
March, 1981. Issue 1O. COMPUTE! 87

A Small

Operating

System:

OS65D

The Kernel
Part 3 of 3

Tom R. Berger

School of Math
University of Minnesota

Minneapolis, MN

Concluding

Remarks

OS65D is a very small operating system. It is in no

sense 'generalized' to run with a large variety of soft

ware or peripherals as, say, Digital Research's CP/M

is for the Z80. If software and peripherals other than

those supplied by OSI are to be used, then the

operating system must be modified. There are ad

vantages and disadvantages to such an operating

system. Disadvantages result from its inherent inflex

ibility and lack of generalized commands. On the

other hand, because the operating system is so very

small and easy to understand, for those who choose

to understand it, it is easy to modify to suit personal

needs: a definite advantage.

Let's look now at some 'features' not available

in OS65D. Essentially all the operating system is in

memory at all times. This creates minor problems

with peripherals and INPUT/OUTPUT. For exam

ple, the original conception by OSI of I/O leads to a

sequence of routines exactly filling the I/O space.

Time has shown that OSI did not make the perfect

choice for all situations. In particular, the real time

version of OS65D requires that certain of the I/O

routines be partially overlaid or omitted to make

room for expansions of other I/O routines. The miss

ing routines are not easily returned except by special

allocation. A more generalized system would have an

area of memory for I/O routines (just as OS65D

does), but this area would not have fixed routines in

it. I/O routines would be written to run at any loca

tion and would be loaded into the special space from

the disk when they were needed, and where a niche

was available. After they had served their purpose,

the space they occupy would become available for

other routines. This 'generalized* approach eases I/O

problems, but requires much additional coding to

handle all the loading and space allocation.

The disk handling routines could not be made

much more compact. In particular, many user func

tions are left out. Thus the user must do a large

amount of housekeeping not required on larger

systems. The most glaring deficiency is the file crea

tion process. You cannot create a file until you know

its size. Usually, you cannot know its size until it

is in memory; but the file creation utility occupies

the same space as the file. As a result, a scratch file

must be created in order to temporarily save pro

grams while a permanent file of the correct size is

created. The process becomes even more involved if

you wish to expand a current file beyond its current

size.

If you use BASIC programs which process many

files, then the error recovery process of OS65D is far

too simple. If BASIC calls an operating system com

mand (say DISK!"blah blah") and an error occurs,

this error is often nonrecovcrable. That is, the stack

is reset and return to BASIC occurs through the

WARM START. This often means your program

will bomb if you try to CONTINUE. If you have a

large amount of information stored in BASIC strings

and in the process of saving it encounter a disk error,

then without a great deal of knowledge about the in

ternal working of BASIC, your information is lost.

Most file handling is done with BASIC utilities.

If you are programming in assembly language, this

leads to endless shuffling back and forth from BASIC

to the Assembler and back.

The operating system lacks an adequate editor.

Thus the Assembler and BASIC must contain their

own editors. As a consequence, all input must be ac

ceptable to one of these two editors if it is to be pro

cessed. In particular, line numbers are needed. A

Morch. 1981. Issue 10. COMPUTEI 87

A Small
Operating
System:
OS65D
The Kernel
Part 3 of 3
Tom R. Berger
School of Math
University of Minnesota
Minneapolis, MN

Concluding
Remarks
OS65 D is a ve ry small operat ing sys tem. It is in no
se nse 'generali zed' to ru n with a large variety of so ft
ware or peripheral s as, say, Digital Resea rch's C P/ M
is for the Z80. If software and peripherals other than
those suppli ed by OSI arc to be used , then the
operat ing system mu st be modified. There are ad
va ntages and di sadvantages to such an operat ing
system. Disadva ntages result from its inh erent infl ex
ibilit y and lack of generali zed commands . O n th e
ot her hand , because the opera ting system is so vcry
small and easy to understand , fo r those who choose
to understand it, it is casy to modify LO suit personal
needs: a defini te advant age.

