
COMPUTE! January. 1981 Issje 8

Parti

A Smalj

Operating

System:

OS65D

The Kernel

T. R. Berger

You switch on your computer, insert a disk, press

the RESET button, then press "D". After a second

or two of whirring and clicking, a menu flashes on

the screen asking what you wish to do. At the time of

turn-on, your computer knew nothing. Now BASIC

LANGUAGE is in control. How did this happen?

How does the machine get data and programs to and

from the disk? How does the computer know if you

are using a video monitor with a polled keyboard or

an expensive serial monitor terminal? How does the

computer decide to send its messages to the printer,

the monitor, or to memory? How does the computer

find its way among BASIC, the Assembler, and the

Extended Monitor? The glib answer to all these

questions is that the disk operating system makes all

decisions and performs all control operations.

It is the task of the operating system to:

1. Start the computer on RESET (BREAK);

2. Manage and control all external input and

output devices including keyboards, monitors,

printers, and so on;

3. Manage the functioning of the disk (the

single most important function of an operating

system);

4. Manage loading and execution of system

software in the software segment of memory,

including BASIC, Assemblers, etc.; and

5. In general, keep tidy control over all

transfers between these various functions.

The diagram in FIGURE 1 illustrates this mediating

junction of an operating system.

I hope, in several articles, to describe some of

the general features of a small operating system by

describing in some detail how the Ohio Scientific

OS65D disk operating system functions. OS65D is a

minimal function, small sized operating system.

Therefore, mere mortals can comprehend its struc

ture. I hope to convey not only a general under

standing of this system, but also to provide you with

some nuts and bolts to use in your own programm

ing efforts. This includes memory maps of all

subroutines.

The OS65D operating system is divided into

several parts.

1. Cold Start ROM

This program takes about 256 bytes (one page) of

ROM and accomplishes an absolute minimum of

functions. Its major role is to load Track 0 of the

disk into memory and start it running.

2. The Preparation Program

This program is in memory only long enough to do

its job. All the various bits and pieces hanging on

your microprocessor wake up either turned off or in

some random state. Some of these need preparation

before they will function properly. For example, a

serial input/output port (such as used by a terminal)

operates through an ACIA (Asynchronous Com

munication Interface Adapter....who thought up that

mouthful?) which must be prepared for proper func

tioning. This program carries out these preparations.

3. The Operating System Kernel

This program is the 'BOSS'. It contains all the com

mands by which you may direct the operating

system. It directs the functioning of the remaining

parts of the operating system.

4. Disk Routines

These are the programs which make the disk the

magic storage medium which it is. These routines

start and stop the clicking and whirring you hear

when the disk operates.

5. The Input and Output Routines

Input may come from a keyboard, a serial terminal,

or any of many sources. Similarly, output may go to

a serial terminal, a video monitor, a printer, or some

other device. Each such device needs its own input or

output program. Further, there must be one super

visory program which can choose from as many or as

few of these input/output devices as are desired at

any one time. These programs constitute the Input

and Output Routines.

6. Utility Programs

Certain programs are needed only occasionally.

These include disk copying programs, and Track 0

modification programs. These utility routines are on

ly loaded into memory when needed. They hide in

sectors placed after the major system software on

various tracks of the disk.

In this article we will explore the 'BOSS', i.e.

the Operating System Kernel. The obvious part of

the kernel is the set of commands. Not so obvious,

but very useful, are the line input routine, the line

buffer reader, and various Hex to ASCII and ASCII

to Hex conversion and other routines. Let's go

through the various commands availalbe in OS65D

and see how thev function.

Part 1

A Small
Operating
System:
OS65D
The Kernel

1 R. Berger
You switch on your computer, insert a disk, press
the RESET button, then press" D". After a second
or two of whirring and clicking, a menu flashes on
the screen asking what you wish to do . At the time of
turn-on, your computer knew nothing. Now BASIC
LANGUAGE is in control. How did thi s happen>
How does the machine get data and programs to and
from the disk? How does the computer know if you
are using a video monitor with a polled keyboard or
an expe nsive serial monitor terminal? How does the
com pUler decide to send its messages to the printer,
the monitor, or to memory? How does the computer
find its way among BASIC, the Assembler, and the
Extended Monitor? The glib answer to all these
questions is that the disk ope rating system makes all
decis ions and performs all control operat ion s.

It is the task of the operating system to:
1. Start the computer on RESET (BREAK);
2. Manage and control all external input and
o utput devices includin g keyboa rds, monitors,
printers, and so on;
.3. Manage the functioning of the disk (the
singl e most important function of an operating
system);
4. Manage load ing and execut ion of system
software in the software segment of memory,
including BASIC, Assemblers, etc.; and
5. In general , keep tidy control over all
transfers between these various functions.

The diagram in FIGURE 1 illustrates this mediating
function of an operating system.

I hope, in several articles, to describe some of
the general features of a small operating system by
describing in some detail how the Ohio Scient ific
OS65D disk ope ra tin g system functions . OS65D is a
minimal function, small sized operating system.
Therefore , mere mortals ca n comprehend its struc
ture. I hope to convey not onl y a general under-

COMPUTE! Janucry. 1981 IssJe 8

standing of thi s system, but also to provide you with
some nuts and bolts to use in you r own programm
ing efforts . This includes memory maps of all
subro utines .

The OS65D operating system is divided into
several parts.

J. Cold Start ROM
This program takes about 256 bytes (one page) of
ROM and accomplishes an absolute minimum of
functions. Its major role is to load Track 0 of the
disk into memory and stan it running.

2. The Preparation Program
This program is in memory only long enough to do
its job. All the various bits and pieces hanging on
your microprocessor wake up e ither turned off or. in
so me random state. Some of th ese need preparatIon
before they will fun ction properly . For example, a
serial input/output port (such as used by a terminal)
operates throu gh an AC IA (Asynchronous Com
muni cat ion Interface Adapter. .. . who thought up that
mouthful ?) which must be prepared for proper func
tioning . This program carries out these preparation s.

3_ The Operating System Kernel
This program is the' BOSS' . It co ntains all the com
mands by which you may direct the operati ng
system. It directs the functioning of the remaining
part s of the operating system.

4. Disk Routines
These are the programs which make the disk the
magic storage med ium which it is . These routines
start and stop th e click ing and wh irring you hear
when the disk operates .

5. The Input and Output Routines
Inpu t may come from a keyboard, a serial terminal ,
or any of many sources. Similarly, output may go to

a serial terminal , a video monitor, a printer , or some
other device. Each such device needs it s own input or
outpu t program . Further, there must be one su per
visory program which ca n choose rrom as many or as
few of Ihese input /oll(pll(devices as are desi red at
anyone time. These programs constit ute the Input
and Output Routines.

6. Utility Programs
Certain programs arc needed on ly occasionall y.
T hese include disk copying programs, and Track 0
modification programs. These utility rOll(ines are on
ly loaded into memory when needed. T hey hi de in
sectors placed after the major system software on
various tracks of the disk.

, In this article we will explore the 'BOSS ', i. e.
the Operating System Kernel. The obvious part of
the kern el is the set of commands. Not so obvious ,
but very use fu l, are the line input routine, the line
buffer reader , and various Hex to ASC II and ASC II
to Hex conversion and other routines. Let's go
through the various commands ava ilal be in OS65D
and see how they function.

SOFTWARE FOR OSI
A JOURNAL FOR OSI USERS!!

The Aardvark Journal is a bimonthly tutorial for OSI

users. It features programs customized for OSI and

has run articles like these:

1) Using String Variables.

2) High Speed Basic On An OSI.

3) Hooking a Cheap Printer To An OSI.

4) An OSI Disk Primer.

5) A Word Processor For Disk Or Tape Machines.

6) Moving The Disk Directory Off Track 12.

Four back issues already available!

S9.00 per year (6 issues)

ADVENTURES

Adventures are inleractive fantasies where you give the

computer plain English commands (i.e. take the sword,

look at the control panel.) as you explore alien cities,

space ships, ancient pyramids and sunken subs, Average

playing time is 30 to 40 hours in several sessions.

There is literally nothing else like them — except

being there yourself. We have six adventures available.

ESCAPE FROM MARS - Explore an ancient

Martian city while you prepare for your escape.

NUCLEAR SUBMARINE - Fast moving

excitement at the bottom of the sea.

PYRAMID — Our most advanced and mosl

challenging adventure. Takes place in our

own special ancient pyramid.

VAMPIRE CASTLE - A day in old Drac's

castle. But it's getting dark outside.

DEATH SHIP - It's a cruise ship - but it ain't

the Love Boat and survival is far from certain.

TREK ADVENTURE - Takes place on a

familiar starship. Almost as

good as being there.

$14.95 each

NEW SUPPORT ROMS FOR BASIC

IN ROM MACHINES

C1S - for the C1P only, this ROM adds full

screen edit functions (insert, delete, change

characters in a basic line.), Software selectable

scroll windows, two instant screen clears (scroll

window only and full screen.), software choice of

OSI or standard keyboard formal, Bell support,

600 Baud cassette support, and a few other

features. It plugs in in place of the OSI ROM.

