Mastering DataPerfect®

Ralph Alvy

Mastering DataPerfect®
Copyright © 1997 by Ralph Alvy

All Rights Reserved. No part of the contents of this book may be reproduced in any
form or by any means without the written permission of the author. None of the disk
files found in this archive may be distributed without permission from the author.
Please do not post them in public distribution centers such as BBSs, FTP sites, and
CompuServe Libraries without such permission.

Published in the United States by Ralph Alvy
Second Edition

The author/publisher used his best efforts in preparing this book, its accompanying
disk files, and the information conveyed. However, the author/publisher makes no
warranties of any kind, expressed or implied, with regard to documentation and
information contained in this book or accompanying disk files, and specifically
disclaims without limitation, any implied warranties of merchantability and fitness
for a particular purpose with respect to the disk files, the applications or data
contained therein, or the techniques described in the book. In no event shall the
author/publisher be responsible or liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential
or any other damages in connection with or arising out of furnishing or using the disk
files, the applications or data contained therein, or the techniques described in the
book.

Trademarks

By using appropriate symbols or initial capitalization, the author has designated many
words he has reason to believe trademark, service mark, or other proprietary rights
may exist. However, the author may have missed many words or terms in which
proprietary rights might exist. The inclusion, exclusion or definition of a word or
term is not intended to affect, or express any judgment on, the validity or legal status
of any proprietary right which may be claimed in that work or term.

Table Of Contents

Acknowledgments Xi
Foreword Xiii
Introduction e 1
What's DataPerfect? e 1
What's This BOOK? 1

Who's Ralph Alvy? ... e 1

The Chapters e e e e 2

Products Mentioned 4
Legalese .ot 5

For Beginners i e .. 7
Getting Started e 7

Creating Panel Text 10

Sizing and Moving the Panel, 11

CREATE a Field (F9) and EDIT Field Format (F6) 11

DEFINE an INDEX (Ctrl-F8) 12

Field Formats and Field Format Display Modifiers 14

Browse, Create and Edit Modeso 15
Lookupsin Browse Mode i 16
Remaining Define Panel Menu Options 16
DEFINE PANEL Options (AIt-F8) 17

Define Link for |Panel (F5) 20

DEFINE an INDEX (Ctrl-F8) 20

DEFINE FIELD Options (Shift-F8) 1,2and4 21

DEFINE FIELD Options (Shift-F8) 3,5,6-9 25

Files and Specifications 27
Program Files 27
Application Files 27

The STRFile 27

The INDFileo e 28

The TXXFile e 28

The Data Files i 29

The TMP Files e 29
SPECIfiCatioNSttt e 30
Fields: Introduction 31
Field Fundamentals 31

Field Codes and Field Names 32

Field Types . .o oo 32

Alphanumeric Fields: A, U, and Variable-Length Text 32

Numeric Fields: N, G, H,F, D,and T 33
Display Mode Indicatorsc. .. 38
Fields:Issues 41
Choosing Between ::Cand ::N Fields 41
Do You Need the FieldtoBeReal? 41
Issues Concerning Totaling i, 42
Keeping Subpanel Data Currentcuvn... 43
Computed Fields and DataPerfect's Work Space 49
Choosing Between G Fieldsand N Fields 49
The HField e 50
Date Fields 51
When You Might Not Want to Use the D Field for Dates 51
The Date Field as a Special Numerical Field 54
Two-Digit vs. Four-Digit Years 55
A Note about International Dates 56
The Time Field 56
Using Time Fields To Guarantee Uniqueness Of Records 57
Computing Elapsed Time: The Simple Case 58
Calculating Elapsed Time Across the 24-Hour Barrier 58
First Solution 59
An Alternative Solution:
Using the Concepts of MOMENT and MODULO 61
Formula Changes to Trap Incorrect DataEntry 63
A Special Use for the MOMENT Function in Reports 64
Noteson DeletingaField......... 66
LookUups e 69
Fundamentals of Lookups 69
Subfield LooKUpSo 70
The Data Link Subgroup Lookup 72
Making Lookups Look Better (Browse Mode) 74
Smart Lookups (Browse Mode) i 75
The Smart Lookups Algorithm 77
Strategy in Defining a Browse Mode Lookup
Using the Smart Lookups Algorithms 81
What if you don't want the lookup field
to be the first field in its own lookup field list? 82
Reasons for Assigning a Lookup toa Hidden Field 83
Reasons for Assigning a Lookup to a Non-Updatable Field 85
A Note about Saving a Lookup Definition 85
Troubleshooting Lookups 86
Indexes e 89
Introduction 89

The IND File e 89

How Indexes Sort 90

Uniqueness and Picking Fields for the Index Field List 92

Sorting Backwards with Reverse Indexes 94

Reverse Sortingby Number 94

Reverse Sortingby Date 97

The .STR File and Index Regeneration 98

Exception Listsot 99

What They Are 99

The Lowest Numbered Index: A Caveat 101

Aiding Lookups with Exception List Indexes 101

Speeding Reports with Exception List Indexes 102
Aiding Computed Fields in a Parent Panel with Exception List Indexes

.. 103

Dividing Data File Record Access with Exception List Indexes 105

Warning: Exception List Index Bugin Version2.2 107

Links e e 109

Flat-File DBMS vs. Relational DBMS 109

The Four Linking Relationships 110

One-to-Many Linking 110

Many-to-One Linking 110

One-to-One Linking i 110

Many-to-Many Linking 111

The Two Types of DataPerfect Links 111

Creating and Defininga Panel Link 113

The Link Index and Link Field List 114

A Note about a Panel Link's Index 116

The Actionof aPanel Link 116

The Data Link e 117

DefiningaDatalink i ... 118

The Link Options MeNUSotit it 120

Panel Link Options ittt 120

Data Link Optionsiitit i, 122

Data Link Options Caveatsc.ouiriininnennennnn.. 125

Data Link Subgroup Lookups 125

Choosing Between the Panel Link and the DataLink 128

A Caveat Regarding Data Links, 129

The Recursive Panel Link 133

Conditional Incrementation Using a Recursive Panel Link 133

Absolute Incrementation Using a Recursive Panel Link 134

Reasons for Avoiding Auto-Incrementing Fields 135

Back to Recursive Linking and Absolute Incrementation 136

Absolute Incrementation
Using a Recursive Panel Link on a Network 137
Virtual Link vs. Subreport Using Virtual Link 140

Making Panel Links Safer 141

Troubleshooting Links 143
Keep ATotalttt 147
Introduction 147
Implementinga Keep ATotal 148
When There's No Parent Record 150
Notes on Target Panels for Keep A Total Operations 151
Panel Hierarchies and Keep A Total: aCaveat 151
Using Keep A Total to Update Records in Foreign Panels 151
The Indexes 152

The Keep ATotal 153

How it Works: AnExample 153
General Principles i 154

Keep A Total vs. Cascade Update, 155
Reports: Introduction 157
Introduction 157
The Initial Report Definition Screen 158
Report Name e 159
Options 1 and 2: Destinationcoutiuinnennen... 159
Option 6: Disk FileMode 160

