nf-k8
13138 lHPUT1 k6,y$,k:nf-nf+kl
13118 i6-(PEEK(9132)+PEEK(9133)*pg)-bs(k6)
13158 i6-i6+(FHa(PEEK(9881)) - FHa(PEEK(9882»)* ts
13168 IFi6<bodfTHEHI3138
13178 IFPEEK(9881)-PEEK(9882)THEHI319B
13168 olSKI"ca 3a7e-"+RIGHT$(STR$(FHa(PEEK(9882»),k2)+", I"
13198 16-53:60SUB218:oln n$(nf),fl(nf),16(nf),a$(nf):i-k8
13288 FORk-kITOnf:IHPUT1 k6,n$(k),fl(k):i6(k)-I:i-l+fl(k):HEXTk
13218 tn-IHT«eodf-bodf)/rl):RETURH
13228 :
58888 IHPUT"orlve (A/B/C/o) "iyS:y$-lEFT$(y$+" ",kl)
58818 PRIHT:c=ASC(y$):IFc>azTHEHcac-lt
58828 IFc<aaORc>ASC("o")THEH58888
58838 oISK!"~e "+CHR$(c):RETURH
58818 :
56888 REn- Sho. File Hot Found
56818 PRIHT:PRIHT"FllE: ";fS;" HOT FOUHo":PRIHT
56828 :
56999 REn- Rbortl
59888 GOSUD68888:RUH
59818 :
68888 FORk-kIT03888:HEXTk:RETURH

Table 1

ADDRESS LABEL DESCRIPTION
$2326 BUFST5 Memory address of start of device

number 6 butfer.
$2328 BUFEN5 Memory address of end of device

number 6 butfer (+ 1).

$232A TRK5 Track number of 1st track in tile
in Binary Coded Decimal.

$232B MAX5 Track number 01 last track in tile
in Binary Coded Decimal.

$232C CUR 5 Track number of track currently
in the butfer in BCD.

$232D DFLG5 Butfer dirty flag. If e, it means that
the but fer hasn't been altered
since it was read in. If 1, it has.

\

Cross Reference Utility CREF)

(Editor's Note: We are much indebted
to Larry Hinsley for releasing this
software to the public domain and
thus allowing any non-commercial
use.)

. by Software Consultants
6435 Summer Avenue
Memphis, TN 38134

The Cross Reference Utility (REF) is a
high speed, memory resident utility
running under OS-65D. The command
"REF" lists all occurrences of BASIC
variables, line numbers, and numeric
constants for the program currently in
the workspace. It sorts and lists all
variables and numbers to either the
console or a printer.

REF is enabled by running the
installation program written in BASIC
and provided here. The machine code
for the REF command is stored at the
top of the workspace. The BASIC

. program will automatically install it at
the top of memory. The machine code
for REF occupies lK of RAM and
reduces the amount of memory
available for your programs by that
same amount.

Installing REF disables the BASIC
keyword "LET". After installation,
programs including the keyword "LET"
will no longer run. Of course, in all
such programs, simply removing the
word "LET" will allow the program to
run. The same installation program
used to install REF will also remove it
and return your system to normal.

To begin installing REF, you must first
create 3 tiles on your disk. The first
one is to hold the machine code for
REF. Make it one track long and name
it "OBr. The second tile is to hold the
BASIC program that installs REF. Make
this tile two tracks long and name it
"REF". The third and final tile is to
hold the assembly language source
program. On 8" systems, make it 10
tracks long. On mini-floppy systems,
make it 15 tracks. You can make this
file smaller if need be by omitting
comments where you feel you can do
without them. Be sure to write down
the track number of the tile ~OBr.

Youll need it later on. Name this tile
"REFSRC".

Ustituj 1

2B REM
18 REM
6B REM
68 AEM

REF : OS-65D CROSS REFERENCE COMMAND
WRITTEN BY SHOF BEAVERS: B1/B2/62 : REV 1.2
MODIFIED BY RICHARD L. TRETHEWEY B6/26/66

188 REM This program is released to the Public Oo.ain by
118 REn Software Consultants
168 REn 61 35 Suner Ave.
168 REn Me.phis, TN 36131
208 REn (981) 377-3583
228 REM
218 FOR I = I TO 21: PRINT: NEXT
2Ml F=12661: T=12677: TA=526: LO=678: TP.=6960: OB=11697
268 PD=3: REM printer device
308 PAINT···. AEF COnMAND •••• : PAINT

. 328 PAINT TAB(3) ·1. Enable REF co •• and.·
318 PRINT TAB(3) ·2. Enable LET co •• and.·
368 PRINT: INPUT·Option:·;A$: A=VAL(A$): IF A<>I AND A<>2 GOTO 368
368 ON A GOTO 108,668
180 REn endable ref co •• and, disable let
128 POKE LO,ASC(·R·): POKE LO+I,ASC(·E·): PO~E LO+2,ASC(·F·)+126
1Hl 1=8
168 READ A: POKE DB+I, A: 1=1+1: IF A<>96 THEN 168
168 DATA 169,127,111,116,16,173,116,11,111,119,16,169,8,178
588 DATA 111,151,16,173,8,35,56,233,3,111,152,16,173,255,255
528 DATA 111,255,255,236,116,16,206,3,236,119,16,236,151,16
510 DATA 206,237,236,152,16,232,286,229,96
568 POKE 571,121: POKE 575,16: X=USA(X): REn- Install code in RAn
568 n=PEEK(TP): REM Find current last page of user RAn
688 POKE TA,25S: POKE TA+I,n-3: REn Put address in dispatch table
62B POKE TP,n-1: POKE 133,n-1: REn Set BASIC, 6SD to protect it
768 REn kil I auto CRLF on terminal
768 FOA 1=2613 TO 2615: POKE 1,231: NEXT I: REM for alpha print
688 FOA 1=2656 TO 2668: POKE 1,231: NEXT I: REn for nuaeric print
628 POKE 23,79: POKE 21,71: REM set auto tabs for ter.inal
618 PRINT:. PRINT ·AEF Comland is nOl' enabled.·: PRINT: NEW
668 REn enable let command, disable ref
668 POKE LO,ASC(·L .): POKE LO+I,ASC(·E·): POKE LO+2,ASC(·T·)+126
988 POKE TA,165: POKE TA+I,9: REn restore dispatch table to LET code
928 n=PEEK(TP): POKE TP,n+1: POKE 133,n+1
918 PAINT: PRINT·LET Command is no. enabled.·: PRINT: NEW

The next step is to enter the
assembler you use, type in the
assembly language program and save
it in the tile "REFSRC". The installation
program assumes that an
appropriately assembled version of
REF is stored in front of the BASIC
program. Thus, you must first set the
origin address on line "580 in the
assembly language program given in
Listing 4 to reflect your system's
memory size, For 204K systems, set the
origin at S5(00, 32K systems should
use $7C00, and o48K systems should
leave the setting at $BC0e. In addition,
make sure that "DEVICE" in line "290
reflects the printer device number for

your system. Don't forget to use the
OS-65D device number here, and not
the one you use in BASIC programs.

Now that you have the source code
properly modified,its time to
assemble the program to memory. If
you're using the OSI Assembler Editor,
be sure to execute the "H" command to
protect the high end of memory;

24K systems: HSBee
32K systems: H7Bee
4BK systems: HBBe0

Page 23 PEEK(65J Summer 1986

If you're using ASM-Plus, respond
with these same numbers when
prompted.

On~ the machine code is in memory,
save it to the object code file "OBr you
created above with the command:

24K systems: !SA TT, 1 =5Cee/4
32K systems: !SA TT, I = 7Ceel 4
46K systems: !SA IT, I =BCee/4

where "." above is the track number
where the file "OB r resides on your
disk.

Now, leave the assembler you're using
and boot up a vanilla version of
OS-650's BASIC. Run the program
"CHANGE" and tell it you want to
reserve 1034 bytes in front of the
-workspace. When CHANGE is done, it
NEWs itself out of existence and
you're ready to type in the installation
program from Usting 1.

But before you begin typing in the
program, you must call the machine
code for REF into memory from the .
disk file "OBr. Use the following
command to do this;

05-65.0 V}2·
8" systems: OISK!"CAjI7F=TT, I"
5" systems: OISK!"CA 327F=TT, I"

OS-65.0 V 3~3.
All systems: DI SK rCA 3A 7F = TT, I"

again, where '"IT" is the track num~'"
for the file "OBr.

Now type in and save the installation
program with the command;

OISKI"PUT REF"

Finally, run the installation program
and select item 'I to install REF.

To use the REF command, load the
program you want to cross-referen~
into the workspace. If you want to
cross-referen~ a single variable or
numeric constant, enter "REF" follo\<red
by that variable name or the number
at the "OK" prompt in BASIC. For
variable names, just enter a one or
two character name since that is the
maximum size BASIC recognizes as

Page 24 PEEK(65J Summer 1966

unique. Trailing "I" or "S" for integer
and string variables should not be
entered. If you want a complete
cross-reference of the program, enter
the· command "REF*" to send the
output to the console or "REF·" to send
the output to the printer device you
have selected.

The output generated by this code is
as follows: The variable name or 1
number is printed first, followed by a
colon, and then for each occurran~, a
line number/count pair is displayed.
Separate entries will be displayed for
floating point, integer, and string
variable types, which will also be
differentiated by SUbscripted and
non-subscripted types, allowing for all
possible variations. See the example
below.

10 REM Cross Reference utility Example
20 REM
30 A=l:A%=l:A(l)=l:A%(l)=l:A$="X":A$(l)="X"
40 ON T GOTO 40,60
60 T%=l:A$="String constants are not searched,

i.e.,X=l not found"
70 GOSUB40:REM Same for Remarks ••. X=l
80 GOT010
90 ASCD=1.2578435 E12:ABCD$="X"
95 A=A+A+A+A%+A+A+A+A+A+A%+A+A+A+A+A%+A+A+A%+A+A+A+A+A

1 30/7 60/1

1.2578435E12 90/1

10 80/1

40 40/1 70/1

69 40/1

A 30(U 39($1
69/$1 95/%4

AS 99/$1 99/1

T 40/1 60/U

CompuServe Subscription Kits

CompuServe is the host for the Ohio
Scientific Special Interest Group that
you've heard about here for so long. It
is the largest such network in the
country offering many services in
addition to OSI SIG. You can send and
recieve MCI Mail- via CompuServe as
well as checking airline schedules and
rates with the OnUne Airline Guide-,
or even check the latest stock market
quotes just to name a few.

PEEK (65J is offering CompuServe
SUbscription kits for just $32.00 piUS
shipping. That's 201 of(the 1st pri~
of $39.95. The kit includes an
instruction manual and a $25.00
credit to help get you started. Armed
with this kit, a modem, and a terminal
program you're off and running.

30(1 39/U 39/$1 30/1
95/20

DISK DRIVE
RECONDITIONING
WINCHESTER DRIVES

FLAT RATE CLEAN ROOM SERVICE.
(parts & labor included)
Shugart SA4008
Shugart SA 1004
Seagate ST412

FLOPPY DRIVE

23meg 5550.00
lOmeg 5390.00
10meg 5295.00

FLAT RATES
8" Single Sided Shugart 5190.00
8" Double Sided Shugart 5250.00
8" Single Sided Siemens D&E Series 5150.00
8" Double Sided Siemens P Series 5170.00

Write or call lor detailed brochure
90 Day warranty on Floppy & Large Winch.
1 Yr. Warranty on 5" & 8" Winchesters.

Phone: (417) 485·2501

rf.J FESSENDEN COMPUTERS
t 16 N. 3RD STREET

cs OZARK, MO 65721

HI
20
30
40
50
60
70
80
90

100 00C7=
110 0AEE=
120 00AF=
130 00B0=
140 IB44=
150 lCEC=
160
170 0EIE=
180 5FFC=
190 0474=
200 0100=
210 0016=
220 0018=
230 0A73=
240 007E=
250 007F=
260 0080=
270 0081=
280 2DA6=
290 0004=
300
310
320
330
340
350 0030=
360 0031=
370 0031=
380 0032=
390 0033=
400 0034=
410 '!lB5=
420 0036=
430 0037=
440 0038=
450 0039=
460 003B=
470 003C=
480 003D=
490 "03E=
5"0 003F=
510 0040=
520 0041=
530 0042=
540 0043=
550 0045=
560 0047=
570
580 BC00
590
600
610
620
630 BC00 48
640 BC01 A900
650 BC03 8538
660 BC05 AB08
670 BC07 992E00
680 BC0A 88
690 BC0B D0FA
700 BC0D 68
710
720 BC0E C92E
730 BC10 F027
740 BC12 C9AB
750 BC14 D004
760 BC16 8538
770 BC18 F03E
780 BCIA C923
790 BCIC D004
800 BCIE 8538
810 BC20 F036

INIT

CLOOP

CKI

i-----------------
:** XREF OS65-U **
i-----------------
:CROSS REFERENCE OF BASIC VARIABLES

i---------------------------------
:SYSTEM ADDRESSES AND SUBROUTINES
;------------~--------------------
:
VARPNT=$C7
CHROUT=$AEE
BINHI=$AF
BINLO=$B0
BUILDl=$lB44
BUILD2=$lCEC

POINTER TO 1ST CHAR IN SEARCH STRING
SUBROUTINE TO PRINT CHAR IN ACC
BINARY HIGH NUMBER
BINARY LOW NUMBER
SUBROUTINES TO TAKE BINHI AND
BINLO - CONVERT TO DECIMAL
RESULT IN PNTBUF
SYNTAX ERROR ROUTINE SNERR=$0EIE

BSIZE=$5FFC
RETBAS=$474
PNTBUF=$0100
PRNPOS=22
PRNLMT=24
CRLF=$A73
ENUML=$7E
ENUMH=$7F
EMEML=$80
EMEMH=$81
OUTBYT=$2DA6
DEVICE=$94

2 BYTE OFFSET FOR BASIC WORKSPACE
RETURN TO IMMEDIATE MODE BASIC
PRINT BUFFER FOR DECI~IAL NUI1BERS
PRESENT PRINT POSITION
TAB PRINT LIMIT
PRINT CR/LF ROUTINE
END OF NUMERIC VARIABLES, LOW
END OF NUMERIC VARIABLES, HIGH
END OF ME~10RY, LOW
END OF MEMORY, HIGH
OUTPUT DISTRIBUTOR
PRINTER DEVICE

j---
:ZERO PAGE LOCATIONS USED BY THIS ROUTINE
j---
:

COUNTER FOR NUMERIC STRING
FIRST ZERO PAGE LOCATION

NUMCNT=$30
ZPAGE=$31
FPVAR=ZPAGE
STVAR=ZPAGE+l
INVAR=ZPAGE+2
SFPVAR=ZPAGE+3
SSTVAR=ZPAGE+4
SINVAR=ZPAGE+5
VARLEN=ZPAGE+6
SFLAG= ZPAGE+ 7
LNPNT=ZPAGE+8
TE~IP=ZPAGE+10
TEMPl=ZPAGE+ll
TEMP2=ZPAGE+12
LINELO=ZPAGE+13
LINEHI=ZPAGE+14
TESTLN=ZPAGE+15
TABPOS=ZPAGE+16
TERM=ZPAGE+17
TABLE=ZPAGE+18
INPOS=ZPAGE+20
TEMPT=ZPAGE+22

COUNTER FOR FLOATING POINT VARIABLE
COUNTER FOR STRING VARIABLE

:
*=$BC00

COUNTER FOR INTEGER VARIABLE
COUNTER SUBSCRIPTED F.P VARIABLE
COUNTER SUBSCRIPTED STRINGS
COUNTER SUBSCRIPTED INTEGERS
LENGTH OF SEARCH STRING
SEARCH FLAG
POINTER TO CHAR IN BASIC LINE
TEMPORARY STORAGE
TEMPORARY STORAGE
TEMPORAY STORAGE
LINE NUMBER LOW
LINE NUMBER HIGH
LENGTH OF TEST STRING
TAB PRINT STOP POSITION
TERMINAL OUTPUT DEVICE
ADDRESS OF TABLE:ALL VAR ROUTINE
INPUT POSITION FOR NEW VARIABLES
TEl1PORARY TABLE FOR VARIABLE SEARCH

j--------------
: INITIALIZATION
j--------------
:
PHA SAVE THE FIRST CHARACTER
LDA #$00 INIT VARIABLE COUNTERS TO 0
STA SFLAG INITIALIZE SEARCH FLAG
LDY i8 : SET TO CLEAR 8 ZERO PAGE LOCATIONS
STA ZPAGE-3,Y
DEY GET SET FOR NEXT VARIABLE
BNE CLOOP GO DO IT IF NOT 0
PLA RESTORE THE FIRST CHARACTER
:

FIRST CHARACTER A '.'
YES, COUNT AS A NUMERIC
CROSS REFERENCE ALL VARIABLES?
NO, AT LEAST NOT TO THE TERMINAL
YES, LET'S SET THE FLAG
BRANCH TO ADJADD

