
COMPUTE! September. 1981. Issue 16

Exploring OSI's

Video Routine
Kerry Lourash

Decatur, IL

Welcome to the BASIC-in-ROM Explorers'Club!

On our journey through the Fill-the-Buffer routine,

we had to bypass a Lour of the Video routine at

SBF2D. Now we are ready to unravel the mysteries

of the routine that makes objects appear and disap

pear on the screen.

The Video routine (VR) is a section of machine

language code located in BASIC-in-ROM at

$BF2D-BFFC. Input from the keyboard and the

LOAD routine and output from the SAVE, PRINT,

LIST, etc. routines are led to the VR, which displays

the information on the screen.

This is what the VR does:

1. Prints text on the screen.

2. Does automatic carriage return (CR) and

line feed (LF) when the end of the video line is

reached.

3. Scrolls the screen.

4. Slows printing rate, if necessary, for

compatibility with printers or other slow

ipherals.

Preparing For Our Journey

The format of our map (see Fig. 1) is the same as

that of our first trip (COMPUTE! #12, p. 90). I've

shown subroutines immediately after the point

where they are called, instead of in numerical

order. Addresses at the left are part of the main

routine and indented addresses are subroutines.

The result approximates an outline of the \'R.

Machine language addresses have been retained so

ML readers can pinpoint and disassemble any part

of the routine for more information. BASIC-

oriented readers should consider the addresses as

line numbers. Most assembly language mnemonics

have been replaced by explanations of what is

happening. The few mnemonics that are used

have their BASIC equivalents listed in the heading

of the chart.

All numbers arc hexadecimal unless specified

otherwise.
Flie VR uses several locations in RAM and

ROM:

0200 - I lolds address of the video memory

location where current character will be

printed.

0201 - Temporary storage for character to be

printed.

0202 - Storage for A register while A. X, and

Y are pushed on the stack. Also holds the

number of bytes to be scrolled in the last page

ol video memory.

0206-TV delay loop value-.

0207 - 020E Scroll-onc-byte subroutine.

BFFB - I lolds number of last page of video

memory forClP(D3).

BFFC - I lolds number of last page of video

memory forC2P(D7).

FFE0 - Cursor "home" position; Cl P = 65,

C2P=3F.

FFEI - Characters/line-1; C1P= 17,C2P=3F.

FFE2 - Video memory size; 0= 1 k,

l=i>K.

D000 - D3FF C1 P video memory.

D000 - D7FF C2P video memory.

Both the Fill-the-Buffer routine and the video

routine generate an automatic CR/LF, but the two

functions shouldn't be confused. Unlike the FIB.

whose "terminal width" counter is in RAM,(Inc.

OF), the VR has its character/line permanently set

in the monitor (loc. FFE1). If you set tlit* terminal

width at less than the char./line value, the FTB will

tell the VR to do a CR/LF before the VR docs one

automatically. Flowever, if you set the terminal

width greater than the video line length, the VR

will still be triggered at 24 or64 (decimal) charac

ters, and the video line length will not be longer.

You may see a CR/LF at seemingly random inter

vals. The intervals are not random; both FTB and

VR are doing CR/LFs independently ol each other.

Another difference is that the VR doesn't generate

nulls after iis CR/LF, as the FIB can. A third dif

ference is that the actual CR/LF subroutines are

located in the VR. When you hit the RETURN key

or the FIB does a CR/LF, the FIB is sending a CR

and a LF character to the VR.

I'd also like to clear up the definition ol a few

terms, such as "high" and "low" bytes and "pages."

The address D365 is a two-b) le address. 1)S is the

high byte and 65 is the low byte. A page contains

256 (<\a\) or 0100 (hex) bytes. Notice-that the high

byte is also the page number (0000-OOFF is zero

98 COMPUTE! September, 1981. Issue 16

TIlE OSfOAZErm:'"
Exploring 051's
Video Routine
Kerry Lourash
Decatur, IL
Wekome lO th e BASIC-in-ROM lxplore r ,' Club!
On ou rjoul"ll e)' through th e Fi 11 -t he -Burrer rou tin e,
we haclto bypass a lour of t.he Video routine at
$BF2D. Now we are r eady to unra vel th e m ysteries
of th e rouL in e Lhat makes objecLs appea r and d isap
pear Oil th e scree Jl.

The Video rou Li ne (VR) is a secLion of machine
language code 10ca Led in BAS IC- ill -ROM a t
$BF2D-BFFC. InpuL from the ke yboard and Lh e
LOAD routine and ou tput rrom th e SAVE, PRINT,
LIST, e tc. rouLines are fed lO th e VR , wh ich di spla ys
th e informatiull on the sc ree n.

This is whaL the VR docs:

I. Prints l ex t on th e screen.
2. Does aUlO maLic ca rri age reL urn (C R) and
lin e feed (LF) wh e n th e e nd orLhe video line is
rcach ed.

3. Scroll s th e scree n .
4. S lo\\'s printin g ra te . i f necessary, for
compatibilit y ,,,ilh pr inte rs or ot her s low
iph e rals.

Preparing For Our Journey
The formaL of our map (sec Fig. I) is the same as
Lhat of ou r firs t Lrip (COMPUTE! # 12. P 90). I'vc
showll s ubroutill es illllllcci ial ci), aft e r the po in t
", h e re Ih e)' are called. ins tead of in IHI111 C riGd

order. Addresses at th e Icrt are part of the main
rOllt in e a nd indented addrcsses are subroUli nes.

