
•

•

•

EE JlLY 1985
. VQ.6, NO.7

The Unofficial OSI Users Journal

P.O. Box'347
Owings Mills, Md. 21117
(301) 363~3268

Column One
Here it is July again time
of national celebration and
vacations. A time to sit back
and ponder where it is all
leading and where we each fit
in. .

While you are vacationing,
take PEEK along. This issue
is full of things that ·will
make you· think about signifi
cant improvements to your
hardware and software, but
none of them are one-line
quick fixes or a simple cut
jumper.

Just contemplate how an 89
fold speed increase might in
fluence the operation of your
software package by implement
ing Dave Livesay's 68999 co
processor. For those who
would rather use their heads
instead of wallets, consider
rewriting your GOTOs and GO
SUBs to ·take advantage of how
BASIC really finds that line,
as related by TOSIE.

For those new (and not so new)
to OS65-U, and that in partic
ular means you business users
who are not getting every
ounce out of your' machines,
John Whitehead continues his
e·xplanations and Roger Clegg
shares very useful programmer
tools.

Had YOll .considered. ~.he FORTH
Op. Sys., but never really
knew what it was all about?
You will if you." ;pad what
Charles Curley has· to say I

Roy Agee is back at it again
with another thought provoking
piece on how to train computer
users so that you won't have
to train them again ••• again
••• again.

INSIDE
OS-U PROORAfottING AIDS PART 2
lHE OSI~88BB SYSTEM

2
3
6
8

lHE C()flJTER PS A T<Xl.
SCRTED D I RECTffiY Fffi WP-312
GO FffilH ~D ru. T I PLY
PSSEMBLERlEDITffi BUG & FIX
FILE HNn.1 NG OS65-U & OS-1Jt1S
SCR I BE ..me PROCESSffi REV I EW
SILENCE YClJR DISK DRIVE
SCREEN DlWIDISK BPSED SYSTEMS
Ta<EN LOAD/SAVE PROORAM

1~
12
14
16
17
18
19
2B

BPS I C SPEED & LINE NtJeERS
. DEPlER PR<F I LE

Dan Sweger has been advertis
ing his SCRIBE word processor
for some time. Now we have a
review and example of how its
versatility is being utilized
in the real world. And Tom
McGourin sheds more light on
WP-2/3's DIR.

Who says we have forgotten the
cassette? We strike twice with
the cassette assembler bug fix
and token load and save.

For all npn users, Dave Pom
pea's piece on how to save
your MF disks by unloading the
head and turning the drive off
is a must. This is a mod we
feel should be implemented on
all MF machines. If you are

.not up to making the little
board, wait until next month
for the simple mod. that just
lifts the head, but why not go
all the way? While you are at
it, read how Jankowski, true
to form, speeds up the screen
dump.

That leaves us with Dennis
Shoulder's description of how
yet another unique real world
problem was solved by a little
creative thinking. As we have
said before, Dennis is not the
only one to find a unique use
for our machines, our problem
is in getting you to follow
his lead in sharing the ex
perience.

Even if you don't have a
unique situation to write
about, please do drop us a
line or two (we'll forward
them) about the articles you
read. A little positive feed-

back does great things for the
author's ego and encourages
more articles.

On a more somber note, we've
received word that Ian Eyles,
who has done so much for Aus
tralia's OSI newsletter is
quite ill. If you can find
time, I am sure that he would
appreciate a nget well n note
addressed to him c/o KAOS, 19
Forbes St. Essenden, VIC 3049,
Australia.

On the manufacturing front,
we have received, at last, but
too late for this issue, all
the "poopn on t~e 799 series
machines. It will be in next
month for sure. We are told
that ISOTRON is accepting or
ders on the 719 which is ready
to go except for the documen
tation which is due this month
and will probably coincide
with a dealer training program
to bring dealers up to speed
on the machine and UNIX.
Meanwhile, over at OBI, things
are rolling full steam ahead
and they have just announced a
new leasing policy suitable
for the purchasers of smaller
machines.

So there you have it. Be a
patriot and enjoy the 4th.

os-u PROGRAMMING AIDS
PART 2

By: Roger Clegg
Data Products Maintenance

Corp.
946111 Telstar
El Monte, CA 91731

OS-65U DEBUGGING TOOLS

(1) Typing FLAG 7 in the di
rect mode (that is, when no,
program is running), then RUN,
will display each line on the
screen before it executes.
The only tricky pOints are
that a line with a GOSUB or
FOR in the middle is not dis
played again when the prog~am
returns, and that the lines
may be delet'ed bya screen
clear or cursor up before you
can read them. 'The second
problem can be fixed on the'
Hazeltine 142111 by moving dip
switch #6 on the left, which
changes the lead-in code for
screen clear, etc.

The display runs too quick to
read. You can use Control-S
to pause and Control-O to
resume, or Control-C to break
and CONT to resume, but the
best tools are NULL 255 (or
POKE 21,255), which slows down
the screen display, and POKE
11686,17, which ~uplicates the
display on printer #5. POKE
11686, 1+2A (D-l) for printer
#D.

These tools can be inserted as
program statements if you want
a fast run up to the critical
routine. They are turned off
by FLAG 8, NULL III (or POKE
21,111), and POKE 11686,1.

(2) 'Insert STOP statements at
various points. When the pro
gram breaks, you can tell
BASIC to print the values of
suspicious variables, change
their values, or list some
lines, then you can CONT to
the next STOP, RUN again, or
GOTO a different line. You
can't change a line or use the

COPYflghl. 1985 PEEK (65) Inc. All Righls Reserved,

published mOn1hly

Edilor ' Eddie Gieske

Technical Editor - Brian Harston
Circulation & Advertising Mgr. - Karin a. Gieske

~~o~~c~~~~ro~e~~ie; A. Fusselbaugh, Ginny Ma~~r Surface

US ~9
Canada & MeXICO 11 51 class) $26
So, & Cen, America $38 $30
Europe $38 $30
Olhe' Foreign $43 $30

All subscriptions are for 1 year and are payable in advance in'
US Dollars,
For back issues, subscriptions, change of address or other
information, write to:

PEEK (65)
P,O, Box 347
Owings Mills, MD 21117 (301) 363'3268

Mention of products by trade name in editorial material or
advertisements contained herein in no way constitutes en
dorsements of the product or products by this magazine or
Ihe publisher,

2 PEEK [65] July, 1985

Editor without losing the var
iables, and if you interrupt a
listing by Control-C and then
CONT, you may get a "?NF
ERROR". Remember to remove the
STOP statements after debug
ging.

(3) If using FLAG 7, you may
prefer Control-C to the STOP

, statement as it has more flex
ibility. The same cautions
apply. '

(4) If variable X is acquiring
a strange value, you can in
sert lines like PRINT CHR$(13)
XI at various pOints. (The
CHR$(13) and I prevent the
screen from scrolling.)

(5) To debug a seldom-used
routine, you can go there from
the direct mode, for example:

DV$="A": D=l: NA$="TESTCASE n:
TY=3: GOTO 18111111111

or you may prefer a debugging
line early in the program, or
just before the menu:

98 NA$=nTESTCASE n: FOR TY=l TO
6: GOSUB 18111111111: PRINT TY,X$:
NEXT: STOP

(6) Even when debugging is
apparently complete, it is
good' practice to leave in
place lines to catch "impos
sible" errors.

For example:

65 IF DV$>"E n THEN STOP
A STOP statement like this
uses little space, and if it
is ever· hit, the message
nBREAK IN 65 n immediately di
rects_you to the problem.with
out the necessity of a specif
ic er~or message.

HOW TO TRANSFER LINES FROM
ONE PROGRAM TO ANOTHER

Say lines 71111111-719111 in npGMl n
to become lines 55111-595 in
"PGM2 n•

A nSCRAT" file is needed.
There should be one on your
Utility disk.

(1) If you have fewer than 1111
lines to move, LOADnpGMl",
renumber them one by one using
the Editor, swap in the Utili
ties disk, and go to (1111).

(2) Insert Utlitities disk,
RUNnRSEO n•

(3) Swap in the npGMl n disk,
LOAD"PGMI n , swap back the
Utilities.

(4) Type: RSEO 1,,1 This
gives the lowest possible num-
bering.

(5) LIST. If the lines you
need are now riumbered lower

. than 55111-595, say 413-422,'
'then'~SEO 55111,413,5 and go to
(10) •

(6) Suppose the lines required
are numbered 61118-617.

Type: CLOSE:
LISTU,61118':"6l7:

OPEN"SCRATn,l:
PRINT%l, "OK" :

NEW

(7) Type: INDEX<l>=III: FLAG 13:
INPUT%l, (notice the comma).
There should be a couple of
seconds delay and then "?SN
ERROR".

(8) LIST and check lines 61118-
617 are there.

(9) Type: RSEO 55111,,5 (renum
ber from 55111, interval of 5).

(1111) Type:CLOSE:OPEN"SCRATn,l:
LIST%1,55111-595: PRINT%l,nO~n:
NEW.

(11) Swap in the "PGM2"
LOAD npGM2" , swap back
Utilities.

disk,
the

(12) Type: INDEX<l>=lII: FLAG
13: INPUT%l, (notice the com
ma). There should be a couple
of seconds delay and then n?SN
ERROR".

(13) LIST ~nd check lines 55111-
595 are there.

(14) Swap in the "PGM2" disk
and SAVE.

(15) LIST 55111-595. Look out
for truncation of extra-long
lines which were originally
entered by using "?" as an
abbreviation for "PRINT".

(16) If any lines are trun
cated, reboot with' the Utili
ties disk or whatever disk you
usually use, LOAD "PGM2 " , fix
the truncated lines, and SAVE.

HOW TO DELETE A BLOCK
OF LINES

Say from 6111111111 to 899111, a
nSCRAT" file is needed. There
should be one on your Utility
disk.

(1) LOAD your program, swap in
the Utilities disk.

(2) CLOSE: OPEN"SCRATn,l
FOR 1=6111111111 TO 899111 STEP 1111:
PRINT%l,I: NEXT: PRINT%l,"OK n
This puts blank lines into
"SCRAT n for merging with your
program. ~If the lines are not
numbered in lllls, omit the STEP
1111.

(3) INDEX<l>=lII: FLAG 13:
INPUT%l, There should be a
delay and then n?SN ERROR n•

•

•

•

•

•

•

(4) LIST and check the lines
are gone, then swap in the
right ,disk and SAVE.

OS-65U RESERVED WORDS

ABS
AND
ASC
ATN
CHR$
CLEAR
CLOSE
CONT
COS
DATA
DEF
DEV
DIM
END
EXP
FIND
FLAG

, FN
FOR
FRE
GOSUB
GOTO
IF
INDEX
INPUT
INT
LEFT$
LEN
LET
LIST
LOAD
LOG
MID$
NEW

NEXT
NOT
NULL
ON
OPEN
OR
PEEK
POKE
POS
PRINT
READ
REM
RESTORE
RETURN
RIGHT$
RDN

RUN
SAVE
SGN
SIN
SPC(
SQR
STEP
STOP
STR$
TAB (
TAN
THEN
TO
USR
VAL
WAIT

The word NULL is
replaced by RSEQ,
or PNTR.

sometimes
SWAP, , KILL

A variable name cannot contain
a reserved word. Beware par
ticularly of ON, OR and TO.

The only words that cannot be
used in the immediate mode are
INPUT, DEF and DATA.

The only word that cannot be
used in a program is CONT,
although LOAD, SAVE, LIST and
RSEQ would not normally be in
a program.

DRESSING UP THE PROGRAM

Blank lines and indentation
can be achieved by entering
the program using colons, and
then inserting these temporary
lines:

7 FOR 1=24576 TO PEEK(122)+256
* PEEK(123)-5:IF PEEK(I)
THEN NEXT

8 1=1+5: IF PEEK(I)=58 THEN
POKE 1,32

9 NEXT: STOP

Running the program will re
place leading colons with
spaces.

Then delete
lines.

the temporary

If there is machine code ahead
of the program then 24576 in
line 7 must be replaced by
24576+PEEK(24572)+256*PEEK(245
73) •

* THE OSI-68111 SYSTEM

By: David M. Livesay
Ave de la Resistance No. 6
B-4920 Embourg, Belgium

At the request of PEEK(65),
I've decided to take pen' in

hand, or should I say compu
ter, and tell the story of how
a Motorola 68009 ,became at
tached to the OSlo This art
icle describes the history of
the 68000 Attached Processor
built by Digital Acoustics and
my work in building an inter
face and developing' the soft
ware to use it with the OSlo
The combination results ,is a
relatively low cost but very
high performance 68000 system
for the OSI user. This system
enables you to learn to pro
gram the 68000, speed up
BASIC, use it as a RAM disk
and run complete languages and
operating systems in the 68000
and still retain your OSI
hardware.

I will go back aways to about
1980. At that time a company
called Digital Acoustics had
for some time been in the
environmental noise analyzer
business. They were using the
6502 and were looking for
something more powerful. This
was about the time the 68000,
Intel 8086 (and other Intel),
T.I. 9900 series, National
16032 and various Zilog pro
cessors had just been announc
ed or were coming on the
market. Their investigations
showed that the Motorola 68000
with its 15 general purpose 32
bit registers, high speed,
large linear address space ,of
16+ megabytes and powerful in
struction set was the best
candidate for the job. They
also felt that the 68000 had
the best long term potential.
At that time the 68000 looked
like it would be around for at
least 10 years. It now looks
like it and its family members
will be with us for at least
'15 more years.

Back then and even to some ex
tent today, Motorola promotes
the 68000 as being a 'micropro
cessor for expensive compli
cated,systems. Digital Acous
tics was not interested in
tying 16 terminals to one mic
roprocessor. They just wanted
to have a very 'powerf"ul pro
cessor doing one job. So
after studying the data sheets
and doing a little experiment
ing they concluded that yes
indeed you could use the 68000
in a relatively simple system.