Option 7: Print Marginst iiniinnnenn.. 160
Finding What Panel a Report IsBasedOn 162
Panel-Dependent Initial Report Definition Screen Options 162
Option 3: Index Number, 163
Option 4: Search Conditions 163

Option 5: Sort Direction 163
Option 8: Edit Report Form 164

The Edit Report Form Screen Sections Delineated 166

The Report Algorithm 170
General Theory in Creatinga Report 171
Processing the Right Records 171
Getting the Right Informationto Print 172
Getting the Report to Look Good 173
Getting the Report to Complete in a Reasonable Amount of Time 173
Knowing YourPlace 174
Inthe MainReport 174
InaSubreport 174
Reports: General Structure 177
The Basic Report e 177
Two-Level Reports e e 181
Subgroup Reportso v 183
The Subreporto e 184
Two-Level Reports in Subreports 192

The Primary Sorting Field 193

Subgroup Reports in Subreports 194
Reports: Fields 197
FRields . ..o 197
Print Mode Indicators i 198
Print Mode Indicators That Alter Field Output Spacing 198

Print Mode Indicators That Don't Alter Field Output Spacing 199
Summary Table 200
Sneaking Print Mode Indicators into Panel Fields 202
Variable-Length Text FieldsinReports 203
The ;;N Print Mode Indicator (New Occurrence of Field) 205
Examples e 205
Report Options 209
The Report Options Menusot 209
Global Report Optionsvt it 211
Select Report Field 211
Eliminate Line if Blank 213

Page Eject and Skip to Bottomof Page 214
Prompt for Report Variable 214
Iteration Control 215
Section-Specific Report Optionsiiiiniiennenn.. 215
Section-Specific Report Options for First Page Header 215
Section-Specific Report Options for Other Page Header 216
Section-Specific Report Options for Two-Level Header 216
Section-Specific Report Options for Report Body 216
Section-Specific Report Options for Two-Level Footer 218
Section-Specific Report Options in Page Footer 218
Section-Specific Report Options in Final Footer 218
Report Variables 219
Introduction 219
Printing Data Not Alreadyin Fields 220
Skipping Certain Records 223
Self-Referencing Report Variables 225
COUNLETS . . .ottt e e e 225
Recycled Report Variables 227
Subreports e e 229
Introduction 229
Option 1 - Include Subreport 229
Subreports: Going From Version2.2t02.3, 230
Subreports as SUBTOULINESottt 232
Printing Totals at the Top of the Invoice 235
Subreport Using Virtual Link 239

The Dummy Report 243

Dummy Report Examples 245
A Report That Branches to Other Reports 245
Gathering Preliminary Information from

Various Panels Before Starting the "Real" Report 253

Prompting the User with the Numberof Hits 256

Reports That Double-Sort Records 259

Printer Control Issues 267

Open Filename in Report Variable 267
Overwrite Mode from the Report List 269
Overwrite Mode Caveatc it 270

Printer Control Panel 271
Direct Approach 1 272
Direct Approach 2 273
Indirect Approach 1 273
Indirect Approach 2 276
What These Reports Look Like 277
Direct Report Variable Approach 277
Indirect Report Variable Approach 280

Formulas 281

Introduction 281

Formula Error Messages: AWarning, 282

Legal Values and Well-Formed Formulas 282

About The Rest of This Chapter 285

String Identityot 285
Perfect Matches and the Identity Operator 286

CASES Statements vs. IF-THEN Statements 289

APPLY. FORMAT and CONVERT 291
APPLY . FORMAT e 291
CONVERT . .. e e 293

SUBSTRING and SUBFIELD 294
SUBFIELDo e e e 294
SUBSTRING . ..o e 298
A String Identity Variation i 298

CONTAINS . e 299

Spaces and Carriage Returns in Formulas 300

Troubleshooting Formulas 301

Iteration Control 303

Introduction 303

SkipRecordif RVisFalse........... 303

SkipToand Stop If 306
The Variable Entity in Skip To Operations 307
Strategic Placement of the Skip ToCode 308

Vi

The Internal Logic of the Skip ToCode 308

Combining the Skip To Code with the StopIf Code 309
User Chooses Next Record By LookUp 313
Placing the User Chooses code in the First Page Header 315
Placing the User Chooses code in the Report Body 317
Single Record Report From Lookup offaMenu 317
How Report Lookups Display o o... 318
Repeat If 320
A Note about DataPerfect's Notionof Truth 321
Iteration Control Examples i 324
Limiting a ReporttoOne Record 324
Limiting a Report to a Particular Number of Records 325
A Report That Prints a Particular Number of Iterations per Record . .. 325
A Date-Range Report 326

A Report That Prints Monthly Statements
for All and Only Accounts with a Positive Balance 326

Getting a Report to Continue after the

Last Record in the Lookup Is Selected 327
Troubleshooting Iteration Control, 328
Export/lmport e e 329
Reasons for Exporting or Importing Data 329
WordPerfect Merge Files 330
The Setupot 330
The Nature of the Export File, Including Some Caveats 331
Importing a WordPerfect Merge File 332
Duplicate Records Action i, 333
What Happens During a WordPerfect Merge File Import 334
Exporting and Importing Transaction Logs 335
Strategies: Merge File vs. TransactionLog 336
Deleting and Creating Fields 336
Moving Fields Without Deleting or Adding Fields 337
DOS Delimited TeXtt e 337
Exporting to DOS Delimited Format 338
Importing From DOS Delimited Format 342
The Clipboard 343
Introduction 343
In Define Panel Mode 343
In a Specify Formula Screen 344
In Report Definition Mode 345
Field Formulas and Help Screens: A Caveat 348
Securing the Application 349
Application Passwords e 349
MENUS . . .o e 350

The Define Menu Screent 350

Create/Edit Menu Text 351
Move the Menu Prompt 352
GotoPanel 352
RunReport 354
Run Report Option Caveatso, 355
GotoPanel List 356
GotoReport List 357
Submenu 357
Launch Shell Macro i 357
Editan Existing Entry 357
Delete an Existing Entry 358
UserIDPanel 358
User ID Panel Caveats, 359
Tracking User Activity: the USER.FIELD[n] Function 360
Controlling User ACCESS . ..ot i it 361
The User ID Panel vis a vis Application Passwords 363
User-Stamping Records i i 364
Controlling Access to Data Accessed fromaMenu 365
Controlled Panel Link Access to Subrecords 366
Data Link Subgroup Lookups and the USER.FIELD[n] Function367
A Note on Deselecting the User ID Panel 368
Troubleshooting Menus i 368
Securing DataEntry 371
Preventing Inadvertent Editing 371
The DPMouse®© Alternativec.couiuininennan... 372
Keeping a Saved Field from Being Edited 372
Field and Record Protection i, 373
Controlling Data Entry: The Pick List Field 373
Closing Off a Data Link to Protect a Pick List Panel 374
Closing off Access tothe Panel List 374
Controlling Data Entry: Initial Formulaor Value 375
Controlling Data Entry: The Basic Default Panel 376
Controlling Data Entry: The Complex Default Panel 377
Controlling Data Entry with ZipKey© 382
Pyramidal Design as a Data Integrity Strategy 383
The Hidden Panel 385
Controlling Record Creation with Indexes 387
Controlling Record Creation withthe ::M Field 388
DPMouse© and Field Protection 390
Using DPMouse© To Conditionally Close A Panel Link 390