CMP i$2E
BEQ DETLEN
CMP i$AB
BNE CKI
STA SFLAG
BEQ ADJADD
CMP i'i
BNE BEGIN
STA SFLAG
BEQ ADJADD

REFERENCE ALL VARIABLES TO PRINTER?
NO, LET'S CHECK FOR SYNTAX
YES, SET THAT FLAG
BRANCH TO ADJUST THE ADDRESS FOR BASIC

Pcage 25 PEEK(65] Summer 1986

820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

BC22
BC24
BC26
BC28
BC2A
BC2D
BC2F
BC31
BC33
BC35
BC37

C930
901B
C93A
B003
4C39BC
C941
9010
C95B
B00C
A901
8538

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560

, 1570
1580
1590
1600
1610
lfi 20

BC39
BC3B
BC3D
BC3E
BC41

BIC7
F007
C8
4C39BC
4CIE0E

BC44
BC46
BC48
BC4A
BC4C
BC4E
BCS0
BCS2
BCS4
BCS6

BCS8
BCSB
BC5D
BCSF
BC61
BC63
BC65
BC68

BC6B
BC6E
BC70
BC72
BC74
BC76
BC78

BC7B
BC7D
Bc7F
BC81
BC83
BC8S
BC87

BC89
BC8C
BC8E
BC90
BC91
BC93
BC94
BC96
BC99
BC9B
BC9D
BC9F
BCA2
BCA4
BCA6
BCA8
BCAB
BCAE
BCBl
BCB4

8437
A538
F00E
A537
C901
F008
C903
B0ED
A980
8538

2066BF
A538
C9AB
F00A
C923
F006
206ABD
4C7404

ADA62D
8542
A538
C9AB
F00S
A904
8DA62D

A57F
8S44
AS7E
8543
A000
A9FF
9143

203FBE
NJ29
853B
AA
A003
88
F00C
20CIBE
A139
D0F6
E63B
4C93BC
AS3B
C902
D003
4C8SBF
20CIBE
20CIBE
20CIBE
4C89BC

i
BEGIN 1ST CHAR LESS THAN '0'

YES, DO SYNTAX ERROR
1ST CHAR NUMERIC
NO IT'S NOT
LETS CONTINUE

TALPHA

CMP #$30
BCC JSNERR
CMP #$3A
BCS TALPHA
JMP DETLEN
CMP #$41
BCC JSNERR
CMP #$5B
BCS JSNERR
LDA # $01
STA SFLAG

1ST CHAR LESS THAN 'A'
YES, DO SYNTAX ERROR

i

1ST CHAR GREATER THAN 'z '.
YES, SYNTAX ERROR
SET FLAG FOR ALPHA SEARCH
1 CHAR VARIABLE

DETLEN LDA (VARPNT),Y i GET CHAR FROM BUFFER
BEQ CKLEN IF NULL GOTO CKLEN

JSNERR

CKLEN

ADJADD

ALLVAR

GO

FINDVR

CNTNUL

FINDI

CNSCAN

INY GET SET FOR NEXT CHARACTER
JMP DETLEN LET'S GO GET IT
JMP SNERR DO SYNTAX ERROR AND RETURN TO BASIC
i

SAVE 'l'HE VARIABLE LENGTH
IS THIS ALPHA OR NUMERIC
IT'S NUMERIC SO LET'S GO
GET THE VARIABLE LENGTH
IS IT 1
YES WE ARE READY TO GO

STY VARLEN
LDA SFLAG
BEQ ADJADD
LDA VARLEN
CMP#$01
BEQADJADD
CMP #$03
BCS JSNERR
LDA #$80
STA SFLAG

IS THE LENGTH GREATER THAN 2
YES, DO SYNTAX ERROR
SET SEARCH FLAG FOR 2 CHAR VARIABLE

i
JSR SETADD
LDA SFLAG
CMP #$AB
BEQ ALLVAR
CMP #'#
BEQ ALLVAR
JSR SEARCH
JMP RETBAS

INITIALIZE POINTER TO BASIC WORKSPACE
WHAT ARE WE BEARCHING FOR
ALL VARIABLES TO TERMINAL?
YES I LET'S GO.
ALL VARIABLES TO PRINTER?
YESILET'S GO
LOOK FOR THIS ONE VARIABLE
GOTO BASIC WHEN DONE

i---
iALLVAR : SEARCH FOR ALL VARIABLES AND OUTPUT
i INFORMATION TO TERMINAL (*) OR TO. PRINTER (#) •
i---

LDA OUTBYT
STA TERM
LDA SFLAG
CMP #$AB
BEQ GO

SAVE THE PRESENT OUTPUT DEVICE
AT ZERO PAGE 'TERM'
WHICH OUTPUT?
TERMINAL?

LDA #DEVICE
STA OUTBYT

GET THE PRINTER DEVICE NUMBER
SET THE OUTPUT DISTRIBUTOR

i
LDA ENUMH
STA TABLE+l
LDA ENUML
STA TABLE
LDY #$00
LDA #$FF i
STA (TABLE), Y
,

GET THE HIGH BYTE OF LAST
SET BEGINING OF TABLE
GET THE LOW BYTE
SET IT
SET END OF TABLE FLAG
TO PRESENT END OF TABLE

MEMORY

JSR GETCHR GET CHARACTER FROM BASIC LINE
BNE SETTAB NOT A NULL-PRESS ON
STA TEMP RESET TEMP
TAX GET SET TO READ NEXT
LDY #$03 TWO CHARACTERS
DEY COUNT THIS CHARACTER
BEQ FINDI IFY=0 THEN WE HAVE TESTED THEM BOTH
JSR BLNPNT i INCREMENT BASIC LINE POINTER
LDA (LNPNT,X) i GET THE NEXT CHARACTER
BNE CNTNUL IF NOT NULL LET'S CHECK THE NEXT ONE
INC TEMP NOT NULL SO 'BUMP' TEMP
JMP CNTNUL LET'S FINISH COUNTING NULLS
LDA TEMP GET THE NULL COUNT
CMP #$02 . i IF 2 NULLS THEN WE ARE DONE
BNE CNSCAN NO, PRESS ON
JMP OUTVAR YES, OUTPUT THE INFORMATION
JSR BLNPNT NOT DONE SO SKIP THE
JSR BLNPNT NEXT TWO CHARACTERS
JSR BLNPNT GET READY FOR SOME MORE
JMP FINDVR LET'S KEEP SEARCHING

Page 26 PEEK(65) Summer 1986

I

oj

1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2329
2339
2340
2350
2369
2370
2380
2390
2400
2410
2429
2439

BCB7 90D9
BCB9 A090
BCBB 994700
BCBE C8
BCBF 203FBE
BCC2 F002
BCC4 B0F5
BCC6 A900
BCC8 994709
BCCB C8
BCCC 8437
BCCE C004
BCD0 9010
BCD2 B547
BCD4 C941
BCD6 900A
BCD8 A909
BCDA A992
BCDC 994700
BCDF C8
BCE0 8437
BCE2 A000
BCE4 A57F
BCE6 8544
BCE8 A57E
BCEA 8543

BCEC B143
BCEE D94700
BCFl 909F
BCF3 F002
BCF5 B020
BCF7 C8
BCF8 C437
BCFA 90F0
BCFC C900
BCFE F089
BD00 D015

BD02 A000
BD04 207EBF
B007 B143
B009 D006
B00B 207EBF
B00E 4CECBC
BOll C9FF
B013 F007
BOIS 00EB

B017 A543
BD19 8545
BOIB A544
BOlO 8546
BDIF A000
B021 B143
B023 C9FF
BD25 F006
B027 207EBF
B02A 4C21BO
B020 A544
B02F C581
BD31 9009
B033 A543
B035 C580
B037 9003
B039 4CIE0E

B03C A200
BD3E A437
B049 A143
BD42 9143
B044 A544
B046 C546
BD48 D00A
B04A A543
BD4C C545
B04E D004
B050 A0FF
B052 D00B
B054 A543
B056 D002

SETTAB

BUILDT

SE'lVAR

SE'lVl

COMPAR

CNEXT

FNEXTV

FNEXTI

INSERT

FEND

FOUNDI

MOVE

MOVELP

AOJTAB

BCC FINDVR
LOY #$00
STA TEMPT,Y
INY
JSR GETCHR
BEQ SE'lVAR
BCS BUILDT
LOA #$00
STA TE~IPT, Y
INY
STY VARLEN
CPY #$04
BCC SE'lVl
LDA TEMPT,X
CMP # 'A.
BCC SE'lVl
LOA #$00
LDY #$02
STA TEMPT,Y
INY
STY VARLEN
LDY #$00
LDA ENUMH
STA TABLE+l
LDA ENUML
STA TABLE
,
LDA (TABLE), Y
CMP TEMPT,Y
BCC FNEXTV
BEQ CNEXT
BCS INSERT
INY
CPY VARLEN
BCC COl'-IPAR
CMP #$00
BEQ FINOVR
BNE INSERT
i
LDY #$00
JSR INPNT ;
LDA (TABLE), Y
BNE FNEXTI
JSR INPNT
JHP COMPAR
CMP #$FF
BEQ COM PAR
BNE FNEXTV
i
LDA TABLE
STA INPOS
LOA TABLE+l
STA INPOS+l
LDY #$00 ;
LOA (TABLE), Y
CMP #$FF
BEQ FOUNOI
JSR INPNT
JMP FENO
LOA TABLE+l
CMP EMEMH
BCC MOVE
LOA TABLE
CMP EMEML
BCC MOVE
JMP SNERR
;
LOX #$09
LOY VARLEN
LOA (TABLE,X)
STA (TABLE),Y
LOA .TABLE+l
CMP INPOS+l
BNE AOJTAB
LOA TABLE
CMP INPOS
BNE AOJTAB
LOY #$FF
BNE PUTIT
LOA TABLE
BNE *+4

NOT ALPHA/NUMERIC : TRY AGAIN
STORE VARIABLE IN TEMPORARY TABLE
SAVE THIS CHARACTER
SET FOR NEXT CHARACTER
GO GET IT FROM BASIC LINE
IF NULL LET'S PUT IT IN TABLE
IF STILL ALPHA TRY THE NEXT
GET NULL FOR OELIMITER
SAVE IT
AOJUST Y FOR THE NULL
SAVE THE VARIABLE LENGTH
Y<=3
YES, PRESS ON
GET FIRST CHARACTER FROM TEMP TABLE
LESS THAN 'A'
YES, PRESS ON
GET SET TO LIMIT VARIABLE

PUT IN THE NEW ENO OF VARIABLE
AOJUST Y
ANO SAVE
SET FOR INDIRECT ADDRESSING
SET TABLE TO FRONT FOR SCAN

i GET NEXT CHARACTER FROM TABLE
COMPARE THE CHARACTERS
IF < GOTO FINO NEXT VARIABLE
IF = THEN TEST THE REST
IF > GOTO INSERT THE VARIABLE
BUMP THE INOEX
Y=VARIABLE LENGTH
IT'S LESS THAN SO TRY AGAIN
SET ZERO FLAG
GO FIND NEXT VARIABLE
GO INSERT VARIABLE IN TABLE

SET FOR INOIRECT
INCREMENT TABLE POINTER
; GET NEXT CHARACTER
IF NOT NULL CONTINUE
BUMP THE LINE· POINTER
LET'S TRY AGAIN
ARE WE AT THE END?
YES, RETURN TO LOOP
ALWAYS BRANCH TO FINO NEXT VARIABLE

SAVE CURRENT TABLE POINTER
AT INPUT POSITION

RESET Y FOR INDEXING
; GET CHARACTER FROM TABLE
ARE WE AT THE ENO?
YES, TEST MEMORY
BUMP THE TABLE POINTER
LET'S KEEP SEARCHING
COMPARE PRESENT MEMORY LOCATION
TO END OF ME~IORY
IT'S COOL SO LET'S GO
TEST THE LOW BYTES

ALL COOL I
DO OUT OF MEMORY ERROR (SYNTAX ERROR)

GET CHARACTER FROM TABLE
SAVE AT TABLE + VARIABLE LENGTH

ARE WE AT THE INPUT POSITION

ARE THE LOW BYTES

GET LOW BYTE OF TABLE POINTER
SKIP OEC. HIGH BYTE IF NOT 0

Pnge 27 PEEK[65] Summer 1966

2440
2450
2460
2470
2480
2490
2500
25U
2520
2530
2540
2550
2560
2570
2580
2590
2600
26U
2620
2630
2640
2650
2660
2670
2680
2690
27fiHl
27U
2720
2730
2740
2750
2760
2770
2780
2790
2800
28U
2820
2830
2840
2850
2860
2870
2880
2890
2900
29U
2920
2930
2940
2950
2960
2970
2980
2990
3000
30U
3020
3030
3040
3050
3060
'3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
32i~
3220
3230
3240

BD58 C644
BD5A C643
BD5C 4C40BD

BD5F C8
BD60 B94700
BD63 9145
BD65 D0F8
BD67 4C89BC

BD6A 20730A
BD6D Ae00
BD6F B1C7
BD7l F00B
BD73 843B
BD75 20EE0A
BD78 A43B
BD7A C8
BD7B 4C6FBD
BD7E A920
BD80 20EE0A
BD83 A93A
BD85 20EE0A
BD88 A900
BD8A 8541
BD8C A516
BD8E C909
BD90 9004
BD92 A90A
8D94 8541
BD96 203FBE
BD99 D003
BD9B 4C8ABE
BD9E 90F6
BDA0 Ae00
BDA2 853B
BDA4 B1C7
BDA6 C53B
BDA8 F008

BDAA 2060BF
BDAD D0E7
BDAF 4C8ABE
BDB2 A538
BDB4 303D
BDB6 A539
BDB8 D002
BDBA C63A
BDBC (:639
BDBE A539
BDC0 853C
BDC2 A53A
BDC4 853D
BDC6 8440

BDC8 E640
BDCA 203FBE
BDCD F002
BDCF B0F7
BDD1 C640
BDD3 A53C
BDD5 8539
BDD7 A53D
BDD9 853A
BDDB A540
BDDD C537
BDDF F002
BDE1 D0C7

BDE3 Ae00
BDE5 203FBE
BDE8 D1C7
BDEA D0BE

PUTIT

SEARCH

PVARLP

CONOUT

SRLOOP

Sl

CONTSH

S2

ADJLPN

CNTLEN

S3

S4
S4LP

DEC TABLE+1
DEC TABLE
JMP MOVELP
;
INY
LDA TE~IPT, Y
STA (INPOS), Y
BNE PUTIT
JMP FINDVR

DECREMENT HIGH BYTE
DECREMENT LOW BYTE

GET SET FOR NEXT CHARACTER
GET CHARACTER FROM STORAGE
PUT IT IN THE TABLE
IF NOT THE NULL THEN CONTINUE
SEARCH FOR THE NEXT VARIABLE

;--
SEARCH : SUBBROUTINE TO SCAN BASIC
PROGRAM AND LOOK FOR VARIABLE POINTED
TO BY VARPNT. WILL PRINT ANY OCCURANCES
OF THE VARIABLE AND THE NUMBER OF
OCCURANCES WITHIN A SPECIFIC LINE.

;----------------------------~-----------
I

JSR
LDY
LDA
BEQ
STY
JSR
LDY
INY

CRI:.F
$00
(VARPNT) ,Y
CONOUT
TEHP
CHROUT
TEMP

JMP PVARLP
LDA #$20
JSR CHROUT
LDA #$3A
JSR CHROUT
LDA #0
STA TABPOS
LDA PRNPOS
CMP #9
BCC SRLOOP
LDA #10
STA TABPOS

; GET CHAR FROM VARIABLE
IF NULL THE EXIT PRINT LOOP
SAVE THE INDEX
PRINT THIS CHARACTER
RESTORE THE INDEX
AND INCREMENT
GO PRINT THE NEXT.CHARACTER
GO PRINT A SPACE

PRINT A ':'

RESET TAB POSITION

TAB TO NEXT POSITION

NO

JSR GETCHR LETS READ A CHARACTER
BNE Sl NOT A NULL, LETS CONTINUE
JMP TEST SEE WHAT THIS NULL MEANS
BCC SRLOOP IF NOT ALPHA/NUMERIC TRY AGAIN
LDY #$00 GET SET TO INDEX THE INPUT STRING
STA TEI1P ; SAVE THE CHARACTER
LDA (VARPNT) ,Y ; GET FIRST CHAR IN SEARCH STRING
CMP TEMP ARE THE FIRST CHARACTERS THE SAME
BEQ S2 YES, LETS CONTINUE

JSR NXTNAL
BNE SRLOOP
JMP TEST
LDA SFLAG
BMI S5
LDA LNPNT
BNE *+4
DEC LNPNT+1
DEC LNPNT
LDA LNPNT
STA TEMPI
LDA LNPNT+1
STA TEMP2
STY TESTLN
I

INC TESTLN
JSR GETCHR
BEQ S3
BCS CNTLEN
DEC TESTLN
LDA TEMPI
STK LNPNT
LDA TEMP2
STA LNPNT+1
LDA TESTLN
CMP VARLEN
BEQ S4
BNE CONTSH

NO, GET THE NEXT NON-ALPHA CHARACTER
NOT A NULL, LETS CONTINUE
SEE WHAT THE NULL MEANS
WHAT ARE WE SEARCHING FOR?
SKIP TEST FOR LENGTH IF 2 CHAR VAR
SET LINE POINTER BACK 1
IF NOT 0 SKIP DEC HIGH BYTE
DEC HIGH BYTE
DEC LOW BYTE
SAVE LINE POINTER FOR LATER

INITIALIZE TEST LENGTH

BUMP THE TEST LENGTH
GET THE NEXT CHARACTER
IF NULL LETS TEST THE RESULTS
IF STILL ALPHA/NUMERIC TRY AGAIN
ADJUST FOR NON-ALPHA CHARACTER
RESTORE LINE POINTER

LETS SEE IF LENGTH OF TEST STRING =
LENGTH OF SEARCH STRING
YES, LET'S SEE IF THEY ARE THE SAME
NO, LETS SEARCH SOME MORE

LDY #$00 GET SET TO COMPARE THE STRINGS
JSR GETCHR ; GET NEXT CHARACTER FROM BASIC LINE
CMP (VARPNT),Y ARE THEY THE SAME
BNE CONTSH NO LETS SEARCH AGAIN