About the time they decided
that the 68000 was the proces
sor for their new generation
noise analyzer, the market for
noise monitors dried up. So
they came up with the idea of
building a 68000 board to at
tach to a microcomputer such
as the PET or the Apple. Both
the PET and the Apple version
became available at the end of
1981. The boards were avail-

able with 4K to 92K of static
RAM with the 68000 running at
8, 11 or 12.5 MHz. During the
next year, they came out with
a l28K expansion board and
more software. Due to the lack
of an Assembler in those days,
all of the early code was pro-'
duced using a program called
the' Hand Assemblers Helper.
In 1982 a company called Phase
Zero came out with a cross as
sembler that would run on the
Apple. The Digital' Acoustics
software at the end of that
year consisted of several im
pressive graphics demonstra
tions including a ~-D airplane
that would rotate and move in
3 axes, a Microsoft compat~ble
floating point package which
hooked into BASIC, a monitor
program and several demonstra
tion programs. Since that
time other people have devel
oped PASCAL, FORTH, COMPILED
BASIC and other software to
run on the Digital Acoustics
boards.

Now, this brings us to the end
of 1982. As we were making
our annual trip home to
California, I was reading an
lssue of Micro perhaps the
S~ptember 82 issue. ,Anyway" I
read an advertisement for the
Digital Acoustics board which
could be attached to the
Apple. I had been a long time
OSI and 6502 user and I was
also beginning to think that I
wanted something faster and
more powerful. After looking
at several of the new proces
sors that were coming on the
market, I had decided that the
68000 was the processor on
which I would focus my atten
tion. My impression was that
just as the 6502 was much
easier to program than the
8080, the 68000 would be much
easier to program than the
6502. So right there on the
plane, I decided that I woul~
purchase the Digital Acoustics
board and attach it to the
OSlo '

Right after Christmas I drove
up from San Diego to Santa Ana
to visit Digital Acoustics.
It turned out that nobody but
the owner was there. So he
gave me a demonstration of the
board on the Apple. They
didn't have any spare ,boards
to sell but after explaining
that I was living in Belgium
and ,would have trouble getting
the board at a later date, he
not too reluctantly parted
w,ith one board with 4K of
memory on it. I then walked
out with one largish board and
quite a bit less money than I
had walked in with. At that
time a board with 4K cost $683
plus taxi

PEEK [65] July, 1985 3

In late January 1983 upon our
arrival back in Belgium, I un
packed my board, set it next
to the OSI and left it there
for a few months while I tried
to catch up on some of my real
work. About May I noticed
that the 68eee board was not
going to mate itself to the
OSI without some help. I had
purchased the Apple version of
the board which includes a
small interface board to plug
into one of the 'Apple expan
sion slots. I obtained a sche
matic of the Apple so that I
could determine how the Apple
interface worked. After about
a week or so of work in the
evenings, I had an interface
board that plugged into the
OSI and the Apple interface
board in turn plugged into it.
I then wrote a short program
that would allow transferring
data back and forth between
th~ OSI and the 68eee so that
I could test out my interface.
Everything worked as it should
so I proceeded on to the soft
ware.

Now this is when·the fun real
ly started. I wanted to start"
with hooking the 68eee float
ing point routines into OSI
BASIC. I didn't know where to
look for the math routines in
BASIC so I started to disas
semble BASIC. At one point I
thought that I could change
the function jump table to
jump to the code that sends
the. data to the 68eee and
waits for the results. I
manually entered the 68eee
code and the OSI utilities
code and stored it on disk.
When I tried to run BASIC I
found that it sort of worked.
I then discovered that some of
the math routines called other
math routines. I decided that
I would need ·to place the
hooks into the BASIC math
routines themselves. So I went
back to disassembling BASIC.
Not too long after this I
received a copy of a commented
disassembly of OSI Microsoft
BASIC (OS65D version) copy
right by M. K. Miller. I don't
know if it's still available,
but I found it to be very com
plete and very useful. With
the use of this document I was
able to finish getting the
68eee floating point package
to work after a few weeks.
All in all, I spent about 4
months to do what could have
been accomplished in about 1
month if I had had the correct
information to begin with.

When this was done, I decided
to build a printed circuit
board to replace my wire wrap
interface board. I layed this
out and included an OSI bus
interface which includes all

4 PEEK [65) July, 1985

of the main signals plus some·
additional ones to make it
easy to interface some types
of hardware. About this time
I also thought I might be able
to sell some of this. har.dwar.e
and software. This brought me
to the first part of 1984.
While I was waiting for the
prototype boards .to be finish
ed, I continued with the soft
ware and got the Hand Assem
blers Helper running on the
OSI plus got a monitor program
running and wrote a few brief
demonstration programs.

With that not too brief back
ground, I will describe the
status of the hardware today.
The current hardware consists
of the Digital Acoustics dyna
mic RAM CPU board with l28K to
le24K (1 megabytel) running at
12.5 MHz with one wait state
all connected to the OSI with
an interface board that plugs
into the OSI 48 pin bus. For
those with a C4 machine with
all slots filled, the 68eee
can also be interfaced through
the 16 pin expansion bus. The
68eee system sits butside the
OSI and connects with a 4e
conductor ribbon cable. The
68eee board is about IS" X
6.5", and Digital Acoustics
sells a stainless steel case
designed to hold about four
boards and a Ie amp power
supply. This case is 4 inches
wide by 8 inches high and
about 19 inches deep. The
signal lines consist of two 8
bit data· paths (input and out
put) plus 7 other signal lines
used for status, reset and the
handshake signals. The OSI
can write and read data, write
and read status and reset the
68eee. The 68eee can read and
write data and read status.
Data under full handshake con
trol can be transferred at a
rate of 45eee bytes per second
with a 1 MHz OSI system. With
a 2 MHz system the transfer
rate will be about geeee bytes
per second. Since this is sig
nificantly above the average
disk transfer rate, it isn't a
system bottleneck. In order
for all this data transfer to
take place, both microproces
sors must have routines to
handle the transfer. The 68eee
has a' builtin monitor PROM
that allows it to communicate
right after reset. On the OSI
side the routines must be
supplied in either machine
code or BASIC. Normally, this
will be in machine code for
reasons of speed. In addition
to the 68eee board, Digital
Acoustics builds two high res
olution graphics controller
boards which can be attached
to the 68eee board and a math
chip board for the National
Semiconductor math chip. The

two graphics boards are now
used in combination with the
68eee boards in a CAD system
sold by Cascade Graphics.
Digital Acoustics is now work
ing on a new graphics control
ler board which will use a
second generation graphics
chip. This I suspect will be
supported with software and
should be of interest to the
serious hobbiest.

So now what can we do with all
of this hardware? One of the
ways that we can use it is to
treat the 68eee as a periph
eral to the OSI. In this mode
we place some code into the
68eee which will upon command
from the OSI do something for
us. One example of this is
using the 68eee to perform the
math routines in BASIC as was
already described. In this
case the 68eee just sits
around waiting for the OSI to
send it a command plus the
arguments of a math function.
While the 68eee performs the
math function, the OSI waits
for the results and then
returns to BASIC. Other exam
ples of uses where the 68eee
would be a peripheral are: As
a RAM disk, storage of vari
ables for BASIC, routines ·to
perform sorting of lis.ts, etc.
There is in fact another way
in which we can use this OSI-
68eee combination. We can
place the 68eee in charge and
the OSI becomes an input/out
put processor. At first sight
this may sound as if I said I
will hook up a printer to my
OSI and the printer will be in
charge. But what happens is
this; we place a program into
the 68ee9 which could,. for
example, be a language and op
erating system, and then start
that program running. We then
place the OSI into a machine
language program which waits
for commands from the 68999.
These commands can be such
things as read the keyboard,
write to the display, read a
disk, send data, etc.. So
it's possible to have a real
68e99 system with the 68999 in
total control. I have one
example of a language run
ning in the 68999 which I will
describe later.

Now that I've described the
hardware and a littl·e about
how we can use software with
it, you might ask what soft
ware is available. At this
time, the OSI interface board
comes with the following soft
ware:

1. Utilities code for data
transfer between the 689ge and
the OSlo

2. A floating pOint math

•

•

•

•

•

•

• , Inc.
p.o. box 21146 • denver, co 80221
phone (303) 428-0222

Wangtek sets the industry's standard for excellence in
1I4-inch streamer technology because its tape drives are
all created with an uncompromising dedication to the
highest possible quality in design, engineering and .
manufacturing. These factors combine to give the Wangtek
5000E tape drive a level of performance and reliability that
is unexcelled in today's marketplace.

The Wangtek 5000E is uniquely suited to meet the
backup demands of today's smaller size, higher capacity
Winchester-based computer systems-it packs up to 60
MBytes of data storage in a compact, half-high form factor
only 1.625 inches tall. For added user convenience, the
drive accepts and automatically adjusts gains for either
standard 45 MByte tape cartridges (450-foot cartridge) or
high-capacity 60 MByte cartridges (600-foot cartridge).

WHAT'S NEW AT 0.8.1. ???

What's the answer? The DMA 360 removable 5114" Winchester. It's exactly the same size as a 51/4"
half-height floppy drive-but that's where the similarity stops~ .

The DMA 360 gives you hard-disk reliability. Floppies don't.
The DMA 360 protects your data in a totally

sealed cartridge. Floppies don't.
The DMA 360 packs 13 megabytes (10

formatted) on a single ANSI-standard
cartridge. It takes up to 30 floppy
disks to achieve an equal
.capacity. ..

The DMA 360·even has a lower cost:
per-megabyte than a floppy. But it
gives you so much more.

like an average access time of 98
milliseconds. A transfer rate of
625 kilobytes per second. And an
error rate on par with the most
reliable conventional Winchester

. disk drives.

DMA Systems half-height
removable 51/4"
Winchester.

FOR PRICING AND DELIVERY CONTAcT YOUR NEAREST D.B.I.DEALER!!!

*WANGTEK 5000E is a registered trademark of WANGTEK CORPORATION
*DMA 360 is a registered trademark of DMA SYSTEMS

PEEK [65] July, 1985 5

package that hooks into BASIC.

3. A '8000 monitor written in
a combination of BASIC and
Assembly. The monitor allows
for sending code to ~n9 from
the 68000, changing data in
the '68000, saving to disk,
dumping the registers and
dumping memory from the 68000.

4. A memory test program.

5. Some demonstration prog
rams.

6. The Hand Assemblers Help
ers.

The Hand Assemblers Helper is
a menu driven program which
will walk you through the
68000 instruction set and help
you to hand assemble 68000
code. Since a real cross as
sembler will be complete in a
few weeks, the real use for
this program is as an aid in
learrting 68000 Assembly lan
guage.

In addition to the above soft- '
ware, a 68000 cross assembler
is iD the final stages of be
ing debugged. This assembler
will store the object files on
disk and will, therefore,' not
be limited by the memory size
of the OSI. A very fast BASIC
like language is now up and
running in a preliminary form.

The BASIC like language is
called HALGOL. This is a de
velopment of Digital Acoustics
and is designed to take, full
advantage of the power of the
68000. It is a language which
is both interactive like Mic
rosoft BASIC and compiled.
Each time you enter a line,
the syntax is checked and if
all is well that line is, com
piled. If there is some er
ror'ean understandable error
message is issued. When you
have finished entering the
program, it is alreaqy compil
ed and when yOu ente~'run, it
w ill run right now and very
fast ~ How fast? Well 'consi-
der this line: '

FOR I = 1 TO 5000: A=LOG(I):
NEXT I

With a 1 MHz OSI system under
OS65D3.3, it will run in 128
seconds. In HALGOL it will
run in 8.47 seconds. (With
the 68000 hooked into BASIC it
will run in about 23 seconds.)
In general the math functions
will run between 15 and 25
times faster in HALGOL than in
Microsoft BASIC. Also avail
able for use with the Digital
Acoustics boards is a math
board which holds the National
Semiconductor math chip. With
this math board, the HALGOL

6 PEER [65] July, 1985

math routines will run about
6S to 8S times faster than
Microsoft BASIC. HALGOL un
like Microsoft BASIC doesn't
suffer from the search for
line number problem that cau
ses long programs to run pro
gressively slower.

Other than speed, what are the
features of HALGOL? HALGOL
includes a screen editor which
allows editing anywhere on.:the
screen without entering an
edit mode. Instead of enter
ing EDIT 130, we just move'_tll'e
cursor up to line 13S and'make
the changes that we desire.
The input buffer holds 255

for the math routines.

For those who are interested
in a very high performance
68SSS system, learning 68SSS
Assembly language, or need
high speed computation power
for either a scientific/engi
neering project or even a new
business 'application, this
system may be the answer that
you're looking for.

For those who are interested"
Digital Acoustics publishes a
68SS0 newsletter which is $15
for ten issues. You can write
to them at:

cha'racters which is about four Digital Acoustics
times what we have on the OSI. 1415 E. McFadden, Ste. F
Another important feature is Santa Ana, CA 927S5
that variable names can be up
to 255 characters long. This Now what's the cost of all of
means that unlike Microsoft this? 'The 'pr ice 'of a m1n1mum
BASIC which uses only" the configuration system with 128K
first two letters of the vari- ";', of RAM, the OSI interface
able name, you can have ' 'names' board and software ,is about
such as LENGTHl, LENGTH2, e,tc. $8SS. A' linegabyte system
and each one will be a" unique with case, power supply and
variable. Variables can be OSI interface board with soft-
either "local" to a subroutine ware will be about $140.S.
or "global. n How many of . you·
have wished to be able' to
delete blocks of lines with
one instruction when building
a new program based on an old
one? With HALGOL you can do
it. A resequencing command is
also resident in the language.
This along with an APPEND com
mand allows quick and easy
building of programs using
subroutines or modules from
other programs. Another fea
ture of HALGOL is that you use
labels for subroutines. In
stead of GOTO 5SSS we might
have something like GOTO
~INPUT" or GOSUB "INPUT". The
first line of the subroutine
INPUT will look like this
ISS "INPUT". This avoids the
problem of changing all of the
line' numbers in the subroutine
calling statements when you
start changing your program.
This language is still in its
development stage but is now
about 8S% complete and you can
already write useful programs
with it.