Th e res ult app ro~inlates an ou tlin e of th e \,R.
Mac hin e lallgll;lgc addresses ha vc bee n reta in cd sO
ML readers Gill pinpoint fllld di sasse illble all)' part
of th e rou tin e fO l- morc information. BASI C
oriented read e rs should conside r the add resses as
line nllmbe r s. ~ I ost assembl y la ng ua gc Illnemon ics
ha vc bec n re placcd b), e~ pi:Jnations or ,,·h at is
ha ppe ning. Th e fe\\' 1l1l1C IIl Oili cs that are L1 sed
have th e ir BAS IC equi va le llt s lis ted in th e head in g
of I he c hart.
All nUlllbers are h exadec im al lInless spec ifi ed
othe r wise,

The VR uscs sC" e rallocations in RAM a nd
ROM:

0200 - Holds add ress of th e video me mory
loca tio n whe re cu rre nt charac te r will be
print ed.

0201 - Telllporary storage fo r cha racte r to be
printcd.

0202 - Storage for A rcgisLc r whil e A , X, and
Yare pushed on the SLack. Also holds t he
numbe r o f bytes to be scro ll ed in th e las t page
of video mcmury.
0206 - TV dela y loop va lu e.

0207 - 020E Scroll-onc-bYLc sub rouLine.
BFFB - Holds llumbc r of last page of video
me lllory ror C 11'(0 3) .

BFFC - H olds numbc r o f last page of vidco
m e mo ry for C2P(D7).

FFEO - Cu rsur "homc" p os iLi o n ; C I P = G5 ,
C2 1'= 3 F.
FFEI - C h aractcrsll in c- I ; C II' = 17, C 2P = 3 F.
FFE2 - Video me mory sizc; 0 = I K,
I = 2K.

DOOO - 0 3 1'1' C I P video mc mo r), .
DOOO - D7FF C2 P viti eo ,"e n,o, ,), .

Both th c Fill -th e- Burrer rou tin e a nd the video
rOlltin e ge ll e ra te a ll au tomat ic C R/ LF , b ut the two
funcLi o ns shouldn 'L be confused. U nlike the FTB.
whosc "Lcrrninal wid Lh " CO U!lLe r is in RA~f ,(l oc.

OF), th c V R has it s cha racLe r/lin e pe rman e ntl y sc t
in Lh c monitor (Ioe. lTE I). I r yo u set th e terminal
width at less Lhan the cha r .llinc " ;du e , th e FTB will
tcl l th e VR to do a CRILl' befo rc Lhc V R docs onc
a utomaticall y. H oweve r , ir yoLi se tl.il e te rminal
width g reate r th an th e \'id eo lilll' ICll g ll l, th e VR
will st ill bc tri ggc red aL 24 or 64 (decim al) c ha rac
ters , and the \'ideo lin e le n gt h will lI ot be IOllger.
YOLI ma y see a CRiLf at seemingl y rando m inte r
va ls. T he illte rva ls are not ra nd o m ; both FTB and
VR a rc doing- CRI Ll's ilid epcnd c llll)' of e ach ut he r.
A nothe r dilTerence is Ihat til e VR docsll' t gcncral c
nulls arLCr it s CR/ LF, as the FTB G il l. A third dif
fe r ence is tha t the actual C RI Ll' s ubroutines are
locatcd in th e VR. When you hit th e RET U R N ke)'
or th c FTB docs a C RI Ll' , th e FTB is sending- a C: R
and a LF cha racter lo th e VR,

I'd also Ii kc to clear up t he deli n it io n or a !'c,,'
terms. suc h as " h igh" and "10\\'" bytes and '·pages."
The add ress D~(j::; is a t " 'o-b),Lc add ress . 0 3 is th e
hi g h byte and f'i ;) is th e low b yte. A p;lgc cO lltain s
256 (d ec .) or 0 I O() (h e~) bytes. No ti ce that thc hi g h
byte is a lso th c page numbc r (()()()O-OOFF is zc ro

OSI AARDVARK

NOWMEANS BUSINESS!

OSI

WORD PROCESSING THE EASY WAY-

WITH MAXI-PROS

This is a line-oriented word processor de

signed for the office that doesn't want to send

every new girl out for training in how to type a

letter.

It has automatic right and left margin justi

fication and lets you vary the width and margins

during printing. It has automatic pagination and

automatic page numbering. It will print any text

single, double or triple spaced and has text cen

tering commands. It will make any number of

multiple copies or chain files together to print an

entire disk of data at one time.

MAXI-PROS has both global and line edit

capability and the polled keyboard versions

contain a corrected keyboard routine that make

the OSI keyboard decode as a standard type
writer keyboard.

MAXI-PROS also has sophisticated file

capabibilities. It can access a file for names and

addresses, stop for inputs, and print form letters,

it has file merging capabilities so that it can store

and combine paragraphs and pages in any order.

Best of all, it is in BASIC (0S65D 51/4" or

8" disk) so that it can be easily adapted to any
printer or printing job and so that it can be sold

for a measly price.

MAXI-PROS-$39.95

NEW-NEW-NEW

TINY COMPILER

The easy way to speed in your programs. The

tiny compiler lets you write and debug your pro

gram in Basic and then automatically compiles a

Machine Code version that runs from 50-150

times faster. The tiny compiler generates relocat

able, native, transportable machine code that can

be run on any 6502 system.

it does have some limitations. It is memory

hungry - 8K is the minimum sized system that

can run the Compiler. It also handles only a

limited subset of Basic — about 20 keywords in

cluding FOR, NEXT, IF THEN, GOSUB, GOTO,

RETURN, END, STOP, USR(X), PEEK, POKE,

-,=,*/. {■") ,/VVariable names A-Z,and Integer

Numbers from 0-64K.

TINY COMPILER is written in Basic. It can

be modified and augmented by the user. It comes

with a 20 page manual.

