
•

•

•

IIII I
The Unofficial OSI Users Journal

P.O. Box 347

JANUARY 1986
'VOL.7, NO.1

Owings Mills, Md.' 21117
(301) 363-3268, INSIDE'

DIREC'r BOOT 2'
SCREEN DISSOLVE UTIL. FOR ClP- 3 '
OSI KEYBOARD, 4 ' '
BEGINNER'S CORNER 6 '
'NOTES ON WP6S112 Vl.3, '5.25- 8
USR' (X) (Y) (Z) (1) (2) (3) '111
BETA/6S - A REVIEW 11·
FDUMP , '011

'. 05,;,,6SU DATA FILES i.', MYSTERIES ,12
, EPIiOM ,BURNER 16 "
'MANUFACTURER'S CORNER 18

Column One
Happy New Year! Along with our
best wishes for 1986 comes
both exciting news and sadness',' ' "t '
too. ""he supplied our readers with a

Do you remember 1981? That
was the year ,Kar in : ·had PEEK'
dumped in her lap and'was told
to get it into, the mail in two
weeks! Well, that might not
be so bad for someone well
schooled in computers or pub
lishing. Frankly, it was
aski'ng a bitrnucl'i. ",Nonethe-'
less, do it she did! Shortly,
thereafter, PEEK grew to its
present size and 'experienced
numerous improvements along
the way.

, ,over itable weal th ' of ' informa-
tion in his acclafmed art
iclesj but he has alSo been a

',valuable technical assistant
,upon,whom I have leaned many
~times. ' ..

What better 'person could there
possibly be to take over ,the
,reins? A _ "past employee ~'. of
OSI, the Systems Operator," ,of
the CompuServe's OSI Special

"Interest Group, an innovator
of software, master of OS-D,
'and ,fast becoming one of ,OS."U.
Thes. are the things t~at make

That was five years ago. Five ,us very comfortable in knowing
years of monthly deadlines ',' ,,:' -that,~ PEEK will continue in
that have become more demand- excellent hands.

.. ..;',
We expect to be working very
~losely with Rick'for :the next
,few-months to make the tran-

ing only because of the com
plexities and other involve
ments of our 1 ives ,;that have
caused us to carefully, selec
tively, and quietly look for a
new leader.

The time has now, come,when all
the pieces fit together in,
per f ect harmony to' 'make the
transition to new leadership
and ownership.

si tion smooth and bug free "and
hope that you will give ",him

, . ,the same·,kind of support that
you ,have given us. There is a

. definite need for the informa
tion contained within these 24
pages. PEEK H.11..SX continue, , to

',flouris~, and will do so with

The very thought of glvlng up
PEEK, is a little like sending
your first child off to col
lege. It ·leaves an empty
place. We certainly will miss
the ',personal, encouraging
calls and letters>; that have
spurred us on during these
years and we hope that we will
continue to ,hear, from you from .. ,',
time to time.

During the .past couple of
years, if there was one person
who stood out in the continu
ing support of PEEK, it was
Rick Trethewey. Not only has

,the, c9,ntinued support from
each of you. Make it a, New
Years Resolution to contribute
to 'YOUR magCizine. Spread the
word about PEEK, - make your
friend buy ~is own subscrip
tion, share your knowledge', and
allow',others to gain from, it

,such as you have. Dealers,
make the time to share your
thoughts and problems, you
have,nothing to lose, only to
gain from each other. Also,

;advertise. your wares, whe~e
else do you have such a cap
tive audience?

Rick has not told us about all

:.;' , -.'
-; "

of .his new ideas, but those
that we know, about sound iike

_ good s01 id"', improvements 'that
w:fll - make PEEK better than
ever. There ,:will certainly be
,changes, -.,.- but maybe 'it 'is
time lor ~ome new ideas!' .

You may .want :'to write down the
new address and _phone number
for.PEEK(65) ~ effective as of
January 1, ,19~6.

PEEK (65)'
P. O. ,BOX 586
,PACIFICA, CA 941344'
(415) 993,,:6 ~29

In the meatime, anything' that
does find its way to our door
will, be expeditio~sly taken
,~are of and/or forwarded to
Rick. Our phone will continue
tO,beoperative for a while,
and we will be happy to'answer
any questions you might, have.
As I said before, this will be
a smooth transition.

Rick, we wish you every suc
cess and hope that you will
have as much pleasure being .so
closely involved with the OSI/
DBI world a~ we have.

, ,

Last, but not least, my grati
tude to all our subscriber,
advertiser and author friends,
plus the past and present PEEK
,staff, without whose support
and encouragement PEEK would
not be what it is today.

DIRECT BOOT

By: D. G. Johansen
P. O. Box 252
La Honda, CA 94020

Listing 1 modifies OS65D to
allow you to directly boot to
assembly code of your choice.
By using this modification,
you may run your code by
inserting a disk, containing
assembly code on track - 02
(normally containing BASIC),
pressing BREAK, followed by
"D" to LOAD and GO to object
code instead of BASIC.

This article discusses some of
the pitfalls of booting your
own code. You should not have
any problems if your system
operates under OS65D v3.1.

Prior to developing this rou
tine, I had spent many hours
trying to unravel OS65D. My
motivation was to directly
boot BETA/65, instead of using
BEXEC* which requires several
steps, including insertion of
two disks plus several key
strokes. I finally solved the
problem by purchasing the
OS65D v3.2 DISASSEMBLY MANUAL
by Software Consultants. This
manual provides clear documen
tation of OS65D and has more
than paid for itself in saved
time. I was initially worried
that v3.2 would differ sig
nificantly from v3.1 and that
use of 5" disk (instead of 8")
would make this manual diffi
cult to use. These differ
ences turned out to be minor,
and I can recommend this pro
duct to any OSI user wanting
to get more from OS65D, what
ever version, disk size, or
terminal setup your system
uses.

Listing 2 contains a short
program to demonstrate the di
rect boot routine. It is as
sumed that OS65D v3.1, includ
ing disk copier, is available
to implement the following
procedure:

Copyrighl. 1986 PEEK (65) Inc. All Righls Reserved.

published monthly

Editor - Eddie Gieske

Technical Editor - Brian Harston
Circulation & Advertising Mgr. - Karin Q. Gieske
Production Oept. - A. Fusse\baugh. Ginny Mays
SUtlSCflptlon Rates Air Surface

liS $19
Canada & MexIco 1151 class) $26
So. & Cen. Amenca $38 $30
[ulope S3B $30
Oiher Foreiqn $43 $30

All subscriptions are for 1 year and afe payable in advance in
US Dollars.

For back issues. subscriptions. change of address or other
information. write to:

PEEK (65)
P.O. Box 347
Owings Mills. MD 21117 (3011 363-326B

Mention 01 products by trade name In editorial material Of
advertisements contained herein in no way constitutes en
dorsements of the product or products by this magazine or
the publisher.

2 PEgK [65) January, 1986

1121
2121
3121
4121
5121
5121
7'l!
8121
':3121

1121121
11 tZI
12tZ1
13tZ1
14tZ1
15tZ1
15121
170
18121
190
20121
~'" 1 tZI
22121
23tZ1
24121
251l.1
25121
27121
28tZ1
290
3tZ1121
31tZ1
320
330
34121
350
35tZ1
37121
38121
39121
4121121
41121
42121
43121
'+4121
45121
450
47121
48tZ1
4':3tZ1
5tZ1tZ1
510
52121
53121
54tZ1
55121
55tZ1
57121
58121
59121
5121121
51121
52121
53tZ1
54121
55121
55121
57121
58121
E.9121
7121121
71121
72121
73121
74121

I2ItZ1El=

2321;::::
2322=

2A51=
2AC5=

2CE4=
2E1E=

2C22=

4294

4294 A21E
4295 85El
4298 A22E
429A 85E2

429C AEC52A
429F 8E2123
42A2 8E2223
42A5 DtZltZlC
42A7 F 121121 A

4283
42C4

42C4 AtZItZItZI
42C5 8CE52C

42C9 A93121
42CB 8D1E2E
42CE A932
420121 8D1F2E
42D3 A90D
42D5 8D21212E

4208 20222C
42DB 4C512A

LISTING 1

* DIRECT BOOT ROUTINE ******
* -SOURCE SAVED ON TRACK 38*
* -OBJECT MODIFIES TRACK 121121*
* MODIFIES OS55D TO PERMIT *
* LOAD AND GO OF MACHINE ***
* CODE SAVED ON TRACK 1212 ***
* BY USING (BREAK-D) *****