Let's loo k no w at so me 'features' not available
in OS650. Essent iall y all the operating system is in
memo ry at all times. T hi s creates minor problems
with peripherals and IN PUT/OUTPUT. For exa m
ple, the original co nception by OSI of I/O leads to a
seq uence of rou tin es exactly filling th e I/O space.

'Time has shown that OS1 did no t make the perfect
choice lo r all situations. In particul ar, the real time
version of OS650 req uires th at ce rtain of th e I/O
routines be partiall y overl a id or o mitt ed lO make
room for expansiong o f ot her (/0 routines. The miss
ing routin es are nO(eas il y returned exce pt by special
allocat ion. A more general ized system would have an
a rea of memory for I/O routines (iuSt as OS650
docs), bu t thi s area wo uld no t have fi xed rout ines in
it. I/O rout ines would be writt en to run at an y loca
tion and wo uld be loaded in to the spec ial space from
t.he disk when they were needed, and where a niche
was avai lable. After they had served the ir purpose,
th e space th ey occupy would beco me avail able lo r
ot her ro utin es. Thi s 'generali zed' approach eases lIO
problems, but requires much add itional coding to
handle all the loading a nd space allocation.

The disk handlin g routines cou ld not be made
much morc compact. In parti cular , many user func
tion s are le ft out. Thus the user must do a large
amount o f housekeep in g not required o n larger
systems. The most glaring defi ciency is the fil e crea
tion process. Yo u cannot create a fil e until you know
it s size. Usuall y, yo u cannot know its size until it
is in memo ry; but the file creation utility occupics
the sa me space as the fil e. As a result , a scratch file
must be created in order to tempo rarily save pro
gra ms while a permanent fil e of the corrcct size is
created . The process becomes even more in volved if
you wish (Q ex pand a curren t fil e beyo nd its current
sIze.

If yo u use BASIC programs wh ich process many
fil es, th en the error recovery process of OS650 is far
too sim pl e. If BASIC call s a n operatin g sys tem co m
mand (say OIS K' '' blah blah") and an error occu rs,
this error is often nonrecoverable. 'T'hat is, the stack
is reset and re turn to BASIC occurs th rough the
WARM START. This oft en means your program
will bom b if you try to CONTI NUE. If you have a
large amount of info rm at ion stored in BASIC strings
and in th e process o f' sav ing it encounter a di sk error,
th en without a great deal of knowledge about the in
ternal working of BASIC , yo ur informat ion is lost.

Most lil e han dlin g is done wit h BASIC uti lities.
If yo u are programm in g in assembly lan guage , this
leads to endless shumin g back and fonh Irom BASIC
to the Assembler and back.

The operat ing syste m lacks an adequate editor.
Thus th e Assembler and BASIC mu st contain th eir
own edilOrs. As a consequence, all in put must be ac
ceptable to one of these two editors if it is to be pro
cessed. In particular, line numbers are needed. A

COMPUTE! March. 1981. Issue 1O.

BASIC program can be created to solve this num

bering problem, but BASIC may be too slow. Solv

ing this new problem leads to further complications

which would not be necessary with a good operating
system editor.

There are certain philosophical advantages to a

small operating system. OS65D is small enough that

its entire operation can be understood at once. This

means hackers can modify and alter the system, not

just by POKES and patches, but fundamentally, to

suit their own needs. In my experience, most hobby

OSI computer owners aspire to or already fall in this

hacking category. The smallness of the system puts

the user in direct contact with the most fundamental

operating system commands and operations. Even

though it is slightly more involved, this gives the user

the very maximum of control over the system.

This article was written using disassemblies of

OS65D V3.2 (NMHZ) Release November 1979.

Future articles will cover: (1) the I/O routines; (2)

the Disk routines; (3) the ROM, and (4)

miscellaneous bits and pieces. The disassemblies I

have made are fully annotated (by hand) and are

available for those who would like to use them. Send

a stamped, self-addressed postcard to me to deter

mine availability.

Tom Berger

10670 Hollywood Blvd.

Coon Rapids, MN 55433 ©

* SOFTWARE FOR OSI
-£l VIDEO GAMES 1 S15.
iw. Three Games. Head-On is like the popular arcade game. Tank
Ir- Battle is a tank game for two to four. Trap! is an enhanced

>* blockade style game.

jy VIDEO GAMES 2 S15.

