
118 COMPUTE! October. 1981. Issue 17

Calling BASIC Commands

From

Machine Language Routines

While working on a tape operating system (TC)S)

for my OSI CUP and a Stringy Floppy tape drive,

many unknown, but desired, features were needed

to interface ROM BASIC and the TOS. First, I

wanted the TOS to always have command of

BASIC'S LOAD and SAVF routines. Second, I

wanted always to return to the TOS whenever a

BASIC program had been loaded into the BASIC

workspace. Third, I wanted to go directly from the

TOS and RUN a BASIC program that was in the

BASIC workspace. In addition, I wished to exit the

TOS to the ML Monitor; write a file directory;

store the directory on tape; retrieve the directory;

and write or load language tapes into the C1P

using file marks.

Since the Stringy Floppy tape drives require

that all programs stored on tape have file marks or

numbers, I needed to free the C1P from ROM

BASIC in order to create files on the tape for all

programs stored on the tape. The TOS could be

written in machine language. The TOS would

generate the file numbers under the control of the

user, but interfacing the TOS to ROM BASIC was

the problem that I faced and pondered for several

weeks. How the OSI ROM BASIC: and the TOS

were interfaced brought several interesting points

to light that could be useful in other programming

tasks.

Let me summarize. First, calling BASIC com

mands and executing BASIC programs can be

handled from machine language routines. Also, we

may LIST, SAVE. LOAD, and exit BASIC to our

machine language routines without any LISR func

tion call. How these commands can be executed

from a machine language routine will become clear

with some new knowledge of how BASIC'S inter

preter works. Let's start with some facts about the

BASICS interpreter and how BASIC commands are

executed.

William Taylor

Leavittsburg, OH

Let's look at BASIC'S LOAD and SAVE flags

and see how they are used to determine if BASIC:

programs are to be listed to the CRT or to the

Cassette port and if the keyboard or the Cassette

in put port will he the input device.

BASIC'S Immediate Mode Commands

BASIC commands are usually executed when

input from the keyboard is entered. For example,

when you type RUN followed by a carriage return

any BASIC program in the workspace will be exe

cuted or start to run, starting at the first line of the

program. Notice that I said type RUN! This type

of command is known as an immediate mode com

mand. If you had typed a number before the RUN

command the CMP would have responded with

OK. The program would not run but the line of

text would have been saved or entered into the

program memory. To understand what happens in

either the programming mode or the immediate

mode we must know how BASK: interprets the

code input by the operator. To do this let's look

inside BASIC: and examine some of what happens

during the course of any type of code execution.

At the beginning of system memory is what

has become known as zero page. This memory

area consists of the first 256 locations of low me

mory. OSI BASIC uses this area of memory as a

scratch pad. OSI BASIC uses page locations $0013

through $(){)■)A as what is known as the BASIC:

Input Line Buffer. What is the Input Line Buffer?

This area of low memory is used by BASIC to

temporarily store any input code from the user.

The code input by the user in the Input Line Buffer

will be examined by BASIC: to determine what the

code's destiny will be. When the user terminates a

line of code with a carriage return, the destination

of the code input by the operator depends on two

factors. First, if the code began with a line number

118 COMPUTE! Oclober. 1981. Issue 17

Calling BASIC Commands
From

Machine Language Routines
William T aylar

Leavi1tsburg, OH
While working o n a tape ope rating system (TOS)
for my OSI C I P a nd a Stringy Floppy ta pe drive,
many unknown , but desired , features were needed
lO inte rface ROM BASIC and the TOS. First, I
wanted the TOS to always have command of
BASI C's LOAD and SAVE routines . Second, I
wa nted always lO rellirn lO the TOS wheneve r a
BASIC program had been loaded into the BASIC
wo rkspace. Third , I wanted lO go directl y from the
TOS and RUN a BASI C program that was in the
BASI C workspace. In addition, I wished to ex it the
TOS lO the ML Monitor; write a file direclOry;
SlOre the direclOry on tape ; retrieve the directory;
and write or load language tapes into the C I P
using file marks.

Since the Stringy Floppy tape drives require
that a ll programs stored on tape have fil e marks or
numbe rs, I needed to free the C I P from ROM
BAS IC in order lo create fil es on the tape for all
progra ms stored on the tape . The TOS could be
writte n in machine language. The TOS wou ld
generate the file numbers under the control of the
use r, but interfacing the TOS to ROM BASI C was
the problem that I faced and pondered for seve ral
wee ks . How the OS I ROM BASI C and the TOS
were inte rf~l ced brought. several interesting points
to light that could be useful in othe r programming
tasks.

Let me summarize. First, call ing BASI C com­
mands and executing BAS IC programs can be
handled from mach ine language routines. Also, we
ma y LIST, SA VE, LOAD, and ex it BASI C lo our
machine language routines without any USR flll1c­
lion ca ll. How these commands ca ll be executed
from a machine language routine wi ll become clear
with some new kn owledge of how BAS IC's inter­
preter works. Le t's start \\'ith some facts about th e
BASI C interpreter and how BASIC comma nds a re
executed.

Let's look a t BASI C's LOAD and SAVE flags
and see how they are used lo dete rmine if BASI C
programs are lo be listed lO the CRT or lo the
Cassette port and if the keyboard or the Casse tte
inpu t port wi ll be the in p ut device.

BASIC's Immediate Mode Commands
BASIC commands are usually executed when
input from the keyboard is entered. For example ,
whe n you type RUN fo llowed by a ca rriage return
an y BASI C program in the workspace will be exe­
cuted or start lo run , starting at the first line of the
program. Notice that I sa id type RUN! This type
o f cOlnmancl is known as an im mediate Illode COIll ­
mand. If you had typed a numbe r before the RUN
command the C I P wou ld have responded with
OK. The program wou ld not run but the line of
tex t would have been saved or entered into the
program memory. To unde rstand what ha ppens in
either the programmi ng mode or the immed iate
mod e we mUSt know how BASI C inte rprets the
cod e input by the opera tor. To do this let's look
inside BASI C and examine some of what happens
during the course of an y type of code execution.

At the beginning ofs),stem memory is what
has become known as zero page. This mcmory
area consists of th e first 256 loca tions of low me­
mor),. OSI BASI C uses this area of memory as a
scratch pad. OS I BASIC uses page loca ti ons SOO l 3
through $0051\ as what is kn own as th e BAS IC
In put Line Buffer. What is the Input Line Buffer '
T hi s area of low memory is useel by BASIC to
te mporar ily store any input code fwm the use r.
T he code input by the user in the Input Line Bufler
will be exam ined by BASIC to d etermine what the
code's des tin y will be. Whe n the use r terminates a
line of code with a carriagc rel.urn , the des tination
o f the code inpu t by the o pe ralO r depends o n two
faclo rs. First, i f the code began with a line nu mber

OSI AARDVARK

NOWMEANS BUSINESS!

OSI

WORD PROCESSING THE EASY WAY-

WITHMAXI-PROS

This is a line-oriented word processor de
signed for the office that doesn't want to send

every new girl out for training in how to type a

letter.

It has automatic right and left margin justi

fication and lets you vary the width and margins

during printing. It has automatic pagination and

automatic page numbering. It will print any text

single, double or triple spaced and has text cen

tering commands. It will make any number of

multiple copies or chain files together to print an

entire disk of data at one time.

MAXI-PROS has both global and line edit

capability and the polled keyboard versions

contain a corrected keyboard routine that make

the OSI keyboard decode as a standard type

writer keyboard.

MAXI-PROS also has sophisticated file

capabibilities. It can access a file for names and

addresses, stop for inputs, and print form letters.

It has file merging capabilities so that it can store

and combine paragraphs and pages in any order.

Best of all, it is in BASIC (0S65D 51/4" or

8" disk) so that it can be easily adapted to any

printer or printing job and so that it can be sold

for a measly price.

MAXI-PROS - $39.95

NEW-NEW-NEW

TINY COMPILER

The easy way to speed in your programs. The

tiny compiler lets you write and debug your pro

gram in Basic and then automatically compiles a

Machine Code version that runs from 50-150

times faster. The tiny compiler generates relocat

able, native, transportable machine code that can

be run on any 6502 system.

It does have some limitations. It is memory

hungry — 8K is the minimum sized system thai

can run the Compiler. It also handles only a

limited subset of Basic — about 20 keywords in

cluding FOR, NEXT, IF THEN, GOSUB, GOTO.

RETURN, END, STOP, USR(X), PEEK, POKE,

-,-,*,I, (.*) V VVariable names A-Z, and Integer

Numbers from 0-64K.