;
OSIBAD=$E1
;
INDST =$2321
OUTDST=$2322
;
OSE.5D3=$2A51
DEFDEV=$2AC5
;
BUFBYT=$2CE4
OSBUF =$2E1E
;
XQT

MSSG
;
SETBUF

=$2C22

*=$2294+$2121121121

LDX *lOSBUF
STX OSIBAD
LDX *lOSBUF/255
STX OSIBAD+l

LDX DEFDEV
STX INDST
STX OUTDST
BNE MSSG
BEQ MSSG

*=$22B3+$2tZ1tZ1tZ1
*=$22C4+$2tZ10tZ1

LDY *1121
STY BUFBYT+l

LOA *1'121
STA OSBUF
LDA *1'2
STA OSBUF+l
LOA *113
STA OSBUF+2

JSR XQ· -
JMP OS55D3

LOAD DEFAULT DEVICE
SET DEFAULT INPUT
SET DEFAULT OUTPUT

RUN MSSG CODE IN OSE.5D

RESET BUFFER INDEX

PUT '1212' IN BUFFER

EXECUTE TRACK 1212
START OS55D

**
* NOTICE-USE THE FOLLOWING PROCEDURE ******
* TO MODIFY TRACK 121121 FOR DIRECT BOOT **
* (1) (BOOT TO OS55D V.3. 1) ****

; * *
; * (2) *CA 1212121121=13,1
; * (3) *GO 1212121121
; *
; * (4) 7R42tZ1tZ1

* (5) *EX IT
* (5) *ASM

* * (7) .! LO 38
; * (8) • A3
; * (9) .EXIT

(LOAD COPY ROUTINE) **
(GOTO COPY ROUTINE) **

*
(READ TR 121121 TO 42121121) *
(EXIT TO OS55D) *
(LOAD ASM) *

*
(LOAD ABOVE SOURCE) *
(ASM ABOVE CODE) *
(EXIT TO OS55D) *

; * *
; * (1121) *CA 1212121121=13,1 (RELOAD COPY ROUTINE)*
; * (11) *GO,tZI2tZ1tZ1 (GOTO COPY ROUTINE) *

* (12) ?W42~tZI/22tZ1tZ1,8 (WRITE TR 121121 MODS) *
********** ... *******************************

Listing #2 on page 3.

•

•

•

•

•

•

10
20
30
40
50
60
70
80 3279=
90 D41A=

100
110 3279
120
130 3279
140 327B
150 327D
160
170 327E
180 3281
190 3283
200 3286
21121 3289
220 328A
230
240 328C
250
260 328D
260 328E
260 328F
260 3290
26121 3291
27121
28121
290
300
310
320
330
340
350
360
370
380
390
400
410
42121
430

7E32
9232
01

4C8132
A004
B98D32
991AD4
88
10F7

60

48
45
4C
4C
4F

LISTING 2

* TEST PROGRAM DEMONSTRATING *
* USE OF DIRECT BOOT ROUTINE *
* -SOURCE SAVED ON TRACK 39 **
* -OBJECT SAVED ON TRACK 1212 **

;
HEADER=S3279
SCREEN=$D41A

;
START
BEGIN
LOOP

;
HELLO

END

*=HEADER

.WORD START

.WORD END

.BYTE END-START/2096+1

JMP BEGIN
LDY #4
LDA HELLO,Y
STA SCREEN,Y
DEY
BPL LOOP

RTS

• BYTE 'HELLO'

* REMINDER-SOURCE CODE ALSO STARTS *
* AT $3279. TO PROPERLY ASSEMBLE **
* THIS CODE FROM ASM- *******

; * (1) .M1000 (SETS MEM OFFSET) ***
* ,(2) • A3 (ASSEMBLES TO $4279) *
*, (3) .EXIT (EXIT TO OS65D) *

; * (4) *RE EM (RESTART EM) *
* (5) :M3279=4279,4A79 (MOVES ****

; * OBJECT TO SOURCE SPACE) ****
; * (6) :EXIT (EXIT TO OS65D) ****
; * (7) *PU 02 (SAVES OBJECT) *****
; * (8) *ASM (RELOAO ASM) *******

1. Copy tracks 00 and 01 of
v3.1 onto a blank disk, using
the diskette copier.

You must load track 00 code
out of normal OS650 space to
maintain proper function of
the resident system. Follow
directions carefully. 2. Modify track 00, using the

instructions given at the end
of Listing 1.

3. Save the test
track 02, using
tions given at
Listing 2.

program on
the instruc
the end of

To test: Insert the prepared
disk into your drive and press
BREAK, followed by "0". This
should cause the screen to
clear and the letters "HELLO"
to appear in mid-screen.

NOTES ON USE

The diskette copier requires
two drives to copy tracks
above track 00. If you have
only one drive, you may copy
both tracks using a v3.3 tuto
rial disk. This disk contains
a single disk copy routine.

To avoid destroying source
code while assembling Listing
2, you must assemble outside
of source space and move the
object to the load address.
Again, follow directions care
fully.

You might ask why line 170
jumps to the next instruction
apparently wasting three byt,es
of code space. This is good
practice because normally a
boot routine must work for
several different models, and
custom code segments used for
each model may be accessed by
changing only the two bytes in
the JMP address. '

This boot routine has not been
tested with v3.2 or v3.3. Note
that v3.2 must go directly to
SETBUF instead of MSSG. Also,

v3.3 must boot to loaded
gram at $3A7E instead
$327E. The Jul. '83 and
'84 issues of PEEK(65)
plain OSI ROM routines
for CIP and C4P (also
respectively •

*

pro
of

Jan.
ex

used
C8P)

ANOTHER SCREEN DISSOLVE
UTILITY FOR THE elP

By: Herbert H. Grassel
12838 Flack Street
Wheaton, MD 20906

This program was written in an
effort to fill in some of the
void between the super fast
and super slow screen clears
available for the CIP. Al
though pri~arily designed for
use with a GRAFIX SEB-l High
Resolution Graphics board, the
program can be adapted to
erase any OSI memory mapped
screen simply by changing the
data stored at the locations
listed in Table I. "

On ROM based systems, the pro
gram fits into the unused RAM
from $0222 (546) to $02FA
(762), just below the ,BASIC
workspace, ($0235 to $02FA for
CEGMON ROM's). Th'e program is
called using the USR(X) func
tion. Initial entry is at
$0270 (624). For Oisk based
systems the program must be
relocated. On a 32K system,
for example, changing the Top
of Memory from $8000 (32768)
to $7F00 (32512) partitions
off 256 bytes. This simpli
fies modifying the 'machine
code, because only the high
bytes of the internal jumps
need to be changed.

The rate of dissolve is con
trolled by a delay loop at the
beginning of the program and
can be adjusted by loading a
value between 1 and 255 into
Dissolve Rate. This corres
ponds to an erase time from
instantaneous to 2.5 seconds.

To accommodate the many SEB-l
display modes requires chang
ing only two bytes; the high
byte (HB) of the End of Screen
Memory address and the dis
sol ve Character Code." For a
Mittendorf HRG board 'the HB of
the beginning of screen mem'ory
must also be specified. "

To dissolve the standard 24
character OSI screen, the Be
ginning (HB) and End Screen
Memory (HB) must be changed to
$00 (208) and $04 (212) re
spectively. For a blank screen
the Character Code should be
changed to $21 (32). With a
48 character display, the line
length must also be changed to
$40 (64).

PEEK [65] January, 1986 3

TABLE I

Parameter Location

Dissolve Rate
Begin Scrn Mem (HB)
Character Code
End Scrn Mem (HB)
Line Length
Call Addr ess

$0244
$0249
$024E
$0250
$0258
$0270

580
585
590
592
600
624

The following BASIC program
partitions off the top 256
bytes of memory, loads the
program, prints the new ad
dresses for the parameters
listed in TABLE 1, sets the
USR(X) vectors - then clears
itself. Line 5 executes the
program to clear the screen.

1 RESTORE:A=PEEK(134)-1:POKE
134,A:B=A*256

2 POKE11,112:POKE12,A: REM
SET UP USR(X)

3 FORC=64T0120:READD:IFD=2
THEND=A

4 POKEC+B,D:NEXTC
5 A=PEEK(B+68) :POKEB+68,1:Y=

USR(X):POKEB+68,A
6 PRINT"DISSOLVE RATE";TAB(18)

;B+68
7 PRINT"BEGIN SCRN MEM HB";TAB

(18) ;B+73

8 PRINT"CHARACTER CODE";TAB(18
);B+78

9 PRINT"END SCRN MEM HB";TAB(l
8) ;B+80

10 PRINT"LINE LENGTH";TAB(18)
;B+88

11 PRINT"CALL ADDRESS";TAB(18)
;B+1l2

20 NEW
50 DATA202,208,253,162,50,136,

208,248,169,128,141,85,2,
169,0,160,152

60 DATA162,0,157,0,128,232,224
,32,208,248,238,85,2,204,85
,2,208,238

70 DATA173,84~2,24,109,88,2,
141,84,2,208,1,96,172,68,2,
174,68,2,76,64,2

For systems running HEXDOS,
lines 2 and 5 should be chan
ged to:

2 POKE240,112:POKE241,A: REM
SET UP USR(X)

5 A=PEEK(B+68);POKEB+68,1:Y=
USR(-7) :POKEB+68,A

For systems running OS-65D,
lines 1 and 2 should be chan
ged to:

1 RESTORE:A=PEEK(8960)-1:POKE
8960,A:B=A*256:POKE133,A

2 POKE574,112:POKE575,A: REM
SET UP USR(X)

END.