TINY COMPILER -$19.95 on tape or disk

THE AARDVARK JOURNAL

FOR OS) USERS - This is a bi-monthly

tutorial journal running only articles about OSI

systems. Every issue contains programs custom

ized for OSI, tutorials on how to use and modify

the system, and reviews of OSI related products.

In the last two years we have run articles like

these!

1) A tutorial on Machine Code for BASIC

programmers.

2) Complete listings of two word processors

for BASIC IN ROM machines.

3) Moving the Directory off track 12.

4) Listings for 20 game programs for the OSI.

5) How to write high speed BASIC — and
lots more —

Vol.1 (1980) 6 back issues-$9.00

Vol. 2 (1981) 2 back issues and subscription for

4 additional issues - S9.00.

ACCOUNTS RECEIVABLE - This program

will handle up to 420 open accounts. It will age

accounts, print invoices (including payment

reminders) and give account totals. It can add

automatic interest charges and warnings on late

accounts, and can automatically provide and cal

culate volume discounts.

24K and 0S65D required, dual disks recom

mended. Specify system.

Accounts Receivable. $99.95

• * " SPECIAL DEAL - NO LESS! • • *

A complete business package for OSI small

systems - (Cl, C2, C4 or C8). Includes MAXI-

PROS, GENERAL LEDGER, INVENTORY,

PAYROLL AND ACCOUNTS RECEIVABLE -

ALL THE PROGRAMS THE SMALL BUSI

NESS MAN NEEDS. $299.95

P.S, We're so confident of the quality of these

programs that the documentation contains the

programmer's home phone number!

SUPERDISK II

This disk contains a new BEXEC* that boots

up with a numbered directory and which allows

creation, deletion and renaming of files without

calling other programs. It also contains a slight

modification to BASIC to allow 14 character

file names.

The disk contains a disk manager that con

tains a disk packer, a hex/dec calculator and

several other utilities.

It also has a full screen editor (in machine

code on C2P/C4)) that makes corrections a snap.

We'll also toss in renumbering and program

search programs — and sell the whole thing for —

SUPERDISK II $29.95 < 5 1/4") $34.95 (8").

ANDFUN,

TOO!

BOOKKEEPING THE EASY WAY

-WITH BUSINESS I

Our business package 1 is a set of programs

designed for the small businessman who does not

have and does not need a full time accountant

on his payroll.

This package is built around a GENERAL

LEDGER program which records all transactions

and which provides monthly, quarterly, annual,

and year-to-date PROFIT AND LOSS statements.

GENERAL LEDGER also provides for cash

account balancing, provides a BALANCE SHEET

and has modules for DEPRECIATION and
LOAN ACCOUNT computation.

GENERAL LEDGER (and MODULES) $129.95.

PAYROLL is designed to interface with the

GENERAL LEDGER. It will handle annual

records on 30 employees with as many as 6

deductions per employee.

PAYROLL- $49.95.

INVENTORY is also designed to interface with

the general ledger. This one will provide instant

information on suppliers, initial cost and current

value of your inventory. It also keeps track of the

order points and date of last shipment.

INVENTORY - $59.95.

GAMES FOR ALL SYSTEMS

GALAXIAN - 4K - One of the fastest and finest

arcade games ever written for the OSI, this one

features rows of hard-hitting evasive dogfighting

aliens thirsty for your blood. For those who

loved (and tired of) Alien Invaders. Specify

system — A bargain at $9.95

NEW-NEW- NEW

LABYRINTH - 8K - This has a display back

ground similar to MINOS as the action takes

place in a realistic maze seen from ground level.

This is, however, a real time monster hunt as you

track down and shoot mobile monsters on foot.

Checking out and testing this one was the most

fun I've had in years! - $13.95.

NIGHT RIDER - You've seen similar games in

the arcades. You see a winding twisting road

ahead as you try to make time and stay on the

road. NIGHT RIDER uses machine code to gen

erate excellent high speed graphics - by the same

author as MINOS.

NIGHT RIDER -$12.95 cassette only

THIEF - Another machine code goody for the

C1P cassette only. You must use mobile cannon

to protect the valuable jewels in the middle of

the screen from increasingly nasty and trigger

happy thiefs. Fast action and fun for one or two

players. THIEF $13.95 on Cl cassette only!

SUPPORT ROMS FOR BASIC IN ROM MA

CHINES - C1S/C2S. This ROM adds line edit

functions, software selectable scroll windows,

bell support, choice of OSI or standard keyboard

routines, two callable screen clears, and software

support for 32-64 characters per line video.

Has one character command to switch model

2 C1P from 24 to 48 character line. When in

stalled in C2 or C4 (C2S) requires installation

of additional chip. C1P requires only a jumper

change. - $39.95

C1E/C2E similar to above but with extended

machine code monitor. — $59.95

OSI

Please specify system on all orders

This is only a partial listing of what we have to offer. We now offer over 100 programs, data sheets, ROMS, and boards

for OSI systems. Our $1.00 catalog lists it all and contains free program listings and programming hints to boot.

AARDVARK TECHNICAL SERVICES, LTD.

2352 S. Commerce, Walled Lake, Ml 48088

(313)669-3110 OSI

OSI AARDVARK OSI
NOW MEANS BUSIN ESS!

WORD PROCESSING THE EASY WAY
WITH MAXI·PROS

This is a line-oriented word processor de
signed for the office t hat doesn't want to send
every new girl out for tra ining in how to type a
letter.

It has automatic right and le ft margin justi
fica ti on and lets you vary the width and margins
d uring printing . It has automat ic pagination and
automatic page numbering . It wil l print any text
single, double or triple spaced and has text ce n
tering commands. It w ill make any number o f
multiple cop ies or cha in fi les togethe r to print an
enti re disk of data at o ne ti me.

MA X I·PROS has both global and line edit
capability and the polled keyboard versions
contai n a corrected keyboard routine t hat make
the OSI keyboard decode as a standard type
writer keyboard.