TINY COMPILER is written in Basic. It can

be modified and augmented by the user. It comes

with a 20 page manual.

TINY COMPILER - S19.95 on tape or disk

THE AARDVARK JOURNAL

FOR OSI USERS - This is a bi-monthly

tutorial journal running only articles about OSI

systems. Every issue contains programs custom

ized for OSI, tutorials on how to use and modify

the system, and reviews of OSI related products.

In the last two years we have run articles like

these!

1) A tutorial on Machine Code for BASIC

programmers.

2) Complete listings of two word processors

for BASIC IN ROM machines.

3) Moving the Directory off track 12.

4) Listings for 20 game programs for the OSI.

5) How to write high speed BASIC — and

lots more -

Vol. 1 (1980) 6 back issues - S9.00

Vol. 2 (1981) 2 back issues and subscription for

4 additional issues - S9.00.

ACCOUNTS RECEIVABLE - This program

will handle up to 420 open accounts. It will age

accounts, print invoices {including payment

reminders) and give account totals. It can add

automatic interest charges and warnings on fate

accounts, and can automatically provide and cal

culate volume discounts.

24K and 0S65D required, dual disks recom

mended. Specify system.

Accounts Receivable. S99.95

• * ■ SPECIAL DEAL - NO LESS! • * *

A complete business package for OSI small

systems - (C1, C2, C4 or C8). Includes MAXI-

PROS, GENERAL LEDGER, INVENTORY,

PAYROLL AND ACCOUNTS RECEIVABLE -

ALL THE PROGRAMS THE SMALL BUSI

NESS MAN NEEDS. $299.95

P.S. We're so confident of the quality of these

programs that the documentation contains the

programmer's home phone number!

SUPERDISK II

This disk contains a new 8EXEC* that boots

up with a numbered directory and which allows

creation, deletion and renaming of files without

calling other programs. It also contains s slight

modification to BASIC to allow 14 character

file names.

The disk contains a disk manager that con

tains a disk packer, a hex/dec calculator and

several other utilities.

It also has a full screen editor (in machine

code on C2P/C4D that makes corrections a snap.

We'll also toss in renumbering and program

search programs — and sell the whole thing for —

SUPERDISK II S29.95 (5 1/4") 334.95(8"}.

ANDFUN,

TOO!

BOOKKEEPING THE EASY WAY

-WITH BUSINESS I

Our business package 1 is a set of programs

designed for the small businessman who does not

have and does not need a full time accountant

on his payroll.

This package is built around a GENERAL

LEDGER program which records all transactions

and which provides monthly, quarterly, annual,

and year-to-date PROFIT AND LOSS statements.

GENERAL LEDGER also provides for cash

account balancing, provides a BALANCE SHEET

and has modules for DEPRECIATION and

LOAN ACCOUNT computation.

GENERAL LEDGER (and MODULES) Si29.95.

PAYROLL is designed to interface with the

GENERAL LEDGER. It will handle annual

records on 30 employees with as many as 6

deductions per employee,

PAYROLL- $49.95.

INVENTORY is also designed to interface with

the general ledger. This one wil! provide instant

information on suppliers, initial cost and current

value of your inventory. It also keeps track of the

order points and date of last shipment.

INVENTORY- $59.95.

GAMES FOR ALL SYSTEMS

GALAXIAN - 4K - One of the fastest and finest

arcade games ever written for the OSI, this one

features rows of hard-hitting evasive dogfighting

aliens thirsty for your blood. For those who

loved (and tired of) Alien Invaders. Specify

system- A bargain at $9.95

NEW - NEW -NEW

LABYRINTH - 8K - This has a display back

ground similar to MINOS as the action takes

place in a realistic maze seen from ground level.

This is, however, a real time monster hunt as you

track down and shoot mobile monsters on foot.

Checking out and testing this one was the most

fun I've had in years! — $13.95.

NIGHT RIDER - You've seen similar games in

the arcades. You see a winding twisting road

ahead as you try to make time and stay on the

road. NIGHT RIDER uses machine code to gen

erate excellent high speed graphics - by the same

author as MINOS.

NIGHT RIDER - $12.95 cassette only

THIEF - Another machine code goody for the

C1 P cassette only. You must use mobile cannon

to protect the valuable jewels in the middle of

the screen from increasingly nasty and trigger

happy thiefs. Fast action and fun for one or two

players. THIEF Si3.95 on C1 cassette only!

SUPPORT ROMS FOR BASIC IN ROM MA

CHINES - C1S/C2S. This ROM adds line edit

functions, software selectable scroll windows,

bell support, choice of OSI or standard keyboard

routines, two callable screen clears, and software

support for 32-64 characters per line video.

Has one character command to switch mode!

2 C1P from 24 to 48 character line. When in

stalled in C2 or C4 (C2S) requires installation

of additional chip. C1P requires only a jumper

change. - S39.95

C1E/C2E similar to above but with extended

machine code monitor. - $59.95

OSI

Please specify system on all orders

This is only a partial listing of what we have to offer. We now offer over 100 programs, data sheets, ROMS, and boards

for OSI systems. Our S 1.00 catalog lists it all and contains free program listings and programming hints to boot.

AARDVARK TECHNICAL SERVICES, LTD.

2352 S. Commerce, Walled Lake, Ml 48088

(313)669-3110 OSI

OSI AARDVARK OSI
NOW MEANS BUSINESS!

WOAD PROCESS ING THE EASY WAY­
WITH MAX I·PROS

Th is is <I line-oriented word processor de­
signed for the o ffi ce that doesn't want to send
every new girl out for training in how to type a
letter.

It has automatic right and left margin justi­
fication and lets you vary the width and margins
during printing. It has automatic pagination and
automatic page numbering. It will print any text
single, double or triple spaced and has text cen­
tering commands. It will make any number of
multiple copies or chain fil es togeth e r to print an
entire disk of data at one time.

MAXI·PROS has both global and line edit
capability and the polled keyboard versions
contain a corrected keyboard routine that make
the OSI keyboard decode as a standard type­
writer keyboard.

MAX I·PROS also has sophisticated file
capabibilities . It can access a file for names and
addresses, stop for inputs. and pr int form letters.
It has file merging capabil i ties so that it can store
and combine paragraphs and pages in any order.

Best of all, it is in BASIC (0565051/4 " or
8" disk) so that it can be easily adapted to any
printer or printing job and so that it can be sold
for a measly price.
MAX I·PROS - $39.95

NEW-NEW-NEW
TINY COMPILER

T he easy way to speed in your programs. The
tiny compiler lets you write and debug your pro­
gram in Basic and then automatically compiles a
Machine Code version that runs from 50-150
times faster. The tiny compi ler generates relocat­
able, native, transportable machine code that can
be run on any 6502 system.

It does have some limitations . It is memory
hungry - 8K is the minimum sized system that
can run the Compiler. It also handles only a
limited subset of Basic - about 20 keywords in ­
cluding FOR. NEXT, IF THEN, GOSUB , GOTO,
RETURN , END, STOP, USR(XI, PEEK, POKE,
-."'.- .1 , (.'\ .<) .Variable names A-Z, and Integer
Numbers r;:om ()-64K.

TINY COMPILER is written in Basic. It can
be modified and augmented by the user. It comes
with a 20 page manual.
TIN Y COMPILER - S19.95 on tape or disk

THE AARDVARK JOURNAL
FOR 051 USERS - This is a b i·monthly

tu torial journal running on ly articles about 051
systems. Every issue contains programs custom·
ized for OS I . tutorials on how to use and mOdify
the system, and reviews of OS I re lated products.
In the last two years we have run articles l i ke
these!

1) A tutorial on Machine Code for BASIC
programmers.

2) Complete l ist ings of two word processors
for BASIC I N ROM machines.

3) Moving the Directory off track 12.
4) Listings for 20 game programs for the OSI.
51 How to write high speed BASIC - and

lots more -
Vol. 1 (198016 back issues - $9.00
Vol. 2 (981) 2 back issues and subscriPtion for
4 additional issues· $9 .00.

ACCOUNTS RECEIVABLE - This program
wi ll handle up to 420 open accounts. It will age
accounts, print invoices (including payment
reminders) and give account tala Is. It can add
automatic interest charges and warnings on fate
accounts, and can automat ically provide and cal·
culate volume discounts.