NOTE : this ROM also supports video conversions

for 24, 32, 48, or 64 characters per line. All that

and it sells for a mesly S39.95.

C1E/C2E for C1/C2/C4/C8 Basic in ROM ma

chines.

This ROM adds full screen editing, software

selectable scroll windows, keyboard correction

(software selectable), and contains both en

extended machine code monitor and a fix for

the string handling bug in OSI Basic!! It has

breakpoint utilities, machine code load and save,

block memory move and hex dump utilities. A

must for the machine code programmer replaces

OSI support ROM. Specify system! S59.95

STRIMG BUG FIX (replaces basic ROM chip

number 31

AM this chip does is to replace the third basic

ROM and correct the errors that were put into

the ROM mask. $19.95

DATA SHEETS

OS65D LISTING

Commented with source code, 83 pages. $24.95

THE (REAL) FIRST BOOK OF OSI

65 packed pages on how OSI basic works. Our

best selling data sheet. $15.95

OSI BASIC IN ROM

Ed Carlson's book of how to program in basic.

Now available from Aardvark. S8.95

P.C. BOARDS

MEMORY BOARDS!! - for the C1P. - and they

contain parallel ports!

Aardvarks new memory board supports 8K

of 2114s and has provision for a PIA to give a

parallel ports! It sells as a bare board for S29.95.

When assembled, the board plugs into the expan

sion connector on the 600 board. Available now!

REAL SOUND FOR THE C1P - and it'scheap!

This bare board uses the Tl sound chip to give

real arcade type sound. The board goes together

in a couple of hours with about $20.00 in parts.

Bare board, plans, and sample program -- S 15.95

ARCADE AND VIDEO GAMES

ALIEN INVADERS with machine code moves -

for fast action. This is our best invaders yet. The

disk version is so fast that we had to add select

able speeds to make it playable.

Tape -$10.95 - Disk -$12.95

TIME TREK (8K) - real time Startrek action.

See your torpedoes move across the screen! Real

graphics - no more scrolling displays. S9.95

STARFIGHTER - a real time space war where

you face cruisers, battleships and fighters using a

variety of weapons. Your screen contains work

ing instrumentation and a real time display of the

alien ships. S6.95 in black and white - S7.95 in

color and sound.

SEAWOLFE - this one looks like it just stepped

out of the arcades, It features multiple torpedoes,

several target ships, floating mines and real time

time-to-go and score displays. — $6.95 in black

and white S? ,95 in color and sound.

SCREEN EDITORS

These programs at) allow the editing of basic

lines. Ail assume that you are using the standard

OSI video display and polled keyboard.

C1P CURSOR CONTROL - A program that uses

no RAM normally available to the system. (We

hid it in unused space on page 2). It provides

real backspace, insert, delete and replace func

tions and an optional instant screen clear.

$11,96
C2/4 CURSOR. This one uses 366 BYTES of

RAM to provide a full screen editor. Edit and

change lines on any part of the screen. (Basic in

ROM systems only.)

FOR DISK SYSTEMS - (65D, polled key

board and standard video only.)

SUPERDISK. Contains a basic text editor with

functions similar to the above programs and also

contains a renumberer, variable table maker,

search and new BEXEC* programs. The BEXEC*

provides a directory, create, delete, and change

utilities on one track and is worth having by

itself. - S24.95 on 5" disk - S26.95 on 8".

DISK UTILITIES

SUPER COPY - Single Disk Copier

This copy program makes multiple copies,

copies track zero, and copies all the tracks

that your memory can hold at one time —

up to 12 tracks at a pass. It's 3lmost as fas!

as dual disk copying. — $15.95

DISK CATALOGER

This utility reads the directory of your disks

and makes up an alphabetic list off all youi

programs and what disks they are on. S 14.95

MACHINE CODE RENUMBERER

(C2/4-MFonlyl

Renumbers all or part of a program at machine

code speeds. — $15.95

This is only a partial listing of what we have to offer. We now offer over 100 programs, data sheets, ROMS, and boards

for OSI systems. Our S 1.00 catalog lists it all and contains free program listings and programming hints to boot.

Aardvark Technical Services • 1690 Bolton • Walled Lake, Ml 48088

(313] 669-3110 or (313)624-6316

OSI SOFTWARE FOR OSI OSI
A JOURNAL FOR OSI USERS!! ADVENTURES

The Aardvark Journal is a bim onthly tutorial for OSI
use rs. It features programs customized for OSI and
has run articles l ike these:

Adven tures are interactive fantasies where you give th e
computer p la in English commands (i.e. take the sword,

look at the control panel.) as you ex plore alien c it ies,
space ships. ancient pyrami ds and su nken subs. Average

playing t ime is 30 to 40 hours in several sessions.
There is literally nothin g e lse li ke them - except

being th e re yourself. We h ave six adven ture s availa ble.
1) Us ing String Variables.

2) H igh Spee d Basic On An 051.

3) Hooking a Cheap Prin ter To An 05 1.

4) An 051 Oisk Primer.

5) A Word Processor For D isk Or Tape Machines.

6) Moving The Disk Directory Off T rack 12.

Four back issues already available !
59.00 per year (6 issues)

NEW SUPPORT ROMS FOR BASIC
IN ROM MACHINES

C1S - for the C1P only. this ROM adds full
screen edit funct ions (insert. de lete, change
characters in a basic line.I, Software se lectable
scrOll windows, tWO ins tant screen clears (scroll
w indow only and full screen.I, software choice of
OS I or standard keyboard format, Bell suppon,
600 Baud cassette suPPOrt, and a few other
features. It p lugs in in place of the OSI ROM.
NOTE : th is ROM also supports video conversions
for 24, 32, 48, or 64 charac ters per line. All that
and i t sells for a mes ly 539 .95.
Cl E/C2E for C I /C2/C4/C8 Basic in ROM mao
chines .
T his ROM adds full screen editing, software
selectable scroll windows, keyboard correction
(software se lec tablel. and contains both an
extended machine code mon itor and a f ix fo r
the string handl i ng bug in OSI Basic!! 11 has
breakpoint utilities, machine code load and save ,
block memory move ar,d hex dump uti li t ies. A
must for the machine code p rogrammer replaces
OSI support ROM. Specify system! 559.95
STRING BUG FIX (replaces basic ROM ch ip
number 31
A ll th is chip does is to rep lace the th ird basic
ROM and correct the er rors that were put into
the ROM mask. 519 .95

DATA SHEE TS

0$650 LIST ING
Commented with source code, 83 pages. 524.95
TH E (REALI FIRST BOOK OF OSI
65 packed pages on how OSI basic works . Our
best selli ng data sheet . 51 5.95
OSI BASIC IN ROM
Ed Carls on's book of how to program in basic.
Now available from A ardvark. 58 .95

P.C. BOARDS

MEMORY BOARDS!! - for the C IP . - and they
contain para llel ports!
Aardvarks new memory board suPPOrts 8K
of 2114's and has provision for a PIA 10 give a
parallel parisi II sells as a bare board for 529.95.
When assembled, the board plugs in to the expan·
sion connector on the 600 board . Available nowl

REAL SOUN D FOR THE C1 P - and it' s cheap!
This bare board uses the T J sound chip to give
real arcade IYpe sound. The board goes together
in a couple of hours with about $ 20.00 in parts .
Bare board , plans, and sample program - 515 .95

ARCADE AND VIDEO GAMES

ALIEN INVADER S w i th mach ine code moves
for fast action. T his is our best invaders yet. T he
disk version is so fas t that we had to add select
able speeds to make i I playable.
Tape · $10 .95 - Disk· $12 .95

TIME TREK (8 K) - rcal time Start rek act ion.
See your torpedoes move across the screen! Rea!
graph ics - no more scrolling disp l ays. $9.95

STAR FI GHTER - a real t ime space war where
you face cruisers, battleships and f igh te rs using a
variety of weapons . You r screen con tains work·
ing ins trumenta tion and a rea l time disp lay of the
alien ships. 56 .95 in black and wh i te· S7.95 in
color and sound .

SEAWOL FE - th is one looks like rt JUSt stepped
OUI of the arcades . II features multiple to rpedoes.
several target ships, floating mines and real l ime
time· lo·go and score d isp lays. - 56.95 in black
and wh i te 57.95 in color and sound.

ESCAPE FROM MARS - Explore an ancient
Martian city wh ile you prepare for your escape.

NUCLEAR SUBMARINE - Fast mov in g
excitemen t at th e bottom of the sea.

PYRAMID - Our most advanced and most
challenging adven tu re. Takes pl ace in our

own special ancient py ramid.
V AMPI R E CASTLE - A day in old Drac's

cast le. But it's ge tting dark ou tside .
DEATH SHIP - It's a c ru ise ship - but it a in' t
the Love Boat and survival is far from cer tain.

TREK ADVENTURE - Takes place on a
fam iliar starship. Almost as

good as being there.