PROGRAM LISTING

0240
41
43
45
46
48
4A
4D
4F

0251
53
56
57
59
5B
5E

0261
63
66
67
6A
6D
6F

0270
73
76

CA
D0 FD
A2 32
88
D0 F8
A9 80
8D 55 02
A9 00
A0 98
A2 00
9D 00 80
E8
E0 20
D0 F8
EE 55 02
CC 55 02
D0 EE
AD 54 02
18
6D 58 02
8D 54 02
D0 I!l
60
AC 44 02
AE 44 02
4C 40 02

DELAY 1

LINE 2
LINE 1

LINE 3

DEX
BNE
LDX
DEY
BNE
LDA
STA
LDA
LDY
LDX
STA
INX
CPX
BNE
INC
CPY
BNE
LDA
CLC
ADC
STA
BNE
RTS
LDY
LDX
JMP

DELAY 1
#32 Dissolve Rate

DELAY 1
#80 Begin Scrn Mem (HB)
0255
#00 Character Code
#98 End Scrn Mem (HB)
#B0
SCRNMEM + X

#20
LINE 1
0255
0255
LINE 2
0254

0258
0254
LINE 3

0244
0244
DELAY 1

Line Length

Incr SCRNMEM (HB)

,
Incr SCRNMEM (LB)

* * * OSI KEYBOARD

By: John Whitehead
17 Fruda1 Crescent
Knoxfie1d 3180
Australia

The OSI keyboard is in the

4 PEEK (65) January, 1986

form of a matrix. It is ac
cessed by sending data between
o and 255 to its memory loca
tion of 57088 (HEX$DF00) and
then reading that location to
detect which key or keys are
pressed. Due to incomplete
address decoding, it actually

covers memory 57088 to 57343.

For normal text use, a machine
code routine in the MONITOR
ROM at $FD00 takes care of
keyboard scanning and decod
ing. This routine leaves the
ASCII value of the key pressed
in the 6502 accumulator. This
routine can be called from
BASIC with:

POKE 11,0 : POKE 12,253 :
REM 253=$FD

X=USR(X) : A = PEEK (531)
PRINT CHR$ (A)

The hardware for the Super
board C1P is different from
the C4P. The C4P drives one
row high at a time where the
C1P drives one row low at a
time. This makes the PEEK and
POKE values different. Both
are shown in the chart but
examples are for C1P.

For special use, such as game
movement keys or joysticks, a
simple BASIC or M/CODE routine
can detect keypresses.

To detect a single key, e.g.,
the space bar, look up the row
and column values for "SPACE"
in the chart and use them in
the program below. The"Ctr1 C
routine has to be turned off
as it will POKE rows zero and
two, which could give wrong
column values. If you only
want to detect keys in row
zero, you can leave Ctr1 C
turned on and just PEEK the
columns. The Ctr1 C routine
is at $FF9B. You could disas
semble this to see how it
works.

10 KEY=57088
20 POKE530,1 :REM TURN OFF

CTRL C
30 POKE KEY,253 :REM DRIVE

ROW TWO LOW
40 PRESS = PEEK(KEY) : PRINT

PRESS: REM GET COLUMN VALUE
50 IF PRESS = 239 THEN PRINT

"SPACE BARn : POKE530,0 :
STOP

69 REM 239 = COLUMN FOUR
DRIVEN LOW BY CONNECTING
IT TO ROW TWO

79 GOT039

To detect two or more keys
pressed together, a LOGICAL
AND is performed on the row
and column values from the
chart, e.g., for Ctr1 Z, drive
rows 9 and 1 low and look at
columns 5 and 6. To calculate
a LOGICAL AND, the values need
to be converted to binary.
The LOGICAL AND of 0 and 0
0, 0 AND 1 = 0, 1 AND 1 = 1.

THE POKE VALUE IS:-
CTRL 254 $FE = %1111 1119

Z = 251 = $FB = %1111 1011

1111 1019
$FA = 259

•

•

•

•

•

•

THE DATA SYSTEM
• Stored Report Formats

• Stored Jobs, Formats, Calcs,

,. Multiple Condition Reports

• Multiple File Reports

• Calc, Rules Massage Data

• Up to 100 Fields Per Record

HARDWARE'REQUIREMENTS: 48K OSI, Hard Disk, serial
system, OS-65U 1.42 or Later; Space required: 1.3 megabytes
for programs and data.

• User Designed Entry/Edit Screens

• Powerful Editor

• Merges - Append, Overlay, Match

• Posting - Batch Input

• Nested Sorts - 6 Deep

• Abundant Utilities

PRICE: $650.00 (User Manual $35.00, credited towards TDS
purchase). Michigan residents add 4% sales tax. 30 day free
trial, if not satisfied, full refund upon return.

TIME & TASK PLANNER
30 DAY FREE TRIAL - IF NOT SA TISFIED, FULL REFUND UPON RETURN

• "Daily ApPOintment Schedule" • Work Sheets for all Aspects
• "Future Planning List" - sorted • Year & Month Printed Calendar

• "To Do List" - by rank or date • Transfers to Daily Schedule
A SIMPLE BUT POWERFUL TOOL FOR SUCCESS

HARDWARE: 48K OSI, 8" floppy or hard disk, serial terminal PRICE: $300,00 (User Manual, $25.00, credited toward TTP
system, OS-65U v. 1.3 or later. purchase). Michigan residents add 4% sales tax.

FINANCIAL PLANNER
• Loan/Annuity Analysis
• Annuity 'Due' Analysis
• Present/Future Value Analysis

HARDWARE REQUIREMENTS: 48K OSI, 8" floppy or hard
disk, serial terminal system, OS-65U v. 1.2 or later.

DEALERS: Your Inquiries Most Welcome

GANDER SOFTWARE, Ltd.

• Sinking Fund Analysis
• Amortization Schedules
• I nterest Conversions

PRICE: $300.00 (User Manual, $25.00, credited toward
Planner purchase). Michigan residents add 4% sales tax.

FROM THE FOLKS WHO BROUGHT YOU:
All This
THERE IS MORE COMING SOON:

3223 Bross Road
"The Ponds"
Hastings. MI 49058
(6t6) 945-2821 "It Flies"

Program Generator for TOS
Proposal Planner
Time and Billing AIR

PEEK [65] January, 1986 5

THE PEEK VALUE IS:-
CTRL 191 $BF %1011 1111

Z = 223 = $DF = %1101 1111

1001 1111
$9F = 159

PEEK (5 7~88l (Jl SDY00 TO GET KE YPRESS VALUES

C4 HEX VALUES SBe S4e S20 S 10 seB $04 $02 Sr.I
C4 PECIMAL VALUES-128 64 32 16 B 4 2 I

CI HEX VALUES S7Y SSY SDf SEf Sr7 HS 5fO srE
CI DECIMAL VALUES-127 191 223 239 247 251 253 254

COLUMN C7 C6 C5 C4 C3 C2 CI CQ

I 2 3 4 5 6 7

SBO 12B S 7F 127 R7
B 9 0 I - nils

OUT
S40 64 SSF 191 R6

L 0 Lf Cfi

S20 32 SDf 223 R5
W E' R T Y U I

Slii 16 SE, 239 R4
S D Y G Il J K

S0B 8 SF7 247 n3
X C V B N

S04 4 HS 251 R2
Q A Z PACE / ; P

$02 2 HD 253 RI
RPT CTRL ESC LEfT n I GilT SHIfT

HIFT SIlIFT LOCK
501 I

T T D:!;:AL POKE VALUE
C I HEX POKE VALUE

, C4 DEC IMAL POK E VALUE
C4 HEX POKE VALUE

BASIC will do the above calcu
lation'for you as shown below.

100 KEY=57088
120 POKE530,1
130 POKEKEY,254AND253
14B PRESS=PEEK(KEY):PRINTPRESS
150 IF PRESS =(191AND223) THEN

PRINTnCTRL Z":POKE530,0:
STOP

170 GOT0130

If 'you run the above, you' may
find you can't escape. This
is because you have three keys
pressed, one in row one, two
in row zero, and the column
value is not 159. This can be
fixed by changing line 150 to:

* BEGINNER • SCORNER

By:L. Z. Jankowski
Otaio Rd 1, Timaru
New Zealand

DEBUGGING & TESTING OF
PROGRAMS

PART II

PROGRAMMING MISCONCEPTIONS

Effective debugging is impos
sible if the programmer is
wrong about how the program-

6 PEEK [65] January, 1986

IF PRESS = (191AND223) ,OR
PRESS = (191AND223AND254)
THEN ••••

o TRY RUNNING THIS LITTLE
PROGRAM USING ROM BASIC

1
10 REM PRINTING IN ANY

ORDER
20 POKE4,194:POKE5,165
30 REM SELECTED LINES FOR

SAVING OR '
40 LIST50:LIST30:LIST10
50 REM THIS CAN BE USED TO

LIST
POKE4,195:POKE5,168 60

OK

* * ming language works or if
there are misconceptions about
programming logic.

What will be the output in re
sponse to this line:

10 IF A=l or 0 THEN PRINT
nDone"

Change the "OR 0" to OR A=0 n
and compare the new output
with the old. Both- expres
sions are syntactically cor
rect. Which is the "right"
one would depend on what the
programmer was trying to do.

Will BASIC accept this line,
and if so why?