24K and 05650 required, dual d isks recom·
mended. Specify system.
Accounts Receivable. S99.95

••• SPEC IAL DEAL - NO LESS I •••

A complete business package for 051 small
systems - (C1, C2, C4 or C81. Includes MAX I­
PROS, GENERA L L EDGER, INVENTORY,
PAYROLL AND ACCOUNTS RECEIVABLE­
A LL TH E PROGRAMS THE SMA LL BUSI·
NESS MAN NEEDS. $299.95

P.S . We're so confident of the quality of these
programs that the documentation contains the
programmer's home phone number!

SUPERolSK /I
Th is disk contains a new BEXEC" that boots

up wi th a numbered directory and w hich allows
creation. deletion and renaming of files without
calling other programs. It also contains a slight
modification to BASIC to allow 14 character
fi le names.

The d isk contains a d isk manager that can·
tains a disk packer, a hex /dec calcu lator and
several other utilities.

It also has a fu ll screen editor (in machine
code on C2P/C4)) that makes corrections a snap.
We'll also l OSS in renumbering and program
search programs - and se l l the whole thing for -
SUPEROISK II $29.95 (5 1/4") $34.95 (S"I.

ANDFUN,
TOO!

BOOKKEEPING THE EASY WAY
- WITH BUS INESS I

Our business package 1 is a set of programs
designed for the small businessman who does not
have and does not need a full time accountant
on his payroll.

T his package is built around a GENERAL
LEDGER program which records all transactions
and which provides monthly, quarterly, annual,
and year·to-date PROF IT AND LOSS statements.
GENERA L LEDGER also provides for cash
account balancing, provides a BALANC E SHEET
and has modules for DEPRECIATION and
LOAN ACCOUN T computation .
GENERAL LEDGER (and MODULES) $129.95.

PAYROLL is designed to interface with the
GENERAL LEDGER . It will handle annual
records on 30 employees with as many as 6
deductions per employee,
PAYROLL - 549.95.

INVENTORY is also designed to interface with
the general ledger. T his one will provide instant
information on suppl iers, initial cost and current
va lue of your inventory. It also keeps track of the
order points and date of last shipment.
INVENTORY · $59.95.

GAMES FOR ALL SYSTEMS
GALAX IAN . 4K . One of the fastest and finest
arcade games ever written for the 051, this one
features rows of hard-hitting evasive dogfighting
aliens thirsty for your blood. For those who
loved land ti red of) Alien Invaders. Specify
system - A bargain at 59.95

NEW - NEW - NEW

LABYRINTH - 8K - T his has a display back·
ground similar to MINOS as the action takes
place in a realistic maze seen from ground level.
T his is, however, a real time monster hunt as you
track down and shoot mobile monsters on foot.
Checking out and testing this one was the most
fun I 've had in yearsl - $13.95.

N IGHT RIDER · You've seen similar games in
the arcades. You see a winding twisting road
ahead as you try to make time and stay on the
road. NIGHT R IDER uses machine code to gen·
erate excellent high speed graphics· by the same
author as MINOS.
NIGHT RIDER - $12.95 cassette only

TH I E F - Another machine code goody for the
C1P cassette only. You must use mobi le cannon
to protect the valuable jewels in the middle of
the screen from increasingly nasty and trigger
happy th iefs. Fast action and fun for one or two
players. T H I E F $13.95 on C1 cassette only !

SUPPORT ROMS FOR BASIC IN ROM MA·
CHINES - C1S /C2S. T his ROM adds line ed i t
functions, software selectable scroll windows,
bell support, choice of OSI or standard keyboard
routines, two callable screen clears, and software
suPPOrt for 32-64 characters per line video.
Has one character command to switch model
2 C1 P from 24 to 48 character line. When in·
stalled in C2 or C4 (C2S) requires installat ion
of additional chip. Cl P requires only a jumper
change. - $39.95
C1 E/C2E similar to above but with extended
machine code monitor. - $59.95

Please specify system on all orders

''$
OSI

This is on ly a partial listing of what we have to offer. We now offer over 100 programs. data sheets, ROMS. and boards
for OSI sys tems. Our S1.00 cata log lists it all and contains free program listings and p rogramming hints to boot .

AARDVARK TECHNICAL SERVICES, LTD.
2352 S. Commerce, Walled Lake, MI48088

(313)669-3110

tit
OSI

120 COMPUTE!
October. 1981 Issue 17

this signals BASIC that the code must be saved as a

BASIC program line. Second, if the code in the

Input Line Buffer does not start with a numeral,

then the code represents a BASIC immediate

command or some error that the user made while

typing at the keyboard. In either of the latter cases,

the code will be immediately executed. If the code

was a valid command, the command will be exe

cuted. If the input was an error, BASIC will respond

with Syntax Error.

To demonstrate and reveal the format of the

code placed in the Input Line Buffer, please exam

ine the following example of an input line which

will be considered a BASIC line of program text:

10 LIST. On examination of the Input Line Buffer,

it would reveal the following code if no carnage

return were typed after the line of text. Type in

the line of code: 10 LIST. Do not enter a carnage

return. BREAK the C1 P. Call up Monitor Mode by

typing M. Call address mode. Call memory location

$0013. You will find that the code listed in the next

example will reside at memory locations starting at

$0013.

0013 31 = ASCII 1

0014 30 = ASCII 0

0015 20 = ASCII space

0016 4C = ASCII L

0017 49 = ASCII I

0018 53 = ASCII S

0019 54 = ASCII T

On examination of the code in the Input Line

Buffer you will find that all the code will be the

hexadecimal ASCII equivalent of the text entered

at the keyboard.

The code stored in the Input Line Buffer will

have a different appearance if you terminate the

line with a carriage return. The code will appear in

the Input Line Buffer as in the next example.

0013 99

0014 00

0015 20

0016 00

0017 49

0018 53

0019 54

Try entering the line 10 LIST(CR). Break the

computer. Call $0013 and examine the code in the

Input Line Buffer. As you can see BASIC has

converted its contents.

Now let's try an Immediate Mode operation

and examine the Input Line Buffer. First, clear

BASIC workspace. Type NEW (CR). Next type

LIST (CR). Break the computer and call Monitor

Mode. As before, call $0013 and examine the code

stored in the buffer. On examination you should

find the following code:

0013 99

0014 00

0015 53

0016 00

0017 00

This data spells out the LIST command. The

byte $99 is a Token for the keyword LIST. What is

a Token? It is a single byte that represents a com

mand or keyword. OSI BASIC has a Token for all

BASIC keywords. Tokens are used by BASK- in

immediate Mode or they arc stored in all BASIC

programs stored in the BASIC program workspace

or BASIC source code table. For the sake of this

article let's say that a Token describes to BASIC a

keyword. A keyword is an indicator to BASIC as to

what function BASIC must perform in the case of

$99 (LIST) BASIC is told to LIST all the source

code in the BASIC workspace.

The point that we have made with the examples

indicates that, for BASIC to know what is expected,

the proper code must be in the Input Line Buffer

starling at $0013. We can use the facts just pre

sented to make BASIC think an operator has en

tered an Immediate Mode command, but the

command can be initiated from a machine language-

routine as you will see. We are not ready yet to use

our new knowledge about the Input Line Buffer

and Tokens as commands called from machine

language routines. First we must learn some more

facts about BASIC.

How does BASIC execute the code for com

mands in the Input Line Buffer? The code must be

read by the BASIC Interpreter. On examination of

a Zero page memory map, you will find a machine

language routine which starts at $ 00BC. This

routine is called a "PARSER." It is used to read a

line of code, character by character, stored in the

line buffer or code stored in a program line in the

BASIC workspace. The Parser routine at $00BC

looks at the first character of code in the buffer to

see if the character is an ASCII numeral or not. If

the first character were a numeral, the Parser tests

each character until a non-numeral is found. If the

first character is a numeral, the line of code in the

buffer is recognized as a line of source code and

will be stored in the source code table. When the

Parser detects a non-numeral, tlie Parser routine

hands the code to a routine that "Tokenizes" the

line before the line is placed in the source code

table or back into the input line buffer. If the first

character in the buffer is a non-numeral, the parser

determines that the input code must be an imme

diate mode command. If you recall the earlier

examples, we demonstrated the keyword LIST

entered as a program source line. First we examined

the buffer without a carriage return. It was evident

that the code was ASCII. Next, we entered a line of

text ending with a carriage return and examined

the data in the buffer. At this point, we found that

the data was in a Tokenized form. As you can see,

the BASICS interpreter had, in fact, converted the

ASCII to a condensed (or Tokenized) line of code.