Using DataPerfect 2.3's Menu Facility
To Prevent Creation of Records viaaLink 391
Controlling Record Deletions with DPMouse© 391
Controlling Data Entry with Reports 392

viii

Reports That Control Record Deletions 393

Providingan Undelete 395

Lookups and the Undelete Scheme 396

Totaling and the Undelete Scheme 396

Physically Deleting the Record 397

Reports That Control Record Creation 399
Reports That Control Editing 401
Hiding Data Entry e 403
Application Maintenance Utilities 407
DPExport and DPImport i 407

STE Editing Caveatsottt eee e 407

DPImport Caveatsouuiiitiii e, 408

Importing Reports i 408
DPDIagnostiCsottt e 409
Optimization Messagesoutitiiteitiieennenn.. 410

Warning Messagescov it 410

Error Messages . . . oo vttt e 410

DPOrdero 411

STE Manager© e et 413
Application Maintenancelssues 417
Upgrading a Client to a New Version of DataPerfect 417
Compatibility Between Different Versions of DataPerfect 417

When It's Okay to Overwrite an .STR 418
Removing DuplicatesinaPanel 422

How Duplicates Are Created, 423

Removing Duplicates in a Single Panel 424

Removing Duplicates in the Entire Database 424

Cleaning the .STR Without Re-indexing 425

The Big Clean: Cleaning the Entire Application 426

Fixing a Corrupt TXX File 426
Crippling Applicationsttt e 428

Date Cripplingt 428
Record-Number Crippling 429
Password-Protected Zip File 429

Epilogue e e 431
SUPPOIt AVENUES . o ottt e et et et e e e et e 431
CompuServe SUPPOTTo vttt 431

Internet Support 431

The DataPerfect Users Cooperativeouviiennnnennennnn.. 432
Index e 433

Acknowledgments

It's hard to acknowledge all those who have contributed to this book. I say that in all
sincerity. To all participants in the DataPerfect section of WordPerfect Users Forum
on CompuServe, as well as the DATAPERF LISTSERYV on the Internet, thanks for
contributing. You've offered so many DataPerfect application developers, including
myself, priceless help. You've shared, and continue to share, without expecting
anything in return.

Most of all, I want to thank my kind and gentle friend, Lew Bastian.

Xi

Xii

Foreword

For those of you who don't know of me, I'm the original developer of DataPerfect.
I am amazed at the very existence of this book. I appreciate Ralph's continued work
heading the CompuServe DataPerfect users forum, and his cross country DataPerfect
seminars. [applaud his perseverance in producing this work, especially since it is for
aproduct that several companies have tried to pronounce Dead On Arrival. This book
is sorely needed, since many powerful features have been added since the last manual
was published. Ralph covers just about everything, even the most recent updates. He
includes extending the usability of DataPerfect with DPMouse©, an excellent
companion product. As with any product, people have found clever ways of doing
things with DataPerfect. Using such techniques makes the difference between
applications that almost work and those that are complete and polished. Ralph has
been in a position to accumulate this wealth of invention and pass it on to other
developers. No previous book attempted to show the DataPerfect developer how to
produce masterful applications. Ralph does this in his seminars, and capably expands
his seminar notes and experiences in the latter half of this book. I know from
personal contact that many developers have been anxiously awaiting its publication.

DataPerfect has had an amazing resilience. In spite of being a DOS product
in a Windows world, DataPerfect continues to win new friends. To a large extent this
is due to the excellent online help available on the CompuServe forum hosted by
Ralph Alvy (WPUSERS, Section 11). I am grateful to him and the many DataPerfect
experts that frequent that forum, helping novices (and each other) with the intricacies
of database applications.

DataPerfect continues to slowly evolve. It owes its popularity to its rapid
application development features, its high reliability with large numbers of records,
and its ability to be simultaneously used by hundreds of network users. Many users
have tried to move to other products and, after experiencing one failure after another
with them, been forced to return to DataPerfect. I wish DataPerfect had a more
modern user interface. Some work is being done to correct this deficiency. The
existence of DPMouse© has helped considerably.

A. Lewis Bastian, Jr.

DataPerfect Lead Developer
January 11, 1997

xiii

Introduction

What's DataPerfect?

DataPerfect is a fully relational character-based DOS database manager that allows
the application developer to use a point-and-shoot interface to create networkable
database applications, needing a simple programming language only when
constructing field formulas. DataPerfect applications can interrelate up to 99 data
files, each containing up to 16 million records. These applications can run on a
network with up to 9,999 users viewing and editing the same record simultaneously.

Authored by Lew Bastian, DataPerfect was initially distributed by
WordPerfect Corporation. As of this writing, Novell owns DataPerfect, though they
neither sell nor support it. In December 1995, Novell graciously released DataPerfect
to the public, encouraging its free distribution as copyrighted free shareware, while
allowing Lew Bastian to continue to fix and enhance the product as he sees fit.
DataPerfect is currently distributed and supported by a community of DataPerfect
application developers. See Epilogue for more on this.

What's This Book?

I can't stress this enough: I do not intend for this book to be a replacement for the
DataPerfect manual I included on diskette for you. I don't cover all topics found in
that manual. Rather, with this book I complement that manual, offering information
explained a little differently, as well as information not covered at all.

For many years I've been the sysop in charge of DataPerfect discussion on
CompuServe (see Epilogue for more on the CompuServe forum that supports
DataPerfect). In that role, I've been exposed to many tips, tricks and caveats regarding
DataPerfect application development. This book is an attempt to share some of that
knowledge.

Who's Ralph Alvy?

I attended UCLA from 1967 to 1977 as a philosophy major. The last five of those
years I was in the Philosophy Department's doctoral program, during which time, as
a teaching assistant, I found myself frequently teaching lower division logic. Tiring
of academia, I left to pursue the study of chiropractic. I've been a full time doctor of
chiropractic since 1982.

Unhappy with billing applications available to the chiropractic profession, I
decided to write my own. Having been a WordPerfect user since WordPerfect 4.1,
but not having any experience in programming more than batch files, I turned to

Introduction 1

DataPerfect 2.0. Probably because of my background in logic, I took to it very fast.
Within a few years I was writing articles for DataPerfect's various newsletters
(DataPerfect Users Newsletter, DataLink and DataPerfection). Eventually (I think
it was 1991), I was asked to manage the DataPerfect section of WordPerfect Users
Forum on CompuServe (see Support Avenues in Epilogue for more on
CompuServe support of DataPerfect).