10 X=4: Y=4: IF X=Y-l
THEN PRINT "TRUEn,X,y

Even this is valid: A=4=B=C=D=
E. But only the first "="
sign actually assigns a value
to a variable. The "=n signs
that follow the first one are
interpreted by BASIC as,
"compare and evaluate the ex
pression as either TRUE or
FALSE n•

Try this program:

,10 Y=9: 'DEF FN A(X) = X*X
20 PRINT FN A(3)=Y

BASIC prints
because it is
that nFN A(3)"
value as nyn.

the value
"TRUE n to
has the

n_l n
say

same

How many times will this loop
be executed? Answer the ques
tion, then test your answer.

10 FOR C=4 TO -1: PRINT C:
NEXT

DIM N$(20) declares an array
with 20 entries •.•.• plus one
for N$(0), makes 211

Will BASIC accept the next
line?

100 IF X=0 THEN: FOR A=l TO
10: NEXT

The next program is an example
of recursion - line 100 calls
itself. (Dictionary defini
tion: Recursion - see Recur
sion). The program prints
numbers from the Fibonacci
Sequence, used in the study of
phyllotaxy and organic growth,
amongst other things. '

AT l.ASTI

SINeLE DISI FLOPPY COPIER
FOR OS-U KACHINBS

WITH ONLY 1 FLOPPY DRIVE

SOC 0 P Y
Thh ia tho atility .h.ia,
.iaoo 081 .tartod .akia,
• ia,lo floppy dri ... o .a
o .iao •• Now wit. Loo
Iaakow.ki'. SDCOPY, yoa oa~
.ak. baok-up floppi ••
without illvol ... ill, yoar hard
disk.

USA- laolu4b, P &,11 $25..50
Foroi,a- Plu., Aotaal P~.ta ••

PEEI(U)
P. o. Boz 347

Owia.a .i1l., .0 21117
(301) 363-3268

•

•

•

•

•

•

39 PRINT "1 , 1 ,";:
K=2:P=1:C=1

199 N=P+C: PRINT N ",";:K=K+l:
P=C:C=N:GOSUB 199

Variable "K" in the program
counts the number of elements
printed. The program stops
with "OM ERROR" when 28
numbers have been printed from
the sequence. There is pienty
of memory free. What BASIC is
trying to indicate with "OM
ERROR" is that the stack is
full - too many GOSUB calls.
Change the program to avoid
this problem. (Hint: use
GOTO). The program will now
halt because of nOV ERROR"
the numbers have gotten too
big. What is the value of the
l85th member of the Fibonacci
Sequence?

Programmers sometimes
this: "IF F THEN
save typing "IF F<>9

"

write
, to

THEN

What will BASIC do to this
line?:

19 IF Q$="Y" OR F OR X>C-l
THEN 489

It is important to clear up
misconceptions about program
ming and the programming lan
guage being used.

TRACE

The "spy", the "dump" and the
"trap" are powerful debugging
techniques. There is also the
"trace". Some trace programs
are very fast; others are very
slow. There are three good
trace programs available to
OSI disk users. There is the
standard TRACE utility as of
fered by DOS 3.3 and 3.2.
Program output and line num
bers are written continuously
to the screen at high speed.
There is no line-feed, carri
age return between the line
number and program output.
For those without a bionic
eye, use CTRL-S to stop the
trace in order to examine the
screen, press any key to con
tinue program execution.

The "HOOK" trace is more use
ful. It works exactly like
the OSI trace but uses the
"T*" command as an on/off
toggle and can be part of a
BASIC program. It is pos
sible, therefore, to selec
tively trace any part of a
BASIC program.

Another useful trace program,
also by Rick Trethewey, is
found on pg. 78 in the MICRO
OSI book. The program actual
ly lists the line of BASIC

~compuwork. WANTS:

PROGRAMMERS

being traced. What is more,
the values of all variables
are also optionally printed.
The trace waits for a key
press before continuing.

Tape users also have access to
an excellent trace, written by
M. Piot; see MICRO, July '81
issue.

BLOCK EXECUTION

No, not a punishment for er
rant programmers, but another
debugging and testing tool.
It is possible to run a pro
gram from any line number,
e.g., RUN 285. Using the word
RUN clears all variables back
to zero or null, but using
GOTO and GOSUB does not clear
variables. A block of code
can be easily tested from a
GOTO or GOSUB in Immediate
Mode type "CLEAR", and then
define the required block

. variables. Now type "GOTO"
and the line-number, to exe
cute the block of code. If
the program bug is in the
block, then it is effectively
isolated to a specific piece
of code. If the bug is not
present, then that information
is equally valid. Remember,
the STOP command can be in
serted into the block at will,
to narrow down the search
still further •

Must be expert on application programming using 65U and/or 65E
Must be able to relocate to the Atlanta area

VERTICAL MARKET
PACKAGES
Must be field tested in your area
Must be comprehensive
Must have a broad market
Must have established current users
Must run on Isotron 250J (1.44)
Must run on OBI series (1.00)
Must be well documented

HORIZONTAL MARKET
PACKAGES
Must be easy to use and easy to learn
Must be single program file and one or

two data files
Must not require extended input (65U)
Financial or insurance applications

a priority

Send resumes/salary requirements and marketing infolinstruction manual to:
Leon Haverly
Compuwork, Inc.
1395 Marietta Parkway, Suite 706
Marietta, Georgia 30067

We sell and service OSI computers, OBI computers, Wyse terminals, ADDS VP
terminals. Special note: we have 10 years factory experience on OKI drive and
board repair. For information please call:

Roger Stone or Jim Smith (404) 426-5509

PEEK [65] January, 1986 7

TESTING

Testing a program is an at
tempt to prove that it will
work with all valid data and
that it will cope with most
(all?l) invalid data. Debug
ging a program merely removes
all visible errors.

An excellent way of testing
code is to see whether it does
"nothing". In other words,
the. program should not crash
because it is working with
null data. This is one end
condition. Test the program
with the other end-condition.
Test the program with valid
data. What does the program
do with invalid data, e.g.
"0", negative values, null in
put? Is invalid data creeping
in, inadvertently causing the
program to crash? If so,
where? Testing with end
conditions is not exhaustive,
so that elusive bug could
still remain. Test with, dif
ferent end conditions. This
is always a good way of
cleaning up a "BS ERROR" (ar
ray bad subscript- error). The
program has attempted to
reference an array value be
yond the array definition.
The solution to the problem is
not to extend the array defi
nitionl

The following program will
calculate and print the loga
rithm table for any base.
"RUN 20" prints the whole
table. "RUN" confines "NUMBER"
to integer values only. The
program will crash for certain
values. Insert a line 35
which checks that the chosen
values of N, F and T are in
the correct range.

10 I=-l
20 INPUT "LOGARITHM BASE ";N:

PRINT
30 INPUT "FROM value ";F:

INPUT "TO value ";T
40 PRINT: PRINT: PRINT "BASE

LOG NUMBER": PRINT
50 :
100 FOR C=F TO T
200: Al=LOG(C) / LOG(N)
300: IF Al>INT(Al) AND I

THEN 500
400: PRINT N" ~ " Al " ="

TAB(13) C
500 NEXT
600 PRINT: PRINT "DONEI"

BASIC ERROR CODES

Responding correctly to BASIC
error codes is important. For
example, in response to an "NF
ERROR" (NEXT without a match
ing FOR) it is important to
match up correctly, "FOR"
statements with "NEXT" state
ments. Do NOT use a "GOTO" to
get out of troublel But some
times the BASIC error message

8 PEEK [65] January, 1986

can be misleading, or just
plain uninformative as to
where the real error is. For
example, the program below
stops in line 10. Where is
the real error?

10 FOR C=l TO 10: READ Y:
POKE 54954,Y: NEXT

500 DATA 240, 200, 234, 196,
171,245,254,256,243,
238

Or, how about this one:

10 PRINT CHR(95)

BASIC reports "BS ERROR" but
all that's missing is "$"
after "CHR"I If the number in
brackets'was less than 10 then
no error would be reported.
BASIC will accept undeclared
arrays if the dimension is
less than 10.

EUREKA I

The bug has been found,
Eurekal But before leaping
out of the bath to race down
the road, it is of value to
consider more than just one's
unclothed state. Is the bug
found the right one?1 Is
there another bug immediately
following the discovered one?
Could it be that the discover
ed bug is repeated elsewhere
in the program? No matter
where the bug was, it is worth
testing the WHOLE program
again. It is not unknown for
a solution to an error to
introduce bugs of its own.
Finall~, in many instances ,a
second opinion is worth seek
ing. Working with another
programmer is an excellent
idea. Keep a notebook of bugs
found and what the solution
was.

NOT MY FAULTI

It is a natural reaction when
the bug strikes to blame the
computer, the dog, the weather
or even the BASICI Although
the reaction is best curbed
severely, on occasion criti
cism of BASIC is justified.
The infamous garbage-collect
bug of OSI ROM BASIC is one
such example. Another infuri
ating problem is wrong answers
to calculations. The answer
is obviously and simply "I"
but BASIC comes ,up with
".999999999"1 These are BASIC
internal, base-two, floating
point calculation algorithm
errors - I thinkl

Here is another one from OS-
650 3.3. Run this program.