At this time, all of the soft
ware runs under OS65D. HALGOL
at this time can only be used
on a video system, but I will
have a version running on a
serial system in a few months.
Potential uses of interest to
the business users community
would be to use it as a RAM
disk, to do sorting and' sear
ching of lists, to store the
BASIC variables and to speed
up some of the math routines.
At this time, those are only
suggestions because I haven't
written the software for any
of the above mentioned uses
except the hooks into BASIC

THE COMPUTER AS A TOOL
A PROBLEM-SOLVING APPROACH

By: Roy Agee

What's the best way to teach
people how to use computers?
An "application a approach,
based on the premise that
mastery of specific applica
tion software is equivalent to
mastery of the computer? Or-a
"problem-SOlving approach,"
which pr'ovides mastery of the
thinking , skills' required to
use the computer as a problem
solving tool? Computer train
ing has branched off in each
of these distinctly different
directions. This article will
exa'mine the methods and effec
tiveness of them both, making
a ~ase for the problem-solving

'" approach.
, "

~,~

The applications: "approach,
generally advanced for busi
ness students and for in-house

,training, seems to have some
flaws. Most glaring is the
way in which it limits the use
of the computer. Many of the
specific software applicatiOns
currently taught in schools -
spreadsheet and data base
packages are management'
tools, rarely used by entry
level employees.

In the case of word process
ing, the issue is more com
plex. A recent study reported

•

•

•

I.

•

•

that under-use of computers is
a common problem in offices
where secretaries, the primary
users of word processing soft
ware, have been inadequately
trained in computer use. As a
result, they are using expen
sive computer equipment merely
as typewriters with screens.
Along with word processing,
filing and mailing software
can relieve secretaries of
time-consuming, repetitive
tasks and allow them to take
on additional responsibili
ties. But this can only hap
pen if secretaries are train
ed, not just in word process
ing software, but in the use
of the computer as a problem
solving tool. And of course,
like a typist, a word proces
sor without basic secretarial
skill is of limited value to
an employer.

For managers as well, the ap
plication approach is inade
quate. Proponents of this
approach argue that it's not
necessary to know everything
about a computer to perform a
few tasks. But this view
neglects to consider the com
puter as a tool for problem
solving. Just as a new driver
learns how, to drive the car
and not just operate a few of
its isolated features, like
air conditioning or power win
dows, the new computer user
should learn how to use the
machine and not just a few
specific applications. And a
program which teaches the
thinking and problem-solving
skills required in using the
machine is an essential to
this learning.

The problem-solving approach
to computer training benefits
trainers and employers, along
with trainees. Fiscal offi
cers can appreciate the fact
that personnel who can use the
computer as a problem-solving
tool will not need retraining
with the addition of anew
responsibilities or the acqui
sition of more sophisticated
application software.

The recent experience of a
medium-sized company illus
trates this point. The com
pany was expanding and acquir
ed several new, 'more sophisti
cated software packages. The
software was allegedly nuser
friendly.n The cost of the
software was about $2,eee. The
cost to retrain the employees
was over $7ieee; Having learn
ed the fundamental concepts of
computer use and applications
initially, these employees
would have been able to de
cipher and use those new
software packages without ex
pensive additional training.

The first step in teaching
problem-solving is to have a
well thought out, fully devel
oped and proven course of
study. This course should be
competency-based to allow the
entry of people with varying
computer skills. For begin
ners, the course should begin
at the beginning: learning how
to turn the computer on, and
learning the functions of op
erating components.

The next logical step is to
acquire a 'basic understanding
of what makes a computer per
form specific tasks. This
function, known as program
ming, is the skill of writing
a set of instructions which
the computer can understand
and follow. Nearly all micros
have the BASIC language built
in. Consequently, it is most
practical to learn to write
these instructions in BASIC.
Using other languages would
generally require that expen
sive additions be made to the
microcomputer.

Once trainees have learned, the
fundamentals of BASIC, they
can progress in a logical,
sequential manner to acquire
and improve problem-solving
skills. This is accomplished
while mastering the use of the
microcomputer as a problem
solving tool.

A recommended sequence begins
with a simple. file procedure
involving formatting output.
This would be followed 'by such
functions and procedures as:
the computer as a. calculator,
disk and random access files,
top-down design, subroutines,
array processing, spreadsheet
concepts, and batch process
ing. These applications and
functions ,can be taught using
a series of projects or prob
lems with which the trainees
are already familiar.

using'the'foregoing procedure
and sequence, trainees will
compile a catalog of problem
solving techniques. Generic
in nature, these skills will
enable trainees to solve most

~ any problem on nearly any type
of computer; and with experi
ence in most computer lang
uages. Their only real limita
tions will be imagination,
creativity, and the restric
tions of a specific computer.

By learning these fundamental
concepts of computer and soft
ware use, trainees will also
be able to decipher and use
most commerCially-produced ma
terials, design software to
meet specific needs, and main
tain and with source codes,
modify privately and commer-

cially-developed software pac
kages to meet specific needs.
A properly structured and se
quenced curriculum will enable
trainees to use a wide variety
of applications software pack
ages, such as accounts receiv
able, inventory, billing, data
base management, spreadsheets,
using arrays, and so forth.

Additionally, trainees will
have acquired and enhanced the
kind of creative and innova
tive skills which are becoming
increasingly more important
for our changing society. The
new era referred to as the
"Information Age n will require
more innovation and creativity
than was needed or even de
sired during the Industrial
Age. Many companies now have
professional and technical

MEDIA CONVERSION

9 TRACK 1600 .BPI TAPE

• 8 INCH FLOPPY
(OSI 65U)

• 5 1/4 INCH FLOPPY
(OBI FORMAT)

IOMEGA CARTRIDGE
(OBI FORMAT)

MED-DATA MIDWEST, INC.
246 Grand

St. Louis, MO 63122
314-965-4160

OSI/ISOTRON'
MICRO COMPUTER SYSTEM SERVICE

"C2 AND C3 SERIES

"200 AND 300 SERIES

"FLOPPY DISK DRIVES

"HARD DISK DRIVES

CD 7/23/36/74

"TERMINALS, PRINTERS, MODEMS

"BOARD SWAPS
"CUSTOM CONFIGURATIONS

"CUSTOM CABLES

"SERVICE CONTRACTS

PHONE (616) 451-3778

COMPUTERLAB.'INC
307 MICHIGAN ST. N.E.

GRAND RAPIDS. MI. 49503

PEEK [65] July, 1985 7

personnel working out of their
homes. The computer, coupled
with innovative, creative,
critically thinking people, is
vital to the success and con
tinued growth of this phenome
non.

nMatters are at a crisis point
in computing for many corpora
tions,n wrote Dr. Brandt Allen
in the Harvard Business Review
in 1982. Whether this crlS1S
point becomes a major business
problem depends on whether the
challenge of computing techno
logy is met and mastered by
the training personnel. Fund
amental changes are occurring
at a more rapid rate than
ever. The microcomputer has
decentralized computer func
tions and operations. With
the large, central mainframe,
a relatively small, highly
skilled group of people pro
vides the computing services.
The microcomputer is altering
the structure of companies.
Personnel in nearly all de
partments and levels of man
agement are required to use a
computer daily, in order to be
efficient and effective in the
performance of their duties.
To keep the crisis point from
bec'oming a business problem,
these individuals require
training in using the computer
as more than a calculator or
typewriter with a screen. The
workforce of the nlnformation
Age n must have the ability to
use the computer with the same
competence it now has with the
telephone.

If the current trend of frac
tured and fragmented computer
training continues, we will be
retraining the workforce every
time a new piece of software
is developed. But people can
be ~rained in the generic use
of th~ computer as_a tool in
the same time or less time
than that r'equi red' to teach
several'specific and limited
application software opera
tions. 'Doing it right the
first time can save time and
money. Will the cr isis con
tinue, or will we meet and
master the challenge? The
choice should be clear.

Roy Agee is a computer educa
tiou cons~l,tant for Career
Publishing, Inc., Orange, CA.
He is an author, lecturer, and
educator who has been involved
with the development of compu
ter education since 1959.

*
8 PEEK [65] July, 1985

SORTED DIRECTORY FOR WP-3
(and WP-2)

By: Tom McGourin
216 West Michigan Ave.
Kalamazoo, MI 49997

I happened to look at the
directory program in WP-3 one
day, and discovered that it
has two sort routines--to sort
the directory by name and by
track. The program evidently
came intact from WP-2 (the
first REM says it's a WP-2
directory) • The directory
routine only invokes the sort
by-track routine, but with a
little effort I was able to

The first:

have it run both sort rou
tines, write the results into
an array, and then print both
to the screen.

I'm no expert in OS-65DA, so I
don't know if there's an easy
way to make the edits. I
could use only the BASIC line
editor--in other words, re-key
each line, rather than editing
the lines or line numbers.

There are four areas to be
modified: declare the array,
change the display header, fix
the portion of the code that
handles the UNUSED tracks in
the table, and build the ar
ray.

69 DIM NM$(64) ,TO%(64),T9%(64), NA$(64) ,TI%(64) ,T8%(64)

The second is simple (there are three spaces between titles),
and 34 and 31 dashes:

19926
19939
19935
19949
19945
19959
19955

PRINT
RPINT
PRINT
PRINT
PRINT
PRINT
PRINT

DV,TAB(22);"OHIO SCIENTIFIC, INC. n
DV,TAB(22);nWORD PROCESSOR WP-3-2":PRINT DV
DV,TAB(25);n-- DIRECTORY --n:PRINT DV
DV,"FILE NAME TRACK RANGE' PAGES
DV,"FILE NAME TRACK RANGE PAGES"

n. ,

DV,"--------------------------------n;
DV,n-----------------------------"

Now fix the UNUSED and put the track sort into the array:

delete 19111-19149
19997 GOSUB2l999:J=9:CT=AV
19196 NM$="ZZZZZZZn+STR$(J)
19129 NA$(J)=NM$:Tl%(J)=ST:T8%(J)=ET:J=J+l
19139 NEXTI
19149 ST=77:IFLE<76THENFORI=2TOl:GOT019l94
19159 AV=J:FORI==OTOAV-l
19169 NM$(I)=NA$(I):TO%(I)=Tl%(I):T9$(I)=TI%(I):NEXTI
19179 GOSUB29919
19399 FORI=OTOAV
19319 IFLEFT$(NA$(I),7)="ZZZZZZZ"THENNA$(I)="UNUSED ••• "
19329 IFLEFT$(NM$(I),7)="ZZZZZZZ"THENNM$(I)=nUNUSED ••• "
19339 PRINT DV,TAB(l) ;NA$(I) ;TAB(13) ;Tl% (I);TAB(17); n-";T8% (I):

TAB(27);
19349 SZ=T8%(I)-Tl%(I)+1:A$=nn:IFSZ<10THENA$=a "
19379 PRINT DV,T9$(I);TAB(6l);A$;SZ
19389 NEXTI19499 PRINT DV:PRINT DV,CT;" OF 58 FILES DEFINED"
19419 PRINT DV, PU;n OF 62 PAGES USED"
19429 DISKI nAS

Both directories are printed side-by-side, and fit on normal 8
1/2 n wide paper.

*
GO FOR'l'B AND MULTIPLY

By: Charles Curley
5595 E. 7th St., 1285
Long Beach, CA 99894

Over the years, those in the
know have sung the praises of
FORTH while the rest of us
have had to be content with
mere crumbs of information.
Thanks to Charles Curley's
article, somewhat dated, but
very viable, PEEK readers will

*
get a peek into the wonders of
FORTH. This article original
ly appeared in the OSI Users
Independent Newsletter.

I did my own implementation of
FORTH for the simple reason
that, at the time I started,
there were no other implemen
tations on the market. Obvi
ously, a lot of other people
had the same idea. Still, I
found the experiment' worth
while, since I now know the

•

•

•

•

•

•

guts of fig-FORTH· in a way
very few people ever will.
This knowledge is not entirely
useless, as I have just start
ed a job at FORTH, INC. as a
programmer.

What is FORTH, anyway? Is it
a programming language, an
interpreter, a compiler, a
disk operating system, an
assembler, a way of thinking,
ora way to warp your mind?
The answer is, of course, yes!
It certainly is a way of
thinking, since it lets you do
things that no other language
will permit. Where BASIC,
say, prohibits all sorts of
things, FORTH permits not only
many unusual operations, but
also permits additions to the
compiler to allow regular use
of these unusual operations.

A case in pOint: FORTH does
not ordinarily have a CASE
statement. However, 1n the
nBlue Sky Products n* implemen
tation and several others, you
will find a case statement
readily available. This is
done by adding to the com
piler. BASIC has an ON
GOTO construct, which allows
conditional execution. This
is rarely used, but it is con
venient.FORTH doesn't have
one built in, but, because
FORTH can be extended, one can
be constructed. An execution
table can easily be built,

because the programmer has
immediate access to the guts
of the compiler. Here, you do
not need to modify the compil
er, just know how to use it.

FORTH is heavily stack orient
ed. Almost all procedures look
for their parameters on the
stack, and a number of stack
manipulation procedures are
available in FORTH. Also,
FORTH does not use the infix
notation (e.g. PRINT 2 + 3) of
BASIC, .but the simpler reverse
Polish notation (2 3 +) •
In my two examples, the opera
tion is the same, print the
sum of two and three. The
mechanism is different.

In FORTH, everything is grist
for the mill of the interpret
er. Typing the character n2 n
tells the interpreter to place
the value 2 on the parameter
stack. Typing n3 n places the
value 3 on the stack. Typing
the character n+n causes the
system to add the two top
values on the stack. n.n
causes the system ·to pr int the
value currently on the stack
to the console.

FORTH is an integer arithmetic
language, although· one can im
plement floating point. The
obvious advantage of fixed
point arithmetic is speed.
Precision is another. With 32
bit fixed point operations,

one can exceed the precision
of OSI's 9 digit BASIC and
have far greater speed. With
the assembler handy, one can
readily code 64 bit precision
operators if one really needs
to express over 2.3E18 precise
to the last bit. Another
advantage is that one can eas
ily and simply do operations
which are extremely complex in
floating point. The operator
/MOD does a 16 bit division,
returning both a remainder and
a quotient. In BASIC, you
would need to code a subrou
tine to get the same results.

There is a lot going on here
which I have skipped. All of
this is potentially useful.
There is a very useful system
variable called BASE. All
internal operations are in
binary. The value in BASE is
the base to which the inter
preter refers when converting
values for the console. Thus,
the following are two identi
cal ways to place the same
value on the stack:

HEX 21!

or

DECIMAL 32

If you made both of these
entries, you could then type n

n and you would see the
two top values on the stack:

HAS YOUR HARD DISK GONE S-O-F-F-T?
BTl is your Authorized Service Agent for:

Okidata, OSI and DTO 14-inch· disk drives.