MAX I-PROS also has sophisticated file
capabibi lities . It can access a file for names and
addresses, stop for inputs, and print form letters .
It has f il e merging capabilities so that it can store
and combine paragraphs and pages in any order .

Best of all, it is in BAS IC (OS65D 51/4" or
a" disk) so that it can be easily adapted to any
printer or printing job and so that it can be sold
for a measly price.
MAXI·PROS - $39.95

NEW-NEW- NEW
TINY COMPILER

The easy way to speed in your programs. The
tiny compiler lets you write and debug your pro
gram in Basic and then automat ical ly compiles a
Machine Code ve rsion that runs f rom 50-150
t imes faster. T he tiny compiler generates relocat
able, native, transportable machine code that can
be run on any 6502 system.

It does have some limi tations. It is memory
hungry - aK is the minimum sized system that
can run the Compiler. It also handles only a
limited subset of Basic - about 20 keywords in
cluding FOR, NEXT , IF TH EN, GOSU B, GOTO ,
RETURN, END , STOP, USR IX), PEEK, POKE,
-,=, .. .1, (,",\ ,< ~,Variable names A-Z, and Integer
Numbers fr'om 6 -64K.

T INY COMPILER is written in Basic. It can
be modified and augmented by the user. It comes
w i th a 20 page manual.
TI NY COMP ILER - $19.95 on tape or disk

THE AARDVARK JOURNAL
FOR OSI USERS - This is a bi-month lY

tutorial journal runn ing only articles about OSI
systems. Every issue contains programs custom
ized for OS I, tutorials on how to use and modify
the system, and reviews of OS I rela ted products.
In the last two years we have run articles like
these!

1) A tutor ial on Machine Code for BASIC
programmers.

2) Complete l ist ings o f two word processors
for BAS IC IN ROM m achines.

3) Moving the Directory o ff track 12.
4) list ings for 20 game program s for the OSI.
5) How to write high speed BAS IC - and

lots more -
Vol. 1 (1980) 6 back issues - $9.00
Vol. 2 (198 1) 2 back issues and subscription for
4 additiona l issues - S9 .00.

ACCOUNTS RECEIVABLE - This program
will handle up to 420 open accounts. It wi ll age
accounts, print invoices (inc luding payment
reminders) and give account totals. It can add
automatic interest charges and warnings on late
accounts, and can automatically provide and cal
culate volume discounts.

24K and OS65D required , dual d isks recom·
mended. Specify system.
Accounts Receivable . $99.95

••• SPECIAL DEAL - NO lESSI •••

A comple te business package for OSI small
systems - (C1 , C2, C4 or Cal. Includes MAX I·
PROS, GENERA L L EDGER, INVEN TORY,
PAYROLL AND ACCOUN TS RECE IVABLE
A LL T HE PROGRAMS TH E SM A LL BUSI
NESS MAN NEE DS. S299.95

P .S. We're so confiden t of the qual ity of these
programs that the documentat ion contains the
programmer's hom e phone number!

SUPERDISK II
This d isk contains a new BE X EC'" that boots

up with a numbered directory and which al lows
creation, deletion and renaming o f fi les without
ca lling other programs. It also contains a slight
modi f ication to BAS IC to allow 14 character
fi le names.

The d isk contains a disk manager that con
tains a d isk packer, a hex /dec calculator and
several other uti l i t ies.

It also has a full screen editor lin m achine
code on C2P /C4)) that makes correct ions a snap .
We'll also toss in renumbering and program
search programs - and sel l the whole thing for -
SUPERDISK II S29.95 I 5 1/4") S34.95 IS").

ANDFUN,
TOO!

BOOKKEEPING THE EASY WAY
- WITH BUSINESS I

Our bus iness package 1 is a se t of programs
designed for the small businessman who does not
have and does not need a full time accoun tant
on his payroll.

This package is built around a GENERAL
LEDGER program which records all transact ions
and which provides monthly, quarterl y, annual,
and year-to~ate PROFIT AND LOSS statements.
GENERA L lEDG ER also provides for cash
account ba lancing, provides a BA LANCE SHEET
and has modules for DEPRECIATION and
l OAN ACCOUNT computation .
GENERA L LEDGER land MDDU LES) $129 .95.

PAYROll is designed to interface w i th the
GENERA L LEDGER. It wi ll handle annual
records on 30 employees with as many as 6
deductions per employee.
PAYROLL · S49.95.

INVENTOR Y is also designed to interface with
the general ledger. Th is one wi ll provide instant
information on suppliers, in itial cost and current
val ue of your i nventory. It also keeps track of the
order points and date of last shipment.
INVENTORY· S59.95.

GAMES FOR ALL SYSTEMS
GALAX IAN - 4K - One of the fastest and finest
arcade games ever written for the OS I, this one
features rows of hard-hitting evasive dogfjghting
aliens thirsty for your blood . For those who
loved (and tired of) Alien Invaders. Specify
system - A bargain at $9 .95

NEW - NEW - NEW

LABYRINTH - 8K - This has a display back
ground simi lar to M INOS as the action takes
place in a realistic maze seen from ground level.
This is, however, a rea l time monster hunt as you
track down and shoot mobile monsters on foot.
Checking out and testing this one was the most
fu n I've had in years! - $13 .95.