10 PRINT& (0,0) I (24) & (40,15)
"A" & (40,15) I (33):
INPUT Y$

20 PRINT& (0,18) "X" Y$ "y"
ASC (Y$)

Program output will be "XAY
65". Now change the '"A"' to
'''"' Program output. will
be 'X Y 32'. Wrongl Program
output is "Xy" followed by "FC
ERROR". "Y$", in spite of
reading a blank off the
screen, has had its value
changed from a blank to a
null. Consequently, ASC(0)
generates the error message;
Nothing in the manual 'bout
thatl

THE POOR PROGRAMMER

Debugging is hard work, de
manding time, patience, intui
tion, information and scien
tific analysis. Employ the
Golden Rule, "What is this
segment of code supposed to
do?". When debugging, make
changes in the program ONE at
a time. Be prepared to re
write the code. Don't believe
in magic, but be prepared for
the bizarre and not just
with OSI stuff eitherl

*
NOTES ON WP6582 VI.l, 5.25-

By: Paul Chidley
Courtesy of TOSIE
Toronto Ohio Scientific Idea

Exchange
P. O. Box 29
Streetsville, Onto
Canada L5M 2B7

Below are some of my notes on
WP I would like to share with
you.

What happens when you hit "D"?
The floppy boot routine in ROM
loads track 0 into RAM start
ing at $2200 for 8 pages. (1
OSI page = 256 bytes, there-.
fore, 8 pages 2K bytes.)
The CPU then jumps to $2200
where the code from track 0
then proceeds to load track 1.
When finished itsinitializa
tion routines, it then does a
JMP to $2ADE. This is where
you will find the Load Common
Subroutine that loads 5 tracks
starting with track 7 into RAM
starting at loc~tion $9200.
The CPU then jumps to $0222
(NOT $0209), which then jumps
to $lFF7, which then continues
on into WP6502.

Now that you know WP's entry
point, hit break, then do a GO
$0222 and you're back in WP.
This is very handy if you
should want to change some
value in the operating system
(such as step speed at $26A3)
and then re-enter WP without
rebooting.

•

•

•

•

•

•

.
, Inc.

p.o. box 21146 • denver, CD 80221
phone [303] 428-0222

Wangtek sets the industry's standard for excellence in
1I4-inch streamer technology because its tape drives are
all created with an uncompromising dedication to the
highest possible quality in design. engineering and
manufacturing. These factors combine to give the Wangtek
5000E tape drive a level of performance and reliability that
is unexcelled in today's marketplace.

The Wangtek 5000E is uniquely suited to meet the
backup demands of today's smaller size. higher capacity
Winchester-based computer systems-it packs up to 60
MBytes of data storage in a compact. half-high form factor
only 1.625 inches tall. For added user convenience. the
drive accepts and automatically adjusts gains for either
standard 45 MByte tape cartridges (450-foot cartridge) or
high-capacity 60 MByte cartridges (600-foot cartridge).

WHAT'S NEW AT 0.8.1. ???

What's the answer? The DMA 360 removable 51/4" Winchester. It's exactly the same size as a 51/4"
half-height floppy drive-but that's where the similarity stops.

The DMA 360 gives you hard-disk reliability. Floppies don't.
The DMA 360 protects your data in a totally

sealed cartridge. Floppies don't.
The DMA 360 packs 13 megabytes (10

formatted) on a single ANSI-standard
cartridge. It takes up to 30 floppy
disks to achieve an equal
capacity.

The DMA 360 even has a lower cost
per-megabyte than a floppy. But it
gives you so much more.

Like an average access time of 98
milliseconds. A transfer rate of
625 kilobytes per second. And an
error rate on par with the most
reliable conventional Winchester
disk drives.

DMA Systems half-height
removable 51/4" . :'illl~?;·~ •. t .. c:"'b ..
Winchester.

FOR PRICING AND DELIVERY CONTACT YOUR NEAREST 0.8.1. DEALER!!!

'WANGTEK 5000E is a registered trademark of WANGTEK CORPORATION
*DMA 360 is a registered trademark of DMA SYSTEMS

PEEK [65] January, 1986 9

Have you ever modified an I/O
driver on track e only to boot
WP6Se2 to find it doesn't
work? Well, I have already
told you why. The load rou
tine loads 5 tracks, starting
at track 7, into RAM starting
at location $e2ee. If you
examine your disk you will see
that track 11 is 8 pages long.
When all 8 pages of track 11
are loaded, all of track e has
been overwritten, including
mucQ of the operating system.
The memory layout is illus
trated below. The problem and
the fix are both really quite
simple. Somewhere along the
way (probably when they con
verted the 8" version to 5")
track 11 was put on the disk
as being 8 pages long. This
was a snapshot of what their
system looked like when they
did it, and when you boot, it
overwrites your systems val
ues. To fix this major prob~
lem, simply call track 11 into
memory and save it back using
1 as the number of pages.
Then when you boot, it will
load from $22ee to $22FF and
leave your tables and drivers
alone.

TRK#/Addresses in HEX

e7 e2ee - e9FF
e8 eAee - llFF
e9 12ee - 19FF
Ie lAU - 21FF
11 22ee - 29FF Should be

22ee - 22FF

Have your ever booted your
copy only to get a "Pr.Check"
message? If you have, the
odds are that you have been
modifying the hardware. On
boot up, WP expects to see a
daisy wheel printer at $FSee.
If you can afford WP6Se2, then
surely you can afford a daisy
wheel, right? Well, I'm sure
somebody has one somewhere.
The problem is that if you put
ROM or anything else at $FSee,
then WP may think that what it
sees is the daisy wheel's
status word. It, therefore,
prints the message to tell you
to replace the paper in the
printer you haven't got. You
could also see this error if
you have very noisy lines,
what it wants to see is $FS,
if it doesn't, out comes the
error. It assumes that if it
sees $FS, then you haven't got
a daisy wheel. The subroutine
that actually prints the mes
sage is at $19EF. The loca
tion we are interested in is
$1992. To solve the problem
change the contents of $1992
from $FS to what your system
contains at that location. A
better way is to change the
code so that it always branch
es, but I won't show you that
one, try it, just look in the

18 PEEK [65] January, 1986

area of $1992.

Try looking at $2336, I think
it is WP's keyboard routine.

Author's note: Make sure you
also read the article "6SD
V3.3 Bug (Oct. page 8 & Nov.
page 7)," my copy of WP6Se2
also suffered from the same
problem. I recently got 8"
drives as well as 5" working
on my system so I have started
disassembling WP6Se2 Vl.3A.
This version fixed many of the
problems with Vl.3 but it was
never released on 5", I want
to disassemble it both to
learn more and to convert it
to 5". If you are interested,
drop me a line.

*
USR (X) (Y) (Z) (1) (2) (3)

By: Earl Morris
3288 Washington
Midland, MI 48648

BASIC's USR function normally
has only one input variable.
By calling the proper routines
in a Machine Language program,
additional variables can be
called from BASIC. The follow
ing program allows a flexible
number of input variables.
After reading a variable, the
program looks for another "(D
in the BASIC line. If found,

UBR (X)(Y)(Z) •••

another variable is read in.
The program as written adds up
the input variables and re
turns the sum to BASIC. In
teger addition is used so that
decimals will be truncated.
The input can be simple num
bers, letter variables, ex
pressions or functions. The
example BASIC program uses
from 2 to 5 inputs to the same
USR function.

The program as written was as
sembled at $8888 and runs with
6SD 3.2. Changes are given
for ROM BASIC. If any other
readers have written interest
ing USR functions, how about
sending them in to PEEK(6S).

Saaple wm Proszaa

10 POKE 57Q.0IPOKE575.12B IREM FOR DISK
BASIC

20 A=2:B=-10IC=100
30 PRINT USR (2)(2)
QO PRINT USR (A)(B)(C)
50 PRINT USR (A+B)(C/2)(10.2)
60 PRINT USR (10)(10)(10)(10)(10)

OK
RUN

Q

92
62
50

OK

Saaple Output

101
201
301
qOI
501
60;
701
80
90

- FOR DISK BASIC - ROM CHANG.EB BELOW

100
110
120Go
130
lqO
150
160
170
180
190
200;
210;
220
230
2QO
250
260
270
2BO;
290;
30000NE
310
320
330SUML
3QOSUMH
350;
3601
370;
3801
390;
QOO;
110:
120;
Q301

*

RETURNS SUM OF INPUTS (VARIABLE NUMBER) -
TO BET UP USR VECTOR

DISK BASIC POKE 57Q,OlPoKE 575,128

_=f8000
LDA .. 00
STA SUML
STA SUMH
JSR fl056
CLC
LOA fB2
ADC SUML
STA SUML
LDA fBI
ADC SUMH
STA SUMH

CLEAR SUM LO BYTE
CLEAR SUM HI BYTE
FLOATING TO BINARY
PERPARE TO ADD
GET INPUT VALUE Lo BYTE
ADD TO SUM

GET INPUT VALUE HI BYTE
ADD TO SUM

NOW CHECK TO-BEE IF ANY MORE VARIABLES
LOY .. 00
LOA (fC7),Y GET NEXT CHARACTER IN BASIC LIN
CMP .'(CHECK FOR LEFT PAREN
BNE DONE
JSR fOCCD GET NEXT VALUE FROM BASIC
JMP GO REPEAT PROCESS

LOAD REGISTERS WITH SUM AND RTS TO BASIC
LDA SUMH
LOY SUML
JMP f1218 PASS VALUE TO BASIC AND RETURN
.BYTE tOO
.BYTE tOO

CHANGES FOR ROM BASIC
POKE Il,OIPoKE 12,128
fl056 TO fAE05
fB2 TO fAF
fBI TO fAE
(tC7) TO (fC3)
fOCCo TO tAAAo
f1218 TO tAFCI

*

•

•

•

•

•

•

F D 0 M P

By: Roger Clegg
Data Products Maintenance Corp.