$14.95 each

SCREEN EDITORS

These programs all allow the editing of basic
lines. A ll assume that you are using the standard
OS I video d isplav and polled keyboard.
C 1P CURSOR CONTROL - A p rogram that uses
no RAM normally avail ab le to the sys tem. (We
hid i t i n unused space on page 21. It provides
real backspace, inser t , dele te and replace func ·
t ions and an optional instant screen clear.
511 .95
C2/ 4 CURSOR . This one uses 366 BYTES of
RAM to provide a fu l l screen editor. Ed it and
change l ines on any part o f the screen. (Basic in
ROM systems only J
FOR DI SK SYST EMS - (650, polled key·
board and standard v ideo only.)
SUPERDISK . Contains a basic text editor wi th
functions similar to the above programs and also
con tains a renumberer, variable table maker,
search and new BEXEC · programs. The BEXEC ·
provides a direc tory, crea te, delete, and change
u t ilities on one t rack and is worth having by
i tself. - 524 .95 on 5" disk· 526 .95 on 8" .

DISK UTILITIES

SUPER COpy - Single Disk Copier
Th is copy program makes multiple copies ,
copies track zero, and copies all the tracks
that your memor,! can hold at one time -
up to 12 tracks at a pass. It's almost as fast
as dual d isk copying. - 515.95
DISK CATALOGER
T his utility reads the d irectory of your disks
and makes up an alphabe t ic list off all YOUI
p rograms and what d isks they are on. 514.95
MACHINE CODE RENUMBERER
(C2!4 ·MF only)
Renumbers all or part of a program at machine
code speeds.- $15.95

Th is is only a partial listing of what we h ave to offer . We now offer over 100 program s, data shee ts , ROMS, and boards
for OSI sys tems. Our 51 .00 catal og lists it aU and contains free program lis tings and programming hints to boot. 117

OSI
Aardvark Technical Services. 1690 Bollon. Walled Lake, MI48088

(313) 669-3110 or (313) 624-6316 OSI

COMPUTE! January, issue 3

OS65D Kernel Command Descriptions

The kernel has 18 user commands. These may be

divided into four categories as follows: (1) Com

mands which move data or programs from the disk

to memory; (2) Commands which reverse this pro

cess and move data or programs from memory to the

disk; (3) Commands used for disk diagnostics and

preparation; and (4) Other commands. With this

division in mind, let's discuss the function of each

command by category.

Transfers from the disk to memory

The 6 commands (BA, AS, EM, XQ LO, CA) in

this category can be subdivided into four which load

and run: BA, AS, EM, XQ and two which just

load: LO, CA. The ones which load and run have

their vital statistics listed in Table 1 where the track

numbers are for 8" diskettes. After the tracks have

been loaded to memory, program control is trans

ferred to the location listed under 'jump' in the

table. The commands BA (BASIC), AS (Assembler),

and EM (Extended Monitor) are self-explanatory.

They load and run languages and systems supplied

with your computer. A general command much like

BA, AS, and EM is XQ (EXECUTE). If you

develop machine language systems to run at $31 7E

then XQ NAME or XQ TRACK will load and run

these sytems where NAME is the name of your file

and TRACK is the first track number of the file.

These commands load integral numbers of tracks,

and thus will not load sectors from within tracks.

They offer great ease of operation but practically no

versatility.

To add versatility, we need two more general

commands (LO, CA). We need a command LO

(LOAD) to accomplish what the previous commands

do for whole tracks without adding the 'run' feature

at the end. This one additional command is not

enough. Each track stores 3K bytes of data. It is

rather inefficient to store a 200 byte program on one

full track. Therefore, the operating system allows us

to divide each track into sectors. We are still limited

by the fact that a sector must be an integral multiple

of pages (1/4 K or 256 bytes) up to 3K. However, it

is less wasteful to store 200 bytes in a 256 byte sector

than to store it in a 3K track. The CA (CALL) com

mand allows this sector type of operation.

For full tracks and for sectors we have two load

commands listed in Table 1. First, LO NAME or

LO TRACK loads a file named NAME or a file

beginning at track number TRACK to memory.

Second, CA MEMORY = TRACK, SECTOR calls

sector number SECTOR on track number TRACK

to memory, starting the load at memory address

MEMORY. Note that LO specifies no starting

address. Further, 'LO NAME' specifies no [rack

number for the disk. When a file is named, a track

number is found in the disk directory which resides

in Track 8. The load vector (memory start address)

is usually S3179 for the LO command. Since BASIC

disk buffers are kept between $317E and the start of

your program, this means that any BASIC program

with a buffer will use disk space to preserve buffer

space. Disk space is wasted, but the operating system

remains very simple. Sectors could also be named in

a directory with load vectors written into the first few

bytes, but that would enlarge the memory re

quirements of the operating system and add to its

complexity. The authors of OS65D cho.se to forgo

enhancements. Thus the CA command requires all of

the load data except the length of the sector, which is

stored among the first few bytes of the sector.

The six commands just described (BA, AS, EM,

XQ LO, CA) provide a small, yet very powerful set

for obtaining files from the disk. For simplicity and

compactness of the system, the user is asked to suffer

a little inconvenience in loading sectors. Further,

since most data and program files will reside in

named files, some disk inefficiency is accepted as the

price of a compact operating system. In particular,

no matter how long or how short a BASIC program

is, it will always be stored on an integral number of

tracks. A IK program will use a 3K Track (or more

if there are buffers). To change this would require

more elaborate programming of sectors and direc

tories. Under such a more elaborate system the disk

would appear to be much larger. On the other hand,

because more elaborate programming is necessary,

the disk would run more slowly. However, compared

to cassette tape, even these more elaborate programs

would seem jet propelled.

Transfers from memory to the disk

There are no commands for saving memory which

might be analogous with a 'load and run1 command.

Thus the operating system need only have commands

which perform functions opposite to LO and CA.

These are PU (PUT) and SA (SAVE) and are also

given in Table 1. In analogy with LO, PU NAME

or PU TRACK will put memory onto an integral

number of disk tracks. If the file is named NAME,

the directory will specify the starting track and how

many tracks are available. The transfer always starts

at memory location $3179 and will save T tracks

(about T X 3K of memory) where T is given in $317D.

Similarly, SA TRACK, SECTOR ■

MEMORY/PAGE will SAVE memory beginning at

memory address MEMORY and continuing for

PAGE number of pages on track number TRACK in

sector number SECTOR. The number of pages in a

sector is saved on the disk, but i.s usually not stored

in memory. Therefore, when saving memory, the

length of the segment to be saved must be given in

the command. The symbols ',', ' = ', and '/' used in

the SA command serve only to separate addresses

and numbers and to complicate your life. They all

can be changed easily to ',' or spaces. The disadvan

tage of making such a change is that the order of the
numbers is vital. Presumably ',',

' = ', followed by 7' help you keep the numbers in the

86

OS65D Kernel Command Descriptions
The kernel has 18 user commands. These may be
divided into four categories as follows: (1) Com
mands which move data or program s from the disk
to memory; (2) Commands which reverse this pro
cess and move data or programs from memory to the
disk; (3) Commands used for disk diagnostics and
preparation ; and (4) Other commands. With this
division in mind , let' s d iscuss the function of each
command by category.

Transfers from the disk to memory
The 6 com mands (BA, AS , EM , XQ, LO , CAl in
this category ca n be subdi vided into four which load
and run: BA , AS , EM , XQ, a nd two which j ust
load : LO, CA. The ones which load a nd run have
their vital sta tistics listed in Table I where the track
numbers are for 8" diskettes. After the tracks have
been loaded to memory t program con trol is tran s
ferred to the location listed uncler 'jump' in the
table. The commands BA (BASIC), AS (Asse mbler),
a nd EM (Extended Monitor) a re self- ex planatory.
They load and run languages and sys tems suppli ed
with your computer. A general command much like
BA , AS , and EM is XQ (EXECUTE). If yo u
develop machine language sys tems {Q run at S317 E
then XQ NAME or XQ TRACK will load and run
these syte ms where NAM E is the name of your fil e
and TRACK is the first track number of the fil e .
These co mmands load integral nu mbers of tracks ,
and thus will nO(load sectors from within tracks.
They o rfer great case of operation but practicall y no
versatil it y.