BTl service includes:
• Maintenance contracts • Product exchange
• On-site service • ·Depot repair

Over 15 years' computer systems maintenance experience.
More than 5000 dis~ drives currently supported in the field.

For information or service, contact:
U.S. and Canada
Greg DeBord
Sunnyvale, California
408-733-1122

COMPUTER SYSTEMS

Europe
Victor Whitehead
Birmingham, England
021-449-8000

-BTl 870 W. Maude Avenue, Box 3428, Sunnyvale, CA 94088-3428 (408) 733-1122
Regional offices in Minneapolis, MN; Ramsey, NJ; Atlanta, GA; Dayton, OH

PEEK (65) July, 1985 9

32 and 32 (remember we left
the variable BASE set to Ie) .

Memory access in FORTH is
fairly simple. Place a value
on the .stack (which is always
sixteen bits wide), and then
say @ (which is pronounced
"fetch"). The sixteen bit
value in that location and the
one next to it in memory will
be placed on the stack. If
you have a byte addressed ma
chine (any OSI machine), then
the operation C@ (pronounced
PC-fetch") will get the value
in that address only. For
example, if you wished to know
how much memory 65D found at
boot time (assuming you had a
65D based FORTH, an assumption
I shall make for the rest of
the article), you could type,

HEX 2300 C@

on a 48K machine. This would
return the value BF, which is
the most significant byte of
the valuw BFFF, the highest
address of the user RAM. Now,
if you should wish to change
that value, you could type,

B0 2300 CI

which will place the value B0
in the location 2300. This
operator for store is called
PC-store" •

The FORTH operating system is
fairly simple to grasp at
first. The guts of it· is a
procedure called BLOCK. The
bulk storage (tape, disk,
whatever) is organized in' lK
chunks, called blocks. Thus,
to enter 5 BLOCK is to cause
the system to get the sixth
block from the disk, and bring
it int~memory, if it isn't
already there. BLOCK is some
what intelligent, as it pro
vides two services automati
cally. One service is that it
will select the disk buffer
which was referenced the long
est time ago, and use it. for
the new block. The oth'er is
that, if that buffer was flag
ged as having been updated,
its contents are first written
out to disk. In addition,
BLOCK leaves on the stack a.
very useful datum, the address
of the buffer in which the
block now resides.

I have now explained enough
(just barely) to describe the
beginnings of virtual memory
operations in FORTH. If I
have a block, say block 15,
which I am using to store data
from an experiment, I might
wish to access the 234th byte
in that block. I can type,

15 BLOCK 234 + C@

IB PEEK (65) July, 1985

15 BLOCK forces the block into
memory, if it isn't already
there, and leaves the starting
address of the block buffer on
the stack. 234 is the offset
into the block, and + adds
the two values of the stack to
produce the address in me~ory
of the byte desired.

I mentioned that FORTH oper
ates in 16 bit chunks. This
is the default data size, but
there are operations designed
for 32, and even 64 bit opera
tions. For example, * ("star")
is the 16 bit multiplication
operation, and D+ ("D-plus")
will add two 32 bit values.
In both cases, a value of the
same precision will be return
ed.

There are also mixed precision
operators. If you .want to
multiply two 16 bit values to
produce a 32 bit value, you
can use M* ("M-star"), which
would be very handy to convert
a 16 bit value to a 32 bit
one. Simply type,

1 M*

similarly, to convert from a
double precison value to a
single precision value, type,

1 M/

/ ("slash") being, of course,
the single precision division
operator.

Now, suppose in our experiment
you wished to work with a lot
of data, more than you could
save in one block. You could
allocate several blocks and
still_ access each byte indivi
dually. To continue our ex
ample, if you wished to access
the 4567th byte from the be
ginning of block 15, you could
type,

4567 1024 /MOD 15 +
BLOCK + C@

here, 4567 if first divided by
the number of bytes in a
block, 1024. The quotient and
remainder are returned to the
stack. Then 15 is added to
the quotient, and that block
is called from the disk. The
address of the block is now
left on the stack, and the re~
mainder from the /MOD opera
tion is added to it, giving us
the address in memory of the
desired byte. The C@ and
get the byte and cause it to
be printed.

The above example would sug
gest that' file handling is a
normal part of FORTH. In
fact, it isn't. FORTH has a
philosophy which may be summed
up as, Keep It Simple, Stupid

"

(KISS). FORTH allows you to
do all sorts of neat things,
but there are enough different
ways to go on a particular
type of thing that FORTH lets
ypu decide how to do it.
~Directories, data structures,
data bases, and so on, all
should be designed to a parti
cular job. So you get to
implement them yourself. As I
have suggested in my example,
they aren't hard to do. So
great variety will prolifer
ate.

This is part of a more funda
mental philosophical point of
FORTH. FORTH is a language
for people who would like to
(or need to) muck with the
guts of the system. I usually
write printer drivers in as
.sembler whenever I need one.
FORTH is the only language be
sides assembler in which I
would even consider writing
one,. and I have done so. This
does not mean that you have to
get down to the guts of a

.system in order to write your
application, only that the
capability is there if you
wish to do so.

All of the examples that I
have given have been immediate
entry of commands. FORTH pro
vides an interpreter to exe
cute procedures previously de
fined. When you boot the
FORTH system, enough of FORTH
is pre-defined to allow you to
go on to load your applica
tion. Loading consists of
compiling new procedures.
FORTH doesn't care whether its
source code comes from the
disk or the console.

Let us take a simple example
of expanding FORTH. Suppose
you have a lot of numbers in
hexadecimal and you want them
in. decimal. You could type,

HEX 234. DECIMAL

Or you could first use the
,compiler. For example,

: H)D DECIMAL HEX

the: 'colon is the word that
calls for.th the' compiler.
Hence, a new entry to the
dictionary may be called a
colon definition. H)D is the
name of the new word. H)D is
a simple, descriptive name for
the word. 'This word assumes
that the value already on the
stack is the value in which we
are interested. First it sets
the base to ten. Then it
prints the value at the con
sole. Since the idea was to
convert a lot of numbers, the
next step is to set the base
to hex, in preparation for the
next value.

•

•

•

•

•

•

Once this is done, we can use
the new word just as we can
use any other word in the
dictionary:

234 H)D

which will give the answer
desired: 564.

FORTH'S compiler produces a
series of linked lists. Each
list is a colon (or other)
definition. A header contains
the name of the procedure, so
that the interpreter can find
it for later execution, and
the compiler can find it to
incorporate into higher code •.
It also contains a link point
er to the next word down in
the dictionary. The next
entry is a pointer to the code
required to interpret the rest
of the word. In a colon
definition, this field points
to the run time code in the
word : • The rest of the word
consists of pointers to the
code to be executed. In our
example of H)D , the parameter
field points. in .sequence to
DECIMAL , • , and HEX. Then a
pointer is compiled to a point
to 1 , which ends the execu
tion of the word at hand.

The code thus compiled is now
available to use just like any
of the pre-defined code in the
kernel. In fact, FORTH does
n't know the difference. Most
systems have a kernel in
pre-compiled object form on
the disk which is br6ught into
memory at boot time. Then,
different additional code is
compiled, by the user' depending
on the application. This
points out one of the unusual
features of FORTH: the com
piler is so fast that re
compilation of source code is
faster than a relocatable ob
ject code module loader would
be.

One ,application which every
programmer uses is the FORTH
edit6r. In some version. of
FORTH, this is a simple TTY
editor, line oriented, but
with fairly sophisticated
search and delete functions.
I wrote a full screen editor
because I wanted one, and in
deed most FORTH programmers
customize the editor to s'uit
their own predilections.

FORTH usually comes with its
own assembler. This is so CPU
specific that no standard can
define what should be in a.
FORTH assembler. Most FORTH
assemblers are table driven.
They compile object code di
rectly into the dictionary,
just as the FORTH compiler
compiles FORTH code. Since
assembly code goes directly

into the dictionary, there is
no need for a link editor or a
linker, or for elaborate poin
ters and fiddling with memory.
In addition, once a code defi
nition is in place, it can be
called at any time just as any
other FORTH word.

The practical result of this
is that if the programmer
wishes to code in assembler,
he need only compile the as
sembler·,. and LOAD his code
from disk. However, since
FORTH is so fast, it is custo
mary for FORTH applications to
be written in high level
first, and then if the speed
of assembler is still desired,
to code the slowest functions
in assembler.

FORTH's assemblers are struc-
tured assemblers. One can
code BEGIN END struc-'
tures, IF ••• ELSE ••• THEN ,
whatever one wants. This is
because the assembler is it
self extensible. Since it is
written in FORTH, you can add
to it yourself. I have added
several items to the "Blue Sky
Products" assembler, and they
have made life much easier for
me. (Incidentally, this ought
to indicate what a bargain a
good FORTH package is. How
often do.you get a structured
macro assembler for $75, never
mind its source code and a
high level language thrown
in?)

Interrupt handling is usually
fairly simple under FORTH.
One-writes a normal code defi
nition, except for two fea
tures.One is that an inter
rupt handler is headless. This
is because it is never execut~
ed by the interpreter, or com
piled into higher level defi
nitions. The other is that it
begins with the word BEGIN,
which is nothing more than a
word to place the address of
the s.tart of the routine on
the stack. It ends with the
word INTERRUPT, which is a
CPU-specific word to compile
the start address into the
appropriate interrupt vector,
and to put a RTI instruction
at the end of the interrupt
code.

I said that interrupt handling
is usually very simple under
FORTH. One exception to . this
rule is that the OSI compu
ters, except for the C3, are
hard coded to have their in
terrupt vectors in 91 page.
The problem with this is that
CPU stack (FORTH's return
stack) is hard coded to live
in 91 page also. PUTTING A
6592'S INTERRUPT VECTORS IN 91
PAGE IS ONE OF THE DU~!BEST
THINGS DONE TO A COMPUTER

SINCE BABBAGE!!!! And OSI did
it!

However, there are ways to get
around this problem, and I am
plodding along on a fix for it
for Blue Sky Products' fig
FORTH. For the moment, you
have to see to it that your
return stack doesn't go deep
enough to write over your
interrupt vector at $9lC9
(IRQ). Of course, you can't
use the NMI because the DOS is
entirely in software.

These problems aside, fig
FORTH is a very good language
for a number of real time ap
plications. I have written a
OS-65D directory handler in
FORTH which is much faster
than OSI's in BASIC, a colour
graphics demo which for sheer
speed beats OSI's 65D 3.1
colour demo disks. I have
also implemented full cursor
addressing on the video con
sole, which is fast enough to
allow a full screen editor on
the Blue Sky Products' fig
FORTH. I also have, as I men
tioned, written a NEC Spin
writer driver for the Diablo
interface, all in 'high level
FORTH.

I have not covered the lang
uage in its entirety here.
That could be the subject of
several books. One such book
I will suggest to you here is
Starting~, by Mr. Leo
Brodie of FORTH, Inc. This
book is published by Prentice
Hall, and copies may be oraer
ed through your local book
seller.

• We tried to call 'Blue Sky
Products~' 729 East Willow.
Signal Hill. CA 90806. and
were unsuccessful. They ei
ther have an unlisted number.

DISK DRIVE
RECONDITIONING
WINCHESTER DRIVES

FLAT RATE CLEAN ROOM SERVICE.
(parts & labor included)
Shugart SA4008 23meg $550.00
Shugart SA 1004 10meg $450.00

Seagate ST412 10meg $350.00

FLOPPY DRIVE FLAT RATES
8" Single Sided Shugart 5190,00
8" Double Sided Shugart 5250,00
8" Single Sided Siemens D&E Series S 150,00
8" Double Sided Siemens P Series 5170,00

Write or call for detailed brochure
90 Day warranty on Floppy & Large Winch,
1 Yr:Warranty on 5" & 8" Winchesters,

Phone: (417)485·2501

rc FESSENDEN COMPUTERS
116 N. 3RD STREET
OZARK, MO 65721

PEEK [65] July, 1985 11

moved out of the area. or are
no longer in business.

PEEK Staff.

AN OSI CASSETTE BASED 6588
ASSEMBLER/EDITOR BUG & FIX

By: David W. Adams
487 Rollcrest Ct.
Midland, MI 48648

OSI's cassette based 6588
Assembler has a little known
Bug.

The Bug occurs when the Assem
bler is expected to assign the
Low-Byte value of a label's 2-
Byte machine code address to a
Register via the Immediate ad
dressing mode (Example 1) •

2; Example 1
5 *=$7888

10 LDA #MESS ;Get LO-
Byte of MESS Address

28 MESS .BYTE 'MESSAGE'

Line #10 should work and does
work on OSI's disk based As
semblers, but refuses to work
on the cassette based Assem
blers as it will report 2 er
ror conditions; Error #28 in
line #18 and Error #12 in'line
#28 in program Example 1.

Take note that in Example 1 if
we changed line #5 to:

5 *=$8888

the Bug will not occur as the
"MESS" label's address 'will
equate to a I-Byte machine
code address, the Bug will
only appear when the label's
address equates to a 2-Byte
machine code address (Example
1) •

Illustrated below is a ,quick
and dirty way to get the cas
sette Assembler to assign the
Low-Byte val ue of a label's 2-'
Byte machine code address to a
Register via the Immediate ad
dressing mode (Example 2).

2; Example 2
5 *=$7888

18 LDA #MESS*256/256 ;
Get LO-Byte of MESS
Address

28 MESS .BYTE 'MESSAGE'

The Fix in Line #18 (Example
2) works fine, but at the cost
of extra confusion and bytes
in your Assembler source text.

In comparing the Assembler
source code of the disk based
vs the cassette based Assem
blers I have found that the

12 PEEK [65] July; 1985

Assemblers are approximately
99% the same. The exception
being that the disk based
Assembler has a few table code
value changes, as well as the
location of the "Fill the line
buffer" routine, now at the
start of the Assembler's ma
chine code and some additional
disk I/O routines at the end
of the Assembler's machine
code.