9469 Telstar, El Monte, CA 91731

My FDUMP is much slower than OSI'o machine-code
one. but much smaller. five times faster than
their old BASIC dump. and can do both ASCII and
Hex.

1 REM **********.********** F 0 U M P **************.***** ••• *******
2 :
18 C=8: 1=8: L=31: U=127: CR=13: P=46: F=15: S=16: CB=9889: CC=15886
28 RAM=38888: 0=256: 02=65536: 03=16777216: CR$=CHR$(13)
38 X=PEEK(9832): DV$=CHR$(65+X): IF X=128 THEN DV$=·E·
48 PRINT. INPUT·DEVICE ·,0$: IF 0$=·· THEN D$=DV$
58 PRINT TAB(22)·<RETURN> = .KEy·ICR$,: INPUT·FILE ·,FILE$
68 PW$=·ANAN·: IF FILE$=·· THEN FILE$=·.KEY·
78 OEV 0$. CLOSE: FLAG 9: OPEN FILE$.PW$.l. FLAG 10
88 FAaO*PEEK(9987)+02*PEEK(9988)+03*PEEK(9989)+16. REM File address
98 FS=0*PEEK(9918)+02*PEEK(9911)+03*PEEK(9912)-16: REM File size
95 •
188 INPUT·PORT ·,0
118 PRINT TAB(22)·<RETURN> = No·CR$,: INPUT·HEX DUMp·,R$
120 H=8: IF R$=·Y· OR R$=·H· THEN H=-l
138 IF H=8 THEN 188
140 DIM HX$(15).HEX$(255)
158 FOR 1=0 TO 15: HX$(I)=MID$(·8123456789ABCDEF·.I+1.1): NEXT
168 FOR 1=8 TO 15: FOR Ja8 TO 15: HEX$(I*S+J)=HX$(I)+HX$(J): NEXT: NEXT
178 CPL=16: GOTO 288
188 PRINT TAB(22)·<RETURN> = 64·CR$,: INPUT·CHARS PER LINE·,CPL
198 IF CPL<l OR CPL>69 THEN CPL=64
288 ST=-(LEFT$(FILE$.l).·.·)
218 IF STel THEN PRINT TAB(22)·(or • sign and record number)·CR$;
228 PRINT TAB(15)ST;CR$I: INPUT·STARTING INDEX·,R$: PRINT
230 IF ST=l AND LEFT$(R$.l)=·.·TBEN IX=0*(VAL(MID$(R$.2))-1)+1: GOTO 268
248 IX=ST. IF R$<>·· THEN IX=VAL(R$): IF IX<8 OR IX>=FS THEN IX=ST
258 IF STal AND IX<>8 AND CPL=64 THEN IX=64*INT(IX/64)+1
268 IF 0<2 THEN PRINT· ·FILE$· OPEN FOR ALTERATIONS AS FILE .1·: PRINT
278 IF 0>1 THEN PRINT.D.TAB(28)·DUMP OF ·FILE$. PRINT.O: PRINT'O
288 : .
388 FLAG 25: POKE 8778.192: POKE 8779.36
318 POKE 9432.243. POKE 9433.48: POKE 9435.232: POKE 9436.48
328 OA=FA+IX. REM Disk eddress
338 NB=CPL*INT(16888/CPL): IF NB>FS-IX THEN NB=FS-IX. REM Number bytes
348 OH=INT(OA/03): X=DA-DH*03: DM=INT(X/02): X=X-OM*02: OL=INT(X/O)
358 POKE CB+l.X-DL*O: POKE CB+2.DL: POKE CB+3.0M: POKE CB+4.0H
368 POKE CB+5.NB AND 255: POKE CB+6.NB/0
378 POKE CB+7.48. POKE CB+8.117: REM Transfer to RAM at 38888
388 ERR=USR(8): IF ERR THEN PRINT·DEV ·0$· ERROR·ERR·IN 388·: GOTO 460
398 :
488 FOR JaRAM TO RAM+NB-l STEP CPL: PRINT CR$,
418 IF PEEK(CC) THEN POKE CC.8: INPUT· Continue·,R$: IF R$=·N· THEN 468
428 PRINT.D,J+IX-RAM TAB(18)
438 IF H THEN GOSUB 688: NEXT J. GOTO 458
448 GOSUB 588: PRINT.O: NEXT J
458 IXaIX+NB: IF IX<FS THEN 388
460 POKE 8778.288: POKE 8779,16. FLAG 26
478 DEV OV$: END
488 •
490 REM ASCII DUMP
495 •
588 FOR IaJ TO J+CPL-l: C=PEEK(I)
510 IF C=8 THEN PRINT.D.·_·;. NEXT: RETURN
528 IF C>L AND C<U THEN PRINT.O.CHR$(C) I: NEXT: RETURN
538 IF C=CR THEN PRINT.O.·.·;: NEXT: RETURN
548 PRINT.O.·@·,: NEXT: RETURN
578
588 REM HEX DUMP
598
688 FOR IaJ TO J+F: PRINT'D,BEX$(PEEK(I))· .;: NEXT: PRINT.O.·I·;
618 FOR IaJ TO J+F: CaPEEK(I): IF C<aL OR C>aU THEN Cap
628 PRINT.D.CHR$(C),: NEXT: PRINT.D.·I·: RETURN
638 :
648 :
58880 FLAG 10. ERRaPEEK(10226)
58818 IF ERRa138 OR ERR=131 THEN INPUT·PASSWORO·/PW$: GOTO 78
58828 IF ERR=128 THEN PRINT: PRINT·FILE NOT FOUND·: GOTO 48
58838 PRINT·DEV ·0$· ERROR·ERR·IN 78·: DEV OV$: END

* BETA/65
A REVIEW

By: D. G. Johansen
P. O. Box 252
La Honda, CA 94929

PRODUCT DESCRIPTION

BETA/65 is a recently develop
ed high-level language for the
6592 microprocessor. During
formulation of BETA/65 it was

* recognized that available lan
guages for microprocessors
were developed over two dec
ades ago for a different com
puting environment and user
community. Systems designed
in that era were optimized for
mainframe computers and used
mainly for numerical process
ing applications.

Today's computing applications
are more diverse compared with

earlier times and the average
user is less likely to be a
computer specialist. Lan
guages of the 1969s are cap
able of meeting the needs of
today's user. However, this
is done in an ad hoc manner
causing systems to be more
complex when users are de
manding simplicity.

The proliferation of computers
means that the potential user
base for a language is far
greater than in the past. For
this reason, upgrading the
quality of programming systems
is regarded as a very neces
sary and worthwhile enter
prise.

ADVANTAGES OF BETA/65

BETA/65 was developed to test
several programming concepts
which have surfaced in recent
years. Each of: the following
advantages may appear in one
or more other programming sys
tems. However, BETA/65 is the
only system integrating these
features into a common pack
age.

Interpreter Based - Interpre
tive systems need only one
file for program representa
tion. Compiler-based systems
such as FORTRAN, PASCAL, and C
require two (or more) files
and this is a source of com
plexity for these systems.
Interpreter-based systems are
interactive because the source
-to-object compile step is
eliminated. The stigma of slow
run time associated with in
terpreters has been largely
eliminated by use of byte
codes designed for high-speed
interpretation.

Direct Notation - An APL-like

COIlqHJter
• repa.r

Board level service on :
eOSI /Isotron
eTeleVldeo
e IBM pc/xt
Floppy drive alignment:
eSlemens
e Shugart
eTeac
Terminal repair:
eTeleVldeo
eMlcro-Term

(1 week turnaround)
Sokol Electronics Inc.

~
474 N. Potomac St.

• Hageratown. Md. 21740 I. (301) 79t'2562

PEEK [65] January, 1986 11

notation is used for program
ming BETA/65 expressions. APL
has not appeared on most
micro-based systems due to
incompatibility with the ASCII
character set found on most
keyboards. BETA/65 substi
tutes ASCII names familiar to
BASIC programmers and brings
the advantages of direct (APL
like) notation to the standard
keyboard.

Extensions - Direct notation
allows new functions to be
easily assimilated into the
language. This is not readily
done with BASIC due to use of
algebraic notation, which has
complicated precedence rules
for function execution. with
direct notation, only four
function types are used.
These are sufficient to des
cribe any mathematical expres
sion in a natural and easily
verifiable form. New func
tions, for specialized appli
cations, may be added to the
primitive instruction set by
the user.