T o add versadlity, we need two more ge neral
commands (LO, CAl. We need a command LO
(LOAD) to acco mpli sh what th e prev ious co mmands
do for whole tracks without add in g the 'run' feature
at th e end . Thi s one additional command is not
enough. Each track stores 3K bytes of data . It is
rather ine ffici ent to store a 200 byte program on one
full track. There fo re , th e operating system allows us
to di vide each trac k in to sec tors. We are still limited
by the fact th at a sector must be an int egral multiple
of pages (1/4 K or 256 bytes) up to 3K. H owever , it
is less wasteful to store 200 bytes in a 256 byte sector
th an to store it in a 3K track. The CA (CALL) CO I11-

mand all ows th is secto r type of ope ration.
For full tracks and for secto rs we have two load

commands listed in T able 1. First , LO NA ME or
LO TRAC K loads a fil e named NA ME or a fi le
beginning at track number TRACK to memo ry.
Second , CA MEMOR Y - TR ACK, SECT O R call s
sector number SECTO R on track number TRACK
to mem ory , sta rtin g the load at memory address
MEMOR Y. Note that LO specifics no sta rting
address . Further, ' LO NAME' specifi es no trac k
num ber fo r the d isk. Wh en a fil e is named, a track
number is found in the d isk di rectory which resides
in Track 8. The load vccto r (mcmory start add ress)
is usuall y 53179 for the LO co mmand. Sincc BASIC

COMPUTE! Jcnuc:y. 1981 Issue 8

disk burfers a re kept betwee n 5317E and the start of
yo ur progra m , this means that an y BASIC program
with a buffer will use disk space to preserve burfer
space. Disk space is wasted, but the o perating system
remains ve ry simple. Secto rs coul d also be nam ed in
a directo ry with load vectors written in to the first few
bytes , but that wou ld enl arge the memory re·
quirements of the operat in g system and add to its
complexi ty. The authors of OS650 chose to forgo
enhan ceme nts. Thus th e CA command requires all of
the load data excep t the length of the sector , which is
stored among the first few bytes of th e secto r.

The six comm and s just desc ribed (BA, AS , EM ,
XQ, LO , CAl provide a small , yet very powerful set
for obta ining files from the disk. For simpli cit y and
co mpactn ess of the system, th e user is asked to suffer
a little inconvenience in loading secto rs. Furt her,
since most data and program fil es will reside in
named fil es , so me disk ine fficiency is acce pt ed as the
price o f a compact operat in g system. In particular ,
no maller how long or how short a BAS IC program
is, it will always be stored on an inr egral number o f
tracks. A 1 K program will usc a 3K Track (or more
if th ere are buffers). To change this would require
more elaborate programming of sectors and direc·
tories . Under such a more elaborate syste m the disk
would appear to be much large r. On th e mhe r hand,
because more elaborate programming is necessa ry,
the disk wou ld run more slowly. However, compared
to casse tte tape, even these more elaborate programs
would see m jet propelled .

Transfers from memory to the disk
There arc no commands for sav ing memory which
might be analogous with a 'load and run ' command .
Thus th e operating sys tem need o nly have commands
wh ich perform functio ns oppos ite LO LO and CA .
These arc PU (PUT) and SA (SAVEl a nd a rc also
givcn in Table 1. In analogy with LO , PU NA ME
or PU T RAC K will put memory onto a n int egral
num ber of di sk tracks. If the fil e is named NAME,
the direcLO ry wi ll specify the starting track and how
man y tracks are ava il abl e . The tran sfe r alwa ys start s
at me mory location 53179 and will save T tracks
(about T X 3K of me mory) wh ere T is given in $317 0.

Simil a rl y, SA TRACK , SECTOR =

M EMOR Y/ PAGE will SA VE memo ry beginning a t
memory add ress MEMOR Y and continu ing lo r
PAGE number of pages on track nu mber TRACK in
sector numbcr SECTOR. The number of pages in a
secto r is saved on the di sk, but is usually not stored
in memo ry. Therefo re , when savin g memory , the
lengt h of the segment (Q be saved mu st be given in
the co mmand. The symbols' J', ' =' , and '/' used in
the SA co mm and serve on ly to separate addresses
and numbers and to co mpli cat e yo ur life. T hey all
can be changed eas il y to I ,' o r spaces . The disadvan.
tagc of mak in g such a change is that th c orcler of the
numbers is vital. Pres umably',',
, - " foll owed by ' I ' help you keep the nu mbers in the

January. IVfll. issue 3 COMPUTE! 3?

right order. If you don't, you get an error message

rather than a disastrous SAVE which might over

write some of your more beautiful programming

efforts.

Commands used for disk diagnostics

Being mechanical devices, disks are not perfect.

Occasionally you need to manipulate the disk or ex

amine the entire contents of a given track. Further,

you need to copy old and initialize new disks. There

are commands for doing these things in the operating

system kernel. We may divide these commands into

3 sets: (a) Reading from the disk, (b) Writing on the

disk, and (c) Manipulating the disk.

These commands are listed in Table 1. First

come the diagnostic read commands EX

(EXAMINE) and DI (DIRECTORY). The com

mand EX MEMORY = TRACK reads everything

for examination from track number TRACK to

memory beginning at address MEMORY. If you are

encountering disk trouble or suspect a bad diskette,

this is a very useful command. If you have in

advertently erased or overwritten part of a disk, this

command may help salvage some of the remaining

programs. If you are just trying to learn how your

disk stores memory, this is a helpful command.

On the other hand, if you just wish to learn the

status of a particular track (i.e. how many and how

long are its sectors) then using EX can prove to be

very tedious.

The command DI TRACK will print out a sec

tor number and length directory (in pages) for track

number TRACK. The disk directory tells us that

OS65D occupies Tracks 0 - 8, but does not give us

inlormation as to how many sectors reside in, say

Track 8. On the other hand, DI 08 tells us there are

4 sectors of length 1 page each on Track 8. Unfor

tunately, OS65D does not allow us to name in

dividual sectors within a track. We can, however,

name the track in which these sectors reside by using

the BASIC 'CREATE' program.

There is one diagnostic command IN

(INITIALIZE) for writing on the disk. It allows us

to initialize a whole disk by IN or an individual track

number TRACK by the command IN TRACK.

When a track is initialized, the beginning of the track

is found and track identification data are placed on

the disk. Then the rest of the track is completely

erased. No sector identification marks are placed on

the disk so the track is not useablc by LO or PU as

it stands. The BASIC CREATE program will fix this

problem.

Finally, there are three diagnostic disk

manipulation commands (HO, SE, D9). The disk

changes tracks by stepping the read head outward

toward Track 0 or inward toward Track 76 one track

at a time. The head moves when the stepper motor

spins a fixed fraction of a revolution. This process is

not perfect and occasionally the head will be mis

placed on the disk. There is only one track (Track 0)

where there is a sensor to detect whether or not the

head is correctly positioned over the track. All other

tracks are found by counting steps inward from

Track 0, or counting up or down from the present

track number. The present track number is saved in

memory (S265D). Usually when the head is mis

placed, it is only very slightly off the circular data

stream on the disk. You may have noted this

phenomenon in another context with music filled

cassette tapes. A friend loans you his great sounding

'BOOMBAH' cassette which he made live. It sounds

great on his HIFI but lousy on yours. The reason is

that his recorder put the music track onto the tape in

a position differing slightly from the place where your

recorder is trying to find it.

If the disk head is slightly out of position on the

disk, the same thing occurs, i.e. a lousy read. Your

disk will detect this and step the head down one track

then back to try again. Even though this process

occurs very quickly, it is imperfect at best. Memory

tells where the head is supposed to be. But in many

jumps back and forth between tracks, 'supposed to

be' an 'really is' could differ. If after a few tries at

repositioning the head, the disk still fails to find the

track, it quits and sends an error message. The solu

tion to this problem is to start all over again. Move

the head to Track 0 where it can mechanically sense

its position then start up again. The HO (HOME)

command does this by homing the read head to

Track 0.

OSI SOFTWARE
_nf"tf N01 V5ur ordinary SIAfilfliiK *a=e. VIDEOTMK Ll a non-atop

r fiTHfcft ■ ' L ' ■ ■ ■ ■ ' ■■ ■■'■I1' pursuit of invadLng
t U I "^ Hlngon crulaor.. stars, pixels ,,nl Slack H^lea «L1

■c. If you Uiie STAHTftEK or TUUiTli£K, tfilu la J-our flise I |'f.95

ie Retwl Alllnnce la In Jnngei! It's up to you ivntl your

id destroy as many as you can. The TIE fifhters dolge

VouTe sitting In front of your co-oputer. Three l«vela. 19.95

set »hnt happem when you have to ball out utter running

"|U Tank Coisuiilcr. your slsslon Is Co bioM up all the

*TTANK'MAZE IJ task 13 coDpllcatea by the other objects In'the arta
~' I —* | h-uever. UlnfS, t.-oes, noises ana civilians =ust be

Each, aaie Is dlftr rent'anu each contains over 20C obstacles. ' 17^95

^t^jt 9Q9* -.^i"- the ' - aore llfflcult. Two levels of difficulty,
"*■■■■* m Level 2 they're laying eiploslve alnesl |7.95

•NEW .VSI* NEW*

fBst naced. frantic chase around the screen, trying to

t;h soie very elusive tsrge-.s. It's s race asalnst the

derstanc thr nnse ahrn you '.ry Level 5! 17.95

The Earth Is In « panic! Saucers are cooin* to open a n."

cqqtu Vn Peopleburger fr'inchisel Can you atop then7 iiro levels or

chaUenge.0"' *"'"^ " PU9h' bUt ' *' q"..!.U!lo
in .,!,,» are M,tBli-n» -hidden" hanilln? =h»rgeS. All run In flK on anjr

BOB RETELLE
S005WHITTAKER RD.,YPBILAWTI,MI.48187

Jaruary. 1981. Issue 8

right order. If yo u don ' t, you get an e rror message
rat her than a di sastrous SAVE which might over
write some of your more beaUliful programm in g
effort s.