After several hours of evalua
tion, I found the corrupt ma
chine code in the cassette
based Assembler, the following
address locations code in the
cassette Assembler must be
changed as follows:

Location Present Code New Code
(Hex)

88ED $89 $14
88EE $6A $4C
88EF $84 $lF
88FO $41 $85

To verify that the code on the
disk based Assembler was cor
rect for the cassette based
Assembler, I plugged the 4-
Bytes from the disk Assembler
into the cassette Assembler
(same memory locations).

Voila, it eliminated the Bug
from the cassette based As
sembler!

Now to verify that the cas
sette based Assembler code
that was suspect was really at
fault, I plugged the suspect
(corrupt) code values from the
original cassette Assembler
into the disk Assembler. Now
the Bug which had occurred in
the original cassette Assem
bler was now plaguing the
modified disk Assembler.

I can confidently conclude
that this Fix is tested and a
permanent solution to the eli
mination of the Bug in the
cassette based· .Assembler/Edi t
or.

*
FILE HANDLING ONDER

OS65-0 & OS-OMS

By: Raymond D. Roberts
'5996-Longdin Rd.
Ferndale, WA·98248

Every time a file is created
with OS65-U or OS-DMS, a file
header is created. This head
er contains information essen
tial for file handling by the
computer or programmer. While
the header is transparent, it
is physically (and always)

laid out on the disk in the
following manner.

NAME#TYPE#EODF#BODF#REC
LENGTH#NUMBER OF RECORDS#

The first 52 characters of the
file are reserved for this in
formation, allocated as fol
lows:

NAME-5 (8-4)CR (carriage re
turn) 1 (5), TYPE-2 (6,7) CR-l
(8), EODF-18 (9-18) (end of
data file), CR-l(19), BODF-18
(28-29) (beginning of data
file), CR-l (38) , RECORD
LENGTH-18 (31-48), CR-l (41),
NUMBER OF RECORDS -18 (42-51),
CR-l (52).

Immediately following this is
Field names-Field parameters,
(length of field holding data,
not length of field name).

Using for an example, the
first three field names in
"ADS", we would see the fol
lowing:

~ASSIFlCATION'~'ITBM'~l'DESC-l'~l'~B---

53 68 75 85 88

NOTICE!! The 4 represents 3
spaces for data and 1 CR, the
21 means 28 data and 1 CR.

The first character of the
fourth field name (DESC-2)
would start at character
(byte?) 88 on the disk data
file ADS. This would continue
on until all field names and
field parameters are entered.
The computer then computes the
number of characters (bytes)
used, and the beginning of
data file (BODF) is the next
physical character on the
disk. In the file "ADS" (see
PEEK May '85 listing), you
will note that BODF is at 171.
EODF (end of data file) will
naturally be 171 plus (248 *
NR),248 being length of a
record in ADS. NOTE!! If you
have 958 available records in
the file, but only the first
38 have data in them, then the
EODF is at the end of the 38th
record.

Next, we need to visualize two
things. 1. The absolute add
ress of data in the file
(constant). 2. The offset add
ress of data in the file
(relative). Also, we need a
name for the pointer that
locates' (points to) a specific
address, (location). Let's
call this pointer an INDEX
(because that's what OSI calls
it) •

Let's look at record #3 of our
ADS data file. If we set the
INDEX at 651, we find that
this is the first CHR in rec
ord three.

•

•

•

•

•

•

171-411 411-651 651-891 or
17! + 24! + 24! • 65! or

BODF Rf2 Rt3 INDEX

Our absolute address is 651.

Our offset address is 0.

Since field #1 is 3 CHR's
long, ~he absolute address of
field #2 would be 655 (651,2,3
for data 654 for CR), its
offset address would be 4.
Field #2 being 30 CHR's long,
the absolute address of field
#3 would be 686 (655+30+CR).
The offset address from BE
(beginning of record) would be
35 (3+CR+30+CR).

Visualizing this, we can
that any particular field
have an absolute address
BODF, an offset address
BE or a relative address
its last occurrence or
next occurrence.

see
will
from
from
from
its

Now, let's see how we can use
this in opening, loading, or
handling data files. Let's
use the data file ADS, and the
program ADS100.

First, let's open and load the
ADS data file.

In LINE 170 we set the INDEX
to location 0 and input the
name.

In LINE 190 we set the INDEX
to 6 and input (load) the
TYPE. We can have 10 for
Master or 20 for Key.

In LINE 210 we load EODF.

LINE 220 sets the INDEX a.t 20
and inputs the BODF which in
this case is 171. LINE 250
inputs the record length (240)
at location 31, and LINE 260
loads the number of records
(950) at location 42.

If you could see this
actually appears, it
look like this: (using
"FDUMP", you can)

as it
would

OS-65U

ADS #10#17211#-----171#-----
-240#-------950#-------CLASSIF
ICATION#4#ITEM#31#DESC-l#31#DE
SC-2#31#DESC-3#31#DESC-4#31#PR
ICE#21#PHONE#31#CITY#16#STATE#
4#EXP DATE#6#CODES#3#133#

followed by the first CHR in
the first record. The -- are
nulls, the #'s are carriage
returns. Now we dimension for
20 field "contents", (L$), 20
field parameters "lengths",
(FP), and 20 field labels
(A$) •

LINE 300 sets the INDEX
(BODF), then sets a
label counter to 1 (N=l)
field parameter counter

to 53
field
and a
to 1

(NF=l). Total record length
is set at 0 (TT=0). Ignore
TF=l. LINE 305 inputs the
first field table and length.

T$ and Tare "dummyn vari
ables. LINE 330 increments
field name and length on each
pass. LINE 340 keeps a run
ning total of field lengths so
that after 12 passes, (12
fields in ADS) the total rec
ord length will be 240. LINE
350 says go back to LINE 305
and input the next field name
and length. Our INDEX <1> is
now at address 171.

If we are using two
LINES 360-397 would
(load) the second file
in the same manner
first one was done.

files,
input

header
as the

Now that the file(s) headers
are loaded into memory, let's
assume that we wish to find a
particular record. Assume
further that we have a record
whose classification is 120.
LINE 505 asks what classifi
cation we wish to find (or
what classification number).
Here is where we will use the
FIND command. If we entered
"120" then the program falls
thru to LINE 720: GOSUB30000.

Remember that our INDEX is now
at 171 (BODF). CX$ was 120
not "ALL", so we GOTO 30005,
which says FIND 120 (CX$).

The computer will now sequen
tially search our data fields
for the first occurrence of
120. LINE 30010 says if we
reach the end of the data file
without finding an occurrence
of 120 then we are done, GOTO
33990.

FILE: ADS 0
NUMBER OF RECORDS: 950

CLASSIFICATION

LINE 33021 sets up variable TY
to equal the number of the
record in which 120 occurs if
we find one. It states that
TY will equal the integer of
what address the INDEX (on
channell) is pointing to,
minus 171 (BODF) divided by
240 (RL). For example, TY=651
-171/240=2 (record #2) •

LINE 33021 checks to make sure
that we did not FIND a 120 in
the middle of a record. We
only want to find it if it is
in the first field (classifi
cation number). TX (651)
2*240+171.

LINE 33035 says that if TX
(651) does not equal the add
ress that the INDEX is point
ing to, then increment the
INDEX by 1. This will con
tinue until a 120 is found in
the first field if it occurs
(loops back to LINE 30005) .

In this, remember that INDEX
<1> is the absolute address
that the pointer is pointing
to (the only way to SET a
pointer) and INDEX (1) is an
abstract reference to INDEX
<1>.

If we had wanted to FIND an
occurrence of 120 in the third
field of a record, we could
have set the INDEX to BODF
plus 35 (INDEX <1> = BODF+35) •
BODF (171) + 35 = 206. The
pointer would be set at add
ress 206, the first CHR in the
third field. 53 and 171 are
absolute addresses; 35 is an
offset. 206 is another abso
lute address and 240 is an
offset from 171 or 206.

Continued

ITEM ------------------------------
DESC-l ------------------------------
DESC-2 ------------------------------
DESC-3 ------------------------------
DESC-4 ------------------------------
PRICE --------------------
PHONE ------------------------------
CITY ---------------
STATE
EXP DATE
CODES

RECORD: 1
CLASSIFICATION
ITEM
DESC-l
DESC-2
DESC-3
DESC-4
PRICE
PHONE
CITY
STATE
EXP DATE
CODES

INDEX: 171
133
HAY-FEED
--- FAYNE FARMS
DAIRY~QUALITY ALFkLFA-
CALL FOR DELIVERED PRICES-

509-266-4619
PASCO
WA
40310

PEEK [65] July, 1985 13

Of course, this would not work
here because we set up in
LINES 33821-33835 a bypass for
those occurrences anywhere but
in the first field. More
detail on this next time when
we get into data file "CLASS",
LINES 368-8868.

I hope I haven't confused you.

*
SCRIBE

65-U WORD PROCb:SSING
IN BASIC

By: Richard E Reed
Oak Creek Securities
411 N. Mill st.
Tehachapi, CA 93561
(805) 822-7952

Oak, Cr,eek Securities, a wind power
devaloper, uses a C3-B with
dual-Hided floppy drives and 4
Danver boards. Over the course of
thf' past two years it was upgraded
from a C2-D through a multi-user
C:i-B to the current configuration.
During the first transition we
purchasod General Ledger, VMDBMS,
and Scribe, all by IHS Computer
Services, through Space-Com in
Laguna Hills, both advertisers in
P"ek (65). After encountering several
pt'oblems with the so'ftware 'as
delivered, we were informed by IHS
that ,the disks we received from
S pUGH-COm were a demo set and not
the full blown system, that some of
the programs were currently being
ro.,.written, and that IHS would
furnish us a new set of ,disks. They
did, and these too h~d, annoying
bugs here and there throughout. the
programs. This is to be ,expected of
softwure that is in a statc of flux
when delivered on an emergency
baHitl, and HIS helped us work
through the difficulties. Our only
compluint with the company is that
there is seldom anyone there, so it
is diffi<:ult to get a problem
resolved.

Space-Com has been responsible for
all of our hardware support and
upgrading. We have found'them to
be knowledgeable, reliable, and eager
to satisfy their custoUiors. Our
machine was p'urchased used, and
was originally sold as a real estate
package through RealStar of
Colorado. It had annoying hardware
bugs that persisted through the
upgradfls. Space-Com went out of
their way to help us track down and
eliminate the problems, snd we now
have a system that operates error
freu. Because we have' freqtie~t
power outages, and because we often
print IRuilings 1111 night. loi'lg, we
recently installed a Topaz
uninterruptible power supply,
something wo now highly recommend.

Our primury usu of SCR1BE is for
mass mailings using the Mail Merge

14 PEEK [65] July, 1985

feature with our data base manager.
But it is also' used for generating
offerings and sales literature, and
for manuscript preparation of books
and screen plays. It is a versatile
package and has given us good
serviCe. One' small annoyance is that
our typists can often get ahead of
its ability to capture key strokes,
and we experience some errors based
on that problem.

The fact that SCRIBE is written in
Basic has inade it easy to modify for
our own special needs here. That has
made an already versatile and
functional set of programs even more
valuable. We have made 9 major
modifications which I will describe.

1. As delivered, except when loading
a file, the only way to clear the
work space was to exit out of Scribe.
We added a clear function so that
one could type a letter, save it, and
then proceed to type another.

2. The programs, as delivered had 'no
way to join files smoothly, either in
printing or in the edit mode. We
disabled the memory clear function
on the file-load command. This
permits files to be 'continuously
loaded until one runs out of user
memory.' Thus many small files of
standard paragraphs can be ,quickly
concatenated to produce larger
documents. This change was one of
the reasons, for change , one, since
we often wish to load new files
without adding them 'to the end of
our current text. '

3. Since we produce books and
screen ,plays on our computer, we
also needed the capability' of
printing multiple 'files without, having
to, worry about page breaks and
pagination from one file to the next.
To accommodate, this need we added
the capability of printing any
number of files one after the other
without disturbing the page/line
count or page numbers and footers.
We can now print a whole book 8S

one smooth continuous process.

4. Sometimes it is nice to send out
mail-merged letters in justified
format. But because of justification
calculations it is a, slow process,
since each replication of the letter
performs all the calculations. To
speed things up we created a facility
to save the letter in its justified
format except for the 'mail-merge
functions. You then run the letter as
a flush left product. The outcome is
in justified type with the merged
features at over 4 times the speed.

5-7,. We also wanted to be able to
change the parameters for margins,
tabs, and justification during the
body of the text. We found that
adding these facilities was trivial
since the source was in Basic, and
now we have full control of these
funet.ions, turning justification on
and, off, moving margins all across
the page, and re-positioning tabs as

needed in the body of long texts.'
The programming of this word
processor is quite straight-forward,
and we had little trouble locating the
appropriate routines, understanding
the c~de~ and making the
modifications.

8. The programs had a facility to
stop between pages by putting in a
halt command to accommodate single
sheet feeding. However, in printing
long texts there was no way, except
by trial and error, to tell where a,
page would divide. To alleviate this
problem we expanded the halt
command to require it to be given
only once in order to permit
stopping whenever the computer
decided to slart a new page.

9. Recently we acquired an Epeon
LQ-1500 printer, which supports
proportional spacing. We decided to
add justified, proportionally-spaced
type to the output options. In the
process we now have truly centered
text,

* AA
AAA

AAAA
AAAAA

AAAAAA
H

WWW

as well as ragged right,

* AA
AAA
AAAA
AAAAA
AAAAAA
H
WW

ragged left,

* AA
AAA

AAAA
AAAAA

AAAAAA
H

WW

and justified output that looks much
better than spacing-between-words'
print. This article was set
proportJonally. The look-up tables
can be modified for any printer with
proportional mo'des, and multiple
fonts are accommodated.

There are other features already in
SCRIBE that make it a good choice
for mail-merge applications with DMS
structured files. You can pause
during the printing function to enter
data from the keyboard, but mor'e
importantly, that can be the method

•

•

•

•

•

•

TURNS ANY FLOPPY BASED COMPUTER INTO HARD DISK BASED, INSTANTLY.