Mixed-Precision Arithmetic
All functions operate on
mixed-precision data from one
to fifteen bytes for either
argument. Use of mixed pre
cision 'virtually eliminates
the scaling problem and frees
the programmer for more pro
ductive work. Also, mixed
precision allows separate pro
grams, working at different
precision levels, to easily
exchange data. This simp
lifies programming in an inte
grated environment.

APPLICATIONS

The author of BETA/65 has over
25 years experience designing
navigation and control systems
for aircraft and spacecraft.
These applications demand re
liable and accurate operation,
and must present a well-con
ceived user interface. Com
parable applications include
peripheral control, graphics,
tele-communications, and con
trol processing.

Peripheral Control - Micropro
cessors now appear in computer
peripherals (e.g., printers,
display terminals), and stand
alone devices, such as copying
machines and consumer appli
ances; Due to its compact
size (less than 2~K), BETA/65
may be used for on-site soft
ware development, staying with
the target machine through the
life cycle. This greatly sim
plifies software development
and end-use maintenance.

Control Processing BETA/65
was initially formulated for
control processing applica-

12 PEEK [65] January, 1986

tions. Machine connections
are built-in, allowing access
to high-speed machine code and
interface ports. The LINK
function allows user calls to
machine code by name or add
ress. In addition to PEEK and
POKE, DPEEK and DPOKE are sup
ported. The latter two func
tions allow two-byte (pointer)
modification with one instruc
tion. Concurrent entry allows
user input without inter
ruption of the running pro
gram.

Graphics - Dot-matrix printers
and bit-mapped video screens
offer new media for graphics
expression. BETA/65 provides
video windows for full use of
display devices. Logical func
tions are provided, allowing
bit-level manipulation. String
functions support text-orient
ed applications. Typical grap
hics applications range from
custom logo and type-face cre
ation, to quick-look data dis
play.

*
OS-65U DATA FILES AND OTHER

MYSTERIES:
FEAR AND LOATHING GUIDE

PART II

By: Rick Trethewey
8 Duran Court
Pacifica, CA 94944

with OS-65U's INDEX command,
you can construct random ac
cess files with any record
length you choose, from one to
the capacity of the disk, and
the fields within these re
cords can be stored with a
precise offset from the begin
ning of the record, thus al
lowing random access at the
field level. Let's look at an
example of a record in a phone
number file:

Field
1
2

Name of Field
NAME
PHONE NUMBER

Length
35
12

In this file, the true record
length is 49 bytes because we
have to allocate one extra
byte for the carriage return
that terminates the entry in
each field. For any data
file, the true record length
can be calculated as the sum
of the lengths of all of the
fields in each record plus the
number of fields. Of course,
the addition of the extra byte
for the carriage return can be
assumed to have been included
in the field lengths listed
above and you can save your
self a step. For now, let's
assume the above figures do

include one byte for the car
riage return.

setting the INDEX command to
point to the start of any re
cord is done with the formula/
command (forgive the PASCAL
like variables);

INDEX<CN> = (RecordNumber - 1)
* RecordLength

The reason we subtract one
from the record number is be
cause most people refer to the
first record in a file as
record number 1. Gaining ac
cess to individual fields
within records requires a
slightly more complex formula.
To determine the value to give
to INDEX in order to point to
field number "FieldNumber" in
record number "RecordNumber",
we could use this subroutine;

Recordlndex = (RecordNumber-l)
* RecordLength

FieldIndex = RecordIndex:
IF FieldNumber = 1 THEN
RETURN

FOR K = 1 to FieldNumber-l

FieldIndex = FieldIndex +
FieldLength(K)

NEXT K: RETURN

Of course, for most applica
tions, the offset to each
field in the record is cal
culated before the program
needs to use the data file.
Then, whenever a field is
needed, the only math required
is to add this offset to the
value resulting from the cal
culation to find the start of
the desired record, thus mak
ing for a faster and more com
pact program.

The value of being able to
directly access individual
fields within any record in
your data file cannot be over
estimated. Think of it for a
moment. If the information
you need is in field number 7
of some record in your data
file, but you don't know which
record, a simple brute force
scan of your data file would
be many times faster if your
program could simply ignore
the first six fields in each
record it had to search. An
other feature of OS-65U makes
this ability even more valu
able, and that is the INDEX
function. The INDEX function
returns the value of the INDEX
pointer for any data channel
you have open. The syntax of
the INDEX function is;

X = INDEX (CN)

where "CN" is the channel num-

•

•

•

•
~,

•

•

ber. When executed, "X" will
hold the current INDEX pointer
to the file in question. The
INDEX function is most often
used to determine the record
number being pointed to during
some file operation in which
the pointer is not under the
explicit control of the pro
gram. This is the case when
the FIND command is used.

The FIND command under OS-65U
does a brute force search of a
data file, looking for a
string specified by the user.
This search begins at the cur
rent INDEX pointer position
and proceeds until a match is
found or the end of the data
file is encountered. The syn
tax of the FIND command is;

FIND "string", CN

where "string" is the string
being searched for, and "CN"
is the channel number being
used to access the data file.
Unlike its OS-65D counterpart,
FIND under OS-65U resets the
INDEX pointer to the start of
the "found" string if a match
is found. Thus, the INDEX
function would return a value
pointing to that string, giv
ing us the ability to calcu
late the record number in
which the match was found.
The required calculation would
be something like;

Recordlndex = INDEX (CN)
RecordNumber = INT(Record

Index/RecordLength) +1

Here again, the "1" is needed
to reflect the cardinal num
bering of records. The user
should note that an additional
calculation may be needed in
order to determine if the
match was found within the ex
pected field number. Such a
calculation would be needed if
the string being searched for
might occur in more than one
field. Subtracting the Record
Index from the current INDEX
(CN) yields the offset from
the start of the record to the
string located by FIND. A
sequential search of the field
offsets will let you deduce
the field in which the match
was found.

The FIND command brings us to
another feature of OS-65U, the
FLAG command. The FLAG com
mand under OS-65U replaces
many of the POKEs that we use
under OS-65D to turn features
on and off. The FLAG command
syntax is;

FLAG xx

where "xx" is a number, usual
ly between 1 and 33 under most
versions of 65U. In most

cases, the command "FLAG x"
will enable a feature and
"FLAG x+l" will disable a fea
ture. There are three sets of
FLAGs that are especially use
ful for dealing with data
files. The first is FLAG 9,
which is much like the TRAP
command under OS-65D V3.3,
except that this feature only
traps disk errors, and when a
trap occurs, the program is
sent to line #59999. There
are some PEEKs available to
determine exactly which disk
error was encountered and the
line number in the program
where the error occurred. FLAG
19 disables FLAG 9 and causes
a program to stop after any
disk error. The next FLAG to
consider is FLAG 11. FLAG 11
prevents OS-65U. from writing
the leading spaces generated
by BASIC when it PRINTs a
positive number. This can
save you quite a bit of space
in a large data file, and
since it can only cause a
problem if you really try, I
always enable it. FLAG 12
allows leading spaces to be
sent to the data file. Final
ly, we come to the FLAG which
is essential when using the
FIND command, and that is FLAG
5. FLAG 5 sets the value of
the INDEX pointer to lE9 if
the search fails to find a
match. FLAG 6 forces a normal
disk error if the end of the
data file is reached (note
that such an error can still
be trapped by FLAG 9 even if
FLAG 6 is executed).

Now that we have all the tools
that give us precise control
over where we will read or
write in our data file, we
need the actual commands to
perform these operations. As
I noted above, we use INPUT
and PRINT, but in a special
format. To read information
from a data file opened using
channel #CN, we would use;

INPUT %CN, variable

where "variable" is the
able in which to store
information read from the
file. Likewise, to write
formation, we would use;

PRINT %CN, variable

vari
the

data
in-

Don't forget that with random
access files, an INDEX command
will likely precede any INPUT
or PRINT command.

The formulas and calculations
presented above that determine
the INDEX needed to use a data
file, all have a significant
flaw. That flaw is that they
require the program to know
the complete structure of the

data file before the program
is written. On the other
hand, if we construct our data
files in a uniform manner, we
can write programs that can
use all of our data files.
The most common way of doing
this is to store information
about the features of the data
file which change from one to
the next at the very start of
the data file. The term used
to describe the area of the
data file in which this infor
mation is stored is called the
"header". As you might expect,
even the structure of the
header must be uniform from
one file to the next if we are
to succeed here. In 1979, Ohio
Scientific developed a package
of programs designed to gener
ate random access files and
they call it OS-OMS. OS-OMS
is by far the most common data
file structure in use on OSI
systems today. While not with
out flaws, OS-OMS is a simple
structure that is well-suited
to use with OS-65U. With all
of that in mind, let us ex
amine how OS-OMS works.