Page 26 PEEK(6S] Summer 1966

3250 BOEC C8
3260 BOEO C640
3270 BOEF F00C
3280 BOFI 00F2
3290 BOF3 C8
3300 BOF4 203FBE
33l1tl BDF7 9090
3320 BDF9 01C7
3330 BDFB D0AD
3340
3350 BDFD A538
3360 BDFF DIHJ5
3370 BE01 E630
3380 BE03 4C96BD
3390 BE06 AItl00
3400 BE08 843B
3410 BE0A 2060BF
3420 BE0D C924
3430 BE0F D002
3440 BEll E63B
3450 BEl3 C925
3460 BE15 DIHJ6
3470 BE17 A902
3480 BE19 853B
3490 BEIB F00B
3500 BEID C928
35l1tl BEIF D01l7
3521l BE21 A91l3
3531l BE23 853B
3540 BE25 4C38BE
3550
3560 BE28 A53B
3570 BE2A F00C
3580 BE2C B139
3590 BE2E C928
361l1l BE30 D006
3610 BE32 E63B
3620 BE34 E63B
3630 BE36 E63B
3640 BE38 A63B
3650 BE3A F631
3660 BE3C 4C96BD
3670
3680
3690
3701l
3710
3720
3730
3740
3750 BE3F A201l
3760 BE41 A139
3771l BE43 F029
3780 BE45 C98E
3790 BE47 F027
3800 BE49 C922
38l1tl BE4B FIl2C
3820 BE4D 20CIBE
3830 BE50 C920
3840 BE52 F0EB
3850 BE54 C92E
3860 BE56 D004
3870 BE58 C900
3880 BE5A D010
3890 BE5C C930
3900 BE5E 900E
3911l BE60 C93A
3921l BE62 9008
3930" BE64 C941
3941l BE66 9006
3951l BE68 C95B
3960 BE6A B01l2
3970 BE6C 38
3980 BE6D 60
3990 BE6E 18
41l01l BE6F 61l
4011l
4020 BE70 20CIBE
4030 BE73 A139
41140 BE75 F0C8
4050 BE77 D0F7

S5

FOUND

FVAR

Fl

F2

F3

TOTAL

GETCHR

Gl

BACK

BACKI

REM

INY GET SET FOR NEXT CHARACTER
DEC TESTLN WE HAVE' TESTED ANOTHER CHARACTER
BEQ FOUND IF Il THEN WE HAVE CHECKED THE STRING
BNE S4LP TEST THE NEXT CHARACTER
INY GET SET FOR SECOND CHARACTER IN STRING
JSR GETCHR GET THE NEXT CHARACTER FROM BASIC LINE
BCC SRLOOP ; NON-ALPHA SO PRESS ON
CMP (VARPNT),Y ; ARE THEY THE SAME
BNE CONTSH NO, LETS SEARCH SOME MORE

WHAT ARE WE SEARCHING FOR LDA SFLAG
BNE FVAR
INC NUMCNT
JMP SRLOOP
LDY 11$00
STY TEMP
JSR NXTNAL
CMP 11'$
BNE Fl

BRANCH IF SEARCHING FOR A VARIABLE
INCREMENT THE NUMERIC COUNTER

INITIALIZE TEMP: DETERMINE VAR TYPE

GET THE FIRST CHAR AFTER THE VARIABLE
IS IT A STRING?

INC TEMP
CMP 11'%
BNE F2
LDA 1I$1l2
STA TEMP
BEQ F3

NO
SET TEMP TO 1
IS IT AN INTEGER?
NO
YES, ADJUST TEMP

SEE IF IT'S SUBSCRIPTED
CMP II' (
BNE F3

IS IT A SUBSCRIPTED FLOATING POINT VAR
NO IT'S NOT

LDA 1I$1l3
STA TEMP
JMP TOTAL
;
LDA TEMP
BEQ TOTAL
LDA (LNPNT),Y
CMP 11'(
BNE TOTAL
INC TEMP
INC TEMP
INC TEMP
LDX TEMP
INC ZPAGE,X
JMP SRLOOP

YES, ADJUST TEHP TO REFLECT THIS

LETS GO TALLY

IS IT A SUBSCRIPTED VARIABLE
NO, LETS TALLY
YES ADJUST TE~IP TO REFLECT VHIS

ADJUST THE PROPER V. COUNTER
LETS SEARCH AGAIN

J---
; GET CHARACTER ROUTINE
; RETURNS WITH CARRY SET IF ALPHA/NUMERIC
; CARRY IS CLEAR IF NOT
; Z FLAG USED ONLY FOR NULL, END OF LINE
i---
;
LDX 11$00 ;
LDA (LNPNT,X)
BEQ BACKI
CMP #$8E
BEQ REM
CMP 11$22
BEQ QUOTE
JSR BLNPNT
eMP 11$20
BEQ GETCHR
CMP i$2E
BNE Gl

GET SET FOR INDEXED LOAD
; GET THE NEXT CHARACTER
IF NULL THEN RETURN
IS IT THE 'REM'
YES, LET'S GO TO THE NEXT LINE
HAVE WE FOUND A QUOTATION
YES, LETS SKIP IT
GET SET FOR NEXT CHARACTER
IS IT THE SPACE
TRY AGAIN
IS IT A'.'
NO, PRESS ON

CMP 11$00 THIS WAS ADDED TO CLEAR THE 'z' FLAG
BNE BACK
CMP i$31l
BCC BACKI
CMP 1I$3A
BCC BACK
CMP #$41
BCC BACKI
CMP 1I$5B
BCS BACKI
SEC
RTS
CLC
RTS
;

CHAR> ASCII 'Il'
YES, LET'S GO BACK
CHAR ASCII '9' OR LESS
YES, LET'S RETURN WITH IT
CHAR LESS THAN ASCII 'A'
YES, LET'S GO BACK
CHAR GREATER THAN ASCII 'z'
NO, IT'S NOT
SET CARRY FOR ALPHA/NUMERIC

CLEAR CARRY (NON-ALPHA)

JSR BLNPNT ; GET SET FOR NEXT CHARACTER
LDA (LNPNT,X) ; GET ITI
BEQ GETCHR WE FOUND A NULL SO TRY AGAIN
BNE RE~I NO NULL SO GET NEXT CHARACTER

Page 29 PEEK[65] Summer 1986

4060
4070 BE79 20C1BE
4080 BE7C Al39
4090 BE7E F0BF
4100 BE80 C922
4110 BE82 D0F5
4120 BE84 20C1BE
4130 BE87 4C6EBE
4140
4150 BE8A A200
4160 BE8C 863B
4170 BE8E 20C1BE
4180 BE91 Al3 9
4190 BE93 F002
4200 BE95 E63B
4210 BE97 20C1BE
4220 BE9A Al39
4230 BE9C F002
4240 BE9E E63B
4250
4260 BEA0 A53B
4270 BEA2 F019
4280 BEA4 20C8BE
4290 BEA7 A200
4300 BEA9 20C1BE
4310 BEAC Al39
4320 BEAE 853E
4330 BEB0 20C1BE
4340 BEB3 A139
4350 BEB5 853F
4360 BEB7 20C1BE
4370 BEBA 4C96BD
4380
4390 BEBD 20C8BE
4400 BEC0 60
4410
4420 BEC1 E639
4430 BEC3 D002
4440 BEC5 E63A
4450 BEC7 60
4460
4470
4480
4490
4500
4510
4520
4530
4540 BEC8 A006
4550 BECA B93000
4560 BECD D004
4570 BECF 88
4580 BED0 10F8
4590 BED2 60
4600
4610 BED3 843C
4620 BEDS A53E
4630 BED7 85B0
4640 BED9 A53F
4650 BEDB 85AF
4660 BEDD 18
4670 BEDE A541
4680 BEE0 690A
4690 BEE2 8541
4700 BEE4 C518
4710 BEE6 9007
4720 BEE8 20730A
4730 BEEB A90A
4740 BE ED 8541
4750
4760 BEEF A516
4770 BEFI C541
4780 BEF3 B008
4790 BEF5 A920
4800 BEF7 20EE0A
4810 BEFA 4CEFBE
4820 BEPD 2044BF
4830 BF00 A43C
4840 BF02 C004
4850 BF04 900D
4860 BF06 A928

QUOTE

TEST

Tl

T2

DONE

;
JSR BLNPNT ;
LDA (LNPNT, X)
BEQ GETCHR
CMP #$22
BNE QUOTE
JSR BLNPNT
JMP BACKI
;
LDX.#$00
STX TEMP
JSR BLNPNT ;
LDA (LNPNT,X)
BEQ Tl
INC TEMP
JSR BLNPNT ;
LDA (LNPNT,X)
BEQ T2
INC TEMP

LDA TEMP
BEQ DONE
JSR PRINT
LDX #$00
JSR BLNPNT ;
LDA (LNPNT,X)
STA LINELO
JSR BLNPNT ;
LDA (LNPNT, X)
STA LINEHI
JSR BLNPNT
JMP SRLOOP
;
JSR PRINT
RTS

BLNPNT INC LNPNT
BNE BLNRET
INC LNPNT+l

BLNRET RTS

BUMP ~HE LINE POINTER
; GET THE NEXT CHARACTER
FOUND THE NULL!
HAVE WE FOUND THE NEXT QUOTE
NO, LET'S GET THE NEXT CHARACTER
BUMP LINE POINTER PAST THE QUOTE

INITALIZE TEHP STORAGE

GET SET FOR NEXT CHARACTER
; GET IT
IF NULL TRY THE HIGH BYTE
BUMP TEMP (NOT DONE YET)
GET SET FOR NEXT CHARACTER
; GET IT!
IF NULL LETS TEST

TEMP TELLS IF WE ARE DONE
WE HAVE FOUND THE 3 NULLS!!
LET'S SEE IF WE FOUND ANY VARIABLES
RESTORE THE INDEX
GET SET FOR THAT NEXT CHARACTER
; GET IT!
STORE THE LOW BYTE OF THE LINE NUMBER
GET READY AGAIN
; GET THE HIGH BYTE OF THE LINE NUMBER
SAVE IT
BUMP THAT LINE POINTER
LET'S TRY AGAIN

LET'S SEE IF WE FOUND ANY VARIABLES

INCREMENT THE LOW BYTE
IF NOT ZERO THEN RETURN
INCREMENT THE HIGH BYTE

;--
; PRINT ROUTINE : CHECKS VARIABLE COUNTERS - IF ANY
; ARE NON-ZERO THEN THE INFOR~mTION IS PRINTED AND
; THE VARIABLE IS CLEARED. USES PDEC TO PRINT THE
; INFORMTION IN DECIMAL FOR~1 INSTEAD OF BINARY.
;--

PRINT
CKLOOP

LDY
LDA
BNE
DEY
BPL
RTS
;

#$06 ;
ZPAGE-l, Y
OUTPUT

CKLOOP

OUTPUT STY TEMPI
LDA LINELO
STA BINLO
LDA LINEHI
STA BINHI
CLC
LDA TABPOS
ADC #10
STA TABPOS
CMP PRNLMT
BCC TABLP
JSR CRLF
LDA #10
STA TABPOS
;

TABLP LDA PRNPOS
CMP TABPOS
BCS TABEND
LDA #$20
JSR CHROUT
JMP TABLP

TAB END J SR PDEC
LDY TEMPI
CPY #$04
BCC PSLSH
LDA #$28

GET SET TO CHECK VARIABLE COUNTERS
; LOAD THE VARIABLE

FOUND A VARIABLE! LET'S PRINT IT
GET SET FOR NEXT VARIABLE
GO IF WE ARE NOT DONE

SAVE 'I'HE Y REGISTER FOR LATER
GET LOW BYTE OF LINE NUMBER
PUT AT BINARY LOW
GET HIGH BYTE OF LINE NUMBER
PUT AT BINARY HIGH

PRESENT PRINT POSITION
ADD TAB FIELD SIZE
STOP PRINTING HERE WHEN DONE
COMPARE TO TAB LIMIT
GO TAB OVER TO NEXT FIELD
NEW LINE IF >=
RESET TAB POSITION

PRESENT PRINT POSITION
CHECK IF AT END OF TAB FIELD
IF SO, PRESS ON

PRINT A SPACE
CONTINUE LOOP
GO PRINT THE LINE NUMBER
RESTORE THE Y REGISTER
NOT SUBSCRIPTED?
IF NOT, PRINT /
LOAD ASCII FOR 'I'

PDge 38 PEEK(65) Summer 1966

487e BFe8 2eEEeA
4889 BF9B A43C
4899 BF9D 88
4999 BF9E 88
4919 BF9F 88
4929 BF19 4CIABF
4939
4949 BFl3 A92F
4959 BF15 29EE9A
4969 BF18 A43C
4979 BFIA C992
4989 BFIC 999F
4999 BFIE D998
5999 BF29 A924
5919 BF22 29EE9A
5929 BF25 4C2DBF
5939 BF28 A925
5949 BF2A 29EE9A
5959
5969 BF2D A43C
5979 BF2F B93999
5989 BF32 85B9
5999 BF34 A999
5199 BF36 85AF
5119 BF38 993999
5129 BF3B 2944BF
5139 BF3E A43C
5149 BF4" 88
5159 BF41 1987
5169 BF43 69
5179
518"
5199
5299
5219
5229
5239
524"
5259
5269 BF44 A299
5279 BF46 38
5289 BF47 29441B
529" BF4A 2"ECIC
53"9 BF4D M91
531" BF4F B99991
5329 BF52 F99B
5339 BF54 843D
5349 BF56 29EE9A
5359 BF59 A43D
5369 BF5B C8
5379 BF5C 4C4FBF
5389 BF5F 6"
5399
5499 BF6" 293FBE
5419 BF63 B9FB
5429 BF65 69
5439
5449 BF66 A969
5459 BF68 853A
5469 BF6A A999
5479 BF6C 8539
5489 BF6E ADFC5F
5499 BF7l 18
5599 BF72 6539
5511l BF74 8539
5529 BF76 ADFD5F
5539 BF79 653A
5549 BF7B 853A
555" BF7D 69
5569
5579 BF7E E643
5589 BFS9 0992
5590 BF82 E644
56"0 BFS4 60
5619
5629
563"
564"
5650
5669
5670

JSR CHROUT
LDY TEMPI
DEY
DEY
DEY
JMP OUTI
;

PSLSH LDA 1I$2F
JSR CHROUT
LDY TEMPI

OUTI CPY 11$92
BCC POCCUR
BNE PINT
LDA 11$24
JSR CHROUT
JMP POCCUR

PINT LDA 11$25
JSR CHROUT
I

POCCUR LDY TEMPI ;
LDA ZPAGE-l,Y
STA BINLO
LDA #9
STA BINHI

PRINT THAT BABY
RESTORE INDEX

SUBTR~CT 3 FROM THE Y REGISTER

SKIP /

LOAD ASCII FOR '/'
PRINT IT •
RESTORE INDEX
IF Y<2 THEN SKIP VARIABLE TAGS
GO PRINT NUMBER OF OCCURANCES
NO, GO PRINT INTEGER TAG
LOAD ASCII FOR '$'
PRINT THAT BABYI
GO PRINT NUMBER OF OCCURANCES
LOAD ASCII FOR '%'
GUESS

RESTORE INDEX INTO VARIABLE TABLE
GET NUMBER OF OCCURANCES
AND SET TO CONVERT

STA ZPAGE-l,Y ; CLEAR THE VARIABLE COUNTER
JSR PDEC GO PRINT THE DECIMAL VALUE
LDY TEMPI RESTORE INDEX
DEY GET READY FOR NEXT VARIABLE
BPL CKLOOP GO BACK AND TEST NEXT VARIABLE IF
RTS WE HAVE CHECKED ALL THE VARIABLES

j--
PDEC : PRINT BINARY NUMBER AS DECIMAL. USES

; SYSTEM ROUTINES BUILDI AND BUILD2 TO TAKE
; BINARY NUMBER IN BINLO AND BINHI ($AF,$B")
; AND CONVERT TO DECIMAL. RESULT IS AT $9100
; AND IS TERMINATED BY A NULL.
j--
;

PDEC LDX #$90
SEC

INITIALIZE X REGISTER (?)