• PLUGS INTO ANY OSI TYPE BUS
• ONE RIBBON CABLE CONNECTS

TO DRIVE
• COMPLETELY SELF CONTAINED
• 32 BIT ERROR DETECTION AND

CORRECTION
• HAS REAL TIME CLOCK

*CALENDAR W/BATTERY ON SCSI
ADAPTER BOARD

• CAN BOOT DIRECTLY FROM OSI
505/510 CPUs OR DENVER BOARDS
W/SCSI PROM

• IDEAL BACK-UP FOR ALL OSI HARD
DISK COMPUTERS

The SPACE-COM SUPER SUBSYSTEM Uses 5%" Industry Standard Hard Disk drives interfaced to
the OSI bus by the DS-1 SCSI Host Adapter Board at the computer end and the state of the art OMTI
5000 series Intelligent Disk/Tape Controllers at the disk end. The Denver DS-1 Board not only pro
vides the Bus Translation, but gives Real Time of Day, Day/Week, AM/PM, and Day/Mo. With on
board battery, Date and Time are maintained w/o power.

The chassis is beautifully engineered with
lighted on/off switch, standard a/c cord, and
insulated spade terminals for easy service. A
Corcom Emi Filter is incorporated in the a/c
jack, and power is provided by an extremely
efficient switching power supply. The case is
also available in dual, side by side configura
tion and looks like an IBM PC box. It incor-

, porates a larger power supply and can support
2 Winchester drives, or 1 drive and tape, or 2
5" floppies in place of one of the above.

Drives can be accessed from any single or
multi-user OSI system by running an overlay
program on that partition, or can be booted
directly by replacing current ROM/PROM with
our SCI 500 PROM, available for $49.00 extra.

Single 20 M/B drive (15.7 formatted) single case $1,999.00
Single 26 M/B drive (21 formatted) single case $2,199.00
Dual 20 M/B drives (31.4 formatted) dual case $2,999.00
Dual 26 M/B drives (42 formatted) dual case $3,299.00
Super Fast 85 M/B drive (70 formatted) single case $3,999.00
Dual 85 M/B drives (140 formatted) dual case $6,699.00

SPACE-COM International
14661A Myford Road,Tustin, CA 92680 (714) 731·6502

PEEK [65] July, 1985 15

of putting the same data irlto the
OMS files as well.

We highly recommend SCRIBE as a
versatile word processing package
for 65-U I especially for those users
who may find it necessary to change
virtually any or all of the functions
and features to suit their peculiar
needs.

EDITOR'S FOOTNOTE: The above
changes have been made to
SCRIBE and this updated ver
sion is currently available
for an additional $5e.ee.

Rl

C 1

R
un 'Q2 -S"L2
Pin 25 B,

Yz."I13
Q

SILENCE YOUR DISK DRIVE

By,: David Pompea
319 Hampton Blvd.
Rochester, NY 14612

As I sit here the red light on
the front of my drive is on,
but the disk is quiet and the
head is not loaded. Your disk
can be resting too.

The normal way DOS reads data
goes like this:' load the r/w
head; seek the track; wait for
the index hole; wait for the
correct sector; and ,then read
the data. All these opera
tions involve accessing the
PIA and ACIA at the address

R2

7 6

A C
13 ..FL 10

B Q
'I .. 'I:1J

cexx and using the phase '2
clock line to tell us that the
address is valid.

Here is how my modification
works: When the phase 2 line
goes high and the not cexx
line is low, a one shot is
triggered (and can be retrig
gered) and starts timing.
During its timing, the motOr
on line is activated to get
(and keep) the disk ,spinning.
The leading edge of the motor
on pulse is used to trigger
the other one shot. This one
blocks the index hole pulse to
the computer for one second to
allow the disk to get up to
speed before reading or

U7 Ci5XX
Pin 6 1 A a t-4 __ -, <) A

J.JAIT 1 SEC,
a -s--L

U 72 INDEX
Pin 9

TO . 123 25

12

6820
PIA
un

U7

Motor On (2 sec)
'----'"" U75

Pin 1
INDEX
INHIBIT

J--~ ___ 4 <P---< INDEX
(A33, 34)

us

610 BOARD MOD.

PB4 14
U7S

MOTOA ON ~-----'!I?--_-l

Pin 2"~/-----l ~2

R33

PA 7 1-9.;..-. __ ---<~-_¥-....... ---~ ~,
INDEX HOLE

U7
Pin 12

US
Pin 3

A34

©

+Sv

J3
Pin

J3
Pin

J3
Pin 17

C 1P/MF DR1UE 'F'I X 1965 DAVE POI1PEA

16 PEEK [65] July, 1985

"
12

•

•

•

•

•

'.

writing. The entire circuit
is on a 2 x 2 perf board,
wrapped in tape and hidden
inside the computer under the
629 board. I've used several
nspare n gates on the board, so
if you don't have them or are
modifyi.g anything other than
a CIP/MF, you'll need to mount
them on the perf board.

MODIFYING YOUR CIP/MF

1. On a small perf board,
mount and wire the 74123,
Rl&2, Cl&2.

2. Open your CIP to expose the
bottom of the 619 board.

3. Using wire-wrap wire (or
other small gao wire) connect
the spare 3-input nand gate
(U7) pins 1&2 to the spare
inverter (US) pin 4.

4. Pull off the disk interface
board (the one with the ribbon
cable) and look at position 4.
That is the motor on signal
pin. It's jumpered to ground
at position 12. Cut that jum
per.

5. Cut the trace from U72 pin
9 to R33&34 (bias resistors).

6. On top of
cut the trace
14.

the 619 board,
from U72, pin

7. Connect pin 2 on the 74123
to U72, pin 25 (the phase 2
line) •

8. Connect pin 1 on the 74123
to U7, pin 6 (the not C9xx
line) •

9. Connect pin 4 on the 74123
to U75, pin 1 (motor on line).

19. Connect
74123 to U7.
inhibit) •

pin 12
pin 13

on the
(index

11. connect U7, pin 12 to U72,
pin 9 (index to PIA).

12. Connect US, pin 3 to the
index signal bias resistors,
R33&34 (the other side of the
U72, pin 9 trace cut).

13. connect power (+5V) and
ground to the 74123 and add a
luf bypass cap. on the perf
board for noise filtering.

That's it! When DOS wants to
use the drive, the motor will
come on and after a one second
delay (to let the motor come
up to speed) the index hole
signal will be let through.
The motor will turn off after
2 seconds of non-use.

You can also
jumper s inside
load the head

change
the drive

upon motor

the
to
on

(it's already set for head
load on drive select) by
removing the pin 1-14 shunt on
the programming socket inside
the drive and inserting a
jumper for pins 7-8.

co-.uputer
•

Mods for the 4P coming soon.

* SCREEN DUMP
FOR DISK BASED SYSTEMS

By: L. Z. Jankowski
Otaio Rdl Timaru
New Zealand

OS65D 3.3 provides a screen
dump, so why another one?
Well, this program dumps 39
lines in 14 seconds, as
opposed to 194 seconds, (to
device 4). This is at 2MHz.
with a 1 MHz CPU clock, 298
seconds is an absurdly long
time to wait for a screen
dump.

The program does not print a
box round the printout, but if
you want everything squashed
together type this first:

PRINTt4, CHR$(27);CHR$(49);

repaIr
Board level service on :
.OSI / Isotron
• TeleVldeo
• IBM pc/xt
Floppy drive alignment:
• Siemens
• Shugart
• Teac
Terminal repair:
• TeleVldeo
• Micro-Term

(1 waak lurnaround)
Sokol Eleclronlcs Inc.

• Hagerllown, Md. 21740
~ 474 N. Polomac SI.

I. (301) 791'2562

For printers at DVtl ($FC99) try PRINT = $24CD.
For DVt8 ($CF99) try PRINT = $24BD.

19
29
39
49 F425
59 249F=
69
79 F425 48
89 F426 8A
99 F427 48

199 F428 98
119 F429 48
129 F42A A299
139 F42C A999
149
159 F42E BD99D9
169 F43l 299F24
179 F434 C8
189 F435 C949
199 F437 D99C
299
219 F439 A99A
229 F43B 299F24
239 F43E A99D
249 F449 299F24
259 F443 AB99
269
279 F445 E8
289 F446 D9E6
299 F448 EE39F4
399 F44B AD39F4
319 F44E C9D7
329 F459 D9DC
339
349 F452 68
359 F453 A8
369 F454 68
379 F455 AA
389 F456 68
399 F457 A9D9
499 F459 8D39F4
419 F45C 69

*

; SCREEN DUMP FOR OS65D 3.2 & 3.3
; WARNING! SELF-MODIFYING CODE I

* = $F425
PRINT $249F ; for DV t4

;

PHA
TXA
PHA
TYA
PHA
LDX #$09
LDY t$99

COUNT LDA $D999,X
JSR PRINT
INY

;
NEXT

CPY #$49
BNE NEXT

LDA #$9A
JSR PRINT
LDA t$9D
JSR PRINT
LDY #$99

INX
BNE COUNT
INC COUNT+2
LDA COUNT+2
CMP
BNE

PLA
TAY
PLA
TAX
PLA

#$D7
COUNT

LDA #$D9
STA COUNT+2
RTS

*
PEEK [65] July, 1985 17

TOKEN LOAD/SAVE PROGRAM

This program allows you to
make copies of your M/Code
programs, especially those
tha~ you have modified, even
if you don't have the extended
monitor in EPROM.

By: John Whitehead
17 Frudal Crescent
Knoxfield 318, Australia

At 399 baud, it will load
three times faster than OSI
Checksum. It can save up to
four blocks of code of 'any

length and auto start
program.

the

This was originally written by
Alan Cashin. I have modified
it so that it can put direc
tions on the tape being made.
Also, to allow one line of
POKEs which can be used to
restrict BASIC to below the
M/Code program. It allows a
M/Code program to be moved to
higher memory, e.g., $2399.
So that this BASIC program can
be loaded in at $9399, an off
set of $2999 is then entered

.~ in, so that when the tape just

made is loaded, the M/Code is
loaded back in at $9399.

To allow return to BASIC after
loading the tape just made,
answer $9999 to the nGO AT n
address. The PRINTCHR$(217)
is a screen clear command.

An alternative method is to
relocate the BASIC ,program
above the M/Code, the one to
be copied, as described in my
article in last month's PEEK.
If you want to save BASIC pro
grams in token format, relo
cating this BASIC program is
the only way.

39 REMARKABLE TOK~N LOAD BY ALAN CASHIN. MODS BY JOHN WHITEHEAD
32 POKE13,29:POKE517,9:DIMD(3,3) :DIMOF(3):AC=61449:FF=65535
34' PRINTCHR$(127)nTOKEN CHECKSUM LOAD/SAVE
36 PRINT:PRINTnCAN SAVE UP TO 4 AREAS OF MEMORY WITH
38 PRINT n OFFSETS ,OF 9999, 2999, 3999 OR 4999
49 PRINT:PRINTnTHE 1ST ONE CAN BE BASIC STARTING AT 9399
42PRINT n ANSWER B TO START ADDRESS FOR BASIC.
44 GOT01l9
46 WAITAC,2:POKEAC+1,E:RETURN
48 FORA=9T025999:NEXT
59 FORA=9T0199:PRINTCHR$(9);:NEXT:PRINT:RETURN
52 DATAORIGINAL START ADDRESS ,nORIGINAL END ADDRESS n
54 DATAnGO AT OR MORE n
56 DATA.9913/95*5B*2C*A2*C8*AD*99*F9*4A*99*FA*AD*91*F9*E8*39*EF*.9916G
58 DATAA296814F18755395539992F654A991CACAD9F1A2FC292991E839FAE994F99B
69 DATAB557F9F5E99299CD6CFCFF85FBA2F74C18992991E9FFC1F669139655265699
199 DATA92E6552A99F5C93A999269969DA9CF6918992991FFFF57FFA9X
119 PRINT:INPUT:ENTER PROGRAM NAME n,PS
129 PRINTnINPUT 4 SINGLE LINE MESSAGES, A SPACE = NONE
139 INPUTC$,D$,E$,F$.
149 PRINTnENTER A LINE OF BASIC COMMANDS BEGINNING WITH A n;CHR$(34)
159 INPUTG$
169 PRINT:PRINTnSELECT OFFSET OF $9999, $2999, $3999 OR $4999 n:PRINT
179 RESTORE:PRINTnAREAnN n• ENTER OFFSET n;:INPUTOF
189 IFOF<>9ANDOF<>2999ANDOF<>3999ANDOF<>4999THEN169
199 OF(N)=OF*4996/1999
299 FORA=lT03:READB$
219 IFX$=nBnTHENX$=nX n :NEXTA
229 PRINTnAREAnN n• n;B$;:INPUTX$:IFLEN(X$)=4THEN279
239 IFX$=nM nANDN=3THENPRINT:PRINT nLAST AREA. n:GOT0229
249 IFX$=nMnANDA=3THENE=24:GOT0329
259 IFX$=nB nANDA=lANDOF(9)=9ANDN=9THEN569
269 PRINTnNOT 4 HEX":GOT0229
279 E=9:FORC=lT04:F=ASC(MID$(X$,C,1»
289 IFF>47ANDF<58THENF=F-48:GOT0319
299 IFF>64ANDF<71THENF=F-55:GOT0319
399 GOT0269
319 E=E*16+F:NEXTC
329 D(N,A)=E:NEXTA:IFD(N,1»D(N,2)THENPRINT"START > END n:GOT0179
339 PRINT:PRINT"WAIT FOR·THE NEXT INPUT MESSAGEn:PRINT
349 C=9:FORA=D(N,1)TOD(N,2):C=C-PEEK(A+OF(N» :IFC<9THENC=C+FF+1
359 NEXTA:D(N,9)=D(N,3) :D(N,3)=C:D(N,2)=FF-D(N,2)+D(N,1) ,
369 IFD(N,9)=24THENN=N+1:GOT0179 .
379 INPUT n READY TO RECORD ";Z$:PRINT
389 PRINT" START TAPE NOW" :SAVE:GOSUB48
399 PRINT n 29 PRINTCHR$(127) "CHR$(34);P$
499 PRINT" 21 ";G$.
419 PRINT n 22 PRINT"CHR$(34)nTOKEN CHECKSUM LOAD nCHR$(34)n
429 PRINT n 23 PRINT:PRINT:PRINT:PRINT nCHR$(34)C$
439 PRINT n 24 PRINT nCHR$(34)D$
449 PRINT" 25 PRINT nCHR$(34)E$
459 PRINT" 26 PRINT"CHR$(34)F$
469 PRINT" 27 IFPEEK(251)=9THENPOKE251,2
479 PRINT n 28 POKE123,"PEEK(123)n:POKE124,npEEK(124)
489 PRINT n 29' POKEll,67:POKE12,254:X=USR(X):END
499 PRINT npOKE515,9:RUN29 n;CHR$(13) :GOSUB59
599 READB$:FORA=lTOLEN(B$):E=ASC(MID$(B$,A,l» :IFE=42THENE=13
519 GOSUB46:NEXTA:C=599:F=C
529 C=C+1:IFC>LEN(B$)THENREADB$:C=1

LISTING CONTINUED ON NEXT PAGE

18 PEEK [65] July, 1985

•

•

•

•

•

•

53B E=F:F=ASC(MID$(B$,C,1»-48:IFF>9THENF=F-7:IFF>15GOT06BB
54B IFE<17THENE=E*16+F:GOSUB46:F=5BB
55B GOT052B
56B D(B,1)=768
57B D(B,2)=PEEK(123)+(PEEK(124)*256)
58B IFPEEK(124)<>3THENPRINT nBASIC POINTERS INCORRECTn:STOP
59B NEXTA
6BB FORA=BTON:FORC=BT03:F=INT(D(A,C)/256):E=D(A,C)-F*256:GOSUB46:E=F
6lB GOSUB46:NEXTC:FORC=D(A,1)TOFF-D(A,2)+D(A,1) :E=PEEK(C+OF(A»
62B GOSUB46:NEXTC,A:POKE5l7,B:PRINT-FINISHED SAVEING":NULLB:END
63B
64B THIS PROGRAM IS STORED AT $B3BB TO $lBBB. IT CAN BE RELOCATED.