In 1994 and 19953, in a handful of cities, I taught a national two-day seminar
on DataPerfect application development. That seminar was geared towards the
experienced DataPerfect application developer. I include all the material taught in
that seminar in this book.

Today I still practice chiropractic full time, running my practice with a
DataPerfect billing application I wrote, and still sysop the DataPerfect section of
WordPerfect Users Forum on CompuServe.

The Chapters

2

In For Beginners, I attempt to get the beginner started. For many, this will be all
they need. For others, they'll also have to read the DataPerfect manual I included on
diskette.

In Files and Specifications, 1 discuss each file required to run a
DataPerfect application, as well as outline file specifications. You won't find some
of these specifications in the DataPerfect manual. This chapter is for beginners and
experienced DataPerfect application developers alike.

In Fields: Introduction, I discuss each field type available to the
DataPerfect developer. Though this chapter is mainly directed at beginners, it
contains information about DataPerfect fields many experienced DataPerfect
application developers don't have.

In Fields: Issues, I take my discussion of fields a step further. I choose
topics that will interest the beginner and the experienced, though the beginner will
get lost fairly earlier in this chapter. Examples of issues covered include ways to
optimize Keep A Total operations, how to know when not to use the date field for
dates, solving complex elapsed-time problems, and how to decide between using
different field formats.

In Lookups, I take you from the fundamental to the complex, from
explaining how lookups work, to explaining the Smart Lookups algorithm. The latter,
introduced with version 2.3, was never mentioned in any of its documentation. [also
include a three-step approach to designing lookups so they work in almost all
situations, given the logic of the Smart Lookups algorithm. I include a
troubleshooting section at the end.

In Indexes, I show the beginner what indexes do and how to use them. I also
graphically show the experienced DataPerfect application developer how indexes and
index regeneration affect the inner working of an application's structure file. This will
lay the basis for much of my discussion in a later chapter (Application
Maintenance Issues), where I outline when it's okay to overwrite a client's
structure file with a new one, without regenerating indexes.

Introduction

In Links, I target both beginners and the experienced. I cover such
fundamental topics as the four linking relationships of a relational database
application, as well as the complex topic of recursive links. I outline reasons for
abandoning the auto-incrementing field in favor of one that increments either
absolutely or conditionally, using recursive links. I include a troubleshooting section
at the end.

In Keep A Total, I target both beginners and the experienced. I go from
discussing how to set up a Keep A Total operation, to how to use it to update records
in foreign data files, and when to use Cascade Update instead.

In Reports: Introduction, I mainly target the beginner. But, as in other
chapters, there are bits of information interspersed here that frequently surprise
experienced DataPerfect developers.

In Reports: Fields, I target both the beginner and the experienced. Though
I'm mainly concerned here with outlining the various Print Mode Indicators, I spend
alot of time on the complexities of using variable-length text fields in reports. I also
show you how to get Print Mode Indicators to affect panel displays, even though they
were never intended for that purpose.

In Report Options, I offer a straightforward delineation of all possible
report options. Though I'm targeting beginners here, I find a few things I mention
here surprise some experienced developers.

In Report Variables, I target both beginners and the experienced. It's a
rather short chapter, with a few straightforward topics, like showing how to use
Report Variables as counters and how and why to recycle the same Report Variable
within the same report.

In Subreports, I'm targeting both beginners and the experienced. This
chapter can be quite complex, replete with many report definition examples to
demonstrate difficult points. I spend quite some time on what I call dummy reports,
which allow the definer to create a single report that branches to other reports.

In Printer Control Issues, I target the experienced DataPerfect application
developer. After spending some time on the new Open Filename in Report Variable
option of DataPerfect 2.3c, I go right into the notion of a Printer Control Panel. The
latter allows you to build your Report Definitions so that the client can run them on
any printer they tell the application they're using. This chapter should lose the
beginner.

In Formulas, I target both beginners and the experienced. For the
experienced DataPerfect application developer, I picked what I consider to be
frequently misunderstood and underutilized DataPerfect formula entities. These
include CASES, APPLY.FORMAT, and SUBFIELD, to name a few. I include
complex, fully commented formulas, as well as a troubleshooting section at the end.

In Iteration Control, I target experienced DataPerfect application
developers. I'm always surprised when I find developers still relying only on Skip If
Report Variable Is False as their only Iteration Control option. Version 2.3 introduced
a much more robust library of Iteration Control options. Here [attempt to wean those
developers away from that bad habit. I offer many example Report Definitions here,
as well as a troubleshooting section at the end.

Introduction 3

In Export/Import, I target both beginners and the experienced. I discuss all
major export and import options available within DataPerfect, including caveats and
strategies.

In The Clipboard, I target both beginners and the experienced. I discuss
DataPerfect's internal clipboard, and contrast it with screen capture available in such
products as Shell®, DESQview®, Windows®, and OS/2®. I include serious caveats
that, in some cases, demand you use screen capture instead of DataPerfect's internal
clipboard. Not heeding these caveats may result in an irretrievably corrupt structure
file.

In Securing the Application, I target both beginners and the experienced.
I discuss the various ways DataPerfect allows the developer to protect an application.
This includes menu security, introduced with the initial release of version 2.3, and
the User ID facility, introduced with the second release of version 2.3. This is where
you find out how to control what each user is allowed to do in the database. I include
a troubleshooting section at the end.

In Securing Data Entry, I mainly target the experienced DataPerfect
application developer. There's a little in here for the beginner, but not much. I talk
about such things as keeping a saved field from being edited, conditionally closing
off panel links, field protection offered by the third party DataPerfect addon,
DPMouse©, and using reports to control data entry.

In Application Maintenance Utilities, I target both beginners and the
experienced. I discuss four utilities that shipped with DataPerfect: DPExport© and
DPImport©, as well as DPOrder© and DPDiagnostics©. I include caveats about all
four. I also preview STE Manager©, a third party utility that allows the experienced
DataPerfect application developer to make certain types of changes to a structure file
more conveniently than using DataPerfect itself.

In Application Maintenance Issues, I target the experienced DataPerfect
application developer only. Here I discuss such issues as knowing when it's okay to
overwrite an old .STR with a new one, and how to fix a corrupt .TXX file.

In Epilogue, I talk about DataPerfect's status, as of this writing. This
includes how to get support for it, as well as a discussion of recent developments
centering around creating a way to move DataPerfect applications into other
platforms.

Products Mentioned

4

DataPerfect® and its allied utilities (DPExport®, DPImport®, DPOrder®,
DPDiagnostics®, Shell®, and Editor®) are registered trademarks of Novell, Inc.

DESQview® is a registered trademark of Quarterdeck Office Systems.

DPMouse®© is authored and owned by Steven Patamia. See accompanying diskette
for more information.

OS/2® is a registered trademark of IBM Corporation.

Introduction

PKZip® is a registered trademark of PKWARE, Inc.
Windows® is a registered trademark of Microsoft Corporation.

