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OS65D is a very small operating system. It is in no

sense 'generalized' to run with a large variety of soft

ware or peripherals as, say, Digital Research's CP/M

is for the Z80. If software and peripherals other than

those supplied by OSI are to be used, then the

operating system must be modified. There are ad

vantages and disadvantages to such an operating

system. Disadvantages result from its inherent inflex

ibility and lack of generalized commands. On the

other hand, because the operating system is so very

small and easy to understand, for those who choose

to understand it, it is easy to modify to suit personal

needs: a definite advantage.

Let's look now at some 'features' not available

in OS65D. Essentially all the operating system is in

memory at all times. This creates minor problems

with peripherals and INPUT/OUTPUT. For exam

ple, the original conception by OSI of I/O leads to a

sequence of routines exactly filling the I/O space.

Time has shown that OSI did not make the perfect

choice for all situations. In particular, the real time

version of OS65D requires that certain of the I/O

routines be partially overlaid or omitted to make

room for expansions of other I/O routines. The miss

ing routines are not easily returned except by special

allocation. A more generalized system would have an

area of memory for I/O routines (just as OS65D

does), but this area would not have fixed routines in

it. I/O routines would be written to run at any loca

tion and would be loaded into the special space from

the disk when they were needed, and where a niche

was available. After they had served their purpose,

the space they occupy would become available for

other routines. This 'generalized* approach eases I/O

problems, but requires much additional coding to

handle all the loading and space allocation.

The disk handling routines could not be made

much more compact. In particular, many user func

tions are left out. Thus the user must do a large

amount of housekeeping not required on larger

systems. The most glaring deficiency is the file crea

tion process. You cannot create a file until you know

its size. Usually, you cannot know its size until it

is in memory; but the file creation utility occupies

the same space as the file. As a result, a scratch file

must be created in order to temporarily save pro

grams while a permanent file of the correct size is

created. The process becomes even more involved if

you wish to expand a current file beyond its current

size.

If you use BASIC programs which process many

files, then the error recovery process of OS65D is far

too simple. If BASIC calls an operating system com

mand (say DISK!"blah blah") and an error occurs,

this error is often nonrecovcrable. That is, the stack

is reset and return to BASIC occurs through the

WARM START. This often means your program

will bomb if you try to CONTINUE. If you have a

large amount of information stored in BASIC strings

and in the process of saving it encounter a disk error,

then without a great deal of knowledge about the in

ternal working of BASIC, your information is lost.

Most file handling is done with BASIC utilities.

If you are programming in assembly language, this

leads to endless shuffling back and forth from BASIC

to the Assembler and back.

The operating system lacks an adequate editor.

Thus the Assembler and BASIC must contain their

own editors. As a consequence, all input must be ac

ceptable to one of these two editors if it is to be pro

cessed. In particular, line numbers are needed. A
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BASIC program can be created to solve this num

bering problem, but BASIC may be too slow. Solv

ing this new problem leads to further complications

which would not be necessary with a good operating
system editor.

There are certain philosophical advantages to a

small operating system. OS65D is small enough that

its entire operation can be understood at once. This

means hackers can modify and alter the system, not

just by POKES and patches, but fundamentally, to

suit their own needs. In my experience, most hobby

OSI computer owners aspire to or already fall in this

hacking category. The smallness of the system puts

the user in direct contact with the most fundamental

operating system commands and operations. Even

though it is slightly more involved, this gives the user

the very maximum of control over the system.

This article was written using disassemblies of

OS65D V3.2 (NMHZ) Release November 1979.

Future articles will cover: (1) the I/O routines; (2)

the Disk routines; (3) the ROM, and (4)

miscellaneous bits and pieces. The disassemblies I

have made are fully annotated (by hand) and are

available for those who would like to use them. Send

a stamped, self-addressed postcard to me to deter

mine availability.

Tom Berger

10670 Hollywood Blvd.

Coon Rapids, MN 55433 ©

* SOFTWARE FOR OSI
-£l VIDEO GAMES 1 S15.
iw. Three Games. Head-On is like the popular arcade game. Tank
Ir- Battle is a tank game for two to four. Trap! is an enhanced

>* blockade style game.

jy VIDEO GAMES 2 S15.

>* Three games. Gremlin Hunt is an arcade-style game for one to
k< three. Gunfight is a duel of mobile artillery. Indy is a race game

<* for one or two.

*fc ADVENTURE: MAROONED IN SPACE $12.
v- An adventure that runs in 8K! Save your ship and yourself from

t* destruction.

*fc DUNGEON CHASE S10.
j^ A real-time video game where you explore a twenty level

i* dungeon.

M BOARD GAMES 1 S15.
K-r Two games. Mini-gomoku is a machine language version of

t* five stones gomoku. Cubic is a 3-D tic-lac-toe game. Both with
>j graphics.

J? DISASSEMBLER $12.
•"^ Use this to look at the ROMs in your machine to see what
^ makes BASIC tick. Reconstruct the assembler source code of

machine language programs to understand how they work.

■fa Our disassembler outputs unique suffixes which identify the
. addressing mode being used, no other program has this!

SUPER! BIORHYTHMS $15.
*\l A sophisticated biorhythm program with many unique

. features.

[ C1 SHORTHAND S12.
f Use only two keys to enter any one of the BASIC commands

r. *m A or keywords. Saves much typing when entering

programs. Written in machine language.

For all BASIC-in-ROM sysicns Selected program; available
on d>sk Color ar.a 5QLjnd on uideo games

Send tor FREE catalog

#±r\ DIHMSOFTWARE ASSO.
-^|^ tl I \J l^i 14? Main St. Ossining. NY 10562

A Six-Gun

Shootout
Game

For The

OSI C1P

Charles L. Stanford
The Six Gun Shootout game is a very pleasant and

fun activity, particularly for the six to twelve or so

age group. But this article concerns more than just

the mechanics of writing another BASIC game for

the C1P. When I originally wrote the program

almost two years ago, we were reasonably satisfied

with it. Sure, it was slow. Every time a player moved

his gunfighter up or down the screen, the graphics

POKEs took a lot longer than desired. And

remembering that the "1" key was UP and the "2"

key was down took a lot away. Those of you who

have seen my articles on Fast Graphics (COMPUTE

II Issue 3) and on interfacing the Atari Joystick to

the C1P (COMPUTE Issue 7) can grasp what hap

pened. Making that program work like it should has

taught us more about the workings of the machine,

over the past year, than any dozen manuals or ar

ticles.

This article, then, is a summing up of the

methods we used to speed up both the software and

the hardware to make BASIC games both more fun

and much more saleable in the not inconsiderable

Software marketplace.

BASIC Program Description

The game runs much as the early Arcade versions

did. Each player has his gunfighter, who can shoot

across the screen. Three Cacti obstruct some of the

view, and move to a new location after each shot.

Each player can move up or down, and shoot. Each

gets 15 shots, and 5 hits wins.

The BASIC program shown in Listing 1 is fairly

well annotated with REMs, but a few of the routines

bear some discussion. The initialization starting at

Line 5 sets the screen up as though no joysticks were

available. This was deliberate, and makes the game

more universally useful. It is a good idea to do this

on all games, whether for paddles or for joysticks.

The scoring from Line 200 is handled indirectly

through the Fast Graphics Machine Language

subroutine. Thus the POKEs of the ASCII

characters are to that program rather than to the
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