* * *
BASIC SPBBD ARD LIRB NUMBERS or GOTOXXXX, then it must

somehow find that line of
code. I have had the impres
sion that BASIC began the
search at the lowest line num
ber, continuing line .by line
until the proper line was
found. Thus authors have
expounded the virtues of put
ting subroutines, especially
the critical ones, at the top
of the program. They were to
be executed faster because of
the lower line numbers.

beginning if the high byte of
the line number is the same or
lower than the high byte of
the line to be found.

Courtesy of TOSIE
Toronto Ohio Scientific Idea

Exchange
P.· O. Box 29
Streetsville, Onto
Canada L5M 2B7

Key in the two little programs
that follow. Note that they
are identical, except for one
digit, yet their running
speeds are vastly different.

A note in the May 83 issue of
Compute I helped explain the
difference, and once again
stresses the close relation
ship of PET BASIC and the OSI
ROM version.

When BASIC encounters a state
ment that changes control to
another line, e.g. GOSUBXXXX

This proves to be not always
true. In the demonstration
programs line 256 is found
faster 255, even though they
are the same number of lines
from the beginning of the pro
gram.

It turns out
routines do

that the BASIC
search from the

However, if the high byte is
greater, then the search con
tinues fkom the present line,
without backtracking to the
beginning.

Calculating the numbers to be
used to take advantage is
simple. Divide the present
line number by 256, then add
one to the integer, and mul
tiply by 256, e.g. from line
4B, type ?4B/256. The comput
er responds with B.15625. The
integer part is B. Add one
equals 1. 1*256=256.

Once again:
Your current line number is
l25B. Key in ?125B/256. The

From Gander Software, Ltd. The Ultimate Personal Planner

TIME & TASK PLANNER
, '30 DAY FREE TRIAL IF NOT SATisFIED, FULL REFUND UPON RETURN

• "Daily Appointment Schedule" • Work Sheets for all Aspects

• "Fut~re_Planning List" - sorted • Year & Month Printed Calendar
• "To Do List" - by rank or date • Transfers to Daily Schedule

. A SIMPLE BUT POWERFUL TOOL FOR SUCCESS -

Put the two most effective success techniques to work lor you - every day 01 every year. Just live to ten minutes a day allows your
mind and dreams to take charge of your lile.

Set Your Goals: To reach a goal. you have to know where you are going. Just enter your goals or lutureappointmentsand let your
computer remind you.

Set Your Priorities: Success depends upon doing lirst things first. Assign priorities (1-99) to your "To Do" list. let the computer
keep them ranked by date or priority, and then get to work. WheMhe time comes, the computer will help you transfer items to your
choice of time on the daily Appointment Scheduler.

Technicalities - Appointment Scheduler: 18 time slots per day (you deline) for 60 dayscTo Do List: 60 items ranked by date or
priority. Future Planning: 60 long range items. date sorted; days to event or days overdue. Transfer to Scheduler: just tell it the

,da!e and time. Printed Calendars: Year on a page and one month box planning; any month. any year. System uses both Julian and
Gregorian calendars to handle dates from 1910-2399 and produce day of the week. Screen and menu driven; OMS Keybase com- .
patible files. Detaiied :is page manual. Simple instaliation;'FD to Multi HD, Files for 5 users=5.400 appointments, U~limited Warranty.

HARDWARE: 48K OSlo 8" floppy or hard disk. serial terminal system.
OS-65U v. 1.3 or later.

FEATURES: package allows configuration to ANSI standard and
almost all non-ANSI terminals. AND user specification 01 printer port.

PRICE: $300.00 (User Manual. $25.00, credited toward TIP pur·
chase). Michigan residents add 4% sales tax.

DEALERS: Your inquiries are invited. This program should be on
every 65U machine. including your own. At dealer prices. you could
bundle this superior package as a sales incentive. ,,',

~f:~~~~.~ SOFTWARE, L~
Hastings. MI 49058
(616) 945-2821

"It Flies"

PEEK [65] July, 1985 19

computer responds with 4.BB28,'
thus the high byte is 4. We
use at least 5 as the high
byte, or a line number 5*256
i.e. l2B9 or greater.

Thus an opportunity presents

19 REM EXECUTES IN 19.B SECONDS
15 REM AT 1 MHZ CLOCK
29 REM SIMULATE PROGRAM LINES
21 REM
22 REM
23 REM
24 REM
25 REM
26 REM
27 REM
2B REM
29 REM
39 REM
49 FORI=lT06999:GOSUB255:NEXT
59 PRINTnDONEn:STOP
255 RETURN

*
DEALER PROFILE

By: Dennis Shoulders,
SofTouch, Inc.
2 Eagle Drive
Dayton, ,OH 45431

In response to PEEK(65) 's re
quest for articles, here is
how we got started as anOSI
dealer in 19B1. While we were
at Ohio State working on our
engineering degrees" we' hap
pened to meet a frantic sales
man from a local independent
telephone supplier. He told
us a salesman from the company
ha,d sold a telephone, switch
board to a large hospital by
overstating its capabilities.
The customer was told the
switchboard would accept num
eric messages from push-button
telephone and distribute them
to selected offices. This,
capability would allow the
hospital to eliminate their
slow and expensive pipe vacuum
mail system, similar to those
used at the drive-in teller
windows at most banks. How
ever, the switchboard was not
capable of such a function nor
did the company have the
expertise to develop it at the
time.

We knew this problem was close
to our chosen areas, so we
told the salesman not to wor
ry. Three days later, after
burning the midnight oil and
using a friend's OSI C-3, a
calendar-clock card, and a UTI
card, we wrote a 1999 line
BASIC, . program that clumsily
worked. The program alter-'
nately scanned the console
port and UTI card, which was
hooked to the switchboard, to
buffer incoming messages. When

2B PEEK [65] July, 19B5

i tselfto, sPeed up BASIC j u,st
by a proper choice" of ;line
numbers. Hopefully, this will
add a little to our under
standing of BASIC, and maybe
help speed up a critical sec~
tion of your program.

19 REM EXECUTES IN 14.2 SECONDS
15 REM AT 1 MHZ CLOCK
29 REM SIMULATE PROGRAM LINES
21 REM
22 REM
23 REM
24 REM
25 REM
26 REM
27 REM
2B REM
29 REM
39 REM
49 FORI=lT06999:GOSUB256:NEXT
59 PRINTnDONEn:STOP
256 RETURN

*
the message was terminated,
either by a carriage return or
star symbol from the telephone
keypad, the message was sent
out to 4 remote serial print
ers along with the date and
time. The user defines the
meaning of the numeric tele
phone messages.

The telephone people were'
amazed with our workl But,
much work was left ahead. The'
CRT on the console port was
used in the admitting and
discharge office to send alpha

" messages to the rell!ote pr'int
ers, and a fast typist could
outrun our scanning r'ate. We
took 3 more months to rewrite
the program in 6592 Assembly
Language. There is' no ,one
alive who can out-type our
gc~nning rate n~wl '

We burned the code into EPROM
and set it up to run 24 hours
per day" 365 days per ,year.
The system is still running
today, with the only down time
related to a failed memory
chip. This inexpensive system
was named nTelephone Command
System n and has saved the hos
pital a fortune in maintenance
and operating costs. By the
way, we advertised this pro
gram in PEEK(65), in the free
software listings. This adven
ture is just one 'of many in
SofTouch's three year corpor
ate history in working with
Ohio Scientific products.
More articles will follow.

EDITOR'S FOOTNOTE: In
nReader Surveyn many of
subscribers expressed a
for articles such as
Please do send morel

*

our
our

wish
this.

LETTERS
Ed:

I have put together a new mem
ory map of OS-65U from the
three you have published (Feb
'B9,'Mar"B3, and Jun 'B3) and
other sources. ,These sources
include information in letters
and articles in PEEK[65], 051
Tech Notes, other unofficial
051 publications, and my own
delvings into various programs
and U itself. I started with
Wallis' format (Feb 'B9 PEEK
[65]), expanded the descrip
tion field, and added columns
for range and source of infor~
mation. My map currently has
over 799 entries, is 132 col
umns long, and is printed 'on B
1/2 by 11 paper with margins
for binding.

I'd 1 ike to prov ide it to"your
readers, with an incentive to
help me update it, because we
all could use as complete a
map as possible. I hope that
everyone who reads it will add
to it all of the locations
they have found, correct any
mistakes or omissions in my
version~ and send this infor
mation back to me. I'll
incorporate all of the updates
and release it again. So I'm
offering either edition alone
for $3, or both editions for
$5.

Various and sundry notes from
OS-65U:

FLAG 13 CAUTION

When using FLAG 13 to, write
BASIC programs off to a file
in ASCII and, then back again,
watch' outl . Sometimes long
lines are truncated,-- you'll
lose closing parens, last dig
its of GOTO statements, etc.

FLAG 16 ERROR

BEXEC* 6.9 line 19B9 says that
FLAG 16 (and by implication
15) allow or disallow colons,
commas, and ampersands on in
put. But if you look at the
flag area in the OS, you find
only POKEs for colon and com
ma. No POKE for an ampersand.

COPYFI BUG

There is a bug in the 051
COPYFI routine--the new fast
one that uses all available
memory as a buffer--version
2.xx. Try this. Load it, and
start a copy from A to B.
During the copy, open a disk
drive door. You get a DEVICE
~ ERROR 11 Happens for both
devices A and B.

Took a few minutes to find

•

•

•

•

•

•

this one. During normal disk
I/O, you are supposed to set
the appropriate device before
calling USR. The I/O routine
takes the byte at 9832 (device
number) and puts it in 9889,
the first byte of the disk I/O
buffer. Then it does the I/O.
But COPYFI sets up a more
complex buffer at $6000 for
the I/O. I traced it and its
hooks into the· OS and could
not find it taking the device
number from $6000 or $6009 and
putting it to 9889, but it
does. 9832 is not touched at
all. It remains the number of
the program device. Anyway,

. if you error out to line
50000, COPYFI takes the device
number from 9832 when it
prepares the error message.

To fix, change the PEEK(9832)
in line 50080 to PEEK(9889).

THE BINARY SEARCH ADVANTAGE

David Weigle had an excellent
article on binary searching in
the December 1984 issue, but I
feel that maybe less exper
ienced people might have mis
sed the real speed of a binary
search in a long sorted file.
Let's take, for example, a
file of 60,000 sorted records,
and do a binary search. We
assume that we don't find the
record until the last look.

Divide 60,999 by two and dis
card the wrong half. This
leaves 30,999. Divide by two
and discard the wrong half
again. Now you have 15,000.
A third time leaves· 7509, a
fourth 3750, a fifth 1875, a
sixth 938 (let's do it the
hard way and keep the odd
record) . Continuing, 469
(move 7), 235 (8), 118 (9), 59
(lO), 39 (11), 15 (12), 8
(l3), 4 (14), 2 (IS), and 1
(16) •

Look at this: search 69,090
records and find in 16 or less
moves!

The rule of thumb is this:
How many bits does it take to
represent the number of rec
ords? That's the maximum
number of moves it will take
to find your record in a bin
ary search. 60,000 takes 16
bits to represent, so it will
take a maximum of 16 moves to
find a given record.

Compare this to a sequential
search. In general, half the
time the record you want will
be in the second half of the
file, so half the time you
will have to search through at
least 39,000 records. That's
a few more than 16.

HELP!

I have programs which write
parameters to a scratch file
and then RUN another program
without keeping common vari
ables. The second program
reads the parameters from the
file and executes. Sometimes,
when I have EXITed to the OS
and done things (haven't pin
ned down exactly what) and
then rerun the programs, the
first file PRINTs to the
scratch file with ~ car
riage returns. Not for every
PRINT statement, nor with any
pattern I see. Needless to
say, the second program does
n't get its parameters stra
ight with all the extra CRs.
It takes a reboot· to clear
this, but the reboot always
works. At least one other OS-
65U programmer has seen this.
Any guesses, readers?

Recently, I tried POKE X,PEEK
(Y). No error message, but
nothing was poked. Does .any
one know why?

How many Tech Notes did OSI
issue? I have only seen num
bers 1-27, although several
PEEK[65] correspondents men
tion number 28.

In his memory map info (March
'83 PEEK[65]), Roger Clegg
cites TI 1000 and others as
sources. What are these?