WordPerfect® is a registered trademark of Corel Corporation.

Legalese

This book's publisher and I assume no liability for any consequence, monetary or
otherwise, arising from trying any of the techniques outlined here. Please backup all
data before trying these techniques.

Introduction 5

6 For Beginners

For Beginners

I wrote this short chapter to help you if you're new to DataPerfect. Here I get you
started on your first DataPerfect database application. Please note that [included, on
diskette, the reference manual that last shipped with DataPerfect. It's in text file
format. Please refer to that often, as this chapter might not be enough for a beginner.
Once you're used to browsing data in a DataPerfect application, load Tom Yuhas'
DataPerfect Reference Manual application (also on diskette). It lets you browse the
DataPerfect manual as though you're reading a book.

Getting Started

First make sure DP.EXE and DP.SYS are in the same directory, and that directory
is in the PATH statement in your AUTOEXEC.BAT. If it wasn't in there, put it in
with a text editor and reboot. Now create a new directory for your new application.
Change to that directory and type DP, followed by hitting Enter. I'll call that
directory E:\NEWAPP.

When running DataPerfect in a directory like E:\NEWAPP, where no
previously defined DataPerfect application exists, DataPerfect initially greets you
with this menu:

No databases are defined on this disk or directory.

Choose one of the following
1 - Create a New Database
2 - Change Directory
0 - Exit
Selection: 0

Pathname: E:\NEWAPP\

After hitting 1, you see this:

Enter a name for the database.

The name is a filename with no extension.
The name may specify the drive and/or path.

Pathname: E:\NEWAPP\

In the displayed prompt, enter a legal DOS filename without an extension
(i.e., a string of up to eight characters DOS allows in filenames). At this point, many
enter such names as PHONEBK, ACCTING, LEGAL, etc. Though such names help
you remember what data this or that application holds, I advise you not to use

For Beginners 7

filenames that long. Instead, pick a two- or three-letter string that stands for that
application. As you'll see later, this allows for much easier file maintenance at the
DOS level.

Let's say you enter NA for your new application, and hit Enter. In response
to this, DataPerfect creates three files behind the scenes:

NA.IND
NA.STR
NA.TXX

NA.IND is NewApp's index file, NA.STR its structure file, and NA.TXX the file that
will hold variable-length text data (data found in what other database management
systems call memo fields). More on these files later. All you need to know at this
point is that you only supply DataPerfect with a filename that has no extension.
DataPerfect supplies the extensions.

After DataPerfect creates these three files, it then asks you to enter this
application's first Panel Filename. A few points about this filename:

° It may be any legal DOS filename, with any legal DOS extension
(DataPerfect has a few reserved extensions, but that's not important.
It tell you if you chose one of them).

° It names the file that will hold the data (other than variable-length text
data) for a particular panel.
° I suggest you begin each such filename with the same two or three

letters you chose for the database itself (in this case, NA), and give all
such filenames the same extension. I use .DAT to signify data. So if
this data file is to hold all Names in the application, you might name
it NANAMES.DAT, or NA-NAMES.DAT, or NA_NAMES.DAT. This
way, to copy, move, or backup all files associated with this
application, you just use the a simple wildcard expression on your
command line:

copy e:\newapp\na*.* a:
Along the same lines, if you're only copying the data files to drive a:
copy e:\newapp\na*.dat a:

I'took this filenaming convention from Bruce Parello's wonderful out-
of-print book, The Theory and Practice of DataPerfect (publ.
WordPerfect Corporation 1989).

Okay, now back to the application. Let's say you chose NANAMES.DAT as
your first panel filename. You now see this screen:

8 For Beginners

Define Panel
You can type text in the panel for field labels, or press

CREATE a Field (F9) DEFINE an INDEX (Ctrl-F8)

EDIT Field Format (F6) DEFINE FIELD Options (Shift-F8)
Define Link for IPANEL (F5) DEFINE PANEL Options (Alt-F8)
Use Shift-Arrow keys to Change Panel Size Move Panel -- F2

—NANAMES . DAT—0

That's a blank panel waiting for you to give it some definition. After giving it fields,
text, etc., it'll serve as a way for the user to view data in its particular data file (in this
case, NANAMES.DAT), though it can be designed to let the user view data in related
(linked) files as well.

Following the same naming convention, I might later attempt, in different
directory, an accounting application. If I give it the two-character name AC,
DataPerfect would then automatically create AC.STR, AC.TXX and AC.IND,
waiting for me to create its various panels. I might use these panel filenames, keeping
consistent with my filenaming convention:

Panel Filename Data File Contents
ACTRAN.DAT Transactions
ACCLIENT.DAT Clients
ACVENDOR.DAT Vendors
ACSTATE.DAT State Codes

Let's go back to our NA application. Note the zero to the right of
NANAMES.DAT, in this portion of the screen:

’—NANAMES .DAT-0

That's this panel's record counter. It displays the number of saved records in
NANAMES.DAT. DataPerfect allows 16 million records per data file.

The next step is to add some fields, descriptive text, indexes, etc. It takes only
three basic steps to create a logically complete panel:

o Give it a filename (you just did that).
o Create at least one field on which the cursor can land.
o Create at least one index.

For Beginners 9

That's all you need for a logically complete panel, but you'll probably want much
more.

When you first give DataPerfect the filename for an application's panel, you're
thrown into Define Panel mode (as indicated by Define Panel in the upper left corner
of the screen below). Later, upon entering a panel you defined enough to consider it
logically complete (see the three requirements above), you find yourself in Browse
mode (as indicated by BROWSING RECORD), not Define Panel mode. At that point
you can return to Define Panel mode by hitting Alt-F8. More on that later.

Let's return to the Define Panel screen. Here's the upper third of the screen,
showing your menu options in that mode:

Define Panel

You can type text in the panel for field labels, or press
CREATE a Field (F9) DEFINE an INDEX (Ctrl-F8)
EDIT Field Format (F6) DEFINE FIELD Options (Shift-F8)
Define Link for IPANEL (F5) DEFINE PANEL Options (Alt-F8)
Use Shift-Arrow keys to Change Panel Size Move Panel -- F2

Let's detail the above choices.
Creating Panel Text

The first line that follows Define Panel refers to how to create what is typically
referred to by DataPerfect developers as panel text:

You can type text in the panel for field labels.

Panel text in this case might look like this (which you can go ahead and type in if you
want):

Define Panel
You can type text in the panel for field labels, or press

CREATE a Field (F9) DEFINE an INDEX (Ctrl-F8)

EDIT Field Format (F6) DEFINE FIELD Options (Shift-F8)
Define Link for IPANEL (F5) DEFINE PANEL Options (Alt-F8)
Use Shift-Arrow keys to Change Panel Size Move Panel -- F2

—NANAMES . DAT—0
NAMES PANEL

Last Name:
First Name:

10 For Beginners

Sizing and Moving the Panel

The last line in the menu tells you how to size and move the panel:

Use Shift-Arrow keys to Change Panel Size Move Panel -- F2

The reference to Shift-Arrow keys is talking about holding down the Shift key
while tapping on the white Arrow keys (the ones on your numeric pad). On a
notebook computer, you don't have white arrow keys, so you have to resort to using
Alt key equivalents:

Shift-Arrow Alt-Num
Combination Equivalent
Shift-Left Alt-1
Shift-Right Alt-2
Shift-Up Alt-3
Shift-Down Alt-4

The numbers referenced above in the Alt-Num Equivalent column are the ones you
find on the top row of your keyboard, not your numeric pad.