< 9

JSR BUILDI
JSR BUILD2
LDY III

SUBROUTINES TO CONVERT BINARY NUMBER
TO DECHIAL FOR PRINTOUT

PRNTLP LDA PNTBUF,Y
BEQ RET
STY TEMP2
JSR CHROUT
LDY TEMP2
INY
JMP PRNTLP

RET RTS
;

NXTNAL JSR GETCHR
BCS NXTNAL
RTS
;

SETADD LDA 11$60
STA LNPNT+l
LDA #$99
STA LNPNT
LDA BSIZE
CLC
ADC LNPNT
STA LNPNT
LDA BSIZE+l
ADC LNPNT+l
STA LNPNT+l
RTS
;

INPNT INC TABLE
BNE INRET
INC TABLE+l

INRET RTS

SET INDEX TO NOT PRINT LEADING SPACE
GET THE NEXT CHAR. OUT OF THE BUFFER
IF NULL THEN WE ARE THROUGH
SAVE THAT INDEX
OUTPUT THE CHARACTER
RESTORE THE INDEX
GET SET FOR NEXT CHARACTGR
LET'S GO GET ITI
WE HAVE PRINTED THE DECIMAL NUMBER

GET THE NEXT CHARACTER FROM BASIC LINE
IF ALPHA/NUMERIC TRY AGAIN
NO - GO BACK

INITIALIZE LINE POINTER TO
NORMAL START OF BASIC WORKSPACE

GET LOW BYTE OF OFFSET FOR BASIC
GET SET TO ADD
ADD WITH CARRY TO LOW BYTE
SAVE THE RESULT
GET HIGH BYTE OFFSET
ADD IT
SAVE THE RESULT
GO BACK

INCREMENT THE LOW BYTE
NOT ZERO TTHEN RETURN
INCREMENT HIGH BYTE

j--
; OUTVAR : ROUTINE TO TAKE VARIABLES FROM
; TEMPORARY TABLE AND USE SEARCH TO SCAN
; FOR THE SPECIFIC VARIABLE.
i--

Page 31 PEEK(65) Summer 1986

5680 BF85 A57E OUTVAR LDA ENUML SET TABLE POINTER TO FRONT OF TABLE
5690 BF87 8543 STA TABLE
5700 BF89 A57F LDA ENUMH
5710 BF8B 8544 STA TABLE+l
5720 BF8D A200 OUTLP LDX #$00 SET X FOR INDIRECT
5730 BF8F A000 LDY #$00 RESET Y
5740 BF91 A143 LDA (TABLE,X) GET CHARACTER FROM TEMP TABLE
5750 BF93 C9FF CMP #$FF ARE WE AT THE END?
5760 BF95 F039 BEQ RBASIC ~ES, LET'S GET OUT OF HERE
5770 BF97 91C7
5780 BF99 207EBF

STA (VARPNT), Y NO, SAVE THE FIRST CHARACTER
SETVR JSR INPNT. BUMP VARIABLE POINTER

5790 BF9C C8 INY GET SET FOR THE NEXT ONE
5800 BF9D A143 LDA (TABLE,X) GET IT
5810 BF9F 91C7 STA (VARPNT) , Y SAVE IT FOR CROSS REFERENCE
5820 BFAI D0F6 BNE SETVR IF NOT NULL THE KEEP LOOPING
5830 BFA3 207EBF JSR INPNT BUMP THE VARIABLE POINTER FOR NEXT
5840 BFA6 8437 STY VARLEN ; SAVE ~HE VARIABLE LENGTH
5850 BFA8 A000 LOY #$00
5860

GET SET TO OUTPUT VARIABLE
BFAA A900 LDA #$00 SET THE SEARCH FLAG

5870 BFAC 8538 STA SFLAG
5880 BFAE BIC7 LDA (VARPNT) , Y GET THE FIRST CHARACTER
5890 BFB0 C941 CMP #$41 CHARACTER LESS THAN 'A'
5900 BFB2 9010 BCC PRLOOP YES, WE ARE READY TO GO
5910 BFB4 A537 LDA VARLEN NO, LET'S TEST THE LENGTH
5920 BFB6 C902 CMP #$02 IS IT 2 OR MORE
5930 BFB8 B006 BCS SETFLG YES, GO SET SFLAG
5940 BFBA A901 LDA #$01 SET SFLAG FOR 1 CHARACTER VARIABLE
5950 BFBC 8538 STA SFLAG
5960 BFBE D004 BNE PRLOOP ALWAYS BRANCH TO PRINT LOOP
5970 BFC0 A980 SETFLG LDA #$80 SET SFLAG FOR 2 CHARACTER VARIABLE
5980 BFC2 8538 STA SFLAG
5990 BFC4 2066BF PRLOOP JSR SETADD RESET BASIC POINTER TO FRONT
6000 BFC7 206ABD JSR SEARCH GO SEARCH FOR THIS VARIABLE
6010 BFCA 20730A JSR CRLF DO CR/LF
6020 BFCD 4C8DBF JMP OUTLP KEEP LOOPING TILL DONE
6030 BFD0 A542 RBASIC LDA TERM RESTORE TERMINAL DEVICE
6040 BFD2 8DA62D STA OUTBYT
6050 BFD5 4C7404 JMP RETBAS BACK TO CON SOL MODE

Boot Bargainsl

Now's the time to pick up a copy of
the reference manuals you've needed.
Don't forget to add shipping costs.

Sam's Service Manuals
These are the only professional guides
avatlable for servicing and modifying
your 051 eqUipment. They Include full
schematics, block diagrams, wave
form tracings, parts lists, and
diagnostic tips. They were written for
the pre-19Be series of 051 systems,
but since 051 never h8S changed that
much they are still valuable no m8Uer.
when your computer was made.
C 1 P Regular: $7.95 S81e: $4.ee
C4P Regular: $15.95 Sale: $le.ee
C2/C3 Regular. $39.95 Sale: $25.ee

65Y Primer
This Is an Introductory guide to
machine code that ,hows you how to
program your video system using the
Monitor ROM. An excellent tutorial on
the fundamentals of machine code.
Regular: $5.95 Sale: $3.ee

Page 32 PEEK(65) Summer 19B6

User Guides
These are excellent books. They are
complete tutorials on all of the
st8ndard hardware 8nd software for
video systems. Covers m8ny topics
not documented anywhere else. If
you've been struggling along with just
the big blue notebooks, don't wait!
Order today!
C I P-MF Regular: $8.95 Sale: $4.ee
C4P-MF Regular: $B.95 Sale: $5.ee
CBP-OF Regular: $B.95 Sale: $s.ee

Assembler/Editor - Ex. Mon. Manu81
Until recently, 051 included the
Assembler/Editor and Extended
Monitor software with all copies of
05-650. However, even when it was
free, there was little documentation
accompanying the disks. If you've been
looking for Instructions on these two
programs, this Is the book for youl
Regular: $6.95 Sale: $4.00

professIonal Computers Set UP and
Operations Manual
A valuable guide for Installing and
using 051 serial systems. Includes an
overview of classic 051 software for
these systems. The book also provides
information on how to program the C3
series using the Z-Be and 6Bee
mi croprocessors.
Regular: $9.95 Sale: $6.ee

Introductory Manuals
These books don't contain a lot of
information that Isn't duplicated In
many other places. Still, for the
first-time user, they can be a
valuable reference to keep by your
system whlle you're learning. Specify
C1P/C1P-MF, C4P cassette, C4P-MF,
or CBP-OF.
Regular: $6.95 Sale: $2.00

How To Progr8m Microcomputers
By William Barden, this book explains
the instruction set of the Be0e, 6500,
and 68ee series of microprocessors.
Whtle not OSI-speclflc, this book
contains many valuable algOrithms for
solving problems In machine code
using the microprocessors available
in 051 computers.
Regular: $B.95 Sale: $4.ee

A Better Random Humber
Generator (in less than I page!)

by Daniel J. McDonald
Asbury College CPO
Wilmore, KY 40390

Have you ever tried to use the
random number generator supplied
by Microsoft for any amount of time?
It really doesn't work too well. I have
noticed that after a while, it starts to
repeat itself in a cycle of about 60
different numbers or so - clearly not
sufficient for any use whatsoever. I
happened to mention this to a
mathematics professor at Asbury
College and he pulled out a copy of
Art of Comp-uter PrQgramming,
Volume II: Semi-Numerical
Algorithms by Donald E. Knuth. In this
tome there are many wonderful
algorithms, including a real good
random number generator. "Its so
good", the professor said, "that they
don't know how good it is.'
Supposedly, it will repeat the first
order of magnitude once every 2'55
iterations. A machine rode
implimentation of this algorithm is
given in Usting 1 here.

A few notes about installation:
Assemble the routine. Then enter the
Extended Monitor and set the stack
pointers to $00 and $3C respectively.
Then, starting at the beginning of the
staCk, put in 102 pseudo-random
values. (Editor's Hote: The
references to ·ST ACK POIHTEr
all refer to the program's own
local storage for the table of
random numbers and program's
internal pointers to that table,
HOT THE 6582's STACK POINTER)
You can use BASIC's RND(l) function
for this if you like. Finally, save the
machine. code to disk, noting the track
and sector number where you are
saving it so you can include the
information in the BASIC programs
that use the code. Your programs that
use this code should always re-save
the program and the 'stack - of
random numbers back to disk to
insure a supply of new numbers and
thus avoiding the need to al"'v'ofays
ore-seed' the stack. The BASIC
program example in Usting 2 outlines
this technique. Note that ·xxxx- is the

start of the staCk, TI,S' is the track
and sector location of where you want
to store the machine code on your
diSk, and -YYYY' is -XXXX'i-116, the
start of the program itself in memory.

The "'v'ofay the program works is quite
simple. The random data that you put
in the stack is added to" another piece
30 words a"'v'ofay. This sum is stored in

the old location, so that even after 55
uses of the random number generator,
you get a brand new number. You can
continually add because the 2-byte
words have a limit of 65535 as a
maximum value and after that they
start over. The routine keeps adding
words from different parts of the
staCk, and the result is a constant flow
of unique and random numbers.

10 ;LABLES
20 0100= PA=$0100
30 0101= PB=$0101
40 0102= STACK=$0102
50 DIFO= OUTVAR=$DIFO
60 1218= RETVAL=$1218
70 DIAO *=$OlAO
80 DIAO 18 CLC
90 01Al AEOIDI LDX PB

100 01A4 B00201 LDA STACK,X
110 DIA7 E8 INX
120 01A8 8EOIDI STX PB
130 01AB AEOODI LOX PA
140 01AE 7002Dl AOC STACK,X
150 01Bl 9002Dl STA STACK,X
160 01B4 A8 TAY
170 01B5 E8 INX
180 DIB6 B00201 LOA STACK,X
190 01B9 8EOOOI STX PA
200 DIBC AEOI0l LOX PB
210 DIBF 700201 ADC STACK,X
220 DIC2 E8 INX
230 01C3 8EOIDI STX PB
240 DIC6 AEOOOI LOX PA
250 DIC9 9D02Dl STA STACK,X
260 01CC 8DFOOI STA OUTVAR
270 olCF E8 INX
280 0100 8EOOOI STX PA
290 0103 8A TXA
300 0104 38 SEC
310 0105 E96C SBC #108
320 01D7 0003 BNE Bl
330 DID9 8000Dl STA PA
340 010C AOOlol Bl LOA PB
350 010F 38 SEC
360 OlEO E96C SBC fIl08.
370 DIE2 0003 BNE FINE
380 01E4 800101 STA PB
390 DIE7 AOFOOI FINE LDA OUTVAR
400 OlEA 4C1812 JMP RETVAL

10 OEF FNROO = INT«PEEK(OUTM)*256i-PEEK(OUTMi-1 n*X/65536)i-1
20 REM - where OUTM is the decimol yolue of OUTM in the ASM code
30 Ml = VVVV- (INT(VVVV/256)*256): MH = INT(VVVV/256)
40 POKE 574, Ml: POKE 575,MH: REM- Point USR(X) to our code
50 OISKI"CA XXXX=TI,S-: REM- Co11 progrom Into memory ot $XXXX
60 X=USR(X): REM- Generote 0 new rondom number
70 A = FNR(100): REM- Fetch 0 number between I ond 100

.... progrom text to end. At the end of the progrom, where it Quits

10e0 OISKrSA TI ,S=XXXX/I'

Poge 33 PEEK(65) Summer 1986

Challenger 4%4 Character Set

by D. G. Johansen
P.O. Box 252
La Honda, CA 94020

(Editor's Note: Mr. Jobansen is the
author of the BET Al65 language used
in this article.)

Tbis article shows how to display
characters on your scret>n which are
four times larger than normal. This is
a perfect size for display to several
viewers and those with impaired
vision. Larger characters support
video applications sucb as message
boards, score boards, teleprompter,
etc.

The Challenger C4P has 64 columns
and this allows 16 characters in the
4x4 • format. This is suitable for
displaying two or thret> words across
the scret>n. With 32 rows available for
the C4P video scret>n, up to 8 lines
may be displayed in 4x4 format. This
is enougb for two or thret> sentences.

Figure 1 shows a set of ideal
components for building a 4x4
character set. As each cell is 2x2, the
final character has 8x8 cells, just the
right size to duplicate the ASCI I
character set magnified by four.

The term "ideal" is defined as follows:
(1) The set is complete - this means
that all 16 combinations are available
and (2) The set is logically ordered
with bit-mapping as shown in Figure
2.

There are clearly major advantages to
such a set. First, by having a complete
set, all possible combinations are
available. Also, bit-mapping to a
64x 12 8 element screen would be
feasible. Finally, by logically ordering
the set it is more easily manipulated
by software. For example, a character
inversion would correspond to logical
inversion of the lower four bits.

In Table 1, the correspondence of the
Challenger character set and the
logically ordered set is given. It is
necessary that substitution be made
for the "L-shaped" components 135,
139, 141, and 142. Depending on
best-fit esthetics, either a "full" or

Page34 PEEK(65) Summer 1986

••
• •

• •

Tt.qu.re 1 - 1.dea(. Components

for 4x4 Coonu:ter Set

7 65132 0

c::==~··I:: I :~ I
Tt.qu.re 2 - 1.dea(. Bi.t-mappt.nq

"half-diagonal" may be used for these
components. The result is distinctive
in appearance to several of the
characters. This lends a definite
personality to the displayed message.

Listing 1 shows the 4x4 character set
for ASCII values from 32 (space) to 95
(underscrore), including numbers,
upper-case letters, plUS most of the
common alpha-numeric cbaracters.
For enuy convenience, the· last two
numbers of the line number
correspond to the ASCI I value of the
character. .

Listing 2 shows a short program
written in BETA/65 which displays a
message in 4x4 characters across your
scret>n. The subroutine SHOW_4x4,

starting at line 100, prints to· the
scret>n the data -field characters
referenced to the parameter named
"label". The scret>n position is
indicated by the argument values
passed to tile parameters named "line"
and "column".

Several calls are made to SHOW_4x4,
starting at line 10. The data field
information is given in lines above
100e, with each character data
preceded by its symbolic name. Again,
there is no significance to the line
numbers in the data field other than
entry convenience. Each call passes to
the subroutine the desired reference
field information (preceding "~") and
the value field information (following
"j&").

OSI Assembler Symbol Table
Dump Utility

by Matt Holcomb
382 Newark Street
Aurora, CO 80010

I thought I would share one the the
utilities I've written, a program which
sorts and prints the OSI Assembler's·
symbol table list. To use it, simply (I)
load/assemble this program into
unused memory; (2) load Mill
ASSEMBLE your target program using
any "A" command (A, A I, A2,A3); and
0) enter "!GO 8000" (or wherever
you've put this utility in memory). A
word of caution though: Make sure the
symbol list generated in step (2)
doesn't overwrite the dump utility
code. Use the "Hxxxx" command to
limit the OSI Assembler's memory
usage.

A few general comments: The OSI
Assembler stores 6 character symbols
in a compressed 4 byte field. Bytes 0
and I represent the first 3 characters
of the symbol name in LO/HI format.
Bytes 2 and 3 hold the last 3
characters in the same LO/HI format.
And bytes 4 and 5 hold the
assembly-time value of the symbol.

There are 40 valid characters which
can make up a symbol name. Each
character is assigned a numerical
value:

0= <SPACE>
I through 26 = "A" to "Z"
27 through 36 = "0" to "9"

The program in Listing 2 is not noted
for speed, which serves to point out
that video routines should be comitted
to high-speed machine code. The
proper role of high-level languages
such as BETA/65, should be to set up
and LINK the machin~ activity. The
advantages of low-level and
high-level languages are speed and
flexibility, respectively. These are
complimentary, and an optimized
program would take this into account.

The 4x4 character set presented here
provides an alternative size between
normal (Ix!) and "high-res" (8x8)
ASCII characters for display on your
Challenger screen.

So, a 6 character symbol can be
compressed into a 4-bit word as:

BYTE 0
char 1*40"2 + char2*40"1 + char 3

BYTE I
char4*40"2 + char 5*40" 1 + char6

Notice that the maximum "word"
(arising from "US") would be
39xl600 + 39*40 + 39 = SF9FF. The
assembler flags undefined symbolS
simply by setting the MSB of the 2nd
3 character word above this highest
value (namely, to SFF), and storing the
character that would normally be
there in the MSB of the value field
(byte 5, aooy,?).

To see how this compression works,
use the assembler's (undocumented)
<QUOTE> command (i.e. "). Simply
follow a quotation mark with up to 3
characters, and the Assembler will
generate its 2 byte representation. For
example:

.WORD "SYM, "BOL

generates:

B57A (for "SYM" LO/HI)
E40E (for"BOL" LO/HI)

Similarly, opcodes can be encoded:

407D .WORD "TAX

Youll find (among other things) the
6502 mneumonics encoded at S0Fxx.
(For those of you who are real
hackers, disassemble the assembler
itself... you're in for quite a few
ELEGANT surprises!)

Call for Articles

As noted in Column One, PEEK [65]'s
library of articles is extremely low. I
hope you 11 take the time to share
some of the work you've done with
the rest of us. Thanks a lot

AD$
FOR SALE: Two Cipher interface
boards and DEI cartridge Tape backup
drives. Originally $3500 ea. Both fully
checked and aligned. Edward Dell
(603) 924-9464

FOR SALE: 12 fully populated 520
boards. Each provides 16K of static
RAM. Not tested. $50.00 plUS shipping.
Contact PEEK[(5)

FORTH $24.95. Utilities available also.
Free catalog. Aurora Software, 37
South Mitchell, Arlington Heights, I L
60005

Have you got something to sell? Why
not take out a classified ad in PEEK?
Ads cost 35 cents per word, not
including "price" wOrds. Copy is due
30 days before the cover month.

DONi FORGET TO
RENEW~

OSI-tALC:
SPREADSHEET PROGRAM

OSI -CALC has been a smash hit here
at PEEK[65J. Written entirely in BASIC
by Paul Chidley of TOSIE, the program
gives you a 26 column by 36 row
spreadsheet with many features. Don't
let the fact that it's written in BASIC
fool you. It's VERY FAST.