NIGHT RIDER - You've seen similar games in
the arcades. You see a winding twisting road
ahead as you t ry to make time and stay on the
road. N IGHT R IDER uses machine code to gen
erate excellent high speed graphics - by the same
au thor as M INOS.
NI GHT R IDER - $12.95 cassette on ly

THIEF - Another machine code goody for the
Cl P cassette only. You mus t use mobi le cannon
to protect the va luable jewels in the middle of
the screen from increasingly nastY and t rigger
happy thiefs. Fast action and fun for one or two
players. THIEF S13 .95 on Cl casse tte on ly l

SUPPORT ROMS FOR BASIC IN ROM MA
CHINES - C1S/C2S. Th is ROM adds l ine edit
functions, software selectable scroll windows
be l l support, ch oice of OSI or standard keyboard
routines, two cal lable screen clears, and software
support for 32-64 characters per line video.
Has one character command to switch model
2 Cl P f rom 24 to 48 character l ine. When in
stalled in C2 or C4 (C2S) requires installat ion
of addit iona l chip. Cl P requires only a jumper
change. - 539.95
C1 E/C2E simi lar to above but with extended
machine code monitor. - $59.95

Please specify system on all orders

~
OSI

This is only a partial listing of w hat. we .have to offer. We now offer ove r 100 programs, data sheets, ROMS, and boards
for OSI systems. OurS1 .00 catalog lists It all and contains f ree pro.gram listings and programming hints to boot ,

AARDVARK TECHNICAL SERVICES, LTD.
2352 S. Commerce, Walled Lake, MI48088

(313) 669-3110

tit
OSI

100 COMPUTE' September, 1981. Issue 16

page). The C1P video memory has 4 pages (D000-

D3FF) and the C2P has 8 (D0OO-D7FF).

The cursor slays on the "home" line; its address

varies by only 24 or 64 (dec). Because we know it

will always be on the same page, the cursor's location

can be specified by only one byte (loc. 0200). I call

this byte the cursor offset. The locationn of the

cursor is found by adding the cursor offset to D300

(ClP)orD700(C2P).

For those not familiar with machine language,

I suggest you think of the A, X, and Y registers as

variables. When a value is loaded into the X register,

think x = value.

On Our Way At Last!

We start with the character to be displayed in the A

register. This character may come from any one of

several routines such as LOAD, LIST, or FTB. At

BF2D, the A register is loaded into location 0202.

The A, X, and Y registers are saved on the stack.

At BF35, the contents of 0202 are put back into the

A register. This seemingly meaningless back-and-

forth shift is done because the X and Y registers

must be transferred to the A register so that they

can be pushed onto the stack. At BF38, the character

is checked to see if it is a null (00). If so, the routine

branches to BF6D where the Y, X, and A registers

are pulled from the stack and restored. Then, at

BF72, the VR returns to the routine that called it.

If the character is not a null, location 0206 is

examined to see if it is greater than zero. If it is

greater than zero, the contents of 0206 are used as

a counter for the TV delay loop. This timing loop

slows the VR to keep it from printing too fast for

slower peripherals. If 0206 contains zero, the

timing loop is bypassed.

At BF47, the character is checked to see if it is

an LF(OA). If the character is other than an LF, it

falls through to BF48. If the character is an LF, we

go to BF76. For the time being, let's bypass BF76

and see what happens if the character is not an LF.

At BF48, the character is tested to see if it's a

CR(0D). If the character is a CR, the routine falls

through to BF4F. Again, let's defer exploration of

this route and branch to BF55. This is the route all

non-control characters travel.

Stalking The Non-Control Character

At BF55, the character is stored in location 020 I.

We JSR {jump to subroutine) to BFC2. where the

contents of 0201 are primed D300 (C1P) or D700

(C2P) plus [he cursor offset. The cursor offset is

stored in 0200, which was initialized with the con

tents of FFF0 when the BREAK key was pressed at

system start-up. The contents of ITF0 are 65 (C I P)

or 40 (C2P). This means "home" position in the

(i 1 P is D365 and D740 in I he (I2P. After I he char

acter is printed, we RTS to BF5B and increment

Lhe cursor offset (loc. 0200).

At BF65, the current cursor offsel is compared

lo the maximum cursor offset. II the end of the

video line has been reached, an automatic CR/LF is

done (JMP BF73). Otherwise, the routine |SRs to

BFDE. At BFDE the character at D300 (C1P) or

D700(C2P), plus the cursor offset, is stored in

0201. Remember that location 0200 was incre

mented at BF5B, so the character stored is the one

in front of the current character. As far as I can

tell, this character is never reused, except when a

CR is done. At BFEF, the cursor character (5F) is

printed and an RTS to BF6D is done.

At BF6D, the A, X, and Y registers are pulled

from the stack and restored. Then BF72 does an

RTS back to the routine that called the VR.

Let's go back and see the path a CR character

follows. The CR starts at BF4F with aJSR to BFD5.

BFDS does a JSR to BFC2, which prints the charac

ter in 0201, the character "underneath" the cursor.

This character is invariably a "space" (20). At BFD4

we RTS toBFD8, where the character in the "home"

position is stored in 0201. At BFFF, the cursor

character (5F) is printed at the "home" position.

Now we RTS to BF52, which JMPs to BF6D. The

A, X, and Y registers are restored and we RTS to

the VR calling routine.

Spoor Of The Wily LF

Let's review the status of the TV display at the end

of the CR. The cursor character has moved from

its former position at the end of the home line to

the home position. The character that formerly

occupied this position is now stored in 0201.

With this in mind, we track the line \'eec\ char

acter through the VR. The LF is usually done

immediately after a CR. We left the LF at BF76,

which JSRs to BFC2 and prints the contents of

0201 at the home position. This restores the first

character of the line and erases the cursor. At

BFD4, we RTS to BF79, where the cursor offsel is

ANDed with the hex number E0. This has the

effect of rounding the offset to the start of the

video line.

The rounded-ol i number is stored in 0202.