That same line on the screen refers to the F2 key. In Define Panel mode, F2
is a toggle that alternates between the Shift-Arrow (or Alt-Num) keys sizing the
panel on the one hand, and moving it on the other. See if you can get the Names
Panel to look like this, using the Shift-Arrow (or Alt-Num) keys to both make the
panel smaller and move it up a little:

Define Panel
You can type text in the panel for field labels, or press

CREATE a Field (F9) DEFINE an INDEX (Ctrl-F8)
EDIT Field Format (F6) DEFINE FIELD Options (Shift-F8)
Define Link for IPANEL (F5) DEFINE PANEL Options (Alt-F8)

Use Shift-Arrow keys to Change Panel Size Move Panel -- F2

NANAMES .DAT—0
NAMES PANEL

Last Name:
First Name:

CREATE a Field (F9) and EDIT Field Format (F6)

Now you need a couple fields. To put a field in a panel while in Define Panel mode,
move the cursor to the leftmost position of the desired field. To get the cursor there,
use Spacebar, Enter and Arrow keys, just like you would in a word processor. Now
hit F9. DataPerfect now prompts for the new field's format.

Though we'll get more into field formats later (see my Fields: Introduction
chapter), let's put in a field format for our Last Name field and First Name field. Each

For Beginners 11

will be A15, which is an alphanumeric field that allows the user to enter letters,
numbers and punctuation, up to fifteen characters (including spaces) in all. If we
chose the format U15, we would be allowing the user to enter the same characters
allowed by the A15 Field Format, but letters will automatically be stored and
displayed in uppercase.

Each time you fill in a Field Format when creating a field, DataPerfect asks
you for an optional Field Name. You can leave this blank, but I suggest you fill it in
with Last Name and First Name, respectively. You can change this later if you want
by cursoring back to the field in Define Panel mode, hitting F6 and putting a different
name.

Note: In Define Panel mode, you can cursor from
field to field with Tab, but Shift-Tab won't let
you go backwards. Depending on how you
have things arranged on your screen, Ctrl-
RightArrow and Ctrl-LeftArrow will allow
cursoring from field to field in both
directions.

After putting in two A15 fields, you have this:

Define Panel
You can type text in the panel for field labels, or press

CREATE a Field (F9) DEFINE an INDEX (Ctrl-F8)
EDIT Field Format (F6) DEFINE FIELD Options (Shift-F8)
Define Link for IPANEL (F5) DEFINE PANEL Options (Alt-F8)

Use Shift-Arrow keys to Change Panel Size Move Panel —-- F2

NANAMES . DAT—0
NAMES PANEL

Last Name: HiffffEiizsimmias

First Name: Zisiissiiass

Exit Define Panel mode with F7 or F10. Note that DataPerfect complains you
haven't created at least one index for this panel. DataPerfect still lets you exit Define
Panel mode, but the next time you enter that panel, DataPerfect forces you back into
Define Panel mode, not letting you enter any data—at least not until you create at
least one index in that panel. So let's go back into that panel (if you haven't already)
and put in an index or two.

DEFINE an INDEX (Ctrl-F8)
An index fulfills two purposes:
° It provides a way to sort records
° It determines the parameters by which a record will be considered

unique with respect to other records in the same panel.

Sorting

12 For Beginners

Let's take the first thing an index does: sorting. Consider an index to be a series of
pointers that find records in a panel's data file in a particular order. Each pointer finds
exactly one record in that panel. These pointers are determined by an ordered list of
fields, called an index field list. Suppose our first index's field list consists of the Last
Name and First Name fields, in that order, and our second index's field list consists
of First Name and Last Name fields, in that order.

Now consider a report that uses the first index to process records in that
panel. It will process records based on the Last Name field primarily, and the First
Name field secondarily. Say the first Last Name it comes to is Adams, but there are
two records with this Last Name: John Adams and Sally Adams. When this index
sees two records with identical values in their Last Name field (the first field in the
index field list), it secondarily sorts them by the First Name field (the second field
in the index field list). So John Adams will precede Sally Adams in this index.

Uniqueness

The second thing an index does is determine what counts as a unique record in the
panel. Remember I said each pointer finds exactly one record in that panel.
DataPerfect won't allow two records to coexist in the same panel if those two records
have identical values in all fields in the field list of at least one index in that panel.
That's another way of saying DataPerfect won't allow an index pointer to point to
more than one record.

In our Names Panel, our first index won't allow two records for John Adams.
Neither will the second index. Each index will allow a record for John Adams and
one for John Smith, even though they match on one field in each index field list. As
long as they don't match on all fields in an index's field list, the index won't consider
them duplicates. As long as any index in that panel considers a record to not be
unique, DataPerfect will kick it out of that panel's data file. That is, if adding a record
to a panel will cause some pointer in some index in that panel to point to more than
one record, DataPerfect will refuse to accept that new record into that panel's data
file. What record an index pointers point to, then, is determined by the index field
list.

Defining, Editing and Deleting Indexes

To create, edit, or delete an index, whether in Define Panel mode or Browse mode,
hit Ctrl-F8. To create an index (as we want to do now), choose option 1. To follow
the logic outlined above, I want my first index to sort on Last Name. So I Tab to the
Last Name field and select it with F4, and then Tab to the First Name field and select
it with F4. After selecting all the fields I want in that index's field list (in this case,
only two fields), [hit F7 or F10 to exit and save the index.

I want my next index to sort on First Name. I do the same as I just did above,
starting with choosing option 1 to create an index, but this time I select the First
Name field before selecting the Last Name field.

You might think that to get the first index to sort on Last Name, you should
simply put only Last Name on its field list (and not include the First Name field).
And conversely, you might make the second index include only the First Name field
in its field list (and not include the Last Name field), causing it to sort on the First

For Beginners 13

Name field. But doing this would result in the first index allowing only one Jim,
John, and Sally, etc. And the second index would allow only one Adams, Doe, and
Smith. Not good.

These two different indexes will come in handy later, when accessing and
processing data. Note that when you exit out of Define Index mode with F7,
DataPerfect no longer complains. You now have a logically complete panel (that is,
one that will allow you to browse, create, edit, or delete data) because you now
satisfied the following three rules regarding panel creation:

[Give it a filename.
° Create at least one field on which the cursor can land.
o Create at least one index.

There's a lot more to say about indexes. I discuss them in painful detail in my
Indexes chapter.