Each cell can contain text (left or right
justified) or numeric data (in floating
point or dollar format) or a formula
which computes its results based on
the contents of the other cells.
Formulas can perform addition,
subtraction, multiplication or division
using cell contents and/or numeric
constants. Spreadsheets can be stored
on disk, and the program does very
nice printing too.

OSI-CALC requires 4aK of memory
and OS-65D V}} Specify video or
serial system and mini -floppy or a"
disks. Price U0.00 plUS $}70
shipping c'S 1}70 total).

Ptlge 35 PEEK[65) Summer 1966

II:)
2(~

.-:'121

-1151"1 Hvmt:lcll Li !,:,t. i nq I"F'C)gr am
Matt Holcomb .. 26 May, 1986

'·1 OJ 0l~~1{j,",

~:i&J !.'lIt.l! H'"
60 Q)(tl:3l1=

lQJ (lWJ3:Z='
Gill l<ll'k'JJ. =,
9~j 0"'):$6'=

Y'~ISI ~(

E:U:l'J
l'JUfW
BYTE

,*'1:)(\

:t:H~

$:~,Ill

: .. :32
:f: :3Ji.
:.:36
:*,:38
:l::;('>
:t:,:",(.\

st:i'Wt. 0+ I:\HI'I 'iymbc.il t..,Ii:JJ. F'

f.:'flU CIt ~~ut"·kspi.\c(-:1

1.00 00:38=
1112) ~1!in'?=

1 :::l1 VHiL';(\",
l:m 1'1Q):~,E'=

1lI1il
l~::i(!J (l)Q)2l'1'=
1611 ~J~)It.l[)=,

llQJ IlJIi.JiilA=
1130
1 'tv) ::::'A~~;~

:2@lJ 2l.! T:';=
:z 1. ~1 ~~J.)9:;'='

::::2l1 ~:'!4C6'"

MEI'I
1"1Hl~~

FLi·\G
fE11F'

FIELD
1t'14LUE

SPf,\CE
CR
LF

UU1PUT
SrhOUT
F-Rf2HX
nFL.TIU
DUTUG r

Dlh

F IEU)+4

l:2:~;4~::.

:t:2[)7:.:T.
:t:2D'·i:::
,*,:,(-)[;6

:r2::r,~::2

+:,:F 7'~ 240 2I'''l9~

:':'~~::;(l) ~ ------------------------------------_. __ ._--_._--_._------
2b(IJ 1301Z10
270 Swap back ASM constants from DUS context.
2f3t'.1
:::9l7J EH2.10(1) {4D85:?F
:300 80((1::, I-\E842F
:~; 1 III B006 D0l16
::';21lJ I::lv)((lB (.\DC2Em
:::;:30 8(10B AEC3m~
340 800E 850A NRESET
::,,;50 8010 860B
5bllJ EI!.:112 8DC281ll
37121 8Q.l15 8EC580
38((1 8018 AO'?12F
::'90 f:3l11 B :::;EI
'I·~m EIl11 c: E'il<l~j'

4:l~1 l:Il11E 851H
420 m'~!1ll {~1J922F

4:';~1 01::12::'; E9ill~'

'14l1 8W::':::'i 8:.119
4~i~'
'16(1 EM~D f'ID:::::,:~2:;;

CJ.':r~1 UllJ~;:(~ '}[i

/~Bl1 rm:::B I\DC62?\
4"l0 8({12E 8022:2:.",
5l11i'l EI~l31 2{!.)n;2D
510 8034 52 .BYTE
~i20 EHMe 20[l81
530 804F 20BDB0 RSLOOP
54~1 EIl152 2m:'~f:31ll

:550 B~J55 ~:(l'4.3n 1
::i60 80:58 203((JO 1
::;70 El05B D0F2
~:iEi0

L.O?-) ~:;YI'lfiTR+DlF(

LOX SY'MSTR+l+DIR
IJNE ~IF(ESET

LD(~ !-1(.\KSYI1
L.UX [!(·\kSYI1+ 1
fiT?\ f3YI"1S Hi
~,TX SY'~1STFHl

[,Hl I:!(.II<SYM
STX EHW:SYM+l
LO('\ E: 0: W+OIR
SEC
SiEiC *t~i
51 (.\ ~::: D: I~
L.UI\ E: 1.1: IHJ.+I.)IR
b8C Uill
SI (1 E: 1.1: l'J-IJ.

LIII,' ULlTJ)~iT

f-'f 111
LOn UFLI 10
Sli-l C1U 1 DS'!'
,E,f, STI(OLII

'I:':ei"d i I"Ig & SOy-t i.1"~

J[:if(IT.l'j:I'1
J~:3R F:CI'~

asr~ l'If':I"IHYt'1
~r tll~: 1 NSER r
JEif~ t:il,Jl'.<6CK
BI'IE F~t,LU[)P

590 8050 207320 JSR STROUr
61110 1:106111 0D • BYTE CR,' , , en, LF , (1
6112.1
620 8W6A 68 PLA
6::',~~ 8('168 liD22::!::';
64~1

6~SI2.l 81ll6E 202781
660 8v)7 1 I-H£l~ll2.l

I.:> 7111 EWI7::, E142;9
680 8075 211lC4f:30 PR1Ll$
690 BlIJ78 207:::;:2D
71110 81lJ7B 3D .BYTE
11110 I'll1'lC 20
7!.:1(~ 1J11l7D 1i:1!2l
I j ~1 8f1llE A6~SD

72~1 f.mElV1 E8
7~~,12.1 B081 FIll12
740
7:"illl [30[3:3 A9:?4
'f Ml H ~~ f3:5 2~1'1· ::; 2 ~5
77111 El12.l8E1 (-\:"i::',F
780 808(-\ 2k1't22D
79QJ 812.18D A~i::,E

STI-'\ UI.ITlJ~ll

JS~(TEl'J: M
LDY 1H!J
STY '1 EI'lF'
.lSI'(l'lEl"lSYl'l
JSR STRUUT

'", ',0

L.DX FIELO+3
II\IX
BEL! I\IUDLF'

L.Ol\ tt' 'f
.J Sl'~ [JU [PUT
LO{-\ \Ji-\LUE + 1
JSH Pf~r:2HX

LDA It'ALLIE

Page 36 PEEK(65] Summer 1986 .

Backup SYMSIR -- on return
from ~OS, GYMSTR is reset
to zero.

CJutput. Did Y t.u vi c:I'~n

Fri nt U;:
f'(pad ~., pr'j nt. ",ymbnl
I,cld i'" ';CII'-t

Poi. nt to rH~:·:t ~;;Yl1lbDl

and repeat +or all.

U of symb/line counter
Read ~ print symbol

Check to see if symbol is
clef i. rH~(.l. 1 f not, X ""H' F.

Symbol defined: print ita
value in HEX format •

BI!ll1 Bill8F :~0922D

81 f' EI~:J92 4L";E:B0
EI=':~J

JSH PRT2HX
J 11P DEF: UK

830 80~5 20732D NODEF JSR STROUT
840 8W~8 I~ .BYTE 'undef' ,0
8;-:=jI!.1
Ek,~1 HW1F t:.i.,~:'.'/ nE~:DK INC TEMP
Hi ," Li~I!-HlI P,::L:'8
UUW U0,.\::: :;,,:"liin
1'1'/ u U lill~~ .:' [) QH!.J t.
'hJii) H01~6 ~::VlHUH0

'il VJ UVJi,'1 "+CB.:,U~J

92~ 80AC 20/320 SAMLIN
930 80AF 2iil .8yrE
'/:~:0 1]0n(', '2ill
'1.:,(,' G~lB 1 2,1
'i':~,(!l 81182 l1ill
940

nNE: ~)I-;I'IL 11\J
,lSi/,(r': Lf:cn
.J~H:' ~'f~·' L.S,r.
JUI-(~,muur

, ,ilJ

950 8083 203081 PRTL3$ JSR SU86CK
960 8086 D0BD BNE PRTL1S
9/(1
';> IJ ii.l l~ ill En, ?)9 ~J!~ P:LFCR LDA HI.F
9 C;QJ 8(1E·.IA ~~"I :::;;2::~.

1000 80BD A9i1l0 P:CR
1010 808F 4C4323 J:DUl
ll!C~)

10.::',0 H~lC2 o l'l IWI

.J~jf-(UUl FUT
LDI-,IIL:f-~

,) !'IF' UU1'fc'U'r

Symbol not defined.

Use %00000001 for 32
char/line systems.
Pr j nt cr~ L~:'

Tab to next column

Point to next symb &
repeat for whole list.

Else:: kup SYi'lSTF,
11!l4QJ
J ll:jO
1 Ubi ..)

J ,1 ! l'1

MEMSYM :: read symbol into memory & print it

1 ,~I:I('J Ei~IC>j 1-4l1Jill::l ~IE~lSYI'1 LUY U~~

ll1J~~ 80C6 8134 MEMSLI U)?\ (l'IEI1), Y
S'ri"~ FIE~LJ),Y 1 lliJ~l UUU3 9'7'.~:t·\li:l~1

1 1 .l ~l U@::B 8tl
1 1. :::(1 ,lOU: UilFB
j j :.",l1
I l4(~
1. J ::,O.1
1 I ,!',0 UIi.1CE 1~:5:."n

1 livJ clL"IDl1 A43B
1 18(,1 H0D:,': ~,:,mFEil1

1 1 'IIi) [)\!.iU~) 14::'j::,C
12011 Bl10! A4::',D
1:2HJ EiPiD,,? CllJFF
1 :C:::::~l H~1I)H D~m:,;:

1. [:',0 ,j~"JI..'D {\iL~,I':'

J :,,:4(1
1 :;:::m HVIDF [l::,:',Ii}
I :,,:6l1 UWEJ H4:',J
1 :,':!~} UUI~:.~, {'\\!.i~16

I ;,::II(/J l:'J~il' ~3 n'i4L1
1 :,,::'tlil ElVIE] :2({j(l:)j)I:J 1
1'~::"ll" H@'.:{\ ,WI~Kl

U,HI Ul'lI'::l~ (-\'/:,:£:I
J ::::;;·:l1 I'll)l'E ~::l.!iIi.1D81

1 ::,::; I.!I U~H--.l ?\ 4 ::,VI
I.", 4l'J 1:ll'JF~, 'of 13
J:;~';L1 1301'4 1 U
1.::',t:iil H~JF ~5 FVI12
L:;?~I UI.!II'7 E9H\
J :~,Iil1 Ul1, .. 'i 'i'lil(lC
1:.:,'/11) !:lUre H E '-i~jf.I

1 4l!Jlil fJUf· n 'N106

1 'II v) l'3frlFF Fl'll1:2
1 'I ~::(1
14.~,(1 I'JHl! ,:>9FA
1440 81 In 6'11"':::::
14:::,(1 <1105 ,,"IDF
146VI fJ 1 (l:ll 6'i'3A
14/11 Eiliil'l 6'i21il
J 4U0 81118 DI!H~2

1490
1 ~'.i ~'Il") 111 0 0 B'I ::::; :~;
.1 : . .,1'll 8H1F I::I:~ .. :';:~
J ~.J:,,::~l 81 11 IWJVIIi:'1
.I ~.:i ~:,111 1:1 1 1 ::', .:~; 8
I. ~·.I·~ VJ H J, .1 /.I ;'1~::;:,:~L~

1 :c:.'.:>IiJ U j I" :jn
J ::)6111 HI 1;' E:::i::';::':
l:.',/UI 1311 '1 HI~

DEY
81"1. 1'1l~~I'I!3L 1

Now, PRINT the compressed 4-blt symhol.

LDI-\ F I EL.I:!
U)Y 'f"IELD+l
Jbf(UECBLK
U){4 I·:: I ELl:J+2
LDY f' 1 ELD+:::::
CPY fHFF
['HE DLCE<L.fO::
LDY VnUJE+ 1

DECBLK SIA WORD
U T Y l'JCl~\D+ 1
LDY U"H(j1t-4111/2~j6

LD(" #4l!H'''f0
']SH DLCI'lRI'l
LDY H'HtJ/256
Li>,~ U"~0

J~;I-, DLcwm
LDY l~URD

DEC:~,Tf~ TY,,",
CL.C
E:l::U bF'ACE.
~,I1C jt'Z+l-'A
HLC AZ.
SEiC #':+1-'0

Bee: 10:.
8UJ I ..

Second 3 ct1aracters

If symbol undef, get
tram VALUE field.

I:':::tract fir-st char.

Extract second char.
Residue is third char.
"ranslate 0-39 into
Al09: .:1:: for-mat

; If we'r"e tl~r"8, we t,ave A=l for a '$'

{-\DC ff"l'--'.-1-1
I.. 14DC U'.-':--I-·1
I~:. ADe #':-'Z-1
nz. f-1DC tt' Z--·SPACE
SPACE. AUC #SPACE

BNE J:OUT Print it.

DECNRM STY BY1E+l
5TA ElY I E

LDY *H!J
SEC

DECNLI LUA wunD
bEl:.:
bHC lWlE
1,4X

Divide WORD by 8YIE

Result returned in Y

Page 37 PEEK(65J Summer 1986

1 !"iUkl 1311 A !45:31
15917.1 811C E5::':3
1600 Ell1E 90113
161~1 l:ll~20 8:':i:;';1
16~::l1 0122 06:30
16:::1.'1 Ell ~'~4 CB
164(1) H125 B0ED
J 6~iQl

LDA WUHJ')+ l'
SBC BYTE+l
Bce DECS1~:
STA l-JURD+ 1
S1 X l~UHD
INY
BCS DE.CNL1 t.wanch

.166l~

16717.1
lLW:M •• Transfer E:U:W to HEM

1 6f3~' HI 77 n~j 1 B
1.69~' [] J ;,!9 l:l619
17lim 81.:;~B 86::'::::j
171. (iJ fl12D B5:31l
17::::0 El12F 60
1. 7:30

'lE'~: 1'1

EiAX/"IE:M
SI-\I'I E 1'1
SAF(fS

U){'\ E: [] : "J
L.UX E: U: l~+l
SIX MEI'I+l
STI~ 11EM
F(rS

174~1

175(1
; SLJB6CK ,: Decrement ~IE~1 by 6 ~, compan'.! \~/SYI'ISTR

1. /60 13,[:":0 (-\5:5-1-
1. -,;' 70 [] L':~,~ ?')I,::::,5
IlB0 B .t:::;tj E40B
1 7fi'~' E! 1 ::",6 nm:14
1 EMI7.I Ell ::':tl C:::jIiJI\
:I E! 1 0.1 Ell ::':1\ F0F::';
1 u:;~~) B'\ ::~:C E9UJ6
1Bo,OJ HI :3E C?)
lU'll1J I:lLW m~l;::c

1 W.·.il1 Ell 4 1 "f~~L8

1 1:16.1

SLJB6Cf::: LDA t'1[;:/,1

LD X l'IEt'l+ 1
C:PX \3YI·1EiTfH·l
BNE UUB6Ki
CI"IF' HYI'ISTH
HEe! ~:;(ll·(I S

SLlE<61< I 'dEle ~t6

VEX
H c::; ~J I·, 1'1 ['. 1'1
[fCC sn niL/,1

F(cd·.llr·n 1.'<1.::.1') i.+ i:':lt: F·nd
car-r~y !:;ei:

1 H 711
H!13,ry

IN!:3EF(f :: Add S'yI'IUUL. to 1 i st ~, sor·t: by al pha.

1 H9ll) f'! 14::': '\9~ilc1

1. 9(ilfr) B 145 EJ5:':,B
1"i'10 Ell'll !4~:;113

192m H14':; A619
l'?::~,l1 fJ14B [:36:37
1940 Ell IlD 8:::j:56
19:517.1 814F {\4.:':13
1 '?6ft1 13151 D~l'::1il

I '7'7~' f.H5:;, co
19f301 tll ~H B 1 :":6
1 '7'90 F.J 1 ~:i6 C:'i~':B

2(i)i!liiJ 8t!,jfJ DvJ27
21111 ~ £ll:i!\ 8U
2,1::'0 81:m Ell ::,6
2 (1.:': lil Ell ~'i D c: !'L, A
~~C;H~J Ell ~'jF Ll02(il
2l~~'j~1 fJ t b 1 ?)!':i:~,D

:?Iljb~l 131<':.5 C9FF
2.'7,1 8.165 U(1l':1:~

2Gml() H .16l !\~)::',I=

209l~ HI b"l EI:'.'j::':<7'
2.\UIIZI U16D (.:IVI&n
:?11L1 H161.1 Hi::~:6

:il::'(7) 13161" C":'FF
::~U,0 Hi7i D(~(il'~

21. 41() 8113 (.\ 1t.1 Ql:.'j
21 ~:i0 111i'~:; B 1 :56
216il1 tltT7 1:::33(;>
::::170 81"19 D0el6
2 H30 fll7E~ Al7.llt.12
2190 EI17D El1:::::6
22(£10 817F C!"':::;C
221(1) 81fJ1 9011
2220 81S::'; ?HlJli'l~'j

::!:?::%', 8113:"'i B.1 :36
:;~:;!40 8187 1-\(.\
225(1) 81813 B93A00
2260 131813 ell :36
:!270 Ell Ell) 96:::::A
22t:1ill 13113F B8
229(1 819el H1F:3
2:;;f1l(~ 8192 84::;S
2310

lNSERr

S!4XI'I>:
£:;N12

YI.HoF

YDEF2

TEST
INSL.l
INSL. :;;

Sf (~ F L..r~(,
L.UA E, D, (-J
LD X E: [I: 1-)+ t
~3TX M[:!'I.:+1
~3TA 111:::I'L:
LI.)Y I":I...N:!
Bhll:: lI'lbL. 1
INY
LUl-l (/"IEM2), Y
Ct'IP F I EL./)+ 1
BNE TEST
DEY
UiA (l'IEt'I:;:) .. Y
CIVIl" F I ELl)

BNE IE'ST
l...U(i F 11,:UH:::
C::I'IF' H:f+ F
El~ .. IE Y DEY
L.UI. Vm.LH:'+ 1
!:; T A 'll:l"1 F'
LDY *1.3,
LD('I (1'11':1'1';':),,'
C/"IP *UFF
nNE YJ)EJ': ::,:

I..DY *I~:'i
L.I){\ (/"IEI"12), '{
CI"IF' I E/"IF'
BNE TESI
LDY H2
L.llr4 (1"IErl::), Y
CI'U:,' FIELD+:2
Bee: INSL.2
LDY tl:5
L.D!) (/'lEM2). Y

TAX
LDA FIELD,Y
ST?I (t'IE112 I ,Y
STX FIELD,Y
DEY
BPL 11\ISL.::;:
STY FL.I-IG

2320 8194 1\536 INSL.2 LDA MEM2
2330 8196 A637 LUX MEM2+1
2340 81913 E435 CPX MEM+l
2351Z1 8.19A DIZI04 BNE INSL.4
2360 819C C534 CMP MEM
2370 819E F08F SEQ SARfS
23130 81A0 E906 INSL.4 SBC #6
2390 81A2 B0A9 BCS SAM?
241Z117.1 81A4 CA DEX
2410 BlA5 90A4 BCC SAXM2

, Page 38 ,PEEK(65) Summer 1986

f~L.{lG irldicat~s wtlerl a
sHap i s ne.~dF..!(j.