In the May '80 PEEK[65] some
one asked about ERROR 17 under
OS-65U and Al Peabody in
essence said "Panic!" Then
Jim Sanders in August '80 had
a couple of hardware-oriented
causes/fixes. Under newer OS-
65U versions, is ERROR 17
still a problem? If perchance
the file with the error is the
only copy, is there a POKE to
permit the INPUT or LOAD to
continue? Actually, if you
look at the 6850 ACIA status
register and set the 16 and 1
bits you get FRAMING ERROR and
NO CHARACTER READY· TO READ, so
I suppose the 17 comes direct
ly from the port at $COOO.

Does anyone out there know why
the 535 dynamic RAM board will
not run 2 MHz or with the z~
80?

Does anyone in the Kalamazoo,
Michigan or Ft. Wayne, Indiana
area have a maintenance manual
for a Hazeltine 1420 that I
could borrow?

Tom McGourin
216 West Michigan Avenue
Kalamazoo, MI 49007
(6l6) 388-5955
Fort Wayne, IN:
(2l9) 429-4169 (Office)
(2l9) 489-6001 (Home)

ED:

For those of your readers that
are considering adding ·double
sided disk drives to their
machines, I feel it would be
wise for them to be wary of
ads for Cannon 2/3 height
drives at very low prices (I
purchased two for $85.00 plus
shipping) .

After the drives arrived, I
encountered some major diffi
culties, and spent several
days trying to figure out was
going on. I talked with the
local floppy disk drive repair
shop and found out that these
particular drives were well
known for their erratic behav
ior. It seems that the drives
were made by Cannon as an OEM
part, and ended up on the sur
plus market because of defects
in either the design of the
electronics, or bad compon
ents.

Of the two drives that I pur
chased, I was able to get one
of them working after I dis
covered that it was "late" in
putting data on the disk.
This problem was solved by
using my "RPM" program to set
the disk speed at 302.2 RPM
(that seems high, but it
works) •

NEW!
USE LOTUS 1-2-3 WITR OS-OKS

DATAl

DO'NLOAD DMS FILES (TYPE 10)
TO

MS AND PC-DOS COMPUTERS
AND

INTERFACE TO LOTUS 1-2-3
OR

GENERATE YOUR OWN PROGRAMS.

COMPLETE DATABASE ON PC.
OS-65U PROGRAMS PREPARE AND

SEND DATA.

With manual
Manual only

$195.00
$ 3S. 00

SPECIAL!
IRS SCRIBE

WORD PROCESSOR

'as $195.00
Now $150.00

IRS Computer Services
2515C Esst .arket Street
Rarrisonbur8. Va 22801

(703) 434-4177

PEEK [65] July, 1985 21

PRICE
INVENTORY SALE

CXJR STOCK ROOM I S OVERFLIl'J I NG !

FILL YOUR LIBRARY WITH MISSING MANUALS FOR LESS THAN 1/2 PRICE

All starred items are at 1/2 the marked price
Foreign orders by VISA/MASTER/CHOICE only, plus postage.

Orders must be postmarked not later than August 31, 1985.
Orders can not be sent to P.O. Box addresses.

GOODIES for 051 Users~
111111111
The Unofficial OSI Users Journal

P.O. Box 347 • Owings Mills, Md. 21117, • (301) 363-3268

Cl P Sams Photo-Facts Manual. Complete schematics, scope waveforms and board photos. All you
need to be a tl P or SII Wizard, just

C4P Sams Photo-Facts Manual. Includes pinouts, photos, schematics for the 502, 505, 527, 540 and
542 boards, A barga i n at

C2/C3 Sams Photo-Facts Manual. The facts you naed to repair the larger OSI computers. Fat with
useful information, but just

OSI's Small Systems Journals. The complete set, July 1977 through April 1978, bound and reproduced
by PEEK (65). Full set only

.(Terminal 'Extensions Package - lets yo'u program like the mini-users do, with direct cursor positioning,
mnemonics and a number formatting function much more powerful than a mere "print using." Requires
65U.

. (RESEQ - BASIC program resequencer plus much more. Global changes,. tables of bad references,
GOSU!Js & GOTOs, variables by line number, resequences parts of programs or entire programs,
handles line 50000 trap. Best debug tool I've seen. MACHINE LANGUAGE - VERY FASTI Requires 65U.
Manual &'samples only, $5.00 Everything for

$7.95 $

$15.00 $

$30.00 $

$15.00 $

$50.00 $

$50.00 $

*
*
*

*

Sanders Machine Language Sort/Merge for OS-65U, Complete disk sort and merge, documentation
shows you how to call from any BASIC program on any disk and return it oranyother BASIC program
on any disk, floppy or hard. Most versatile disk sort yeLWili run under LEVEL I, II, or III. It should cost
more but Sanders says, " ... sell it for jUst..." $89.00 $ _____ _

KYUTil: - The ultimate OS-OMS keyiile utility package. This implementation of Sander's SORT IMERGE
creates, loads and sorts multiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of
over 15000 ;ZIP codes in under three hours. Never sort another Master File.

') Assembler Editor & Extended Monitor Reference Manual (Cl P, C4P & Cap)

65V Primer. Introduces machine language programming.

C1P, C1P MF, C4P, C4P OF, C4P MF, cap OF Inlroductory Manuals ($5.95 each, please specify)

Basic Reference Manual - (ROM, 650 and 65U)

C1P, C4P, cap Users Manuals - ($7,95 each, please specify)

How to program Microcomputers. The C-3 Series

Professional Computers Set Up & Operations Manual - C2-0EM/C2-0/C3-0EM/C3-0/C3-A/C3-BI '
C3-C/C3-C'

VISA
TOTAL

Master Charge

$100.00 $ _____ ,

$6.95 $ ____ _

$4.95 $ ____ _

$5.95 $:.... ___ _

$5.95 $ ___ ~_

$7.95 $ ____ _

$7.95 $ ____ _

$8.95 $ ____ _

$
Cash enclosed

Account No. ___________ Expiration Date _______ _ Mo Residents add 5% Tax $

Signature ________________________ _

Name
Street' _:...... ________ . ________________ _

City State _______ Zip ___ _

22 PEEK [65) July, 1985

C.O.D. orders add $1.90

Postage & Handling

TOTAL DUE

$

$

$

POSTAGE MAY VARY FOR OVERSEAS

3.70

*
*
*
*
*
*
*

•

•

•

•

•

•

The second drive is beyond my
scope to repair, primarily be
cause there is a ·controller"
chip (FUJITSU MB14936) that I
cannot obtain a pinout for
because it may be "X-Rated."
This means that data sheets
are not available to the hobby
user in order to provide au
thorized dealers a market for
repair work. The major prob
lem with this drive is that it
likes to "re-write" tracks on
the source disk.

Another strange thing about
these drives is a "double
step" made for the "B n side.
In this mode the nB n side of
the drive steps twice for each
step pulse from the control
ler. I found this mode by
accident while trying to fig
ure out why the Red/Green
activity LED was not turning
on the green when side nB n was
in use.

Were it not for these prob
lems, the Cannon drive would
be an excellent buy. Some of
the pluses are:

1. Direct spindle drive motor
(no belts to wear out).

2. Door lock, ,- prevents open
ing the door during disk ac
cess.

3. Head Load, - good for sav
ing media and heads from wear •

4. Door open switch for disk
ready status (shades of 8n!).

Some of the minuses are:

1. 2/3 height, - difficult to
find a case for, but mounting
holes match full height cases.

2. Appear to be OEM REJECTS
and may need repairs.

3. Will not work with Hexdos!

This last problem has really
puzzled me and here are the
symptoms:

1. Hexdos will boot, but will
display a DT error when a
program is selected from the
menu.

car
the
if

9

2. LOAD! Causes the head
riage to nBuzz" against
mechanical stop. Seems as
Hexdos does not "see" track
pulse right away.

3. COpy and Test Disk
Hexasm 1.9) Run, but
disk shows DT errors.

(from
copied

Well, that's pretty much it.
I now have a Tandom 199-1 as
drive A, and one Cannon drive
as B & D. The second Cannon
is in the box waiting for . me

to come up with enough to
cover the repair costs.

One last thing for your die
hard hacker readers. If you
feel up to the challenge,
check into these drives, but
don't do any testing with a
master disk!

C. J. Hipsher
Virginia Beach, VA 23456.

* * * * *
ED:

We have been a dealer of Ohio
Scientific Computers since
1979.

Here in Trinidad and Tobago,
we have several of the old
Diablo HiType II letter qual
ity printers. Do you know how
we can interface these print
ers to Apple//e, IBM PC or
Macintosh? Our clients out
there are hollering!!

If any of your readers has the
answer, please write to us.

George Martin .
Computer Systems Ltd.,
3 Rust' Street·
St. Clair
Trinidad and Tobago

FOR SALE::C2-0EM with 48k RAM.
Single density 8 inch floppy
drives. Upgraded with 2 mega
hertz speed enhancements. Runs
on OS-65U Operating System.
Hazeltine 1429 terminal. $599
or best offer. Call Frank
Sullivan, 393-482-7777.

* * * * *

WANTED: Print (schematic) of.a
539 board. Bob Groome, 824 W.
Main St., Richmond, IN 47374.

* * * .*'*

KEYWORD and CP/M v 2.25.
OSI's answer to WORDSTAR. Was
sold at $499 each, now reduced
to $299 each or $359 for the
pair. Reply PEEK, Box K, c/o
PEEK(65), P.O. Box 347, OWings
Mills, MD 21117.

* * * * *
FOR SALE: OSI 2+2 64K 6592/
65U/65D with Intertec "Inter
Tube CRT" and TI8l9 (fully
loaded) printer and Rixon 2l2A
modem. ($7899 new) $2899 or
best offer, must sell. Dallas
Porter (391)-937-1363.

* * * * *

FOR SALE: OSI Model C3-B-55
Computer, Installed 1982, 74
Meg. Winchester Disk, . 2 each

Floppy Disk Drives, '5 CRT
Multi-User, OS-65U Level III,
with Bus. II, HDE, HDM and
OSDMX Softwear. For informa
tion, call (219)-423-9461 Mr •
Ron Lerch.

* * * * *

FOR SALE: OSI C2D-52K with 19
Megabyte Winchester Disk and
8" Floppy OS-65U Level 1 Op
erating System with Hazeltine
1429 CRT. All in good working
condition, no reasonable offer
refused (315)-733-2893 week
days.

* * * * * GIVE AWAY * * * * *
Multi-Strike Printer Ribbons

What do you currently pay for
a multi-strike ribbon cart
ridge? About $4.00 each in
lots of 6?

We have found a solution, that
may cause you, ·never to . use a
fabric,.ribbon· aga:in. .:l.j Did
you' know' that most ',.all mul ti
strike ribbon cartridges use
the same ribbon bobbin? It is
just pressed on': "a .different
size hub and put in your cart
ridge type. 2) We have found
a source of recently outdated
(yes, many are dated) Diablo
Hi-Type I cartridges. We took
the oldest one we could find,
put it in our NEC cartridge
and printed this ad. Now,
honestly, do you see any
difference? We can't either.
So we are offering those of
you who use Hi-Type I, or are
willing to pry open whatever
cartridge you are using and
replace. the bobbin, a deal ycu
can't refuse.

Buy one box of 6 cartridges
for $8.00 and we will give you
a second box FREE. That's
66.66 cents a piece or 63%
off. At that rate, how can
you lose? Add $3.00 for post
age and handling. Make check
or money order (in U.S. funds,
drawn on a U.S. bank) payable
to PEEK(65). P.O. Box 347,
Owings Mills, Md. 21117. Or
der NOW, supply limited!

* * * OS-65D V3.2 * * *
DISASSEMBLY MANUAL

Published by Software Consult
ants, now available through
PEEK(65) for $25.95 including
postage. OVerseas add extra
postage (weight 16oz). Make
check or money order (in u.s.
funds, drawn on a U.S. bank)
payable to PEEK(65), P.O. Box
347, OWings Mills, MD 21117.

* * * * *
Send for free catalog, Aurora
Software, 37 South Mitchell,
Arlington Heights, IL 61HH!'5.
Phone (312) 259-4971.

PEEK [65] July, 1985 23

••• 1 II iii
The Unofficial OSI Users Journal

P.O. Box 347
Owings Mills, Md. 21117

DELIVER TO:

.,'

, '
·-··C·

BULK RATE
U.S. POSTAGE

PAID
Owings Mills, MD
PERMIT NO. 18

PRICE
INVENTORY SALE

OUR SHELVES ARE BULG I NG,!'

HEREIS YOUR CHANCE TO COMPLETE YOUR. LIBRARY AT LESS THAN 1/2 PRICE

Get a one year volume set (12 back issues) for $15.SS and we wiil pay UPS.
Get one back issue of the OSlO newsletter free with order.

Foreign orders by VISA/MASTER/CHOICE only, plus postage.
Orders must be postmarked not later than August 31; 1985.

Orders can not be sent to P.O •. Boxes. .

..
NAM.E ' ••••••••••••••••••.••••••••• • STREET •••••••••••••• ~, ••••.••••••

CITY •••••••••••••••••••••••••••• STATB •••••••••••••••••••••••••

ZIP cODE ••••••• ' • •••••••••••••••• COU~y •••••.•••••••••••••.•.•••••

Please send me the following volume(s). I enclose:

~gl 2. 1!U11 ()
JAN #1 FEB #2 MAR #3 APR # 4 MAY # 5 JUN # 6
JUL #7 AUG #8 SEP #9 OCT I1S NOV #11 DEC #12

~gl .J. 1!U12 ()

JAN #1 FEB #2 MAR #3 APR # 4 MAY # 5 JUN # 6
JUL #7 AUG #8 SEP #9 OCT I1S NOV III DEC 112

~gl ~. 1911J ()
JAN #1 FEB #2 MAR #3 APR # 4 MAY # 5 JUN # 6
JUL #7 AUG #8 SE.P #9 OCT I1S NOV III DEC 112

~gl 5. 1911~ ()
JAN #1 FEB #2 MAR #3 APR II 4 MAY II 5 JUN # 6
JUL #7 AUG #8 SEP #9 OCT I1S NOV III DEC #12

24 PEEK [65] July, 1985

'.

-.

~I

1

".