To understand how the parser routine inter

prets the source code (or the code in the Input

120 COMPUTE! Oclobel. 1Q81. Issue 17

this signals BAS IC that the code must be saved as a
BASI C program line. Second, if the code in the
Input Line Buffer does not start with a numeral,
then the code represellls a BASIC immediate
command or sO me error that the user made while
typing at the keyboard. I n either of the laller cases,
the code will be immediately executed . If the code
was a valid command , the command will be exe­
cuted . If the input was an error, BAS IC will respond
with Sylllax Error.

To demonstrate and revea l the fo rmat of the
code placed in the I nput Line Buffer , please exam­
ine the following example of an input line which
will be conside red a BASIC line of program tex t:
10 LI ST. On examination of the Input Line Bu ffe r,
it wo uld reveal the following code if no carriage
return were typed after the line of text. T ype in
the line of code: 10 LIST. Do not e llle r a carriage
return. BREAK the C I P. Call up Mo nito r Mode by
typing M. Call address mode. Call memory location
$001 3. You will find that the code listed in the next
exalnple will reside at me mory locations starling at
$00 13.

0013 31 = ASCII 1
0014 30 = ASCII 0
0015 20 = ASCII space
0016 4C = ASCII L
0017 49 = ASCII [
00[8 53 = ASCII S
0019 54 = ASCII T

O n examination o f the code in the I nput Line
Buffer you will find that all the code will be the
hexadecimal ASCII equi valent of the tex t elllered
at the keyboard.

The code stored in the Input Line Buffer will
have a diffe rent appea rance if yo u te rminate the
line with a carriage return. The code will appear in
the I nput Line Buffer as in the next example.

0013 99
0014 00
0015 20
0016 00
0017 49
0018 53
00[9 54

Try ente ring the line 10 LIST (C R). Break the
compute r. Call $001 3 and examine the code in the
Input Line Buffer. As you can see BAS IC has
conve rted its contents.

Now let's try an Immediate Mode o peration
and examine the Inpu t Line Bulle r. First, clear
BASIC workspace. T ype NEW (C R). 'ex t type
LI ST (C R). Break the compute r and ca ll Moni to r

lode. As before, ca ll $00 I 3 and exa mine the code
sto red in the buffe r. O n examination you should
find the following code:

0013 99
0014 00
0015 53
0016 00
0017 00

T his data spells o ut the LI ST comma nd. T he
byte $99 is a Token for the keyword LIST. What is
a Token? It is a single byte that represe llls a com­
mand or keyword . OSI BASIC has a T o ken for all
BAS IC keywords. Tokens are used by BAS IC in
immediate Mode or they are sto red in all BAS IC
prog rams stored in the BAS IC program workspace
o r BASIC source code table. For the sake o f this
a rticle let's say that a Token describes to BASIC a
keyword . A keyword is an indicator to BAS IC as to
what function BAS IC must perfo rm in the case of
$99 (LIST) BASIC is told to LI ST all the source
code in the BASI C workspace.

The poilllthat we have made with the examples
indica tes that, fo r BAS IC to know what is ex pected ,
the prope r code must be in the Input Li ne Buffer
sta rting at $00 I 3. We can use the facts just pre­
sented to make BASI C think an ope rato r has en­
te red an Immediate Mode command, but the
command can be initiated froln a machine language
routine as you will see. We are not read y yet to use
our new knowledge about the Input Line Buffer
and T okens as commands called from machine
lang uage rOll tin es. First we must learn some more
facts abo ut BAS IC.

How does BAS IC execute the code for com­
mands in the Input Line Buffe r? The code must be
read by the BAS IC Interpreter. On examination of
a Ze ro page memory map, you will find a machine
language routine which sta rts at $ OOBC. This
ro utine is called a "PARSER." It is used to read a
line of code , cha racte r by characte r, stored in the
line buffer or code stored in a program line in the
BASIC workspace. The Parser routine at $OOBC
looks at the first characte r of code in the bufler to
see if the cha racter is an ASCI I numeral or not. If
the first characte r we re a numeral, th e Parser tests
each character ullli l a no n-numeral is fo und . If the
first character is a numeral , the line o f code in the
buffe r is recognized as a line o rsource code and
will be sto red in the SO urce code table. When the
Parser detects a non-numeral, the Parser routine
hands the code to a routine that "Tokenizes" the
line before the line is placed in the source code
ta ble o r bac k into the input line buffe r. I r the first
character in the buffer is a non-numera l, the parser
dete rmines that the input code must be an imme­
diate mode command . I f you recall the ea rlie r
examples, we demo nstrated the keyword LI ST
entered as a program source linc. First we examined
the buffe r witho ul a ca rriage re turn . It was evide nt
that the code was ASC II. Nex t, we entered a line of
tex t e nding with a carriage re turn and examined
the da ta in the burfe r. At this point, we fo und that
th e data was in a Tokcnizcd rorm . As YO LI ca n see,
the BAS IC interprete r had , in fac t, convened the
ASCII to a condensed (or Tokenized) line o f code.

To unde rstand ho w the parser rOlltine inte r­
prets the source code (or the code in the Input

October. 1981 Issue 17 COMPUTE! 121

Line Buffer) please refer to Listing 1. The machine

language parser routine shown in Listing I shows

that memory locations $00C2, 00C3, and 00C4

contain an LDA direct instruction or AD 13 00.

This instruction causes the 6502 accumulator to be

loaded with the code at the first address of the

Input Line Buffer. On initialization, (BASIC Cold

Start) address $00C2, 00C3, and 00C4 will point to

$0013 (the beginning of the Input Line Buffer). If

you type RUN in Immediate Mode without a pro

gram in the BASIC workspace, address $00C2,

00C3, and 00C4 will contain AD 00 03. As you can

see, the Parser now points to the beginning of the

BASIC workspace.

At this point, enough knowledge about the

Input Line Buffer and the parser routine has been

presented to allow us to explore the possibility of

implementing and executing BASIC Immediate

Mode commands called from outside ROM BASIC

using machine language routines.

Let us now experiment with the Input Line

Buffer and the parser routine to see if we can

actually call a BASIC Immediate Mode command

from a machine language program. As I mentioned

at the beginning of this article, I needed to call

BASIC'S LOAD and SAVE commands. Let's begin

with these. First, let's try the SAVE command to

demonstrate how it can be called from a machine

language routine.

To use the SAVE command we must learn yet

more facts about how BASIC functions. When the

user wishes to save a program that is stored in the

BASIC workspace, the SAVE command must be

used. What happens when you type SAVE? When

the command, SAVE, is entered at the keyboard

and ended with a carriage return, the code will, of

course, be placed in the Input Line Buffer as ASCII.

When the carnage return is entered, BASIC exam

ines the code and recognizes that this is an Imme

diate Mode command. The code in the Input Line

Buffer will be Tokenized and placed back in the

Input Line Buffer. The Input Line Buffer would

not contain:

$0013 94 = TOKEN FOR SAVE

$0014 00 = NULL

$0015 53

$0016 00 = NULL

Now, on examination of the Parser routine at

address $00C2, 00C3, and 0OC4, you will find that

the Parser has read the code located at address

$0018 and found a Token for the keyword SAVE,

and that BASIC has executed the comand. When

the SAVE command was executed, BASIC per

formed the task of setting what is called the SAVE

flag. This Hag tells the computer that any data sent

from BASIC will be sent to the cassette port and to

the screen. The SAVE flag is located at $0205. II

the contents of $0205 are set to $00, then output

From BASIC will be listed to the screen.

If the SAVE flag contains $01 then the cassette

port along with the screen will be activated.

We may use these facts to call the BASIC

SAVE command from a machine language routine.

Let me demonstrate with an example. Enter the

machine language routine (Listing 2) into the

computer. Now write a BASIC program into the

computer. This program can be any program that

you may have on hand, but a single program line

will do for the demonstration. Exit BASIC and call

the address of the machine language routine of

Listing 2. Run the machine language routine. As

you can see, the BASIC program that you entered

into the computer was LISTed out to the screen of

your monitor. Also, the program will be sent to the

cassette port.

On examination of the Assembly Listing,

notice that we have loaded the Input Line Buffer

at $0013 with the Token for LIST ($94). Also

notice that, in the Listing, we are setting the SAVE

(lag at $0205 to the the value of $01. We have set

address $00CS and $00C4 in the Parser routine to

point to the beginning of the input line buffer.