Next, a scroll-one-byte routine is copied from
BASIC ROM to RAM at O2O7-O2OF. At BF8C, the

X register is loaded with D3(C1 P) or D7(C2P). The

X register will be used later to determine whether

or not the routine is scrolling I he last page of video

memory. Ilex 20 is stored in the A register and the

line width is put into the Y register. If the line

width is greater than 20, which indicates a 2K

memory, the A register is doubled (-10). At BF99,

the A register is used to set the 0207-F. subroutine

fora 20(32 dec.) or a 40 (GA dec.) character line

length. The Y register is zeroed in preparation for

use as an olfset counter for the 0207 subroutine.

At BF9E, the actual scroll is stinted with a fSR

to 0207. which gets one byte from video memory

and stores it in the nexi line above. The Y register

is incremented and we R IS to BFA 1 and check to

see if the currcnl page has been completely scrolled.

100 COMPUTE! September. 1981. Issue 16

page). The C I P video memory has" pages (0000-
0 3 1'1') a nd the C2 P has 8 (0000-071'1').

The curso r stays on the "home" line; its address
varies by on ly 24 o r 64 (dee.). Because we know it
will a lways be on the same page, the cursor 's location
can be specilied by only one byte (Ioe. 0200). I ca ll
this byte the cursor offset. The loca tionn of the
cursor is found by adding the cursor olrsel lO 0 300
(C I P) or 0700 (C2P).

For those nol familiar with machine language.
I suggest you think o f the A, X, a nd Y registe rs as
variables. When a va lue is loaded into the X register,
think x = value .

On Our Way At Last!
We start with the character to be displayed in the A
registe r. Th is character ma y come from anyone of
several routines such as LOAO , LIST, o r FTE . At
BF20, the A register is loaded into location 0202.
The A, X, and Y registe rs are saved on the stack.
At BF35, the conte nts 01'0202 are put back into the
A register. This seemingly meaningless bac k-and
forth shift is done because the X and Y registe rs
must be transfe rred to the A register so that they
can be pushed onto the stack. At BF38, the characte r
is checked lO see if it is a null (00). I f so, the routine
branches lO EF60 whe re the Y, X, and A registers
arc pulled from the stack and res tored . Then , a t
BF72 , the VR returns to the routine that ca lled it.

I I' the charac ter is not a null , location 0206 is
examined to see if it is g rea ter than zero. I f it is
greener than zero , the conte nts or 0206 are lI sed as
a counter lo r the TV delay loop. This timing loop
slows the VR lO keep it from printing too fast fo r
slower periphe ral s. If 0206 contains zero, Ihe
timing loop is bypassed .

At B 1'47, the character is checked lO sec i fit is
a n LF(OA). I I' the characte r is other than an l.F , it
1, L1ls through to BF48. If the character is an l.F, we
go to BF76. For the time being, let 's bypass BF76
and see what happe ns if th e character is not an LF.

At BF48, the cha racte r is tested lO see if it's a
C R(O[)) . If the characte r is a C R, the routine 1;L1ls
through to BF4F. Aga in , let's defer ex ploratioll of
this route and branch to BF55 . This is the route a ll
non-control c ilaraCle rs tra ve l.

Stalking The Non-Control Character
At BF5!; , the characte r is sto red ill location 020 I.
We JSR Uurnp lO sub ro utine) to BFC2, where Ihe
colltems of 020 I arc pr imed 0 300 (C I P) or 0700
(C2 1') plus th c cu rsor offse t. The curso r offset is
slC)red ill () ~ ()() . which was illitia li zed with th e COII

Icnts of FFEO whe ll I he B R FA K key was pressed al
sys te lll start-up . The (Onte nlS of FFEO a rc (,:". (C I P)
or 40 (C~ P) . This m cans "home" pos ition ill th e
CI I' is D'I()::; and D7' IO inlh e C:2 1'. A/'tCl' Ihe char
(tctcr is prillt ed . we RTS to BF~jB alld illcremcllt
Ihe Clt rso r offse l (Ioc. 02(0).

A I BFI):>, th e currellt cursor offsc t is cOlllpared
to the maximuill clirsor ofT,et. If ' the clld orthe

video line has been r eached , an autom al.ic C R/ LF is
done UMP 131'73). Otherwise, the routine lSRs to
BFDE. At BFOE the cha racter a t 0 300 (C I P) or
0700(C2 P), plus the cursor offset, is stored in
020 I. Remembe r that location 0200 was incre
me nted at BF5B , so the cha racte r SlO red is the one
in front of lhe currenL characte r. As far as I can
te ll , this character is neve r reused , excep t when a
C R is done . At BFEF, the cursor character (S F) is
printed and an RTS to Br60 is done.

At BF60, the A, X, and Y registe rs are pulled
from the stack and res tored. The il B F72 does an
RTS back to the routine that call ed the VR.

Let's go back and see the path a CR character
fo llows. The CR sta rts at BF4 F with alSR lo BF05.
131'05 does aJSR to BFC2, which prints the cha rac
te r in 020 I, the character "unde rneath" the curso ...
T his character is invariably a "space" (20). At BFD4
we RTS lo BF08, where the character in the "home"
position is slOred in 020 I . At BFEF, the cursor
cha racter (SF) is printed at the "home" position.
Now we RTS to 131'52, whichJMPs to 131'6 0 . The
A, X, and Y registe rs are restored and we RTS to
the VR ca lling routine.

Spoor Of The Wily LF
l.e t's re view the slatus o f tlt e TV displa y at the end
of the CR. The cursor character has moved from
its former position at the e nd of the home line to
the home position . T he characte r thai f()rmerl y
occupied this pos ition is 11 011' slOred ill 020 I.