1+ \"8 knrwi we need tu
swap, dor,'t was'te time
cllec:kirH] fUI" it!
Y'" 1
msb~ fir-st 3 char.

" .=~,
l~;ti. +irst: :3 c::h<:lr.

1Ti~;;b ~ l..~ieC:DI'lc.l :5 cr"lt,r' ..
Hi:U'ld 1 (.:::~ Ltndt:: f. ~;\/jf\I.H:J.l s

Isb. second 3 char.

{ll pl',a r:omp,,\r'c'
S\~ap 'r'oL!. t i n~' ...

Chpck if done:
Usa, R1G.
Else. 1110V8 to ne}:t

sY'mbol iilnd conI: i.llue.

OSI SIG Data Ubrary
Where the Megabytes Bite

This is the part of OSI SIG where we
keep program and text files. Like the
other areas of the SIG, the Data
Library is devided up into sections
with each section dealing with a
particular topic. All of the sections in
the Data Library directly correspond
to the sections in the message base.
For example, section e is our "General"
topiC section. For the Data Library, we
use it to hold .text files which describe
the various parts and functions of OSI
SIG. Section I's topiC is OS-65D and all
of the files in that section of the Data
Library refer to that operating
system. A full description of the topic
of each section in the SIG Data Library
is available by entering "DES" at the
"DLx:" prompt in the nata Library
(where "-" is the number of the
section involved).

One thing that is important to note up
front is that the SIG Data Library can
be used in two different ways or
"modes", as they are often called. The
default mode is called the Menu Mode.
In the Menu Mode, the primary
commands that are available to you
are displayed on a menu and you can
select them by number. The other
mode is the command mode. In the
command mode, you enter the actual
command. The benefit of the
command mode is that it is much'
faster. You don't have to wait for the
menus to be displayed before and
after each command. However, the
command words are acceptable in
either mode. See the "SET" command
below for details on selecting a mode.

Tbe first thing you're likely to want to
do in the Data Library is to find out
what files are available there. There
are two commands available to you
which will display a list of the files in
a section - BROWSE and SCAN. All
commands in the Data Library may be
abbreviated to the first three letters
(or sometimes less) of the command.
From now on, when a command is
referenced, the portion of the
command that is an acceptable
abbreviation will be in capital letters
and the remainder will be in lower
case. For exampe, "Read" would

indicate that "R" alone would be
acceptable as an abbreviation. Now
then, back to Scan and BROwse:

The Scan command allo'vllS you to
examine the contents of the SIG Data
Library. The format is:

S NAME.EXT[User ID!/option/option ...

Each file is listed in the following
form:

NAME.EXT DD-MM-YY - nr

where - = size of the file in bytes and
nr = number of times the file has been
retrived. If the file has the extension
.BIN or .IMG, the size (-) will be
followed by the approximate
down-loaded size.

The order of listing is a function of the
option(s) used. The default sequence
is in inverse-order of submission date
(i.e., most recent first). If you use a
file name, or file name with wild
cards, then the order is alphabetical
by file name. If the Ikey option is
used, the files appear in no particular'
sequence.

The simplest form is:

S

which will give a brief list of all files.
The NAME.EXT may have "wildcards"
in them, where "*" in either the NAME
or .EXT positions signifies any file will
match the "*". A "?" may be used to
mean any letter Idigit will match in
that specific position. For example:

S *.bas

will find any file with an extension of
"BAS" in any User ID.

S abc???:xy?

will match any file whose name
begins with abc and whose extension
begins with "xy'; also, any User ID will
match. The form:

S[User ID!

will match any file submitted by that
specific user.

Tbe options allowed are:

lagen - output only if the entry has
been SUBmitted within the last n
days.

Ides - output the description of each
file as given by the submittor.

/key:list - select only files which have
the given set of keywords. The list
may be a series of words separated by
commas and/or spaces. If mUltiple
keywords are supplied, there is an
implicit "and" operation between
them. An asterisk may be used to
indicate the "tightness" of the search
as follo'vllS:

xyz ~ an exact match with "xyz"
xyz* - any keyword which BEGINS
with "xyz"
*xyz - any keyword which ENDS "xyz"
xyz - any keyword which CONTAINS
"xyz"

For example: .
/key modem - finds files hav~ng

the exact keyword "modem"
/keymodem* - finds files with

"modem" or "modem T
Ikey:*modem - finds files with

"modem" or "smartmodem"
Ikey:*modem* - finds files with

"modem", "modem 7" or "smartmodem"

Note that keywords may consist of the
following characters:

BRoWse

"A" to ," (or "a" to "z")
"e" to "9"
" .. " "-" "." "S"": "-"

The BROWse command is similar to the
Scan command and accepts the same
options. It forces a Ides (description)
option, and pauses after each file to
give you a chance to:

Read, DOWnload, ERAse, or CHAnge

the file.

These options are displayed after each
file is listed by the BRO'vllSe command.
The Read option will type the file out
for you. The DOWnload option will

PlIge 39 PEEK(65) Summer 1966
., ~,.~-.,. ,'~ "'-'," "".,., ",' --"~."""" ,",

automatically transfer the file to your
computer if you are using Term-Plus,
Term-32, Term-65U, or TERM-A.ASM
as your terminal program. For details
on these programs, read the file
TPLUS.DOC in Section e of the Data
Library. The ERAse option marks the
file in a way that tells the SYSOP (me)
tt., t you want the file removed from
the Data Library. You might want to
do this if you found an error in the
original file. You are only able to mark
files for erasure that you have
submitted to the Data Library. Lastly,
the CHAnge option allows you to
replace the keywords and descriptions
you originally entered for a file.
Again, CHAnge is only available when
the file being examined is your own.

The Read command allows you to see
specific files. The format is:

R FILENMilT

Entering a control-P (hold down the
"control" key and press P) causes the
printing of the file to stop and you are
returned to the top function level.

The ERAse command is used to
request the removal of one of your
files from the Data Library. It is
entered simply as:

ERA FlLENMilT

When the SYSOP (me) recieves your
request to have a file removed, he (I)
will examine the file in question, and
if he (I) agree that the file should be
removed, he (I) will do so. Therefore,
it is a good idea to leave the SYSOP a
message explaining why you
requested that the file be removed.

UPLoad

The UPLoad command is used to
directly transfer files from your
computer t? the SIG Da~ Lib~ary
Reference Library. UPLoad is most
often used ~~e the OOWnl~d
command, in that special termiflal
programs like Term-Plus will perform

Page 40 PEEK(65) Summer 1966

the transfer automatically, and
additionally, these programs do
error-checking along the way to
insure that the file is properly
transferred. If you do not have a
program like Term-PlUS, you may
instead either type the file in by hand
or have your computer "LIST" the file.
If you use this second method, you
must enter a <CTRL,Z' when you (or
your computer) are (is) finished
entering or LI STing the file to tell
CompuServe that you are finished.
The command format is:

UPL FILENMilT

where °FI LENM.EXT" is the name of
the file for the CompuServe Data
Library database. You will then be
prompted for the file specification on
your personal computer which is to be
uploaded.

The ".ext" has two special forms as
follows: ".BIN" is used for "binary" (ie,
8-bit) data. In OSI SIG, ".BIN" files are
used to hold machine code programs.
".IMG" is used for "image" data. Image
data is similar to binary, except that it
carries with it an identification of the
kind of computer from which it came.
OSI systems do not use the ".IMG"
extension. If you use any other three
letter extension in your file name, it
will be stored as a 7 -bit text file.

After entering the UPL command, you
will be prompted foor some additional
information. First, you will be
prompted for a list of "keywords"
which users may use wittl Ule Scan
command to find your file. Please use
keywords which identify what you
are submitting. Using obscure and
inconsistent keywords will hinder
other users who are trying to locate
your file. For example, if you are
submitting an Adventure-type game
written in Microsoft basic, you might
use the keywords "adventure, game,
moosic:

Note t.t:!S'lt keywords may be made up
of the following characters:

"A" to "Z" (or "a" to :z")
"e" to "9"
"+" "-" "-" "S" "." "-"

All other characters are removed. The
non-alphanumeric characters above
should only be used as part of the

keyword, NOT as sep~rators. Fpr
example:

CPM2.2
or CPM+
are acceptable, but

TEST-FILE
or GRA:PHICS....PROGRAM-18
are not.

In general, the keywordS should be
descriptive of the file's CONTENT and
not used as a title. You will then be
asked for a short description of the
file. You will be limited to about 500
characters, or nearly a full 32 x 16
page. If the file is a program, the
description should include the models
of computers that the program will
run on and brief instructions on its
use.

DOWnload

The DOWnload command is the same
as the DOWnload option of the BROwse
command listed above. The only
difference is that you are requesting a
specific file rather tJ.!an picking one as
you are going through the SIG Data
Library Reference Library. Here again,
the benefit of being able to use the
DOWnload command is that the
transfer is done automatically and
without error so that the effects of
phone line noise and other problems
are minimized. Use of the DOWnload
command requires a program like
Term-Plus. The format of the
command is:

DOW FI LENM.EXT

The SET command is used to control
certain operating characteristics of the
Data Library during your visit. The
following options are available for the
SET command:

BRIEF - shortens some prompts
NO BRIEF - normal prompts
MENU - use menu mode' .
NO MENU - use command mode
PAUSE - pauses when screen full
NO PAUSE - doesn't

The SET command without options'
will display your current settings.

* * * * * '" * * * ***"'** *1- * * * * * *Ww * * _" (11 I W I * * * crD::1- *

i*D::LLD::<'tll.. .* *WOl!l WI-*
• *1- UL..J£J1*

UOIrI- 0::
~*crWWZE""'* *C::£J1l!llLlOLL*

*crOZZO:: *
~*Ia.WOLL3* *UE...JG. 0*

* O...JEl!lO::*
j*4"ucroz * * x IU a.*

4"£J1U 00 * ·al-. *a: WI-W *
~*WO::Il.!JO::W* *l!lWI-UJ I*

ZI- _1-
*l.!JUED::rJ) '"

'-to *...JcrOW3I*
: * ...JO::IrI-OI- * *crcrLLUIrH*

II cr 3 *UU£J1Cl::Z *
* a:crH -* *a:4"WI 1-* *OXI-UOI*
ll..4"U Wl!l
* crr.nC::H*
* crID::UWO:: *
"'I-Ucr OI * *crcrIIO::O*
OWUa.OI-
'" *
* * * * * * * *
* * * * * * * *
* '" * * * * * *

OJ I)J (Ij (I.J
OJ ("1 (Ij OJ (Ij r") r .. J I;\J (Ij ('lJ ('Ij ("1 OJ ('J OJ
Mrururu N MruNMru Mru ru MM ru ru MruN M M Mru M

MMM M m MM M M ~Mmru ruruM M MMN IJJ Nru M ru
m w n m rum N~ IJJMOOnMM w MwwOO MMw nM

(IJ
r'1

wrunw ru nmmwmMwN ruru M -w wn wNruwruwlJJOO w wru wlJJrun Mnw ruruMru N N ww-w M MMru w oo __ runwMMwM_wwru -MOOru wM-OO 00
ruru MM M M~M -N MN~ nw Mn- M ru IJJM w wN
MMOOw w ru n n n M~n ruOON Mn ~""~n moo ~ru nMnru ru run ru Mru

wwrunruruNwruruM ru~mnnrunn nnruMwMru ru- nnN ruwwru~Mrunrun nM wMruMn M M
ruru- MnMMM MM ruM w nM nOO M Mw M n MnM -M MnM w nw M n nru

ruMM ruM ru....w ru ru wru wn n w w wn w w nrunMn
M rururu ruwwrururuM NM w N~ ruwruMruMOO Mww www_wnnwnwlJJ wru ruw wwww M n

wNMMMruMwwMMM ruM nwruMMN MwM M w w www wnnwn wNIJJM M N w w ru
ruwM M ruM run M nru 00 ru-ru N- ru ru M N ruM wruwM
M- ruNN ru NNOOM ruM.... ruru MN ruwruM M M NM M N NMNruM N ru wMw n
. ruMMMruMruNMMw wM NruMMru MNM-M N ruM NNru ruNNruwMruruNM MM NMNMN run
WNM M MM -Nw ~NMM MN M NMNOOM NMMMNMMMMw MMM ~ NM M M ru M
MM n&4" ru ~N M-NnM n~ M~ NNruM M w ~M M ~ &w~NM N NMru

N~~n&MruNwMru M- N~~n~ n&MMM ru --n ~NN ~Nru~ n ~N~ nM &w~MruM Mruw
ruNM - ~ MM MNN NMn- nN ~ nMN w nnMM~nMMwN wnM.... ~~ w M N Mw MM -N N MMNmM M NNrun Mw w- ~_ M w run N NMw

Nnwm MN&~Mru Mw m nN ru MMM m w N NN- N~ N NwIJJNM & MOOM nw
NNM~~wlJJ M~~ MNN -NwrunMNwMN ww -nM NMM NMnwNMruruMIJJ-M ~~m w ~-wN
('OJ 1"1 T"""t I..iJ (IJ-1 f"'. , ..] r"1 OJ ("1 r·,) --t (.) iJ1 '''1 '~!J ,~'J (T'I !n -I EJ) if) ell (·1 elJ (,') u) r"1 r"1 r") ,..... ("IJ W 1..D f' ..-t (IJ lJJ ('I')

ru -M~ nru w~ n ~ MMwn ~ ~M ~~M ~ ~ ~ ~nnM- -n M-N ruwMwnn IJJN~""MNN n~nnwlJJ~ nN n n ~ ~nn ~nN Nn~~n~nw"" ~ n MNru
Mw wlJJw~ru""MIJJ MM -nlJJwlJJ ~N-Mw~ IJJN -~-~n ~n M~M nn-n - ~wnn w~N MM

.... N-- nM -N~ n ---- -M wnrulJJ-M n n- n- n runw wru nMru ru M wN MnNruwru N ruru- MIJJ ru-ru ruru run ~ru ru NNM M Mwru
Mru rururu ruwMru -MM MrurururuMruruMM -ruruM M ruMM ruMw nMruruMruMM N ru ru wM

MNMMMruM- MN MMMM MM rururu MM ru ruM ruM -ru- MM M rururuMruruMruMru-
ru M M ru Mrurururu.... ~ &wMMMN ~M&M ~~M ru M ~ & &~MMM MM M M ru
Mru n~oo ruruMm MMMMwru&www~w~~ Mrum n ~ ~ww wMru run~~~~~w ~ 00 ru ruM
MOO~wwruMM 1JJ4" -M~nn""wn-""Nruru Mw -~-run -ru~ MruM nn n- ru~~noomwruMwM ru w M ~ ~ru4"rum MMMn n M- M-ru M Mnn ww-M n ru

Mru- ruoon -MnMwnru n 4"4" n~ ~-4" 4"4" M~ ru~ 4" 4"4" N ~M
M nwn&MM ~ wMnnmn4nnnruruoo-lJJn n nrurunnru4" n&Mn~runrunn~ n nruM w

ru oo~~w~ ~&N ru wwlJJ-nw- MMw -w ru-MM Mn~ ~ wM M nruruw~~IJJM N N
M~IJJ wNN ~M4"Mn ~-........ -n M n N MM wlJJ- ~M M

n.... wMM n lJJ~n w wwlJJlJJ nru ~ ~~~~~~ ru M~ ~~~~w ~w &
ru wwNw.... ru ru-ru n Nrunw~rulJJlJJlJJlJJn-Mru n~nnnnnn~ M~ n~nnnnwru~~~ run N~N
M ruwwMIJJ ~ruMnM M MMw nM w M ~- ---nN n~ n - MnnnruruM- M M ruM....runM IJJ n N ru wru -MN n MM ru
ruM ru M ru ruWNMruMruN N ruNNruru WMN ru ruNrurururu M N rurururururu ruruMNruru
M rururuMru NM M-M M MMruMruMMMMMru M MNMMMMMMNN ru MruMMMMMMruruNruruMM MMM