Commands used for disk diagnostics
Being mechan ical devices, disks are not perfect.
Occasionall y yo u need to manipulate the di sk or ex
amine the entire contents o f a given track. Further,
you need to copy old and initialize new disks . There
are commands for doing these things in th e operating
system kernel. We may divide these commands into
3 sets: (a) Reading from the disk , (b) Writing on th e
di sk, and (c) Manipulating the disk.

These commands a re li sted in Table 1. First
come the di agnostic read commands EX
(EXAMINE) and DI (DIRECTORY). The com
mand EX MEMOR Y ~ TRACK reads everything
fo r examinat ion from track number T RAC K to
memory beginning at address MEMORY. If you are
encount ering disk trouble or suspect a bad diskette ,
thi s is a very useful comm and. If you have in
advertently erased or overwritten part of a di sk , th is
com mand may help salvage so me of the remaining
programs. If you are just trying to learn how yo ur
disk stores memory, this is a helpful command.

O n the other hand, if you just wish to learn the
status of a particular track (i .e. how many and how
long are its sectors) th en usin g EX ca n prove to be
very tedious.

The command DI TRACK will print out a sec
tor number and length directory (in pages) for track
numbe r TRACK . The disk d irectory tell s us th a t
OS6jD occupies Tracks 0 - 8, but does not give us
inform ation as to how many sectors res ide in , say
Track 8. On the other hand, DI 08 tell s us there are
4 secto rs o f length 1 page each o n Track 8. Unfor
tunately, OS65D docs not allow us to name in
dividual sectors within a track. We ca n , however ,
name the track in which these sectors reside by using
the BASIC 'C REATE' program.

There is one diagnostic co mm and IN
(IN IT IALI ZE) for writing on the disk. It allows us
to ini tialize a whole d isk by IN or an individual track
number TRACK by the co mmand IN TRACK.
V\' hen a track is initialized, the beginnin g of the track
is found and track identification data arc placed on
the disk. Then the rest of the track is completely
erased. No sector identi fi catio n marks a re placed on
the di sk so the track is not useable by LO or PU as
it stands. The BASIC C REATE progra m will fix this
problem.

Finall y, there arc three diagnos tic dis k
man ipul ation co mm ands (HO , SE, D9). The disk
chan ges tracks by stepping the read head out ward
toward Track 0 or inward toward Track 76 one track
at a time . The head moves when the ste pper moto r
spins a fixed fract ion of a revolution . Thi s process is
not perfect and occasionally th e head will be mis
placed on the disk. There is only one track (Track 0)
where th ere is a sensor to detect whet her or not the

COMPUTE!

head is correctly positioned over the track. All ot her
tracks are found by coun ting steps inward from
T rack 0, or counting up or down from the present
track number. T he present track number is saved in
memory ($265D). Usually when the head is mis
placed, it is onl y very slightly off the circul a r data
stream on the disk. You may have noted this
phenomenon in another context with music fill ed
cassette tapes. A friend loans you his great sounding
' BOOMBAH ' cassette which he made live. It sounds
great on his HIFI but lousy on you rs. The reason is
that his reco rder put the music track onto the tape in
a pos ition differing sli ghtly from the place where your
recorder is tryin g to find it.

If the disk head is slightly out of position on the
disk, the same thing occurs, i. e . a lo usy read. Your
disk will detect thi s and step the head down one track
then back to try again . Even though this process
occurs very quickly , it is imperfect at best. Memory
tells where the head is supposed to be . But in many
jumps back and forth between tracks, 'supposed to
be' an ' reall y is' could differ. If after a few tries at
repositioning the head , the disk still fai ls to find the
track, it quits and sends an efror message . The solu
tion to this problem is to start a ll over again. Move
the head to Track 0 where it can mechan ically sense
its position then start up again . The HO (HOME)
comm and does this by homing the read head to
Track O.

OSI SOFTWARE

• •• Battle tile noto rl OUI lied !Io.ronl l our s qwodron cona u t.
o f tltru Spad l d H ' ~ • raCe ..,;a lnH U .. " a. l OU trl

•••••
t o <l o wn .. aanl eneou pl .. r. .. a. l OU can ""ra re l our
fue l run_ out . Three hu la of ~ lffl cuHy. \/RIVll yeu
U e Wnat 1I_""on' wilen YOu h.Y" to bAH ou t . Her runnlnll

o u t o f g .. o r gUtlnll . h o t do ",,, bT th" !laronl 1 .95

DADDIUD Ion eno., tan~ I . "lac ln~ Doo nl e n on tile bAttlefie l d.
You :tInt dutr<>1 tile ene'SJ' t _ , t o h,,~ tile a~"a optt n •

TAli:
• u the ~a3<! doe. on . tit. open . pac ... rA,,\ <Ill d l . _"pttar .
"aUne; tile J o b oo re d iffI eI'll . 1'>00 leu .. or dlf fl eultl .
In Leyel 2 Utu'r" h .y l ni! upl o. I V" "I nn I 1 . 95

· ~lnI SlnI NEll "
A (a5\ I>&c e<1 . franti c chue _roW't<l tl'." Ic r""n . trJl~ to

I ~~~~~ : ~ ";o:e~~y e i~$~~~ 1 t:;iI~ ~ : ' II:~~ : S~ ~~: I ~I~~~r~e
_ I'lve I . vel a o r "loy and bo nus l Illie for h\lI" sco r e I You ' ll

uml"rotnn<l til " na .. " ,,"e n I OU ' 1'1 Lev"l 5 1 • •• •• '1.9~

The IO<orth U :n " nl c t $_u~ " n ar~ eo .. ,n" t c> 01>"n a n. _
EARTH \I &. P eo"lebur~"r fr .. noMnl Con l eu HO p th .. t " wo huh ot

d iffIculty. Till . on. :. . : =phr t o ,,1., t~~n th~ O~h.n ,
FLYING 5RUCER5 .. lth onl1 or. ~ bu ~ t o"l t o pu t h . ~u t It ' l H Ili qulU a lIoc4

" "all"n5'" ••••• , 6. SO

All prI en a .. p~ltp~l ~ _ no '~:dden ' na,,!\ln.:l "no~Bu. All non :n BK on &nJ'
OSI CI C2 or C~ ta"" t: ... ed eo::puter . All a re >"" CONed tWlc" on ooe~ tal>"
ar.~ a,.; coyered 1>1 a L:::I:.ed ~"pl_c,,=ent "or",n\1 , rHu,"" f or ""plaeeunt.

BOB RETELLE
aaGli WHITTAKER RD.,VPBILANTI, MI. 48187

87

COMPUTE! January. 1981. Issue 8

If you have run a BASIC program which re

quires a disk read midway and have been thrown out

of your program with the Error #5 then you know

how annoying this can be. The cure is to find the

step in the BASIC program where the disk read

occurs. Just preceding this step, insert a step with

DISK!"HO". This instruction assures you that if

the track requested in the next step can be found, it

will be found without error. A more elaborate

operating system would incorporate such a step in its

track seeking logic (i.e. if the head fails to find the

track after several tries, it would go to Track 0 and

start over).

If you own more than one disk drive, (lucky

you!) you may select any one by the command SE

(SELECT) via SE DRIVE where DRIVE is A,B,C,

or D (OS65D can control up to 4 drives). When you

select a drive it is automatically homed and thus

starts out aligned at Track 0.

Older versions of OS65D did not properly find

the disk index hole at the beginning of a track.

Newer versions do not have this problem, and go

further to incorporate an error if the beginning of a

track cannot be found quickly (i.e. within one revolu

tion of the disk). Since older disks may take several

revolutions before data synchronization takes place,

OS65D will refuse to read these disks. Command D9

(DELETE 9) is supposed to eliminate this condition

by short circuiting the new error. Even though the

D9 subroutine is included in my version of OS65D,

it is not connected. If I enter command D9, my com

mand table sends the computer to the 'syntax error*

subroutine instead of the D9 subroutine. This can be

corrected by putting the D9 subroutine address

(minus one) into the command table in place of the

'syntax error' address. I own no old OS65D disks, so

I have not changed anything.

At this point, it might be worth alluding to

diagnostic features of OS65D not in the kernel. Ohio

Scientific was mortally afraid you might damage the

vital kernel information on Track 0. Thus the kernel

mightily protects Track 0 against your invasions.

If you happen to load a program into memory,

to save it back onto the disk, and in the middle of

the save, to change your mind and quickly to remove

the diskette from the drive, then you will certainly

cause an erasure somewhere on the diskette. This

procedure (which you should avoid) places a very

strong, rapidly varying magnetic field at an undeter

mined place on the diskette. Rapidly varying

magnetic fields erase diskettes. If the undetermined

place is in Track 0, part of Track 0 is lost.

Therefore, every single part of the diskette must be

changeable by the computer user, including Track 0.