Field Formats and Field Format Display Modifiers

Let's talk about one of those three rules: Create at least one field on which the cursor
can land. Can't the cursor land on any field you define here? No. Not if you're talking
about modes other than Define Panel mode (Browse, Create, or Edit modes). In
Define Panel mode, you can add a display modifier to a field's format, such that it
keeps the user from ever landing on that field. Display modifiers always consist of
a double-colon followed by a letter, and the modifier as a whole always follows the
field's primary format. The three field format display modifiers that keep the user's
cursor of the field are ::N, ::H, and ::C. Let's discuss this.

::N makes the field non-updatable. The user can see it, but can't land on it.
For instance, we might have a Balance field in an Invoice Panel formatted G-
777.779.99::N. As you'll see later, that's a numerical field that allows numbers from
-999,999.99 to 999,999.99, but, because of the ::N modifier, doesn't allow the user
to ever land on that field. If that field gets its value from totalling carried over from
a different panel (the Transaction Panel, for instance), then you want to protect it
from the user's fingers. You want the user to see it, not to rouch it.

::H makes the field hidden. The user can't even see this field. It's there, but
hidden from view. One reason you might want a hidden field is to create an index
that sorts backwards with respect to a numerical field. Say you have a Customer ID
Number field that's five digits long (G99999), and you want an index to sort so that
it sees the highest Customer ID Number first instead of last. The typical way to do
this is to create a G-99999::H field that has a formula on it that updates its value to
the negative of that found in the Customer ID Number field. So whatever value is
found in the Customer ID Number field for a record (say, 03445), its negative (-
03445) will be stored in the hidden G-99999::H field. An index that sorts on the latter
field will sort in reverse with respect to an index that sorts on the Customer ID
Number field. There's really no reason to show the user that G-99999::H field, so we
usually hide it with the ::H modifier. It's only there to allow the developer to create

14 For Beginners

indexes that need to sort a special way. See Sorting Backwards with Reverse Indexes
in my Indexes chapter for more on reverse indexes.

::C makes the field computed. Say we have a library application that keeps
track of books people check out. In one panel, we want a U7 field to display the
string OVERDUE when the date found in the Due Date field is earlier than today's
date. Such a field would be a good candidate for the ::C display modifier (U7::C).
Like the U7 field, the U7::C field will still handle up to seven uppercase characters.
And like the U7::N field, it will display to the user without letting the user land on
it (you can, however, hide it from the user if you format the field U7::CH).

So what's the difference between a U7::N field and a U7::C field? Well, for
now, let's just say you can't put it in an index. We're going to have to talk about field
formulas later for you to completely understand what a ::C field is. Essentially, a ::C
field exists only on your screen. It has no representation in the panel's data file at all.
Not so for the ::N field. It exists in the data file as well as the screen. Some of us say
the ::N field is real and the ::C virtual. In other database programs, ::C fields are
called display fields. DataPerfect calls them computed fields (before version 2.3, they
were called calculated fields).

I go much more into field formats in the Field Types section of the Fields:
Introduction chapter. Before I discuss the other options available in Define Panel
mode, let's back off that a little and see what you've created so far. I'll cover the other
options in Define Panel mode later.

Browse, Create and Edit Modes

If you haven't already entered Browse mode, do so by leaving Define Panel mode
with F7 or F10. You'll see the menu options change to this:

BROWSING RECORD Exit-F7 Create-F9 Edit-F6 Lookup-1 Help-F3

Now enter Create mode with F9. You see the menu options change to this:

CREATING RECORD Save and Exit-F7 Save-F10 Cancel-F1 Help-F3

Note: If you had entered Edit mode with F6
instead of Create mode with F9,
DataPerfect would have forced you into
Create mode nonetheless, since there aren't
any records in this panel to edit.

For Beginners 15

While in Create mode, type Smith in the Last Name field and hit Tab. Then
type John in the First Name field. Now hit F10 to save the record. You have your
first record in the Names Panel's data file. Now hit F6 and change John to Jack and
save your changes with F10. That was Edit mode.

Lookups in Browse Mode

Hit F9 and create another record, this time for Sally Adams, and save it with F10.
While in Browse mode, cursor to the Last Name field and perform a lookup by
hitting Up Arrow. Note that records are sorted by Last Name in the first column. As
you type letters during this lookup, the highlight bar will go to the first record that
starts with the string you've typed so far. If it doesn't find one, it will go to the next
one in the index being used to sort the records.

So if this panel has a record for Jack Smiley and one for Jack Smith, and Jack
Smith is the first record beginning with SM in the Last Name index (the index with
Last Name as the first field in its field list), then typing S will cause the highlight bar
to move to the first record with S starting its Last Name field value. Following this
by typing M will cause the highlight bar to move again, this time to the first record
with SM starting its Last Name field, which, in this case, is Jack Smiley. I call this
lookup facility type-to-search lookups. As far as I know, DataPerfect was the first
database program to offer this without the definer having to write many lines of code.

While still in Browse mode, cursor to the First Name field and perform a
lookup there with Up Arrow. Note the difference in the lookup display. It now sorts
on First Name, and typing in letters moves the highlight bar closer and closer to the
First Name being typed.

Go ahead and create more records in this panel's data file and see how the
lookup facility works. It's what I consider to be DataPerfect's most powerful feature.
On a network with many users accessing the same database, in a panel with hundreds
of thousands of records, a lookup search during Browse mode still only takes a
second or two, even if typing in characters that take you to the last record in the index
that's sorting that lookup display.

Remaining Define Panel Menu Options

Okay, back to Define Panel mode to discuss the remaining options available in that
mode. In Browse mode, return to Define Panel mode by hitting Alt-F8:

Define Panel
You can type text in the panel for field labels, or press

CREATE a Field (F9) DEFINE an INDEX (Ctrl-F8)
EDIT Field Format (F6) DEFINE FIELD Options (Shift-F8)
Define Link for IPANEL (F5) DEFINE PANEL Options (Alt-F8)

Use Shift-Arrow keys to Change Panel Size Move Panel -- F2

16 For Beginners

DEFINE PANEL Options (Alt-F8)

Note the last menu option above called DEFINE PANEL Options (Alt-F8). Calling
the Define Panel Options submenu with Alt-F8 gives us this menu:

Panel Option
1 - Edit Filename 5 - Change Edit Order
2 - Change Color 6 — Edit Panel Name
3 - Auto-Save (Y/N) 7 - Recompute Field Offsets
4 - Auto-Display Record (Y/N) 8 - Auto-Edit/Auto-Create/Menu
Browse Change => Auto-Edit
Display each record during Lookup.
Selection: 0

Options 1 and 6: Edit Filename and Edit Panel Name
Sorry, but I need you to exit out of Define Panel mode to see the significance of these
two options. F7 back to Browse mode, and then again to a display like this:

ot
‘ A list of panels is displayed. Use ! and | to highlight the ’
desired panel, then press Enter. To define a new panel,
press Insert (Ins).
Press Delete (Del) to delete a panel.