NMMM MruruM ru N ru M M M ru M MMNMru M MMMMM ru
ruM n MM nMNruruM~M~- n -~~ruN ruM~ ~ ~~~nnn M Mw ~~~~~n OOMWooN
M ww4"lJJru ~w MMM IJJ IJJwwnnwwwMMOOM w w~wwwnnn~m & ~~wwwwwn~~~~~ww nMM Nnnn-Mruruw ru n ru n n............ w ru w- _nw~~ru n nnnnn -ru
ruM -- MM- MrururulJJ M ruN-~M _ - n-M _ M ruN

4"M w~ ~ MMM n nn n nnnMM M n n nnnnnn _ ~ nnnnn.... nn nMM
- ~wwwnw~&wnn nwnnnn&nnn ~ ~~ n&nnnnnnru~ NruwNnnnnnwrururururunnrun
4Nnnn~ -n~lJJ-wrurururu-~-""IJJ ~-- rurulJJrulJJ"" _~"""" __ M~ruMM_M"""""""" __ MMMMM_""M""ruru

j '''1-4 - r"1 r·) r'1 ('1 r"1 r") [oJ ('01 ("1 ,,,,
cr ~n n n nw ~ wnn n n ~n~~~n~ ~~~~n~n~nw~~~~~w~nw
I-rururururunwruoorulJJrururururuwruwwNnruwwlJJNrurururuw wrunlJJnnnwnrurunnnnwnwnlJJwnnnnnwnwwruN crMMMMM MMM MMMMM-M- M M --MMMMM M __ __ _MM_ __ _ _ __ _ __ MM
o