Finally, we call a routine in the BASIC interpreter

located at $A4B5. This routine is called the LIST

routine and will execute the LIST command when

called by a BASIC program, Immediate Mode, or

by a machine language calling routine. As you can

see, we have programmed a SAVE and a LIST

osi OSI
_ ii— P:m » ZL if-j A.* D An '2 i\ Lf ?.

yHUMANOID
DEFENDER
AS iJht'aiUKi! OF THE HUHANOID COLONIES,

YOU'VE GOT TO STOP THE ALIEN

LANDERS THAT ARE TRYING TO

PICK UP AND MUTATE TEE

HUMANOIDS. IF A LANDER

PICKS UP A KUMANOID, YOU

HAVE TO BLAST THE LANDER,

THEN CATCH THE HUHANOID IN

MID-AIH AND LOWER IT SAFELY TO

THE GROUND FOR A BONUS! EVERY NOW

AND THEN, A BAITER SHIP APPEARS OUT

OF HYPERSPACE TO KEEP THINGS

INTERESTING! WITH COLOS AND LOTS OP

SOUND! 3K CASSETTE $9-95

•SPECIFY YOUR SYSTEM!"

LLJNI=IR»»»

RE5CUER

Introductory

OUR HOONBASE IS BEING ATTACKED BY

ALIENS! IN RESPONSE To THEIR CALL

FOR HELP, YOUR MOTHERSHIP HAS

GONE INTO LUNAR ORBIT OVERHEAD,

NOW YOU'VE GOT TO LAND AND RESCUE

THE MO0NBA3E CHEW. YOUtt TWO MAN

RESCUE CRAFT WILL HAV2 TO MAKE SEVERAL TRIPS TO GET THEM ALL

OUT. ONCE YOU'VE MANEUVERED THROUGH THE ASTEROID BELT. AVOIDED

THE MOUNTAIN PEAKS AND LAUDED SAFELY, THE REAL TROUBLE STARTS!

THE ALIENS REVEAL THEMSELVES AND YOU'VE GOT TO BLAST YOUR WAY

BACK TO THE MOTHERSHIP! A LOT OF ACTION, WITH COLOR AND SOUND,

by JOHN WILSON BK CASSETTE $9.95

BUY BOTH NEW SOFT PRETZELS ABOVE FOH

THE SPECIAL ?RICE OF ONLY J17-95

OR. SEND tl.00 FOR ILLUSTRATED CATALOG

AND GET A $1.50 CREDIT GOOD O'J YOUR

FIRST ORDER!

ALL GAMES SUPPORT SOUND ON C'.P!

ALL PROGRAMS AVAILABLE ON CASSETTE ONLY

Pretzelland Software

2005 A WHITTAKER RD.

YPSILANT1, Ml. 48197

October. 1981. Issue 17 COMPUTE! 121

Line Buffe r) please refer to Listing I. The machine
language parser ro utine shown in Listing I shows
that memory locations $00C2, 00C3, and 00C4
contain an LOA direct instruction or AD 13 00.
This instruction causes the 6502 accumulator to be
loaded with the code at the first address of the
Input Line Buffe r. On initialization , (BASIC Cold
Start) address $00C2, 00C3, and 00C4 will point to
$001 3 (the beginning o f the Input Line Buffer). If
you type RUN in Immediate Mode without a pro­
gram in the BASI C workspace , address $00C2,
00C3, and 00C4 wi ll conta in AD 00 03. As you can
see, the Parse r now po ints to the beginning of the
BASI C workspace.

At this point, enough knowledge abo ut the
Input Line Buffe r and the pa rse r routine has been
presented to allow us to ex plore the possibility of
implementing and executing BASI C Immediate
Mode commands ca lled from outside ROM BAS IC
using mac hine lang uage roulines.

Letus now experiment with the Input Line
Buffe r and the pa rser rou tine to see if we can
actuall y call a BASIC Immediate Mode command
from a machine language program. As I mentioned
at the beginning o f this a rticle , 1 needed to ca ll
BASIC's LOAD and SAVE commands. Let's begin
with these. First, let's try the SAVE co mmand to
demonstrate how it can be called from a machine
language routine .

T o use the SA VE command we must lea rn ye t
mo re facts abo ut how BAS IC Functions. When the
use r wishes lO save a progra m lhat is sto red in lhe
BASIC workspace, the SA VE command must be
used . What happens when yo u type SAVE> When
the command , SA VE, is entered at the keyboard
and ended with a ca rri age return , the code will , o f
course, be placed in the 1 nput Line Bufle r as ASC II.
When the ca rriage retu rn is entered , BASI C exam­
ines the code and recognizes that this is an Imme­
diate Mode command . The code in the Inpu t Line
Buffe r will be T o kenized and placed bac k in the
Input Line Buffe r. The Input Line Buffe r would
nOl con la in :

$0013 94 = TOKEN FOR SAVE
$0014 00 = NULL
$0015 53
$0016 00 = NULL

Now, o n examinalio n o f the Parser rouline a l
address $00C2, 00C3, and 00C4, you will find that
the Parse r has read the code located at address
. 00 13 and found a Token fo r the keyword SA VE,
and that BASIC has executed the comand . When
the SA VE command was executed , BASIC per­
formed the task of setting what is called the SAVE
fl ag. This flag tells the computer that an y data sent
from BASI C will be sent to the cassette po rt and to
the sc reen. The SA V E !lag is located at $0205. 1 f
the contents of $0205 are set to $00, then o utput
from BASI C will be listed to the screen.

If the SAVE flag contains $0 I then the cassette
port along with the screen will be activated.

We may use these facts to call the BASIC
SA VE command from a machine language routine.
Let me demonstrate with an example. Enter the
machine language routine (Listing 2) into the
compute r. 1 ow write a BASI C program into the
computer. This program can be any program that
you may have on hand, but a single program line
wi ll do for the demonstration . Exit BASIC and call
the address of the machine language routine of
Listing 2. Run the machine language routine . As
you can see, the BASIC program that you entered
into the computer was LISTed o ut to the screen of
your monito r . Also, the prog ram will be sent to the
casse tte po rt.

O n examination of the Assembl y Listing,
notice that we have loaded the I nput Line Buffe r
at $001 3 with the Token for LIST ($94) . Also
notice that, in the Listing, we a re selling the SA VE
fl ag at $0205 to the the va lue of $0 I. We have set
address $00C3 and $00C4 in the Parser routine to
point to the beginning of the input line buffe r.
Finall y, we call a routine in the BASIC interprete r
located at $A4B5. This routine is ca lled the LIST
routine and wi ll exeCUle the LIST command when
called by a BASI C program , Immediate Mode, or
by a machine language calling ro utine. As you can
see, we have programmed a SAVE and a LIST

OSI OSI

OU R lloo11BASE IS BEING A"M"ACKED BY

L U N A R »» 1) ALIENS! III RESPO~ISE TO THEIR CALL
fOR HELP . YOUR 1I0THERSH I P HAS

R E 5 C U E R
GO:: E INTO LlmAR ORBIT OVERllEAll .
~O'J :tOU ' VE COT TO LAND AlID RESCUI::
THE l1 ooNB.l.SE CRE1oI . :tOUR T'JO 1'.;.1;

RESCIlE CRAFT ',.' ILL HAVE TO l'to\.K£ SlVEFW. TRI PS TO GEr THEM ALL
OOT . O::CE :tOU ' VE !'.JJI EU"-/ EHED THROt,X; H THE ASTEROI D !lEU. ,W OIOED
T!iE "O~TA!:; ?EA.'\S At;O LA::DED SAFELY . TI'..E R£..\L TROUEL£ ST"I!!'S !
THE AlIE:IS REVEAl. !HEI'.5ELV::S AtID :tOU ' '1i:: COT TO BL.AS! :tOUR '''At
SACK TO THE 1'.O!'l'.£?.sHI? 1 " LOT Of ACTI O!l . II I TH COL.OR ;.ND SO U:1 D.

Introductory
011er: EXPI RES

1 ! /!St6 !

by J O/Cl \/ lLSo." Bit CASSETI'f.: • •• • t9. 95

BU'! BOTH NEil SOPT PREi'Z~ ;.son : fOR
TH£ S PECIAL i'RI C£ Of O:<L'! $1 7 . 95

OR . SEND $1 . 00 !'OR ILLUSTRAtED C;''!'Al.(X;
;.ND C£T A I l . SO CREDIT COOD 0 '1 :tOUR
PIRST ORDER 1

ALL. GAMES St1?PORT SOUND ON Cl?t
ALL PR(x;IW'IS AVAILABL.E 0:1 C;'SS E"M'E ONL. Y

Pretzelland Software
2005 A WHITTAKER RD.

YPSILANTI, MI.48197

122 COMPUTE! October. 1981. Issue 17

Program 1.