OS65D has a Track 0 read/write utility to ac

complish this.

Most people have only one disk drive. In order

to copy a disk one moves programs from an old

diskette to memory and from there onto the new

diskette. It's tedious, but it works. It would be very

helpful to one-drive owners if you wrote a machine

language program to simplify this process as much as

possible.

There are others (with spare money) who have

two or more disk drives. Two drives have the advan

tage that it is easy to copy from an old diskette in

one drive to a new diskette in another drive, if you

have a program. OS65D also contains a disk copying

utility.

The copier and Track 0 utility programs are

available in Sector 2 of Track 1 on the disk. In order

to further protect you from the ways of error, and to

save memory, these programs are not normally in

memory. They are not part of the kernel. Thus we

will discuss them in another article of this series.

However, these programs are available for diagnostic

purposes. They can be loaded by CA 0200 =01,2.

They can be run by GO 0200. I advise you to know

what this program does and how it works before you

try it. (Either wait for me or read your manual

carefully.)

Other commands

There are 4 additional commands (RE, GO, IO,

ME) in the kernel not associated with the disk:

The first of these is the restart command RE

(RESTART). If you have just entered a BASIC pro

gram from the keyboard and wish to know how

many tracks it will occupy on the disk, you type EX

IT. This puts you in the command mode of the

operating system kernel. If you typed BA (BASIC) to

return to BASIC, a minor disaster would occur.

BASIC would be loaded from the disk and the source

file initialized. In simple terms, your program would

be gone. (It really is salvageable, but that is a com

plicated process.) To avoid this problem we have a

restart command. To restart BASIC, the command is

RE B.

When BASIC is in memory, the Assembler and

Extended Monitor are not. If you try to restart the

Extended Monitor with RE E when BASIC is load

ed, you receive a syntax error message. Using the

RE command you may restart BASIC (RE B), the

Assembler (RE A), the Extended Monitor (RE E), or

the ROM Monitor (RE M) if they are in memory.

At this point it is worth discussing a rather sub

tle matter. Anytime you are someplace else in

memory and able to GO at an arbitrary address,

then you may restart OS65D by starting at $2A51.

However, if you have used the keyboard without us

ing the keyboard I/O routine in OS65D, you will

have crashed BASIC or the Assembler, whichever is

in memory. The reason is that the keyboard polling

routine was written for ROM BASIC machines and

as such uses storage locations S0213-S0216. Unfor

tunately, these locations are vital to BASIC and the

Assembler. Thus, the I/O routine in OS65D swaps

these locations out before going to the keyboard poll
ing routine in ROM. After completing the keyboard

poll, these locations are swapped back in again.

88

If you have run a BASIC program which re
quires a disk read midway and have been thrown out
of your program with the Error #5 then you know
how annoying this can be . The cure is to find the
step in the BASIC program where the disk read
occurs. Just preceding this step, insert a step with
DISK!"HO" . This instruction assures you that if
the track requested in the next step can be found, it
will be found without error. A more elaborate
operating system would incorporate such a step in its
track seeking logic (i.e. if the head fails to find the
track after several tries, it would go to Track 0 and
start over) .

If you own more than one disk drive , (lucky
you!) you may select anyone by the command SE
(SELECT) via SE DRIVE where DRIVE is A,B ,C,
or D (OS65D can control up to 4 drives). When you
select a drive it is automatically homed and thus
starts out aligned at Track O.

Older versions of OS65D did not properly find
the disk index hole at the beginning of a track .
Newer versions do not have this problem, and go
further to incorporate an error if the beginning of a
track cannot be found quickly (i .e . within one revolu
tion of the disk). Since older disks may take several
revolutions before data synchronization takes place,
OS65D will refuse to read these disks. Command 09
(OELETE 9) is supposed to eliminate this condition
by short circuiting the new error. Even though the
09 subroutine is included in my version of OS650,
it is not connected. If I enter command D9, my com
mand table sends the computer to the 'syntax error'
subroutine instead of the D9 subroutine . This can be
corrected by putting the 09 subroutine address
(minus one) into the command table in place of the
'syntax error' address. I own no old OS650 disks , so
I have not changed anything.

At this point, it might be worth alluding to
diagnostic features of OS650 not in the kernel. Ohio
Scientific was mortally afraid you might damage the
vital kernel information on Track O. Thus the kernel
mightily protects Track 0 against your invasions.

If you happen to load a program into memory,
to save it back onto the disk, and in the middle of
the save, to change your mind and quickly to remove
the diskelle from the drive, then you will certainly
cause an erasure somewhere on the diskette . This
procedure (wh ich you should avoid) places a very
strong, rapidl y varying magnetic fi eld at an undeter
mined place on the diskelle. Rapidly varying
magnetic fields erase di skelles . If the undetermined
place is in Track 0, part of Track 0 is lost.
Therefore , every single part of the diskette must be
changeable by the computer user, including Track O.
OS650 has a Track 0 read/write utility to ac
complish this.

Most people have only one di sk drive. In order
to copy a disk one moves programs from an old
diskette to memory and from there onto the new
diskelle. It's tedious, but it works. It would be very

COMPUTE! January, 1981. Issue 8

helpful to one-drive owners if you wrote a machine
language program to simplify this process as much as
possible.

There are others (with spare money) who have
two or more disk drives. Two drives have the advan
tage that it is easy to copy from an olel diskelle in
onc drive to a new diskette in another drive, if you
have a program. OS65D also contains a disk copying
utility .

The copier and Track 0 utility programs are
available in Sector 2 of Track 1 on the disk. In order
to further protect you from the ways of error , and to
save memory, these programs arc not normally in
memory. They are not part of the kernel. Thus we
will discuss them in another article of this series.
However, these programs are available for diagnostic
purposes. They can be loaded by CA 0200 =0 1,2.
They can be run by GO 0200. I advise you to know
what this program does and how it works before you
try it. (Either wait for me or read your manual
carefully .)

other command.
There are 4 additional commands (RE, GO, 10,
ME) in the kernel not associated with the disk:

The first of these is the restart command RE
(RESTART). If you have just entered a BASIC pro
gram from the keyboard and wish to know how
many tracks it will occupy on the disk , you type EX
IT. This puts you in the command mode of the
operating system kernel. If you typed BA (BASIC) to
return to BASIC, a minor disaster would occur.
BASIC would be loaded from the disk and the sou rce
file initialized. In simple terms, your program would
be gone . (It really is salvageable, but that is a com
plicated process .) To avoid this problem we have a
restart command. To restart BASIC, the command is
RE B.

When BASIC is in memory , the Assembler and
Extended Monitor are not. If you try to restart the
Extended Monitor with RE E wh en BASIC is load
ed, you receive a syntax error message. Using the
RE command you may restart BASIC (RE B), the
Assembler (RE A), the Extended Monitor (RE E), or
the ROM Monitor (RE M) if they are in memory.

At this point it is worth discussing a rather sub
tle matter . Anyrime you are someplace else in
memory and able to GO at an arb itrary address,
then you may restart OS65D by starting at S2A51.
However, if you have used the keyboard without us
ing th e keyboard 110 routine in OS650, yo u will
have crashed BASIC or the Assembler, whichever is
in n;emory. The reason is that the keyboard polling
routIne was WrItten for ROM BASIC machines and
as such uses storage locat ions $0213-50216. Unfor
tunatel y, these locat ions are vit al to BASIC a nd the
Assembler: T hus, the 110 routine in OS650 swaps
these locations out before going to the keyboard poll
Ing routine In ROM . After complet ing the keyboard
poll , these locatIOn s are swapped back in aga in .

9O COMPUTE! January. 1981 Issue 8

When you use RE M, these locations are swapped

out since the ROM monitor uses the ROM keyboard

polling routine. To swap these locations back in

again you do not type $2A51G from the ROM

monitor. Instead, you use a routine in the I/O sec

tion of OS65D which first swaps the keyboard back

again and then goes to S2A51. So from the ROM

Monitor, you restart OS65D by S2547G.

Through its various programs, the computer

transfers control from one program to another. For

example, RE B causes the computer to leave the

kernel at the address S2C0D and enter BASIC at its

WARM START location $20C4. If you have written

your own machine programs, you may start them

from the ROM monitor, the Extended Monitor, or

the Operating System Kernel. To start a program

from the kernel at address $4C00, the command is

GO 4C00.

The final two OS65D kernel commands (IO,

ME) control input to and output from the computer

in a very simple way. One byte of memory consists

of eight bits; each bit is either a 0 or a 1. One byte

of memory is allocated as an input flag ($2321) and

one as an output flag ($2322). Each of the eight bits

represents an input (or output) device. If a particular

device bit is 1, then that device is connected; if it is

0, that device is disconnected. We may imagine the

bits arranged in a row as follows:

7 6 5 4 3 2 10

a b c d e f h

The bit itself is denoted by a letter in a box, and the

number above is its position. The positions 0-7 stand

for devices. These are given in Table 2. You may

not recognize some of the devices because they are

not part of your computer. However, if you so

choose, you may buy these devices from OSI.