With this in mind , we track Ih e lill e Iced char
acterthrough the VR. The l.F is usua ll y done
immediatel y after a CR. We le ft the l.F at B 1"76,
wh ich .J SRs lo B FC2 a nd prints the contems of
020 I at the home positio n. Th is resto res the lirst
character of th e line and erases lhe cursor. At
BF04, we RTS to BF79 , whe re the cursor offse t is
AN Oed with the hex Ilumber EO. This has the
e ffect of rounding the o llsel 10 the sta rt of the
video line.

T he round ed-ofT nllmber is storcd ill ()~()~,
Nex t, a scroll -onc-bytc routill C is t:o picd f rom
BASI C ROM to RAM at 0207-020F . AI BFSC. the
X regisler is loaded with 0 3(C II') or D7(C2 P). The
X r eg ister will be used later to d etermill c " 'hel her
o r l1 0tlilc nHlt ille is scrollill g t he last page o f \'idco
melllory, H ex ~o is slorcd illlhc J\ register alld the
lillc width is put into the Y register. I rth e line
width is g-rea ter thall 20 . which indiciles a 2 1<
", ,, ,"ory, Ihe A r"gist<:r is doubled ("I()). Al I3F~I ~I .
th e A register is IIscd to sc t th e ()~()7-F silbroutille
fo r a 2() ('12 dec.) 01' " '10 (Ii' l dec.) cha rac ler lillc
le ll gth . The Y registe r is zcroed ill prep;lralioll fo r
li se as an offsct count cr f'o l' th e O:l() 7 SUI)l'OlItillc.

AI IIF'IF , lit " ' '''Iual scro ll is slartcd lI' ilh a .ISR
10 () ~ 07, which ge ts one h }' tl' I'r0l11 vicl co Illc illo r),
and stores it ill th c lI ex l lillc ;Ibo"c, Th e Y register
is inlTc lll cllted and wc RTS to BFA I and check to
sce if' I h c ('U ITell [p; Igc.: II as hcc lI (f)1ll pl ct cI y sc rolled ,

September. 1981. Issue 16 COMPUTE! 101

[f the page is not done, we branch to BF9E to scroll

another byte. When the page is done, the 0207

subroutine is set to scroll the next. page. A check is

made to see if the 0207 subroutine is set to the last

page ol video memory. If the sub is not set to the

last page, we go back to BF9E to scroll another

page. If we are on the last page, we scroll down lo

the home line, using the Y register and location

0202 to tell when to stop scrolling. At BFB6, the

home line is cleared by storing "space" characters

in its memory locations. We JSR lo BFDE, which

prints the cursor in the home position. Finally, we

RTS to BF6D, pull the A, X. and Y registers from

the stack and. at BF72, the VR returns to the routine-

that called it. Our journey is finally over, and I

hope il has been an informative our.

Video Routine (BF2D)

Figure 1.

GOSUB

RETURN

GOTO

Add one

Contents of loc. 0200

Logical function

All numbers are in hexadecimal.

JSR

RTS

BRANCH, JUMP -

INCREMENT

/0200/

AND

BP2D Put /A reg./ (char.) in 0202

BF30 Save A,X,Y registers on stack

BF35 Put /0202/ (char.) in A reg.

BF38 If char, is null, branch to BF6D.

BF3A Load Y reg. with /0206/ (TV delay)

BF3D If Y is zero, branch to BF47.

BF3F TV delay loop

BF47 If char, is a LF, branch to BF76.

BF4B If char is not CR, branch to BF55.

BF4F JSR to BFD5.

BFD5 JSR BFC2

BFC2 Load X with /0200/

(cursor offset)

BFC5 Load A with /0201/

(char to print)

BFC8 Load Y with /FFE2/

(video mem size)

BFCB If Y is not zero, go to BFDl.

BFCD Store A is D300+/X/ (C1P)

BFD0 RTS

BFDl Store a in D700+/X/ (C2P)

BFD4 RTS

BFD8 Load A with /FFED/

(cursor "home" offset)

BFDB Put /A/in 0200 (cursor offset)

BFDE Put /0200/ is X.

BFE1 Put char at D300-/X/ in A.

BFE4 Put /FFE2/ (video mem size) in Y.

BFE7 If Y is equal to zero, (IK video

mem.) goto BFEC.

BFE9 Load A with char, at D700+/X/.

BFEC Put A in 0201

(temporary char, storage)

BFEF Put cursor char. (5F) in A.

BFF1 Branch always to BFC8.

BFC8 Load Y with /FFE2/
(video mem size)

BFCB If Y is not zero, go to BFDl.

BFCD Store A is D300+/X/ (ClP)

BFD0 RTS

BFDl Store a in D700+/X/ (C2P)

BFD4 RTS

BF52 JMP BF6D

BF55 Put char, in 0201

(temporary char, storage)

BF58 JSR BFC2

BFC2 (See BFC2 subroutine above)

BFD4 RTS

BF5B Increment /0200/ (cursor offset).

BF5E Put /FFE1/ (chars/line-1) in A.

BF62 Add /FFE0/ (cursor "home" offset)

to A.

BF65 If A is greater than /0200/

(cursor offset) JMP BF73.

BF73 JSR BFD8

BFD8 (See BFD8 subroutine above)

Put char, in "home" position into

0201 and print cursor in

its place.

BFD4 RTS

BF76 JSR BFC2

BFC2 (See BFC2 above)/

Print char, from 0201 at home

position.

BFD4 RTS

BF79 Put /FPE0/ (cursor "home" offset)

in A.

BF7C AND A with number E0 and put

result in 0202.

BF81 Transfer scroll subroutine from

BFF3-A to RAM. (0207-B)

BF8C Load X with /BFFE/ (D3) or

/BFFC/ (D7).

BF8F Put 20 (line length) in A.

BF91 Put /FFE1/ (chars.line-1) in Y.

BF94 If Y greater than 20, then /A/.

BF99 Use A to set line length in

scroll subroutine (0207-E).