•••••••••••••••••••••••••••••••••••••• I •••••••••••••••••••••

&NM4"nw~m~&-ruM4"nw~m~& ruM4"nlJJ~OO~&-ruM 4"nw~OO~& ruM~nW~m~&-ruM4"nw~OO~&-ruM4"n
&~wm&N4IJJOO&MMMMMMMM~~~~4"4"~qq~~nnnnnnnDn~~IJJ~ wwwwlJJw~~~~~~~~~~oommoommmmmm~~~~~~
&&&&--~-~&&&&&&&&0&0&S&0&~0j 0&&&&&&505&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&0&&&
~~~~~~~~~- .... --~- .... -~ .... ------- -- .... -~----- .... -.... -- .... --- ........ -- .... -........ -........ --- .... ~- .... ---- .... -~-

\0 
CD 
C'I 

'CI) 

E 
E 
:::I 

(J') 

in 
\0 
'52' 
UoI 
UoI 
Q.. 

~ 
Q) 
C) 
CJ 

Q.. 



4 I ••••••••••• **** ••• **** •• *** ••••• ******* 
5 *** PROGRAM DISPLAYING TEST MESSAGE •• * 
6 I *.~ TO VIDEO SCREEN ILLUSTRATING USE .* 
7 I *** OF CHALLENGER 4x4 CHARACTER SET *~~ 
B I *********************.************.* •• * 
9 I 

l0 CnL.l_ SHOt·) '+ H '+ .- af! 1- hi) , 1 III 
~:~IZI cnLL SHOW .-. '+ H '+ OlE 1- liZ!, ll.f 

30 Cf.1LL SH[)~) '+ H'+ -_. aT 1- 1121, 18 
'+\71 CALL SH(]~) '+H4 aA 1- 1171. ;:::;;:~ --
50 Cm_L !~f-lllW 4X l f all. 1- 10. c:b .. 

50 Cr-1LL SHm) _. '+l<4 015 /'. Ill!, 31/'1 
70 CnLL SHm) 4HLj 015 ;t. 1121.3'+ -
B0 END 
90 I 

tllllZl SUBR SI-ICl~) .. ltH4 1.3. be 1 :1. line.collJflln 
11121 REF 1.3 be I 
1 c:12I FOR J =121 Ttl 3 
13121 FOR J"O TO .:> 
1'+0 READ X 
15121 PRINT AT(line+Iw6~+colIJMn+J),CHR.(X) 
150 NEXT J 
170 NEXT I 
18121 RET 
99£) I 

11Z1't7 :a8- 32 3;::: 16~:; ,3;:" 3;~~ 1 E"!:j 1 CO 3;~: 1 C5 : 58 3~::: 3;~ 32 3::-: 2:=::: ."3,::0 
1053. 
11215 1, 

H~55 

1055 
10G3 
1081., 

:215 
:a5 
:aA 
:a[l 
:aE 
:ilT 

157 155 155 ;~2 ~.GS 1·5~ 15g :32 165 32 157 32 ~2 155 158 32 
32 170 155 32 157 154 157 32 157 32 157 32 32 1551GB 32 
32 170 167 3~~ 137 32 157 32 157 155 161 32 16G 32 156 32 
157 155 1~9 32 157 t5/~ 170 22 157 32 157·32 15[, 1~~ 158 32 
157 155 ISS ~2 137 15/~ 1G7 32 157 32 32 32 1~5 155 155 2~ 
16G 161 155 32 32 1~7 32 32 32 1~7 32 32 32 16E. 32 32 

BASIC/DOS Interface Code for 
OS-65U 

I wrote tllis program a long time ago. 
All it does is to allow you to read or 
write specific sections of any floppy 
disk to or from any RAM address in 
memory. I wrote it to be able to pull 
sectors off 65U disk into memory so 
that I could store them on 65D disks 
for disassembly and other purposes. It 
can also be helpful for repairing files 
in extreme emergencies. 

However, it also sho'ft"S the essential 
elements of the BASIC/DOS interface 
code that is built into OS-65U. Youl1 
see variations on this code in most of 
the OS-65U utility programs such as 
DIR, CREATE, and DELETE. The 
essential premise behind the code is 
to allow tlle BASIC programmer to 
elreCUte lOW-level disk operations and 
to have the results of those operations 
be made available to the program. 

Disk operations are routed through 
BASIC's USR(I) function. The function 
returns the result of the operation. A 
result of e means ·no errOrs occurred. 
Any other value is the disk error 
number. 

PD~e 42 PEEKI65] Summer 1966 

19 REtl- ••• OS-65U DISK READ!\.IRIlE UTILITY ••• 
49 : 
Nl 
79 Ul=PEEK(B77B) : UH=PEEK(8779) 
S9·: 
911 REM- DISABLE <CTRL> 'C' CHECKING AND SAVE CURRENT STATUS 
100 : 
119 CC=PEEK(2073) : POKE 2073,96 
129 : 
130 REM- SET UP OOS READ/1.lRITE UECTOR 
149 : 
159 POKE8778, 192 : POKE8779,36 :REM- $24C9 
16e : 
170 REM- SET UP ISR PUT IIi SUBROUTINE 
180 : 
190 POKE 9432,243 : POKE 9433,40 
290 : 
210 REM- SET UP ISR GET IN SUBROUTINE 
220 : 
239 POKE 9435,232 : POKE9436,49 
249 : . 
259 CB=9889:REM- CONTROL BLOCK $26Al 
269 : 
270 Q-256:REM- ONE PAGE 
2Be : 
290 REH- GET DISK ADDRESS FROH USER 
300 : 
310 INPUT"ENTER DISK ADDRESS FOR READ/WRITE";DA 
320 : 
330 REM- GET NUMBER OF BVTES FROM USER 
340 : 
359 PRINT"HmJ MAlW BYTES ARE TO BE READ/1.lRITTEN" :GOSUB909:tiB=A 
3f,9 :" 
379 REM- GET RAM ADDRESS FROM USER 
389 : 
399 PR I NT" FOR THE MEMORY ADDRESS": GOSl1B909: RA=A 
490 : 
419 REM- GET OPERATION TYPE FROM USER 
420 : 
430 INPUT"AEAD OR ~ITE (R/~)";~$: RU$=LEFT$(R~$, 1) 
440 IF R14 () "R" AND RIl$ () "W THEN PRINT : GOTO 430 
450 : 



have pubUshed parts of this 
program before, but I wanted to use it 
again to help point out some details I 
haven't previously discussed. 

As I mentioned, the various 65U 
utilities often use this procedure. line 
70 saves the user's original USR(X) 
ved.or so that it can be restored on 
exiting. That's just good practice since 
you can never be sure if the user is 
running in an environment that 
depends on some machine rode that is 
already installed, but only sets the 
pointers upon installation. line 110 
saves the incoming <CTRL>'C' enable 
status, and turns it off. The same 
principle applies here. 

lines 130-230 set up pointers in the 
interface subroutine within OS-65U. 
This is largely a precautionary 
measure since these pointers are 
normally restored by any program 
that disturbs them, but when you're 
doing anything that could damage the 
contents of a disk, it's better to be 
safe. Since these pOinters should be 
the default settings, we are under no 
obligation to save and restore their 
incoming values. Next time well pull 
apart the rode itself and discuss how 
it operates. 

I hard-<Oded the program to only 
operate on DEVice -A - on purpose. The 
program would operate 'on hard disks, 
but don't do it unless you are ·very* 
confident that you know what you're 
doing. In any event, I hope you find 
the program useful. 

DISK LABEL MAKER FOR HOOKS 
BVI ,J,~(;.I( NClble (72737.1121111) 

746N. 165th St. 
SD~ttIQ. WA 98133 

Hera's a little 10 liner that 
has saved me a lot of 
aqqravation in keepinq track 
of Just what'. on which disk. 
It prints the disk directory 
in four columns in condensed 
pr'int onto stie:l(y b<:lcl(e~d 

address labels available at 
Radio Shack. There's really 
not much to tho program since 
it makes use of 'HOOKS' 
directory format which is in 
four columns anyway. To use 
the program you load the 
fanfold labels into your 
printer and run the program. 
Thrm put the first di sl( that 
yeu want a label for in the 
active drive and press any 
h~v. The 1 <l\bel will be 

409 REM- Cl£CK 00, RA, Atf) NB Fm VALIDITV 
479 : . 
499 IF DA ( 9 OR DA > 2759(,7 IHEN 319 
499 IF RR < B OR RA > ~~ THEN 399 
599 IF liB < 9 OR liB > 65536 THEN 359 
519 : 
529 REM- NOU PERFORM CAlCUlATIONS FOR OPERATION 
539 : 
549 DH=INT(DA/l0777210) 
559 DM=INT(RM/65536) 
569 DL=INT(RM/256) 
579 : 

RM=DA-[)H+ 10777216 
RM=RM-DM*65536 
RM=RM-DL*256 

sse POKECB+l,RM : POKECB+2,DL : POKECB+3,OM : POKECB+4,DH 
599 : 
609 POKECB+5,NB-INT(NBIQ)*Q POKECB+6,INT(NB/Q) 
619 : 
629 POKECB+7,RA-INT(RA/Q)+Q POKECB+8,INT(RAIQ) 
639 : 
649 REM- /OJ DO IT 
659 : 
669 IF RI.I$ = -R- THEN RIJ = 9 
679 IF RIJ$ = -~- THEN RIJ = 1 
689 : 
609 DEV "A-
799 : 
719 ER = USR (RIJ) 

729 : 
739 REM- CHECK FOR ERRORS 
749 : 
759 IF ER THEN GOSUB879 
769 : 
779 REM- RESTORE USER'S USR(x) VECTOR 
799 : 
799 POKE 8778, ll.. : POKE 8779, UH 
899 : 
919 REM- RESTORE 01..0 <CTRL> 'C' STATUS 
829 : 
839 POKE 2973,CC 
949 : 
859 END 
869 : 
879 PRINT-+++ DEVICE A ERROR .~;ER;- AT AOORESS";OA 
889 PRINT:RETURN 
999 : 
ge9 PRINT"ENTER THE DECIMAL VALUE OR HEX UAlUE PRECEEDEO" 
919 I1iPUT"BY A '$' ";A$: IFLEFT$(A$, 1)="$-THEN949 
929 FORX=ITOLEN(A$):C$=MIO$(A$,X, 1): IFC$<"9"ORC$> "9 "THEN999 
939 NEXTX: A=VAL<A$): RETURli 
949 A=9:IFLEN(A$)<2THEN999 
959 FOAX=2TOLEN(A$):C$=MIO$(A$,X, 1):IFC$<-9-THEN999 
969 IFC$<="9"THENA=A+UAUC$ )*( 16A(LEN(A$)-X»:GOT0999 
979 IFC$<-A"0AC$>"F"THEN999 
9S9 A=A+(ASC(C$ )-55 )+( lOA (LEN(A$ )-X» 
999 NEXTX:RETURN 

printed and tho program will 
wait fer you to insert the 
ne~:t: di.slc oAf tor' whic:h YOl.1 

aq,,1i n pr'E~ss ,any 1(C!y. As YOLI 
can seo from tho sample, you 
can print a directory of up to 
20 files per di~k on one of 
thfZ~SO addrQS5 1 abol s. The 
c:ontrol c:odes given aro for an 
EPSON MX-80 printer--you 
~hould adjust these as 
roquired for your printer. I 
sltie:l( tho 1,:lbols right on the 
di. sl( C(Jvc~r .AI. they CClfl)(~ out of 
the printer so I no longer 
havc::- to worry about ml)( i ng Lip 
jackets or loosing the loose 
directory printouts that 1 
Llsed pr£!vi ol..lsl y. 

5 REM**DIRECTORY LABEL MAKER** 
10 POKE$B6B8,$4CIPOKE$B6B9,$CC 
15 POKE$B6BA,~B6IREM NO BANNER 
2111 DIS":! "10 ,l1IruREM #4 PRINTER 
30 PRINTCHR$(15)IREM CONDENSED 
4111 PRINTCHR$(27) , "C",CHR$(6) 
50 CALL$252BIREM WAIT FOR KEY 
60 D*IREM PRINT DIRECTORY 
70 PRINTCHR~(12),.REM FORMFEED 
80 GOTO 50.REM DO ANOTHER 

056503 89-96 TERH+ BHI OIR$ 12-12 05650 13-13 
PRINT 14-14 BASIC 15-16 BElECl 17-18 CHGPAS 19-20 
P6MKEV 21-21 HOOSET 22-23 PGHFUN 24-24 XFER 25-26 
CNVRT 27-29 BINRUN 33-38 CSHOOE 31-31 lOS ON 32-32 
HS6TRE 33-34 FIlGE 35-37 

Poge 43 PEEK(65) Summer 1966 



Letters to the Editor 

Editor; 

I just finished looking through the 
latest issue of PEEK and dedded it was 
time for me to send my reader survey 
form. I have had the letter hand 
written for quite a wbile now, but 
never got around to typing it in the 
computer. 

I agree with your view of the OSI 
video board being a stumbling block 
to new software. I purchased a 
Generic Color Plus video board about a 
year ago and have been pleased with 
it The main advantage to this board is 
that it works along with the OSI 548 
board and it only takes a couple of 
bytes of memory. However, as I 
indicated in the survey, I would like 
to see more software available that 
utilizes this board. 

If a new graphics board is designed, I 
would like to see a board similar to 
the Color Plus but with an 68 column 
display and 648x488 pilI.els. If we are 
going to do something. we might as 
well go all the way. I would like to see 
possibly a software package sold with 
the board. A bare board would be fine 
with me. 

As for ideas on a new operating 
system, here are my ideas: (t) Include 
a WINDOW command that would allow 
you to jump back and forth between 
windows. Also have the command put 
a box around the window. (2) Include 
the Color Plus code. (3) Include the 
BSR 1-18 code for the home control 
system. (4) Include a CALL statement 
to call different machine code 
programs from BASIC without having 
to reset the pointers' for the USR(X) 
function. (5) If you are familiar with 

. the CA-28 board and manual, they 
show some commands in the manual 
from something called Process Control 
BASIC. OSI said this BASIC was never 
finished but some of the commands 
would be nice. These included a TIME 
and DATE command for the on-board 
clock. There were also commands for 
the CA-22 l?Oard (analog/digital 
converter board) which I use with my 
temPerature probe program. (6) 
Include a fuU-screen editor. The 

Poge 44 PEEK(65) Summer 1986 

CEGMON ROM had a nice editor and 
also a good window system. (7) A 
screen dump to printer would be nice 
also. 

Good luck on all your software 
projects and hope to talk to you on 
CompuServe. 

John Schneider 
326 Chestnut Street 

i Wheeling. WV 26003 

Dear John, 

Thanks for all of the suggestions. The 
video board problem is going to be a 
tough one to crack. 'lJlrough PEEK, I 
have been trying to inspire several 
people to design a new board that will 
see us through the foreseeable future, 
but there is nothing imminent 

One crucial element in the design of 
such a board is the resolution. It's 
certainly going to have to be capable 
of 60 columns for it to gain 
widespread support in the OSI 
community. After all, people aren't 
going to be willing to shell out a lot of 
money for a new board and put up 
with . some inevitable software 
incompatibilities unless there are 
substantial gains to be had. I simply 
don't know enough about the 
hardware to make any concrete 
suggestions. AU I can do is point out 
what I consider to be minimal design 
goals. 

If you hardware wizards are listening. 
please remember that the OSI video 
community is largely made up of 
people who are using televisions and 
inexpensive monitors. Please make 
sure that anything you design is 
capable of composite video output. If 
we make the upgrade too expensive, it 
will never take hold. 

Speaking of the video community, as I 
mentioned in the article on the User 
Survey, serial system owners almost 
universally said they didn't care about 
a graphics board. I think this is likely 
due to the fact that they see no 
benefits to a second display just for 
occasional graphs. However, since 
replacing the 540 board on video 
systems would also necessarUy mean 
replacing the keyboard interface, this 

would seem to me to be a most 
opportune time to make it possible for 
OSI users to attatch one of the 
replacement keyboards for the IBM . 
PC's which have been so widely 
praised. If we could produce a 
combination video/keyboard upgrade, 
we would be vastly increasing the size 
of the potential market for this 
hardware and thus lowering the costs 
to all of us - not to mention making a 
quantum leap forward possible in the 
software. 

Rick 

Editor: 

While I was filling out (the User 
Survey). an idea occurred to me. On 
the form, I requested that you publish 
topics concerning changes to OS-65D, 
but I suddenly thought that wbile I 
know 65D fairly well, I know 
absolutely nothing about OS-65U. Is it 
possible that what I really want is 
already in OS-65U? 

Anyway, maybe a brief descriptions 
of the different operating systems and 
a list of the different variations that 
exist for each might be an interesting 
topic for PEEK. If possible, could the 
discussion for each system include 
hardware requirements, features, and 
peripherals supported? 

A liWe hiStory of my machine might 
help explain my request: I ordered 
my machine as a Challenger with 12K, 
paper tape BASIC, and 430 cassette 
board in June 1977. What was 
delivered was one of the first 
Challenger II's (500 CPU, three 420C 
boards, and 430 cassette). OVer the 
years, I upgraded the machine with 
video (first a 540, then a 540B-l) and 
homemade keyboard, then added a 
470-110 disk kit Then I upgraded the 
65F and 65A ROMs to a SYGMON ROM 
plugged into one of the BASIC ROM 
locations with the required decode 
logic on a piggyback board. I now 
have two 6" drives, the original GSI 
118 as drive B and a Siemens 
FDD100-6 as drive A. I've also added 
a D&N BIO-1600 with serial, paralell, 
memory, and a battery backed-up 
clock (on the Diablo port), a D&N 
MEM-(M9 board with memory only, 
and a 2K block of memory on a 420C 



board addressed at SE6ee. 

(As far as software is concerned), I've 
gone from paper tape BASIC and 
assembler to a home-grown cassette 
tape block transfer program, to a tape 
operating system (??) written locally 
by another OSI user, to OS-65D V I.e 
(with handwritten directories) to 
V2.e, to V3.x, and finally to V3.3 last 
year. 

My dealer moved away about 6 years 
ago to become the west coast 
distributor for OSI, and then lett OSI 
entirely When MA/coMM bought OSI. 
There are some questions I need 
answered and few places to get them 
answered. 

I've tried some of the software that 
came with OS-65D V 3.3 and some of it 
doesn't wwk. For instance, (using) the 
MODEM program after changing the 
ACIA address to match mine, I 
consistantly drop every other 
character at 3ee baud. I tbink that 
most neww machines run at 2 MHz 
While mine is old and runs at I MHz 
(I've tweeked lit and found that it 
runs reliably at 1.4 MHz and fails at 
1.7 MHz. I tried a 6582B, but can't get 
it to boot at any speed, even .9 MHz.l 
tbink I have a couple of slow 
memories or address decode chips). 

The OS-65D V 3.3 printer driver drives 
me batty. I wrote my own driver in 
the SE6ee 21 to perform the skip over 
perforations, but' I can't figure out 
how to . defeat the built-in driver. It 
doesn't ever pass the aRL>'C' to the 
printer. This makes it bard to sub and 
superscript and still have each page 
start at the right place. 

Where is, and how does the new 
keyboard driver live and wwk? I 
again had my own to handle uppoer 
and loww case and <CAPS LOCK,. My 
keyboard also bas 63 keys, not 54, so 
While I can handle it with V3.2, 3.3 
expects other codes and my driver 
won't wwk with 3.3- 3.3 is also 
inconsistent between BASIC, and the 
A~bler /Editor-Extended Monitor, 
the lower case only wwks with BASIC. 

I like my OSI, but after using a 
PC-done at wwk I miss some of the 
features that MS-DOS bas such as open 
tiles on both drive A and dtive B at 
the same time and dynamic tile 
creation without running CREATE or 
including the same code in each 
program. 

Sincerely, 
Alan G. Albright 
2935 Hypoint Avenue 
Escondido, CA 92e27 

Dear Alan, 

Thanks for all your comments. To 
answw some of your questions, the 
leap from OS-65D to OS-65U isn't as 
great as many people perceive. The 
two share many fundamental design 
principles. The core of the BASICs in 
both operating systems is identical, 
malting the transition fairly easy once 
you get familiar with the way OS-65U 
handles data tiles. My series last year 
on this topic should help clear that up. 
OS-65U does answw your prayer for 
the ability to have tiles open 
simultaneuosly on different driVes, 
though. So do look into it 

I tbink you're probably right in 
suspecting that your problems with 
OS-65D V3.3 stem from your 
non-standard hardware. However, I 
don't tbink you've gone so far afield 
as to make it impossible to overcome 
them. 

The MODEM program that comes with 
OS-65D is very simple. For it to be 
dropping characters at 3ee baud is 
extremely unusual. I can't tell from 
your letter Where the problem might 
be. Most of my problems in this area 
stem from the slowness of the 
keyboard polling software in 3.3. At 1 
MHz, I can see Where you may really 
run into trouble with it My advice 
would have to be to try to find a copy 
of the 3.2 version of that program 
(Which OSI published in a couple of 
places) or port the 3.3 version to 3.2. 
The latter will require disassembling 
the machine code, but it's short and 
the only change you'd have to make 
would be to change the JSR's to the 
input and output routines. 

Under V 3-3, the keyboard poll is 
located at S35ge. Higher up in the 
operating system, the OS-65D dispatch 
table still points to the old address of 
S252B, but from there 3.3 merely 
JSR's to a JMP to the reat location 
stated above. Going direct1y to S3598 
will have no effect on any software 
eJX:ept for saving a few miUiseconds. 

I don't know Why you're having so 
much trouble with the automatic 
paging under 3.3. I have found, 
however, that by NOT initializing it 
with the PRINT·l,!(??,??) command 
(sorry, I forget the code) that I can 
position the paper in my printer with 
absolute accuracy. Try just cold 
booting and see how it wwks without 
intervention. The code for this resides 
within the old keyboard polling 
routine slightly above S252B, .but if 
you get that deep you11 also want to 
cheek the latch" in the OUTCH routine 

at S2343. 

As far as the ASM/EM not accepting 
loww case, you're absolutely correct, 
although neither of those programs 
would benefit greatly from the ability. 
Ob sure, loww case in assembly 
language programs can be helpful, but 
not crucial. Thankfully the rest of the 
OS is case-blind. 

Rick 

Last can OD. Backissue Sale 

The ba~es of PEEK[65J contain a 
wealth of information not available 
anyWhere else at any price. From 
cassette systems to multi-user hard 
disks, PEEK has been the source of 
innovative support to the OSI 
community since 196e. 

If your library of PEEK backissues is 
incomplete, now is the time to fill in 
the holes in your collection. Backissues 
are available from January 1961 to 
date. Full year backissues cost S6.ee 
per set plus S3.ee shipping. Single 
issues are S 1.8e each plus S.75 each. 
For multiple set orders, reduce 
shipping per set by 5el. Order today. 
This sale ends September 3e, 1966. 

Page 45 PEEK(65) Summer 1986 



SOFTWARE FROM 
PEEK I 

Term-Plus 
A smart terminal program running 
under 05-650 V3.3 which allows 
capturing and transmitting to and 
from disk. Term-Plus also supports 
error-free file transfers and cursor 
addressing on CompuServe. Memory 
size does not limit the size of files 
that can be captured or transmitted. 
Video systems get enhanced keyboard 
drlyer with 10 programmable 
character keys. 10 programmable 
function keys on both serial and video 
systems. Utilities included allow 
translating captured text files into 
051 source format for BASIC and 
Assembler programs or into 
WP-2/WP-3 format, translating 051 
source files into text files for 
transmitting to non-OS I systems, and 
printing captured text files. Runs on 
all disk systems, mini's or a-, except 
the CIP-MF. $35.00. 

Term-32 
Same as Term-Plus, but for 05-650 
V3.2. Video system support includes 
enhanced keyboard driYer, but uses 
V3.2 screen driver. $35.00. 

Term-65U 
Patterned after Term-Plus, Term-65U 
Is a smart terminal program for 
OS-65U (all Yerslons) running in the 
Single user mode. Allows capturing 
text to disk files. Term-65U will 
transmit text files, or BASIC 
programs as text. The program will 
also send WP-3/Edit-Plus files as 
formatted text and· can transmit 
selected fields In records from 
OS,;,oMS Master files with sorts. 
Includes utility to print captured text 
files and convert them Into 
WP-3/Edlt-Plus files for editing. 
$50.00 

ORDER TODA VI 

Page 46 PEEK(65) Summer 19a6 

ASM-Plus 
ASM-Plus is a disk-based assembler 
running under 05-650 V3.3 that 
allo'ws linked source files enabling 
you to write very large programs, 
regardless of system memory size. 
ASM-Plus assembles roughly a to 10 
times faster than, the OSI 
Assembler/Editor and is compatible 
with files for that assembler. 
ASM-Plus adds several assembly-time 
commands (pseudo-opcodes) for extra 
functionality. Included is a file editor 
for composing files that allows line 
editing and global searches. $50.80 

Edit-Plus 
Word processor styled after WP-3-1, 
although not quite as powerful. 
Edit-Plus allows composing and 
editing WP-3 compatible files and to 
have those files printed as formatted 
text. Edit-Plus uses line-oriented 
editing, as opposed to the screen 
editing of WP-3, and also allows 
global search and replace. Edit-PIus 
fixes problems in WP-3 Including 
pagination, Inputs from the console, 
and file merging (selectable line 
numbers from the merged file). 
Edit-Plus can perform a triYial 
right-justification, but it does not 
support true proportional spacing. 
Requires OS-650 V3.3. $40.00 

oata~Plus 65U Man Merge 
A program to in.sert fields from 
OS-OMS Master files into WP-3 
documents. Output can be routed to a 
printer or to a disk file for printing 
later or for transmission via modem 
using Term-65U. Insertions are fully 
selectable and are properly formatted 
Into the output. Perfect for generating 
form letters. $30.00 

Data-Plus Nucleus 
Data-Plus Nucleus Is a replacement 
package to the OS-OMS Nucleus from 
051. All of the programs from the 
original except SORT have been 
duplicated and enchanced and new 
software, the MC-oMS Interface, has 
been added. The name -MC-DMS- stems 
from the extensive use of machine 
code support built into the utilities to 
replace Slower, BASIC code. Features 
Include; (1) MC-oMS Interface code 
supports up to a Master files 
simultaneously without requiring 

OPEN/CLOSE commands under Leyel 3 
at every file access. The only 65U 
software support needed for Leyel 3 
~ile access is semiphores. This 
produces a significant increase in 
speed. READ, WRITE, and FIND 
commands operate on the field leyel. 
FIND skips oyer embedded garbage 
between fields eliminating the need 
for embedded blanks, and 
automatically stops on the last record 
in the file. (2) Machine code olR 
utility. Ultra-fast. Automatic paging. 
1: interrupt. Can selectiyely list by 
file type or can search for file name 
matches with wildcards. (3) Machine 
code file manager. Creates, deletes, 
or renames files in a flash. The file 
manager is linked to the Master/Key 
file creation utility. (4) Machine code 
file transfer/merge. Grabs up to 30 
records per pass. Single/dual drive. 
Fully selectable field specifications. 
Also allows searching for matches in 
source and destination files for linked 
merges. (5) Machine code single/dual 
drive floppy diskette copier. Moves up 
to 7 tracks per pass. (6) Disk-based 
mailing label printer. Stores printing 
format designs on disk. Selectable 
fields and record range, Key file 
access, searches, and more. (7) 
Disk-based report writer. Stores 
report format designs on disk. Same 
features as above, but with formatted 
colu~ns by type and width. (a) 

. Edit-Plus 65U. Most of the same 
features as the 65D version. Suitable 
for correspondence and form letters. 
(9) Data-Plus Mail Merge. Complete 
documentation allows impltmenting 
the MC-oMS Interface into your own 
applications. S 150.00 



SHORTEST HEX/DEC-DEC/HEX 
GOSUB VERSION 

By: R. N. Hislop 
5B Awatea Street 
Porirua, New Zealand 

As a follow-up to my HEX/DEC: 
DEC/HEX conversion that ~ou 
published in the Dec. '84 1S
sue, here is an even shorter 
version which is excellent for 
use in GOSUBs, and a Stand
Aione version too. 

STAND-ALONE PROGRAM 

o RUN3 
1 L=ASC(H$)-48:L=L+7*(L>9)~ 

N=N*16+L:H$=MID$(H$,2) : 
IFH$GOTOI 

2 A=INT(D/16) :B=D-A*16:H$= 
eHR$ (B-7* (B>9) +48) +H$:D:;A": 
IFDGOT02 

3 PRINT"***DEC="N"HEX="H$: 
PRINT:INPUT"HEX,DEC";H$,D: 
N=0:PRINT:GOTOI 

GOSUBs SHORTEST HEX/DEC or 
DEC/HEX Conversions? 

o RUN10 
1 L=ASC(R$)-48:L=L+7*(L>9): 

N=N*16+L:R$=MID$(R$,2) : 
IFR$GOTOI 

2 RETURN 
3 A=INT(D!16) :B=D-A*16:R$= 

CHR$(B-7*(B>9)+48)+R$:D=A: 
IFDGOT03 

4 RETURN 

5 : 
10 PRINT"LINEs 1 & 3 are used 

in normal way. Have N=0: 
just 

11 PRINT"prior to GOSUBI and 
R$="": prior to GOSUB3. 

12 PRINT"Do not use as vari
ables elsewhere in program 

14 PRINT"L,R$,N,A,B,D 
15 PRINT"LINEs 100 and 200 

just for testing. R$ and 0 
would 

16 PRINT"derive from program. 
17 
100 PRIN'!': INPUT"HEX-" ;R$: 

GOSUBl:PRINT,"DEC ="N: 
N-0:L=0:GOT0100 

150 
200 PRINT:INPUT"DEC=";D: 

GOSUB3 :PRINT, "HEX="R$: 
R$=nn:B=0:GOT0200 

RUN 10 
LINEs 1 & 3 are used in normal 
way. Have N=0: just prior to 
GOSUBI and R$=: prior to 
GOSUB3. Do not use as vari
ables elsewhere in program 
L,R$,N,A,B,D. LINEs 100 and 
200 just for testing. R$ and 
o would derive from program. 

Watch This 
Space Grow~ 

Page 47 PEEK(65) Summer 1986 



PEEK[6S1 
PO Box 586 
PacificaJ CA 94044 
415-359-5708 

DELIVER TO: 

B1l!t; R.~te 

U ::: post.age 
PAID 

Pa(l fIC2\ , CA 
PermIt "'(~2 

Zip Code 940<'.t<'.t 

GOODIES for 05' 
111111111 

Users~ 

The Unofficial OSI Users Journal 

C1 P Sams Photo-Facts Manual. Complete schematics, scope waveforms and board photos. All you 
need to be a C1 P or SII Wizard, just 

C4P Sams Photo-Facts Manual. Includes pinouts, photos, schematics for the 502, 505, 527, 540 and 
542 boards. A bargain at 

C2/C3 Sams Photo-Facts Manual. The facts you need to repair the larger OSI computers. Fat with 
useful information, ·but just 

OSl's Small Systems Journals. The complete set, July 1977 through April 197B, bound and reproduced 
by PEEK (65). Full set only 

Terminal Extensions Package - lets you program like the mini-users do, with direct cursor positioning, 
mnemonics and a number formatting function much more powerful than a mere "print using." Requires 
65U. 

RESEQ - BASIC program resequencer plus much more. Global changes, tables of bad references, 
GOSUB's & GOTOs, variables by line number, resequences parts of programs or entire programs, 
handles line 50000 trap. Best debug tool I've seen. MACHINE LANGUAGE - VERY FASTI Requires 65U. 
Manual & samples only, $5.00 Everything for 

Sanders Machine Language SortiMerge for OS-65U. Complete disk sort and merge, documentation 
shows you how to call from any BASIC program on any disk and return it or any other BASIC program 
on any disk, floppy or hard. Most versatile disk sort yet. Will run under LEVEL I, II, or III. It should cost 
more but Sanders says, " ... sell it for just ... " 

KYUTlL - The ultimate OS-OMS keyfile utility package. This implementation. of Sander's SORT IMERGE 
creates, loads and sorts multiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of 
over 15000 ZIP codes in under three hours. Never sort another Master File. 

Assembler Editor & Extended Monitor Reference Manual (C1 P, C4P & CBP) 

65V Primer. Introduces machine language programming. 

C1P, C1P MF, C4P, C4P OF, C4P MF, cap OF Introductory Manuals ($5.95 each, please specify) 

Basic Reference Manual - (ROM, 65D and 65U) 

C1P, C4P, cap Users Manuals - ($7.95 each. please specify) 

How to program Microcomputers. Tna C-3 Series 

Protessional Computers Set Up & Operations Manual - C2-0EM/C2-0/C3-0EM/C3-0/C3-A/C3-BI 
C3-C/C3-C' '. 

TOTAL 

$7.95 $ _____ _ 

$15.00 $ _____ _ 

$30.00 $ _____ _ 

$15.00 $ _____ _ 

$50.00 $ _____ _ 

$50.00 $ _____ _ 

$89.00 $ _____ _ 

. $100.00 $ _____ -

$6.95 $ 
$4.95 $ _____ _ 

$5.95 $ _____ _ 

$5.95 $ _____ _ 

$7.95 $ _____ _ 

$7.95 $ _____ _ 

$8.95 $ _____ _ 

$ 

eft Re~idents add 61 Sale~ lox $ 

C.O.D. orders add $1.90 $ 

Name Postage & Handling $ 3.70 

Street TOTAL DUE $ 

City State Zip POSTAGE MAY VARY FOR OVERSEAS 