If bit 1 is 1 (g = 1) and all other bits are 0 in the

input flag ($2322) and then input is taken from

device 1, the keyboard. If bits 1 and 3 are 1 (e = 1

and g = 1) and all others are 0 in the output flag

($2321) then output is sent to the video monitor and

the parallel printer. We may change the bits in the

IO (INPUT/OUTPUT) flags ($2321 and $2322) via

the INPUT/OUTPUT command IO INPUT.OUT-

PUT where INPUT and OUTPUT are the hex

adecimal versions of the bits in the boxes. (IO,

OUTPUT changes just the output flag and IO IN

PUT just the input flag.)

There is one intriguing device (bit 4 for both in

put and output) called MEMORY. How can

memory be an input or output device? (Actually,

memory is a storage device, just as cassette tape or a

disk is. Thus we can put stuff into it and take it back

out. As long as we do not erase memory, it will re

main there. Usually material is put into and taken

out of memory under program control. There may

be circumstances where we do not want memory

under program control. For example, suppose you

have a long BASIC program that works on a large

amount of text stored as strings (such as a justifica

tion program for a text editor). Assume the final text

is to be sent out via a MODEM to a distant printer.

Your justifier will chomp away producing and

sending a string every now and then wasting a great

deal of telephone time. A better approach would be

to temporarily justify into memory, then send the

resulting text. A computer has no idea where it gets

its input or sends its output except via a subroutine.

It does not care if it sends to the video monitor, the

disk, a telephone, memory, or the moon.

The memory input/output capability is also used

by the Indirect File. This program resides in the In

put/Output section of OS65D and will be discussed

in another article. One of the many uses of the In

direct File is to append many short BASIC programs

end to end to make one long one.

To make use of memory as an input/output

device via the command ME (MEMORY) we must

know which part of memory to address. ME IN

PUT,OUTPUT sets the start address of the input to

INPUT and the start address of the output to OUT

PUT.

Hopefully, these descriptions of the OS65D

commands, in conjunction with your OS65D

USER's GUIDE will help you to make better use of

the commands in your operating system. BASIC can

execute any operating system command via DISK!

"any OS65D command string". For example, if we

have the following program lines then a program

allows the user to select disk drive A or B.

100 INPUT "WHICH DRIVE (A/B)";AS

110 IF AS<>"A" AND A$<>"B" THEN 100

120DISK!"SE"+A$

The Extended Monitor and Assembler can also send operating

system commands via any OS65D command string.

TABLE 1

COM-

MANDNAME

AS

BA

EM

XQ
CA

LO

PU

SA

DI

D9

EX

HO

IN

SE

GO

IO

ME

RE A

RE B

RE E

RE M

ASSEMBLER

BASIC

EXTENDED

MONITOR

EXECUTE

CALL

LOAD

PUT

SAVE

DIRECTORY

DISK #9

EXAMINE

HOME

INITIALIZE

SELECT

GOTO

TRACKS ADDRESS JUMP

5 - 6 0200-1700 1300

2 - 4 02QO-22FF 20E4

7 1700-1FFF 1700

USER 3179- 317E

USER USER

USER 3179-

USER 3179-

USER 3179-

FUNCTION

SECTOR DIRECTORY

DISABLE ERROR #9

EXAMINES A FULL TRACK

HOME THE DISK TO TRACK 0

INITIALIZE A DISK

SELECT A DRIVE

EXECUTE A MACHINE PROGRAM

INPUT/OUTPUT SET INOUT/OUTPUT FLAGS
MEMORY

RESTART ASSE

SET MEMORY IO VECTORS

MBLER

RESTART BASIC

RESTART EXTENDED MONITOR

RESTART ROM MONITOR

90

When you use RE M, these locations are swapped
out since the ROM monitor uses the ROM keyboard
polling routine. To swap these locations back in
again you do not type S2A51G from the ROM
monitor. Instead, you use a routine in the I/O sec
tion of OS65D which first swaps the keyboard back
again and then goes to S2A51. So from the ROM
Monitor, you restart OS65D by S2547G .

Through its various programs, the computer
transfers control from one program to another. For
example, RE B causes the computer to leave the
kernel at the address S2COD and enter BASIC at its
WARM START location $20C4. If you have written
your own machine programs, you may start them
from the ROM monitor, the Extended Monitor, or
the Operating System Kernel. To start a program
from the kernel at address S4COO, the command is
GO 4COO.

The final two OS65D kernel commands (10,
ME) control input to and output from the computer
in a very simple way. One byte of memory consists
of eight bits; each bit is either a 0 or a 1. One byte
of memory is allocated as an input fl ag (S232 1) and
one as an output flag (S2322) . Each of the eight bits
represents an input (or output) device. If a particular
device bit is 1, then that device is connected; if it is
0 , that device is disconnected. We may imagine the
bits arranged in a row as follows:

76543 2 I 0

lalblcld lclflglhl
The bit itself is denoted by a letter in a box, and the
number above is its position. The positions 0-7 stand
for devices. These are given in Table 2. You may
not recognize some of the devices because they are
not part of your computer. However, if you so
choose, you may buy these devices from OS!.

If bit 1 is 1 (g = 1) and all other bits are 0 in the
input flag ($2322) and then input is taken from
device I, the keyboard. If bits 1 and 3 are 1 (e = 1
and g = I) and all others are 0 in the output flag
($2321) then output is sent to the video monitor and
the parallel printer. We may change the bits in the
10 (INPUT/OUTPUT) flags ($2321 and $2322) via
the INPUT/OUTPUT command 10 INPUT,OUT
PUT where INPUT and OUTPUT are the hex
adecimal versions of the bits in the boxes. (10,
OUTPUT changes just the outpUt fl ag and 10 IN
PUT just the input flag .)

There is one intrigu ing device (bit 4 for both in
put and ou tput) called MEMORY. H ow can
memory be an input or output dev ice? (Actuall y,
memory is a storage dev ice, just as cassette tape or a
disk is . Thus we can put st uff into it and take it back
OU[. As long as we do not crase memory I it will re
main there. Usually material is put into and taken
out of memory under program control. There may
be CirCUmstances where we do not want memory
under program con trol. For example, suppose you
have a long BASIC program that works on a large

COMPUTE! January. 1Q81 Issue 8

amount of text stored as strings (such as a justifica
tion program for a text editor). Ass ume the final text
is to be sent out via a MODEM to a distant printer.
Your justifier will chomp away producing and
sending a string every now and then wast ing a great
deal of telephone time. A better approach would be
to temporarily justify into memory, then send the
resulting text . A computer has no idea where it gets
its input or sends its output except via a subroutine.
It does not care if it sends to the video mon itor t the
disk, a telephone, memory , or the moon.

The memory input/output capabi lity is also used
by the Indirect File. This program resides in the In
put/Output section of OS65D and will be discussed
in another article. One of the many uses of the In
direct File is to append many short BASIC programs
end to end to make one long one .

To make use of memory as an input/output
device via the command ME (MEMORY) we must
know which part of memory to address . ME IN
PUT,OUTPUT sets the start address of the input to
INPUT a nd the start address of the output to OUT
PUT.

Hopefully, these descriptions of the OS65D
commands, in conjunction with your OS65D
USER's GUIDE will help you to make better use of
the commands in your operating system. BASIC can
execute any operating system command via DISK!
"any OS65D command string". For example , if we
have the following program lines then a program
allows the user to select disk drive A or B.

100 INPUT " WHICH DRIVE (AlB)" ;A$
110 IF A$<> " A" ANDA$ < > " B" THEN 100
120 DISK!"SE" + A$

Thc Extcnded Monitor and Assembler can also send operating
system commands via any OS650 command string.

TABLE 1
COM-
MANDNAME TRACKS ADDRESS JUMP
AS ASSEMBLER 5 - 6 0200- t 700 1300
BA BASIC 2 - 4 0200-22 FF 20E4
EM EXTENDED 7 1700- 1 FFF 1700

MONITOR
XQ EXECUTE USER 3179- 317E
CA CA LL USER USER
LO LOAD USER 3179-
PU PUT USER 3179-
SA SAVE USER 3179-

FUNCTION
DI DIRECTORY SECTOR DIR ECTO RY
09 DISK #9 DISABLE ER ROR #9
EX EXAMINE EXAMINES A FULL TRACK
HO HOME HOME T H E DISK TO T RAC K 0
IN INITIALI ZE INITIALIZE A DISK
SE SELECT SELECT A DRIVE
GO GOTO EXEC UTE A MAC HI NE PROGRAM
IO INPUT/OUTPUT SET INOUT/O UTPUT FLAGS
ME MEMORY SET ME~10RY 10 VECTORS

RE A RESTART ASSEMBLER
RE B RESTART BASIC
RE E RESTART EXTENDED MONITOR
RE M RESTART ROM MONITOR

January. 1981. Issue 8 COMPUTE!