26

36

40

50

68

70

80

90

100

110

120

138

140

150

168

178

188

G888

0088

0888

8880

00GC

80EC

80BE

88C0

88C2

88C5

88C7

00C9

08CB

00CD

88CE

00D0

08D1

8QD3

E6C3

D882

E6C4

RDFFFF

C93R

B88R

C920

F0EF

38

E938

38

E9D8

60

FhRSER CODE

BVTES8 INC *C3 INCREMENT LOU RDDR.

BNE SI

INC $C4 INCREMENT HIGH RDDR. BVTE

51 LDR $FFFF L8RD WITH CODE CHRRRCTER

CHECK FOR COLON ^STRTEMENT END>

IF VES BRflNCH TO STRRT NEW LINE

ISIT fl SPRCE

IF VES GET NEW CHflRRCTER

SET CRRRV FLRG

SBC #$38 SUBTRRCT $38

SEC: SET CRRRV FLRG

SBC #$D8 SET C FLRG FOR RSCII NUMBERS

52 RTS END ROUTINE. CHRRRCTER NOW IN H

CMP #■":

BCS S2

CMP #■-

BEQ S0

SEC

Program 2.

38

40

50

bU

70

yu

90

l yy

118

120

130

148

150

168

178

188

198

288

218

238

240

250

8880

8880

8800

0000

8888

0088

0888

1888

1 yyy

1882

1005

1807

1809

180B

1 00D

188F

1011

1813

1015

1017

1019

I01B

3D05O2

R999

3513

R988

3514

8516

R953

3515

R914

35C3

R980

35C4

4CB5R4

■

■9

$

*

*

■

Jf

■

*

BRSIC

STRRl LL-H

STR

LDR

STR

LDR

STR

STR

LDR

STR

LDR

STR

LDR

STR

JMP

$0205

#$99

$13

#$00

$14

$16

#$53

$15

#$14

$C3

#$88

$C4

$R4B5

BRSIC SRUE C.OMr-IFlND CRLL

#$81 URLUE SRUE FLRG=ON

ST8RE IN SRUE FLRG

TOKEN LIST

PUT IN LINE BUFFER

NULL

PUT BUFFER+1

PUT BUFFER +3

PUT BUFFER+2

PRRSER SCRN STRRT LOW BVT£

PUT IN PRRSER

PRRSER SCflN HIGH BVTE

PUT IN PRRSER

GOTO BRSIC LIST ROUTINE

122

Program 1.

10 OtJOO
2(1 0000
.-.z::- 000[1 "::"...J

3(1 0000
40 0000
50 008C
6[1 008C
70 008E
E:0 OOCO
90 00C2

100 (10C5
110 (1[1C7
120 00C9
130 00C8
140 OOCD
150 [10CE
160 0[1[)0

170 00D1
180 0[1[)3

Program 2.

10 0000
20 0000
30 0000
40 0000
50 0000
60 0[100
7(1 0000
80 000[1
90 0000

10.3 1000
110 1000
120 1 [102
130 10(15
140 1007
15(1 10(19
160 1008
170 10(1D
180 100F
19(1 1011
2(10 1013
210 1015
230 1[117
240 1019
250 1018

E6C3
D002
E6C4
ADFFFF
C93A
800A
C920
F[1EF
~,-,

-.>0

E93(1
"":",-, _'0
E9D0
60

A9[11
80(1502
A'3'39
8513
A9(10
8514
8516
A':'CO"":!'"

---'~

8515
A914
85C3
A900
85C4
4C85A4

COMPUT£!

;
;
;
;

; PA~5E~: CODE
*=$8C
50 I1~C $C3 I HC~:Et'lEtH LOt" ADD~: . 8'r'TE
8t~E 51
mc $C4 ItKRH1Et~T HIGH ADD~:. 8o.,'TE

October, 1981. Issue 17

51 LDA .$FFFF LOAD WITH CODE CHA~:ACTER
Ct'lP # "' : CHECK FOR COLOH .; 5TATE~lEtH Et~[:')

8CS 52 IF ',.'ES 8RAt~CH TO STA~:T t~El" LWE
CMP # ' I5IT A SPACE
8EO 5[1 IF o.,'ES GET t~ELJ CHA~:I"lCTE~:

SEC SET CA~:~:'/ FLAG
58C #$30 SU8T~:ACT $30
SEC SET CAF:F:',' FLAG
58C #$D0 SET C FLAG FOF: A5C II t~U~18EF5
52 F:TS Et~D F:OUT I1~E. CHARACTEF: t~Ot" I H A

;
;
;
;
; 8AS I C SAIJE Cm1t'1At~[) CALL
;
;
;

;
*=$1(100
5TAF:T LDA
STA $0265
LDA #$ ':;9
5TA $13
LDA #$00
5TA $14
5TA $16
LDA #$53
STA $15
LDA #$14
5TA $C3
LDA #$00
5TA $C4
,Tt'lP $A485

#$01 UALUE 5AIJE FLAG=Ot~
5TOF:E It~ SAIJE FLAG

TOKEt~ LIST
PUT I1~ LI t~E 8UFFEF:
t~ULL

PUT 8UFFEF:+1
PUT 8UFFEF: +3

PUT 8UFFER+2
PAF5EF: 5CAt~ STAF:T Lot" 8\'TE:

PUT W PAF:SER
PA~5EF: 5CAH HIGH 8'·,.'TE
PUT I H PAF:5EF:
GOTO 8A5 I C LIST ROUT It~E

October 1981. Issue 17 COMPUTE! 123

command into BASIC from outside ROM BASIC

and caused its execution.

In a similar manner, let's call and execute a

LOAD command from a machine language routine.

Enter Listing 3 into the computer. Next bring up

BASIC in Warm Start. (Type NEW (CR).) Exit

BASIC. Call up the machine language routine for

the LOAD command. Place a BASIC program

tape into your cassette recorder, execute the ma

chine language routine, and start your recorder on

play. Your BASIC program will load into the com

puter as if called directly under BASIC.

On examination of Listing 3, you will find that

the implementation of the LOAD command was

very simple. We only need to set the LOAD flag to

turn the system on for a BASIC load and jump to

the Warm Start of BASIC.

Listing 4 will be used to implement the BASIC

RUN command from a machine language program.

As before, enter the machine language program

into memory and then load a BASIC program into

the BASIC workspace. Exit BASIC and call the

machine language routine. Start the machine lan

guage program. The computer will jump to the

BASIC program and run.

On close examination of Listing 4, you will see

that we have used the same procedure to force a

BASIC RUN command that we used in the SAVE

and LOAD routines. We loaded the input line

buffer with the Token for RUN, set the Parser

scanner to start reading the code in the Input Line

Buffer at $0013. With the RUN command it was

found that two BASIC interpreter routines were

needed to force the computer to execute the RUN

command. These were the conversion routine at

$A3A6 and the execution routine located at

$A5F6.

At the beginning of this article, I said that an

executive TOS could be written in machine lan

guage that could call BASIC commands. Also, it

was mentioned that in order for the TOS to be

truly an executive, we must devise some means of

exiting BASIC and returning to the TOS. I have

shown how BASIC commands could be executed

from machine language routines. But, how do we

exit BASIC to our machine language routines? At

first, it appears that ROM BASIC can only be

exited with a BREAK or through a USR function

call. This is true unless we can devise some means

of patching into BASIC at some point and make

BASIC think there is some new form of keyword

present in the interpreter. Well, implementing new

Keywords is not possible with ROM BASIC, so

some other method must be devised.

An article which appeared in Micro described

interception of BASIC Syntax error codes when

printed on the monitor screen. A patch devised to

intercept a Syntax error can be utilized to direct an

exit from BASIC and force a return to a calling

machine language program. The machine language

patch routine shown in Listing 5 can be used to

force an exit from BASIC during a running BASIC

program, and in Immediate Mode or when a BASIC

program has finished loading from cassette into

the BASIC workspace. Listing 5 is a routine that

has been revised for the purpose of exiting BASIC.

The routine appeared in an article titled "Stop

Those S' Errors" published in the November 1980

issue of Micro Magazine {Micro, 30:37).

The patch code for the BASIC exit routine

utilizes a vector location in zero page. The vector is

located at $03 and $04. Normally, this vector points

to the string output routine of the BASIC interpre

ter at $A8C3. If we replace this jump with a call to

our patch routine, we may use the pointer and our

patch routine to exit BASIC on command. Listing

5, shows the Exit patch routine that is loaded into

memory starting at $0240. To use the patch routine,

replace the jump at $03 and $04 with the start of

the exit patch routine. That is, load $40 into me

mory location $03 and $02 into location $04. This

can be done in BASIC using the POKE command:

POKE 3, 64 : POKE 4, 2. Once the address for the

patch code has been loaded into the pointer at $03

and $04 the pointer will not have to be changed

unless the computer has been reset.