>* Three games. Gremlin Hunt is an arcade-style game for one to
k< three. Gunfight is a duel of mobile artillery. Indy is a race game

<* for one or two.

*fc ADVENTURE: MAROONED IN SPACE $12.
v- An adventure that runs in 8K! Save your ship and yourself from

t* destruction.

*fc DUNGEON CHASE S10.
j^ A real-time video game where you explore a twenty level

i* dungeon.

M BOARD GAMES 1 S15.
K-r Two games. Mini-gomoku is a machine language version of

t* five stones gomoku. Cubic is a 3-D tic-lac-toe game. Both with
>j graphics.

J? DISASSEMBLER $12.
•"^ Use this to look at the ROMs in your machine to see what
^ makes BASIC tick. Reconstruct the assembler source code of

machine language programs to understand how they work.

■fa Our disassembler outputs unique suffixes which identify the
. addressing mode being used, no other program has this!

SUPER! BIORHYTHMS $15.
*\l A sophisticated biorhythm program with many unique

. features.

[C1 SHORTHAND S12.
f Use only two keys to enter any one of the BASIC commands

r. *m A or keywords. Saves much typing when entering

programs. Written in machine language.

For all BASIC-in-ROM sysicns Selected program; available
on d>sk Color ar.a 5QLjnd on uideo games

Send tor FREE catalog

#±r\ DIHMSOFTWARE ASSO.
-^|^ tl I \J l^i 14? Main St. Ossining. NY 10562

A Six-Gun

Shootout
Game

For The

OSI C1P

Charles L. Stanford
The Six Gun Shootout game is a very pleasant and

fun activity, particularly for the six to twelve or so

age group. But this article concerns more than just

the mechanics of writing another BASIC game for

the C1P. When I originally wrote the program

almost two years ago, we were reasonably satisfied

with it. Sure, it was slow. Every time a player moved

his gunfighter up or down the screen, the graphics

POKEs took a lot longer than desired. And

remembering that the "1" key was UP and the "2"

key was down took a lot away. Those of you who

have seen my articles on Fast Graphics (COMPUTE

II Issue 3) and on interfacing the Atari Joystick to

the C1P (COMPUTE Issue 7) can grasp what hap

pened. Making that program work like it should has

taught us more about the workings of the machine,

over the past year, than any dozen manuals or ar

ticles.

This article, then, is a summing up of the

methods we used to speed up both the software and

the hardware to make BASIC games both more fun

and much more saleable in the not inconsiderable

Software marketplace.

BASIC Program Description

The game runs much as the early Arcade versions

did. Each player has his gunfighter, who can shoot

across the screen. Three Cacti obstruct some of the

view, and move to a new location after each shot.

Each player can move up or down, and shoot. Each

gets 15 shots, and 5 hits wins.

The BASIC program shown in Listing 1 is fairly

well annotated with REMs, but a few of the routines

bear some discussion. The initialization starting at

Line 5 sets the screen up as though no joysticks were

available. This was deliberate, and makes the game

more universally useful. It is a good idea to do this

on all games, whether for paddles or for joysticks.

The scoring from Line 200 is handled indirectly

through the Fast Graphics Machine Language

subroutine. Thus the POKEs of the ASCII

characters are to that program rather than to the

88 COMPUTE! March. 1981. Issue 10.

BASIC program ca n be created to solve this num
bering problem, but BAS IC may be too slow. Solv
ing thi s new problem lead s to further complications
which would not be necessary with a good operating
system editor.

There are certai n ph ilosoph ical advantages to a
small operati ng system. OS65D is small enough that
its entire operation can be understood at once. T his
means hackers can modify and alter the system , not
just by POKES and patches, but fundamentally, to
sui t their own needs. In my experience, most hobby
OSI computer owners aspire to or already fa ll in this
hacking category. The smallness of the system puts
the user in direct Contact with the most fundamental
operating system commands and operation s. Even
though it is slightl y morc in volved , this g ives the user
the very maximum of control over th e system.