TABLE 2

INPUT/OUTPUT

BIT NUMBER INPUT FLAG

SERIAL INPUT (ACIA)

1 POLLED KEYBOARD

2 CASSETTE INPUT ON 430 BOARD

3 NULL (0) INPUT

4 MEMORY INPUT

5 DISK BUFFER #1 INPUT

6 DISK BUFFER #2 INPUT

7 SERIAL INPUTS FROM 550 HOARD

BIT NUMBER OUTPUT FLAG

f) SERIAL OUTPUT (ACIA)

2 VIDEO MONITOR

3 LINE PRINTER

4 MEMORY OUTPUT

5 DISK BUFFER #1 OUTPUT

6 DISK BUFFER ff'2 OUTPUT

7 -SERIAL OUTPUTS FROM 551) BOARD

Next time: Subroutine descriptions...

COMPUTE!

Is Looking For

Good Articles For

Your Gazette

Send Program Listings, Articles, Hints, Odds and
Ends, etc. to

The Editor

COMPUTE!

P.O, Box 54O6

Greensboro, NC 274O3 USA

OSIC1P Fast

Screen Clears

Revisited

Charles L, Stanford

Since writing the article on Screen Clear Routines

for the OSI C1P for Compute II, Issue 1, I've been

particularly sensitive to variations on machine

language programming methods which could be used

to improve the use of the computer. Several publica

tions have been of considerable help, especially Com

pute and Compute II, Micro, the Aardvark and Pro

gressive Computing Catalogs, and of course Edward

Carlson's fine book on OSI BASIC. Mr. Carlson

recently published an article which has led, indirect

ly, to a way of tapping into the Monitor and BASIC

routines which input from the keyboard and write to

the screen, ACIA, etc. Certainly, these techniques

are well known to the more advanced C1P owners.

Unfortunately, these people, with few exceptions,

aren't writing for publication. So most information is

being passed (slowly) by word of mouth or by club

newsletters.

There are at least four points at which you can

"break into" routines which are actively treating in

puts or outputs. These are the Subroutines at $00BC

and $0207, and the Jump vectors at $0218 and

$021A. I'm sure there are more there for the finding.

For this article, the Input vector at $0218 will be

used.

Normally, this location holds a Jump Indirect to

the routines starting at JFFBA in the monitor ROM

which input a character from the keyboard or

cassette. But it's no trick to poke a new address into

this location, then do a little modifying of the

routine. In this case, as shown in the listings, we are

changing the vector from $FFBA to $00D8. This is

near the end of zero page, which is not used by

BASIC. Note, however, that it is used by the

Monitor, so a Break to the Monitor followed by a

Warm Start will require that the vector be reset and

that the program be reentered.

The program is short and simple in operation.

Essentially, it Goes sub to FFBA, which inputs a

character. Next, the character is tested, and if it is a

$7F, the RUBOUT key code, one of the more effi

cient machine language screen clear routines is

effected. If it is any other character, this is skipped,

and the program goes on about its business.

Note also that line 2010 in Listing II also

POKEs the vector into location $0B, the USR vec

tor. Thus, you will have both a single key screen

clear by pressing the rubout and a programmable

one by calling X = USR(X).

LIST 1

00D8

OODB

OODE

00DF

00E0

00E2

00E4

00E7

OOEA

OOED

00F0

00F1

00F3

00F4

20

CS

BAFF

I 7¥

I DO 15

48

AO

A9

99

99

99

99

C8

DO

(>H

60

00

20

00 D3

00 D2

00 Dl

00 DO

Fl

JSR $FFBA

CMP #$7F

BNE $00F4

PHP

LDY #$00

LDA #20

STAY

STAY

STA-Y

STA-Y

INY

BNE S00E4

PLA

RTS

GET A CHARACTER

IS IT A RUBOUT?

IF NO SKIP TO END

SAVE THE CHAR

BLANK CHAR

STORE BLANK AT 256

LOCATIONS IN FOUR

PAGES OF VIDEO RAM

NEXT ADDRESS

PAGE DONE?

RETRIEVE CHAR

EXIT SUBROUTINE

List 2

47000 REM-ONE KEY SCREEN CLEAR

47010 POKE 11, 223:POKE 12, 0:POKE 536, 216:POKE

537, 0

47020 FOR M = 216 TO 244:READ D:POKE M, D:NEXT

47030 DATA 32, 186, 255, 201, 127, 208, 21, 72, 160, 0

47040 DATA 169, 32, 153, 0, 211, 153, 0, 210, 153, 0, 209

47050 DATA 153, 0, 208, 200, 208, 241, 104, 96 <f

Jonuory. 1981. Issue 8

TABLE 2

INPUT/OUTPUT

BIT NUMBER INPUT FLAG

o SERIA L INPUT (AC IA)
I PO LLED KEYBOARD
2 C ASSE'ITE INPUT ON 430 BOA RD
3 NULL (0) INPUT
4 MEMO RY INPUT
5 DI SK BU FFER #1 INPUT
6 DISK BUFFER #2 INPUT
7 SERIAL INPUT S FR OM 550 BOA RD

BIT NUMBER OUTPUT FLAG

o SE RI AL OUTPUT (AC IA)
2 VIDEO MON ITOR
3 LI NE PRI NTER
'I MEMOR Y OUTPUT
5 DISK BUFFE R #1 OUTPUT
6 DISK BU FFER #2 OUTP UT
7 SE RI AL OUTPUT S FRO M 550 BOA RD ©

Ntxt timt: Suhroulint descript ions . .

COMPUTE!
Is Lookin~ For
Good Articles For
Your Gazette
Send Program Listings, Articles, Hints, Odds and
Ends, etc, to
The Editor
COMPUTE!
P.O. Box 5406
Greensboro, NC 27403 USA

051 C1P Fast
Screen Clears
Revisited

Charles L. Sta nford
Since writing the article on Screen Clear Routines
for the OSI CIP for Compute II, Issue I, I've been
particularly sensitive to variations on machine
language programming methods which could be used
to improve the use of the computer. Several publica
tions have been of considerable help, especially Com
pute and Compute II, Micro, the Aardvark and Pro
gressive Computing Catalogs , and of course Edward
Carlson's fine book on OSI BASIC . Mr. Carlson
recently published an article which has led, indirect
ly, to a way of tapping into the Monitor and BASIC
routines which input from the keyboard and write to
the screen , ACIA, etc. Certainly , these techniques

COMPUTE! 91

are well known to the more advanced CIP owners .
Unfortunately, these people, with few exceptions,
aren't writing for publication. So most information is
being passed (slowly) by word of mouth or by club
newsletters .

There are at least four points at which you can
" break into" routines which are actively treating in
puts or outputs, These are the Subroutines at $OOBC
and $0207, and the Jump vectors at $0218 and
$02IA. I'm sure there are more there for the finding.
For this article, the Input vector at $0218 will be
used.

Normally, this location holds a Jump Indirect to
the routines starting at SFFBA in the monitor ROM
which input a character from the keyboard or
cassette . But it's no trick to poke a new address into
this location, then do a little modifying of the
routine. In this case , as shown in the listings , we are
changing the vector from SFFBA to SOOD8, This is
near the end of zero page, which is not used by
BASIC. Note, however, that it is used by the
Monitor, so a Break to the Monitor followed by a
Warm Start will require that the vector be reset and
that the program be reentered,

The program is short and simple in operation.
Essentially, it Goes sub to FFBA, which inputs a
character. Next, the character is tested, and if it is a
$7F, the RUBOUT key code, one of the more effi
cient machine language screen clear routines is
effected. If it is any other character, this is skipped,
and the program goes on about its business,

Note also that line 2010 in Listing II also
POKEs the vector into location SOB, the USR vec
tor. Thus, you will have both a single key screen
clear by pressing the rubout and a programmable
one by calling X ~ USR(X) .

LIST 1
00D8 20 BA FF
OODB C9 7F
OODD DO 15
OODF 48
OOEO AO 00
00E2 A9 20
00E4 99 00 03
00E7 99 00 02
OOEA 99 00 DI
OOED 99 00 DO
OOFO C8
OOFI DO FI
oon 68
OOH 60

List 2

jSR $FFBA
CMP U7F
BNE $00F4
PHP
LDY #$00
LDA #20
STA-Y
STA-Y
STA-Y
STA-Y
INY
BNE $00E4
PLA
RTS

GET A CHARACTER
IS IT A RUBOUT?
IF NO SKIP TO END
SA VE THE CHAR

BLANK CHAR
STORE BLANK AT 256
LOCATIONS IN FOUR
PAGES OF VIDEO RAM

NEXT ADDRESS
PAGE DONE?
RETRIEVE CHAR
EXIT SUBROUTINE

47000 REM-ONE KEY SCREEN CLEAR
47010 POKE II , 223:POKE 12, O:POKE 536, 216:POKE

537,0
47020 FOR M = 216 TO 244:READ D:POKE M, D:NEXT
47030 DATA 32, 186,255,201, 127,208,21,72, 160, 0
47040 DATA 169 , 32, 153,0, 211, 153,0,210,153,0, 209
47050 DATA 153 , 0,208,200,208 , 241, 104 , 96 ©