We've

got great

products for you!

OS-65D V3.2 DISASSEMBLY MANUAL 60 page manual,

complete with cross reference listing. Fully com

mented. $25.95.

REF COMMAND UNDER BASIC Lists line numbers, var

iables, constants for 65D or 651). $31.95.

SPOOLER-DESPOOLER UTILITY Super fast. Frees up

screen, feeds data to serial or parallel printers. $69.95.

FIG FORTH UNDER OS-65U Runs under multi-user,

hard disk systems with all the extras. $89.95.

VIDEO ROUTINE Convenient control of variable screen

parameters. May be connected to graphics resolution

booster. $25.95 or $29.95.

GRAPHICS RESOLUTION BOOSTER Hardware to boost

screen resolution by 8 times to 128 x 128. $49.95. With

video routine and software extensions $79.95.

Write or call for free product catalog and

get all the details.

OFTWARE

ONBULTANT8

6435 Summer Ave.

Memphis,Tn. 38134

901/377-3503

October. 1Q81. lssue 17 COMPUTEI 123

command into BASIC from outside ROM BASIC
and caused its execution.

In a similar manner, let's call and execute a
LOAD command from a mach ine language routine.
Enter Listing 3 in LO the computer. Next bring up
BASIC in Warm Start. (Type NEW (CR).) Ex it
BASIC. Call up the machine language routine for
the LOAD command . Place a BASIC program
tape in LO your cassette recorder, execute the ma­
ch ine language routine, and start your recorder on
play. Your BASIC program will load into the com­
puter as if called directly under BASI C.

On examination of Listing 3, yo u will find that
the implementation of the LOAD command was
very simple. We on ly need to set the LOAD fl ag to
turn the system on for a BASIC load and jump to
the Warm Start of BASIC.

Listing 4 will be used to implement the BASIC
RUN command from a machine language program.
As before, enter the machine language program
into memory and then load a BASI C program in LO
the BASIC workspace. Exit BASIC and call the
machine language routine. Start the machine lan­
guage program. T he computer will jump to the
BASI C program and run .

On close examination of Listing 4, you will see
that we have used the same procedure LO force a
BASIC RUN command that we used in the SA VE
and LOAD routines. We loaded the input line
buffer with the T o ken for RUN , set the Parser
scanne r LO start read ing the code in the Inpu t Line
Buffer at $00 13. With the RUN command it was
found that two BASIC interpreter routines were
needed to force the computer to execute the RUN
command. These were the conversion rOll tine at
$A3A6 and the execution routine located at
$A5F6.

At the beginning of this article, I said that an
executi ve TOS could be written in machine lan­
guage that could call BASIC commands. Also, it
was mentioned that in order for the TOS LO be
truly an executive , we must devise some means of
exiting BASIC and returning LO the TOS. I have
shown how BASIC commands could be executed
from machine language routines. But, how do we
ex it BASIC LO our machine lang uage rou tines ' At
first, it appears that ROM BASIC can only be
ex ited with a BREAK or through a USR function
ca ll . This is true unless we can devise some means
of patching in to BASIC at some point and make
BASIC think the re is some new form of keyword
present in the interpreter. Well, implementing new
Keywords is not possible with ROM BASIC, so
some other method must be devised.

An a rticle which appeared in Micro described
inte rception of BAS IC Syntax e rror codes when
printed on the monitor screen. A patch devised to
intercept a Syntax error can be utilized LO direct an
ex it from BASIC and force a return LO a calling

machine language program. The machine language
patch routine shown in Listing 5 can be used to
force an exit from BASIC during a running BASIC
program, and in Immediate Mode or when a BASIC
program has finished loading from cassette into
the BASIC workspace. Listing 5 is a routine that
has been revised for the purpose of exiting BASIC.
T he routine appeared in an article titled "SLOp
T hose S' Errors" published in the November 1980
issue of Micro Magazine (Miao, 30:37).

The patch code for the BASIC ex it routine
utilizes a vecLOr location in zero page. The vector is
located at $03 and $04. Normally, this vector points
to the string output routine of the BAS IC interpre­
ter at $A8C3. If we replace this jump with a call to
our patch routine , we may use the pointer and our
patch routine LO exit BASIC on command. Listing
5, shows the Exit patch routine that is loaded into
memory starting at $0240. To use the patch routine,
replace the jump at $03 and $04 with the start o f
the exit patch routine. That is, load $40 into me­
mory location $03 and $02 in LO location $04. This
can be done in BASIC using the PO KE command :
POKE 3, 64 : POK E 4,2. Once the address for the
patch code has been loaded in to the pointer at $03
and $04 the pointer will not have to be changed
unless the computer has been reset.

We've
got great

products foryoul

OS·6SD V3.2 DISASSEMBLY MANUAL 60 page manual.
complete with cross reference lis ting. Fully com·
mented. $25.95.
REF COMMAND UNDER BASIC Lists line numbers, var·
iables. constants for 650 or 65U. $31.95.
SPOOLER·DESPOOLER UTILITY Super rast. Frees up
screen, reeds data to serial or parallel printers. $69.95.
fiG fORTH UNDER OS·65U Runs under multi-user;
hard disk systems with all the extras. $89.95.
VIDEO ROUTINE Convenient control of variable screen
parameters. May be connected to graphics resolution
booster. $2S.95 or $29.95.
GRAPHICS RESOLUTION BOOSTER Hardware to boost
screen resolution by8 times to 128 x 128. $49.95. With
video routine and software extensions $79.95.

Write or call for free product catalog and
get all the deta ils.

/OFTWARE

~NBU'-TANTB
6435 Summer Ave.
Memphis.Tn.38134
901/377·3503

124 COMPUTE) October, 1981. issue 17

Program 3. 18

20

30

40

50

60

78

38

98

1 00

lie

120

138

0000

0000

0000

0800

0800

6080

0000

0000

0800

1188

1188

1182

1185

BRSIC LORD COMMRND CflLL

*=$ii©0

H9FF STRRT LDR #*FF URLUE LORD FLRG =0N

3D0382 STR $0203 PUT IN LORD FLRG

4C74R2 JMP *R274 GOTO BFlSIC WRRM STRRT

Program 4. 10 0000

3©

40

50

68

79

38

90

100

110

120

130

148

150

160

178

190

280

210

228

0080

0808

0000

8008

0808

1150

1150

1150

1152

1154

1156

1153

115R

115C

115E

1160

1162

1164

1167

R952

3513

R988

3514

3516

35C4

R94E

3515

R913

35C3

20R6R3

4CF6R5

=±1150

LDR

STR

LDR

STR

STR

STfi

LDR

STR

LDR

STR

JSR

JMP

#±5

#$80

$15

*C3

$R3R6

BRSIC RUN COMMfiND UflLL **

GET RUN TOKEN

PUT IN LINE BUFFER

HULL

PUT BUFF+1

PUT BUFF+3

PUT PRRSER HIGH BYTE

PUT BUFFER+2

GET PRRSER STRRT LOW

PUT PRRSER LOW

GO BRSIC CONVERSION RTN.

GO TO BflSIC EXECUTION <RUN>

Program 5. 10

28

38

48

50

68

70

30

98

100

lie

128

130

148

158

160

178

138

190

8688

8886

088G

6880

Q808

0000

8888

8880

00F0

88F8

88F8

88F1

80F4

00F6

80F3

88FR

08FD

8180

0101

: EXIT PRTCH ROUTINE

=+■=8240

43 PHR SRUE PRT CHRRCTER IN RCC-

RD65D3 LDR *D365 GET CHRRCTER FROM SCREEN

C93F CMP #$3F TEST FOR ERROR<?>

D083 BNE OUT NO NOT ERROR GO PRINT CHR.