BF9C Zero Y register (byte counter).

BF9E JSR 0207

0207 Load one byte from video memory

020A Store byte one line above

previous location

020D Increment Y.

020E RTS

BFAl If page is not done, loop to BF9E.

BFA3 Increment high byte of video

addresses in scroll subroutine.

BFA9 If high byte not equal to D3 (ClP)

or D7 (C2P) then branch to BF9E.

BFB1 Scroll last page down to

cursor line.

BFB6 Put "spaces" in home line

(erase line).

BFC0 Branch always to BF6A.

BF6A JSR BFDE (See BFDE sub above.)

print cursor at home position,

store char, in 0201.

BF6D Pull A,X,Y from stack.

BF72 RTS (Return from calling routine.)

September. 1981. Issue 16 COMPUTE! 101

I r the page is lIot done, we branch 1.0 B 1'9 E to scroll
another byte. Whe n the page is done, th e 0207
subroutine is se t 1.0 scroll th e next page. A check is
made 1.0 see if the 0207 subroutine is set 1.0 the last
page or video memory. I f" th e sub is nut set to th e
last page, we go back 1.0 B F9E 1.0 sc roll another
page. I r we are 011 the last page, we s<.; roll down to
the home lillc, lIsing th e Y rcgister and loca tion
0202 to tell wilen to stop scrolling. At BFB6, the
home lille is cleared by storing "space" characters
in it s memor), locations. We JSR to BFDE, which
prints the cursor ill the homc position. Finall y. we
RTS to BFliD, pull th e A, X. a nd Y registe rs from
the stack and , a t 131'72. the VR l'C tUrIlS 1.0 th e rou tin e
that call ed it. Ourjourney is IiIl ,d1), ove r , a nd I
hope it has beell all illf"orlllati\'c OIl C.
Video Routine (BF2D)

Figure I.
JSR - GOSUB
RTS - RETURN

BRANCH, JUMP - GOTO
INCREMENT - Add one
/ 0200 / - Contents of loco 0200
AND - Logical function
All numbers are in hexadecimal.

BF2D Put /A reg. / (char.) in 0202
BF30 Save A, X,Y registers on stack
BF3S Put / 0202/ (char.) in A reg.
BF3a If char. is null, branch to BF6D.
BF3A Load Y reg. with /0206/ (TV delay)
BF3D If Y is zero, branch to BF47.
BF3F TV delay loop
BF47 If char. is a LF, branch to BF76.
BF4B If char is not CR, branch to BFSS.
BF4F JSR to BFDS.

BFDS JSR BFC2
BFC2 Load X with /0200/

(cursor offset)
BFCS Load A with / 0201/

(char to pr int)
BFCa Load Y with / FFE2/

(video mem size)
BFCB If Y is not ze ro, go to BFD1.
BFCD Store A is D300+/X/ (C1P)
BFD0 RTS
BFDl Store a in D700+/ X/ (C2P)
BFD4 RTS

BFDa Load A with / FFED/
(cursor "home" offset)

BFDB Put /A/in 0200 (cursor offset)
BFDE Put / 0200/ is X.
BFEl Put char at D300-/X/ in A.
BFE4 Put / FFE2 / (video mem size) in Y.
BFE7 If Y is equal to zero , (lK video

mem.) goto BFEC .
BFE9 Load A with char. at D700+/ X/ .
BFEC Put A in 0201

(temporary char. storage)
BFEF Put cursor char. (SF) in A.
BFFl Branch always to BFCa.
BFCa Loa d Y with / FFE2/

(video mem size)
BFCB If Y is not zero , go to BFD1.
BFCD Store A is D300+/X/ (C1P)
BFD0 RTS

BFDl Store a in D700+/X/ (C2P)
BFD4 RTS

BFS2 JMP BF6D
BFSS Put char. in 0201

(temporary char. storage)
BFS8 JSR BFC2

BFC2 (See BFC2 subroutine above)
BFD4 RTS

BFSB Increment /0200/ (cursor offset).
BFSE Put /FFE1/ (chars/line-l) in A.
BF62 Add /FFE0/ (cursor "home" offset)

to A.
BF6S If A is greater than /0200/

(cursor offset) JMP BF73.
BF73 JSR BFDa

BFDa (See BFDa subroutine above)
Put char. in "home" position into
0201 and print cursor in
its place.

BFD4 RTS

BF76 JSR BFC2

BFC2 (See BFC2 above)/
Print char. from 0201 at home
position.

BFD4 RTS

BF79 Put /FFE0/ (cursor "home" offset)
in A.

BF7C AND A with number E0 and put
result in 0202.

BFal Transfer scroll subroutine from
BFF3-A to RAM. (0207 - B)

BFaC Load X with / BFFE/ (D3) or
/BFFC/ (D7).

BFaF Put 20 (line length) in A.
BF91 Put /FFE1/ (chars .line-l) in Y.
BF94 If Y greater than 20 , then / A/ .
BF99 Use A to set line l ength in

scroll subroutine (0207- E).
BF9C Zero Y register (byte counter).
BF9E JSR 0207

0207 Load one byte from v ideo memory
020A Store byte one line above

previous location
020D Increment Y.
020E RTS

BFAl If page is not done, loop to BF9E.
BFA3 Increment high byte of video

addresses in scroll subroutine .
BFA9 If high byte not equal to D3 (C1P)

or D7 (C2P) then branch to BF9E .
BFBl Scroll last page down to

cursor line.
BFB6 Put I' spaces" in horne line

(erase line).
BFC0 Branch always to BF6A.
BF6A JSR BFDE (See BFDE sub above .)

print cursor at home position,
store char. in 0201.

BF6D Pull A,X ,Y from stack .
BF72 RTS (Return from call i ng routine.) ©