Th is article was wrillcn us ing di sassc mblies o f
OS65D V3.2 (NMHZ) Release November 19i9.
Future articles will cover: (I) the I10 routines; (2)
the Disk routines; (3) the ROM , and (4)
mi scella neous bit s and pieces. T he di sasselllblies I
have made arc fu ll y annotat ed (by hand) and are
available for those who would like to use them. Send
a stamped , self-addressed postcard to me to deter
mine availability.

Tom Berger
10670 Hollywood Blvd.
Coon R apids, MN 55433 ©

{t: SOFTWARE FOR OSI
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:
{t:

VIDEO GAMES 1 515.
T hree Games. Head-On is like the popular arcade game. Tank
Batlle is a tank game for two to four. Trap! is an enhanced
blockade style game.

VIDEO GAMES 2 515.
Three games. Gremlin Hunt is an arcade-style game for one to
three. Gunfight is a duel of mobile artillery. Indy is a race game
for o ne or two.

ADVENTURE: MAROONED IN SPACE 512.
An adventure that runs in 8K! Save your ship and yourself from
destruction.

DUN GEON CHASE ·· 510.
A real-time video game wh ere you explore a twenty level
dungeon.

BOARD GAMES 1 515.
Two games. Mini-gomoku is a machine language version of
five stones gomoku. Cubic is a 3-D ti c-tac- toe game. Both with
graphics.

DISASSEMBLER 51 2.
Use th is to look at the ROMs in you r mach ine to see what
makes BASIC tick . Reconstruc t the assembler source code of
machine language programs to understand how they work.
Ou r disassembler outputs unique suffi xes which identify the
addressing mode being used , no other program has this!

. 515. SUPER! BIORHy THMS
A sophisticated biorh ythm program with

features.
many unique

C1 SHORTHAND 512.
two keys to enter anyone of the BASIC commands

or keywords. Saves much typing when entering
prog rams. Written in machine language.
For aU BASIC·,"·AOM systl'I'\s selected I'"o;rams ava,laDle
on 0 ~ Io Colo< and sound on v,oeo game1

Send for FREE catalog

RI ONSOFTWARE ASSO .
• r' \..1 147 Main St. Ossining, NY 10562

A Six-Gun
Shootout
Game
For The
OSI C1P
Charles L. Stanford
The Six Gun Shootout game is a very pleasant and
fu n activ ity, part icul arly for the six 10 twelve or so
age group. But th is article concern s more than just
the mechan ics of writi ng another BASIC game for
the C 1 P . When I originall y wrot e the progra m
almost two years ago, we were reasonably satisfied
with it. Sure , it was slow. Every time a player moved
his gunfighter up or down the screen , the graphics
POKEs took a lot longer th an desired. And
remembering that the" 11) key was UP and the " 2"
key was down took a lot away. Those of you who
have seen my articles on Fast Graphics (COM PUTE
II Issue 3) and on interfacing the At a ri J oystick to
the C 1 P (COMPUTE Issue 7) can grasp what hap
pened . Making that program work like it should has
taught us more about the workings of the machine ,
over the past year, than any dozen manual s or ar
ticles.

T his article, then, is a summing up of the
methods we used to speed up both the soft ware and
the hardware to make BASIC games both more fun
and mu ch more saleable in the not inconside rable
Software marketplace.

BASIC Program Description
T he game runs much as the early Arcade versions
did . Each player has his gu nfighter, who can shoot
across the screen. Three Cacti obstruct some of the
view, and move to a new location after each shot.
Each player can move up or dow n, and shoot. Each
gets 15 shots, and 5 hils wins .

The BASIC program shown in Listing 1 is fairl y
well annotated with REM s, but a rew of the routines
bea r some di scussion. The ini tiali zat ion starting at
Line 5 sets the screen up as though no joyst icks were
availabl e. This was deliberate , and makes the game
more uni versally useful. It is a good idea to do this
on all games, whether for paddl es or for joysticks.
The sco ring from Line 200 is handled indirectly
th rough the Fast Graphics M achine Language
subroutine. Thus the POKEs of the ASCll
characters are to that program rather th an to the