R908 LDR #*08 YES ERROR GET RERDY TO EXIT

3D0382 STR $0283 RESET LORD FLRG

4CFFFF JMP *FFFF RETURN TO CRLLER<*FFFF DUMMY

63 OUT PLfl RDDRERESTORE CHflRRCTER TO flCC

4CC3R3 JMP *R8C3 GO PRINT CHR. RETURN TO BRSIC

124

Program 3. 10 00\::1\::1
20 000\::1
30 0000
40 0000
50 0000
60 0000
70 ,)000
:=:0 0000
90 0000

100 1100
110 1100 A9FF
120 1102 f:D0302
13~] lH]5 4C74A2

Program 4. 10 000(1
20 0000
30 0000
*] [1000
50 000[1
60 [1000
70 ~3£100

8(1 1150
90 1150

100 115[1 A952
lH] 1152 8513
120 1154 A9(10
130 1156 8514
140 1158 8516
150 115A 85C4
160 115C A94E
170 115E 8515
190 1160 A913
200 1162 85C3
210 1164 20A6A3
220 1167 4CF6A5

Program 5. 10 0000
20 (1000
30 (10~]0

4~:1 OO~]0

50 ~](1C1(1

60 000(1
70 0000
80 00[1(1
90 OOFO

1(10 00F0
110 00F0 48
120 00Fl AD65D3
130 00F4 C93F
140 00F6 O(J08
15(1 (n]F8 A9(10
160 (10FA 8D(1302
17"~1 (1(1FD 4CFFFF
180 0100 68
190 (1101 4CC3A8

COMPUTEI October. 1981. Issue 17

;
;
;
;
; BAS I C LOAD Cm1~1At~O CALL
;
;
;
;

*=$110(1
STAF:T LDA #$FF UALUE LOAD FLAG =Ot~
STA $0203 PUT m LOAD FLAG
,Tt'1P $A274 GOTO BASIC t.JARt'1 START

;
;

;
;
; ** BAS I C F:Ut~ COt'1~1At~D CALL **
;
;
*=$115[1
;
LOA #$52
STA $13
LDA #$00
STA $14
STA $16
STA $C4
LOA #$4E
STA $15
LDA #$13
STA $C3
JSR $A3A6
J~1P $A5F6

;
;
;
;
;
;
;
;

;

PHA
LDA $D365
n1P #$3F

Bt"E OUT
LDA #$[10
STA $0203
J~1P $FFFF
OUT PLA
J~1P $A8C3

GET RUt" TOKEt~
PUT m LWE BUFFEF:

t"ULL
PUT BUFF+l
PUT BUFF+3
PUT PAFSEF: HIGH B'y'TE

PUT BUFFEF:+2
GET PARSEF: START LOlJ

PUT PARSER LOlJ
GO BAS I C COt~I.JERS I ot~ F:Tt~.

GO TO BAS I C E)<ECUT I ot~ 0: RUt~)

BAS ICE;,: IT PATCH F:OUTI t~E

SAUE PF:T CHF:ACTER It~ ACC.
GET CHRACTEF: FRQto1 SCF:EEt~

TEST FOR ERROF:C?)
t~o t~OT EF:ROR GO PF: I tH CHF:.

'y'ES ERF:OR GET READ\, TO E;': I T
F:ESET LOAD FLAG
F:ETUF:t~ TO CAL LEF: 0: $FFFF DUt'U'1"·'
AODF:ERESTOF:E CHAF.:ACTER TO ACC
GO PF: ItH CHR. F:ETURt~ TO BAS I C

October, 1981. Issue 17 COMPUTE! 125

The patch routine at $0240 tests memory

location $D365 for a question mark ($3F) for each

character printed out to the monitor screen. In the

event of an error, such as ? Sn Error, the question

mark will be loaded into video RAM at $D365. The

routine tests $D365 for $3F. If there should be any

type of error, the question mark code will appear

at $D365. On detection of the error code, the

patch routine will cause an exit to your machine

language routine. Under normal program execu

tion, the data to be printed is passed to the string

printing routine of BASIC as if the patch routine

did not exist.

The exit patch code routine was implemented

into my TOS to detect an error at the end of a

program loading from tape. My Stringy Floppy

tape unit sends $8F when all the program on tape

has been sent to the C1P. This hex byte, when seen

by BASIC, will send back a Syntax error which will

be detected by the patch routine causing an auto

matic exit to the TOS. While in BASIC, if the user

types any key followed by a carriage return. It will

cause a Syntax error and force a return to any

calling routine. In addition, programming a line of

illegal code at the exit point of the BASIC program

will force a return to the calling machine language

routine. An example line of illegal code could be:

10/or 10 EXIT etc...

This article has presented some ways of imple

menting BASIC commands and calling these com

mands from machine language programs. Through

these efforts, I have further expanded the ways in

which we may use OSI BASIC and machine lan

guage programs as a means of system development.

In my case, I have a TOS that functions like a disk

operating system (DOS). With the information

presented in this article, you may also be inspired

to develop new programming techniques. Although

this article was developed around OSI 6502 BASIC,

the concepts should apply to other systems using

similar BASIC such as, PET, and APPLE. Ofcourse,

tokens and interpreter routine addresses may need

changing but the basic principles still apply.

References:

GUI BASIC In ROM, Edward H. Carlson

"Stop Those S1 Errors," Micro Magazine, November 1980. ©

COMPUTE!
Back Issue Collection

Our back issues, normally $3.00 each (including shipping and handling] are a

valuable addition to your library. To celebrate our second birthday, we're offering

the following special to COMPUTE! readers.

COMPUTE! s Birthday Special

JANUARY-JULY, 1981. ALL SEVEN ISSUES

Credit Card Orders Only

Call TOLL FREE 800-345-8112

IN PA CALL 800-662-2444

Please allow three weeks for delivery. Offer expires

November 15,1981. Offer good for these seven issues

only and may not be prorated for partial orders. Orders

accepted subject to availability. You must include a

street address for shipping.

$15.00, AND WE'LL PAY SHIPPING.

Please send me the COMPUTE! BIRTHDAY SPECIAL

January-July 1981 Issues for $15.00.

NAME

STREET ADDRESS

CITY STATE ZIP

SEND TO: COMPUTE! Birthday Special, P.O. Box 5406,

Greensboro, NC 27403, USA. Please enclose check or

money order.

October, 1981. Issue 17 COMPUTE! 125

The patch ro mine at $0240 tests memory
locatio n $0 365 for a question mark ($3 F) fo r each
character printed out to the monitor screen. In the
event of an error, such as ? Sn Error, the question
mark will be loaded into video RAM at $0 365. The
routine tests $0 365 for $3 F. If the re should be any
type o f e rror, the question mark code will appea r
at $0365. On detection of the error code, the
patch routine will cause an exit to your machine
language ro utine. Under normal program execu­
tion, the data to be printed is passed to the string
priming ro utine o f BASI C as if the patch routine
did not exist.

The exit patch code routine was implemented
into my TOS to detect an error at the end of a
program loading from tape. My Stringy Floppy
tape unit sends $8 F when all the program on tape
has been sent to the C I P. This hex byte, when seen
by BAS IC, will send back a Syntax error which will
be detected by the patch routine causing an auto­
matic ex it to the T OS: While in BASIC, if the user
types any key fo llowed by a ca rriage return . It will
cause a Syntax error and force a return to any

ca lling routine. In additio n, p rogramming a line of
illegal code at the exit point o f the BASIC program
will force a return to the calling machine language
romine. An example line of illegal code could be:
10/ or 10 EXIT etc .. .

T his article has presented some ways of imple­
menting BASIC commands and ca lling these com­
mands from machine language programs. T hrough
these efforts , I have furthe r expanded the ways in
which we may use OSI BASIC and machine lan­
guage programs as a means o f system development.
In my case, I have a TOS that functions like a disk
ope rating system (DOS). With the information
presented in this article, you may also be inspired
to develop new programming techniques. Although
this a rticle was developed around OSI 6502 BASIC,
the concepts should apply to other systems using
similar BASIC such as, PET, and APPLE. Of course,
tokens and interpreter routine addresses may need
changing but the basic principles still apply.
References:
OSI BASI C 111 ROM , Edward H. C<l ri son
"SlOP T hose S' [ITO I·S,'· l\-licro Magazine, November 1980. ©

COMPUTE!
Back Issue Collection

Our back issues, normally $3.00 each (including shipping and handling) are a
valuable addition to your library. To celebrate our second birthday, we're offering
the following special to COMPUTE! readers.

COMPUTE!'s Birthday Special

JANUARY-JULY, 1981. ALL SEVEN ISSUES $15,00, AND WE'LL PAY SHIPPING,

Credit Card Orders Only
Call TOLL FREE 800·345·8112

IN PA CALL 800·662·2444

Please allow three weeks for delivery. Offer expires
November 15, 1981. Offer good for these seven issues
only and may not be p rorated for partial orders. Orders
accepted subject to ovailability. You must include a
street address for shipping.

........................••••••••.........••••.•.......••••••

Please send me the COMPUTE! BIRTHDAY SPECIAL
January-July 1981 Issues for $15.00.

NAME

STREET ADDRESS

CITY STATE ZIP

SEND TO: COMPUTE! Birthday Special, P.O. Box 5406.
Greensboro, NC 27403. USA. Please enclose check or
money order.