To begin, think about the
characteristics of random ac
cess files that vary from one
to another. They are the re
cord length, the number of
fields in each record, the
length of each field, and the
name of each field. There
fore, all of those features
must be stored in the header.
But we need to know a bit more
before we can use the data
file. We also need to know
how many records the data file
can hold and we also need to
know how many records have
been stored in the file thus
far, and this too is stored in
the header. Finally, OS-OMS
requires that the name and
type of the file be included
in the header. There are two
types of os-mls data files,
Master Files and Key Files.
Master Files are random access
files that hold all of the
information needed by the ap
plications, and Key Files hold
information about the contents
of individual fields within
associated Master Files and
pOinters to the Master File.
By convention, OS-OMS data
file names are a full six
characters long, with the
first five being the name of
the file and the last charact
er being a number which deter
mine's the file type (9
Master File, 1 through 7 = Key
File). Therefore, "MAIL 9" is
a Master File and "MAIL 1" is
a Key File associated with
"MAIL 9". Note that the nu
meric file name extension on
Key File names does not de
termine the field number used
by that Key File.

PEEK [65] January, 1986 13

The structure of the header of
an OS-DMS Master File is as
follows;

CONTENTS INDEX

5 character file name 0
2 character file type 6
End of Data File Index 9
Beginning of Data File

Index 20
Record Length 31
Maximum Number of Records 42
Field Name(s), Field

Length(s) 53

Rec. #1 Beginning of Data File

Note that beginning at INDEX
53, the field names and field
lengths are stored sequential
ly. A typical subroutine to
open an OS-DMS Master File
might look like this;

1000 OPEN "MAIL 0","PASS",1
1010 INDEX<1>=0 INPUT%l,

NAME $
1020 INDEX<1>=6 INPUT%l,

TYPE
1~30 INDEX<1>=9 INPUT%l,

EODF
1040 INDEX<1>=20: INPUT%l,

BODF
1050 INDEX<1>=31: INPUT%l, RL
1060 INDEX<1>=42: INPUT%l, NR
1070 INDEX<1>=53: NF=0: 1=0
l0S0 INPUT%l, F$,FL: NF=NF+l:

IF INDEX(l) <BODF THEN
US0

1090 DIM F$(NF), FL(NF),
I(NF), A$(NF):INDEX<1>=53

1100 FOR K = 1 TO NF
1110 INPUT%l, F$(K), FL(K)
1120 I(K)=I: I=I+FL(K)
1130 NEXT K
1140 TN = INT«EODF-BODF)/RL)

Lines 1010 through 1060 re
trieve the elementary informa
tion about the Master File.
Line 1070 sets the channel
INDEX to the start of the
field names and lengths and
also initializes the field
number counter and a variable
used to determine the field
offsets discussed previously.
Notice that the method used to
determine the number of
fields. That is, you read a
field name/length pair, and
increment the number of fields
counter until the channel
INDEX reaches the beginning of
the data file. Line 1090
dimensions arrays to hold the
field names, lengths, index
offsets, and record contents.
The FOR ••• NEXT loop from line
1100 through 1130 reads in the
field name/length pairs and
calculates the offset from the
start of the record to each
field and stores it in the
array I(n). Finally, line
1140 calculates the number of
records stored in the data

14 PEEK (65) January, 19S6

file by dividing the
ence between the end
file and the start of
by the record length.

differ
of the

the file

Using this structure, a sub
routine to retrieve a record
might look like;

2000 RPTR = (RN-l) * RL: REM
Remember this formula?

2010 FOR K = 1 to NF
2020 INDEX<l> = RPTR+I(K):

INPUT U, A$(K)
2030 NEXT K: RETURN

This routine retrieves the en
tire record in the array A$
(X). Note that I put the cal
culation that determines the'
INDEX of the start of the re
cord outside of the FOR ••• NEXT
loop in order to speed it up.
Changing INPUT to PRINT in
line 2020 would write the
array A$(X) as record number
"RN". Look closely at line
2020 for a moment and see how
the value in I(X) is used.
Note that 1(1) always equals
zero since field number 1 is
always at the start of the
record. From there, 1(2)
FL(l) and I(3)=I(2)+FL(2) .••
I(NF) =I(NF-l)+FL(NF-l). I
have found this code to be
fast and easy to follow in
programs.

This brings us to Key files.
What are Key files? Simple.
Key files are files that are
associated with Master files
which contain the contents of
a selected field from each
record in the Master file,
along with the INDEX to the
start of the corresponding re
cord in the Master file. OK,
Y9U say, but what good are
they? I've asked myself that
question a number of times
before I realized what a big
help they can be. OS-DMS al
lows up to seven Key files to
be associated with each Master
file. If you'll recall, the
file name of every Master file
ends with a "0". Key file
names end with a digit from 1
to 7. This digit is only to
differentiate between Key
files and is not indicative of
the field number that the Key
file holds as a reference.
The purpose of Key files is to
allow quick scanning of se
lected fields within a Master
file. Since Key files are
sequential, they are very com
pact and thus they require a
minimum of disk space. Their
main claim to fame is their
facility for being quickly
sorted. For example, let's
look again at our phone book
data file. Occasionally, we
may want the file dumped in
alphabetical order. Other
times, we may need to see the
file 1 isted by area. code.

While we could sort the entire
Master file each time we need
to access its contents in a
special sequence, it is faster
and easier to do so by using
Key files. And it is not just
the order of access that can
be keyed upon. For example,
one Key file may point to
records in a customer list who
buy one kind of product, and a
separate Key file can point to
customers who buy other pro
ducts. OS-DMS Key file en
tries begin at an INDEX of 53
and are made up of two pieces
of information. The first
piece is the contents of the
record in question preceded by
a caret symbol (i.e., "to).
The second piece is the INDEX
to the start of the record.
Since it is a sequential data
file, however,· special care
has to be taken when this file
is used. For example, if you
want to edit an individual
entry in the Key file, you
have to read in the entry pair
to be edited and also every
subsequent entry to the end of
the file. Further, once the
entry is edited, it and all of
those subsequent records must
be re-written out to the file.
Fortunately, there is little
cause for editing individual
entries. Indeed, doing so
would be an exception to nor
mal practice. Ordinarily, all
updates to a Key file will
involve a total rewriting of
the entire file's contents,
whether you are sorting the
current contents of the Key
file or reloading it to· re
flect new entries in the as
sociated Master File.

Continued next month.

*
DISK DRIVE

RECONDITIONING
WINCHESTER DRIVES

FLAT RATE CLEAN ROOM SERVICE.
(parts & labor included)
Shugart SA4oo8
Shugart SAI004
Seagate ST412

FLOPPY DRIVE

23meg $550.00
lOmeg $390.00
10meg $295.00

FLAT RATES
8" Single Sided Shugart $190.00
8" Double Sided Shugart $250.00
8" Single Sided Siemens D&E Series $150.00
8" Double Sided Siemens P Series $170.00

Write or call for detailed brochure
90 Day warranty on Floppy & Large Winch.
1 Yr. Warranty on 5" & 8" Winchesters.

Phone: (417) 485-2501

r6J FESSENDEN COMPUTERS
116 N. 3RD STREET
OZARK, MO 65721

•

•

•

•

•

•

TURNS ANY FLOPPY BASED COMPUTER INTO HARD DISK BASED, INSTANTLY.

• PLUGS INTO ANY OSI TYPE BUS
• ONE RIBBON CABLE CONNECTS

TO DRIVE
• COMPLETELY SELF CONTAINED
• 32 BIT ERROR DETECTION AND

CORRECTION FROM
• HAS REAL TIME CLOCK

*CALENDAR WI BATTERY ON SCSI
ADAPTER BOARD $1,999. 00

• CAN BOOT DIRECTLY FROM OSI
505/510 CPUs OR DENVER BOARDS
WISCSI PROM

• IDEAL BACK-UP FOR ALL OSI HAfJD
DISK COMPUTERS

The SPACE-COM SUPER SUBSYSTEM Uses 5%" Industry Standard Hard Disk drives interfaced to
the OSI bus by the DS-1 SCSI Host Adapter Board at the computer end and the state of the art OMTI
5000 series Intelligent Disk/Tape Controllers at the disk end. The Denver DS-1 Board not only pro
vides the Bus Translation, but gives Real Time of Day, Day/Week, AM/PM, and Day/Mo .• With on
board battery, Date and Time are maintained wlo power.

Single 20 MIS drive (15.7 formatted) single case $1,999.00
Single 26 MIS drive (21 formatted) single case $2,199.00
Dual 20 MIS drives (31.4 formatted) dual case $2,999.00
Dual 26 MIS drives (42 formatted) dual case $3,299.00
Super Fast 85 MIS drive (70 formatted) single case $3,999.00
Dual 85 MIS drives (140 formatted) dual case $6,699.00

!ilGIm !ffiPD lPIlIDmID illffirn!& ~ ~tmI:i' ~
{l(lIj'lllil=D rndI ~ Ba

• Can be plugged onto aux port of each DBI that
. mants availability of a local printer and each
board's output can be routed to a printer or to
any other PB-l in system fDr a shared printer.

• Takes load off main bus for printing.
• nonnal address FBFO. but jumperable to CFOO

for standard port B address.
• If used m/female mola, plugs directly onto

OSI bus.
Only $ 69.95 ea.

SPACE-COM International
14661A Myford Road, Tustin, CA 92680 (714) 731-6502

PEEK [65] January, 1986 15