—-Beginning——
NANAMES .DAT
—-End--

That's the Panel List. On this particular Panel List you see only one panel:
NANAMES.DAT. It bears the name of its data file. That's not a very interesting
name to look at, so DataPerfect allows you to change the name that appears on this
Panel List without altering the DOS name assigned to the data file itself. To do this,
go back into the that panel by hitting Enter while the highlight bar is on its Panel List
name (NANAMES.DAT). Now return to Define Panel mode with Alt-F8, and to
Panel Options with Alt-F8 again.

Options 1 and 6 on the Panel Options menu (Edit Filename and Edit Panel
Name) seem similar, but they're radically different. Choosing Edit Filename (option
1) is choosing to change the DOS name you previously assigned to its data file (the
file that holds all the saved records in this panel). That's a radical change to a
database, and DataPerfect won't let you do that with any data in the panel. Also, if
you decide to rename the panel's data file with option 1, DataPerfect actually just
creates a new file with the new name and leaves the old in that directory.

Choosing Edit Panel Name (option 6) is choosing to change that panel's name
on the Panel List. Hit 6 and tell DataPerfect what name you'd like to appear on the
Panel List for this panel. So you and I are consistent here, let's both choose the name
Names Panel. Now F7 to exit the Panel Options menu. F7 again to exit the Define
Panel menu. F7 one more time to exit the panel itself. Now you're in the Panel List
and see this:

For Beginners 17

Not

A list of panels is displayed. Use ! and | to highlight the
desired panel, then press Enter. To define a new panel,
press Insert (Ins).

Press Delete (Del) to delete a panel.

—--Beginning--
Names Panel
—-End--

That was option 6 (Edit Panel Name). Though we used that option to change
this panel's Panel Name to Names Panel, its data file still has the DOS name
NANAMES.DAT. You can either go to DOS to see this, or exit back to Browse
mode again and load the panel by hitting Enter. Note that the DOS name still
appears in upper left corner of the panel:

—NANAMES . DAT—0——

Of course, the number to the right of NANAMES.DAT might be different in your
panel because you might have a different number of saved records in it.

Option 2: Change Color
Explore this on your own. It needs no explanation.

Option 3: Auto-Save

I never use the Auto-Save option, but many other developers love it. It causes
DataPerfect to save the record the user is currently creating or editing after hitting
Tab or Enter on the last field in the Edit Order (Edit Order is explained later, under
Option 5). The default here is to have that feature off. If you hit 3 you'll see an
indicator appear, telling you that feature is on. Hit it again, and that indicator
disappears. It's a toggle.

Option 4: Auto-Display Record

This option is on by default. Hit 4 and you'll see the indicator disappear just below
it. Like 3, it's a toggle. If you have a few records in this panel, turn Auto-Display on
if itisn't already, and exit the Panel Options menu with F7, and exit the Define Panel
menu with F7 again. In Browse mode, perform a lookup with Up Arrow. Note that
as you move the highlight bar up and down, the record in the panel itself changes to
match the one on which the highlight bar sits in the lookup display. Return to Panel
Options mode by getting out of the lookup with Esc, F7, or Enter, and then hitting
Alt-F8 twice. Turn off Auto-Display by hitting 4. Now return to Browse mode and
test your lookups again. Note the panel no longer updates to follow the highlight bar.
Most developers keep Auto-Display on. You would consider turning it off on slow
machines or when the current panel has many computed fields (::C fields), as
computed fields tend to slow down the display.

18 For Beginners

Option 5: Change Edit Order

Edit Order is important. We'll be coming back to this many times, under different
themes. Edit Order is the order of fields the cursor follows when the user hits the Tab
key. You can change the Edit Order whenever you want, even with data in the panel.
So you can create fields in this panel in any order, and later change the Edit Order
when that's important. Go ahead and access the Change Edit Order option by hitting
S when the Panel Options menu is active. If you created the Last Name field before
you created the First Name field, you'll see this:

Edit Order
The numbers to the left of each field below show the edit order
for the fields in the panel. If you want to change this order,
move to the field you want to reorder and enter the new number
for that field. The edit order is adjusted automatically.

When finished, press Save or Exit.

NANAMES .DAT—0
NAMES PANEL

Last Name: 1
First Name: 2

Go ahead and change the Edit Order by cursoring to each field and inserting
the correct number in, hitting Tab or Enter after each insertion, so it looks like this:

NANAMES . DAT—0
NAMES PANEL

Last Name: 2
First Name: 1

The above will be the order the cursor moves through the panel during
Browse, Edit, or Create modes, while hitting Tab. Exit the Edit Order menu with F7,
the Panel Options menu with F7, and the Define Panel menu with F7. Check out the
Edit Order now by hitting Tab a few times.

Option 6: Edit Panel Name
I covered this with option 1 (Edit Filename).

Option 7: Recompute Field Offsets

This is supposed to increase the efficiency of your database if you've deleted some
fields in it. I've never used this, so can't report how much it actually increases
efficiency. What it does, essentially, is redefine where the .STR file expects to
physically find each field in a panel's data file. You can't perform this operation with
data in the database.

Option 8: Auto-Edit/Auto-Create/Menu
This toggles between the following three options:

Browse Change => Auto-Edit
Browse Change => Auto-Create

For Beginners 19

Browse Change => Menu

Each time you hit 8, the indicator to the left (under option 4 on the screen)
changes. If you choose Auto-Edit, then when the user is in Browse mode and types
a character (probably inadvertently), he'll see this menu:

Not

You have changed a field in this record.

Do you want t

1
2
0

Selection: O

— Create a New Record
- Edit the Displayed Record
— Cancel the Change

Ialways use this option (Menu) to safeguard against accidental editing. Auto-
Edit does something different. If that option's active, inadvertent editing during
Browse mode will cause the record to go immediately into Edit mode. Auto-Create
will result in inadvertent Browse-mode editing causing the record to immediately go
into Create mode.

Define Link for /Panel (F5)

While in Define Panel mode, hitting F5 will allow you to define a link. If the cursor
isn't on a field when you press FS, you end up defining a panel link. If the cursor is
on a field, you create a data link. In either case, DataPerfect asks you for four things:

Target panel

Target panel field to land on
Target panel index

Source panel field list

I go over links in painful detail in my Links chapter.

DEFINE an INDEX (Ctrl-F8)

Unlike Create Field (F9) and Edit Field Format (F6), Define Index (Ctrl-F8) can be
called from both Define Panel mode and Browse mode. Again, here's the Define

Index menu:

Define Index

1

2
3
4
0

Selection: O

Create Index

Edit Index Field List
Create/Edit Exception List
Delete Index

Exit

Option 1: Create Index
We covered this.

20 For Beginners

Option 2: Edit Index Field List

This lets you edit an exiting index's field list (to add fields to it or remove fields from
it). After calling this option with 2, you use Up Arrow or Down Arrow to find the
index you want to edit. When you find the one you're looking for, you select it with
F4. The subsequent Define Index Key Field List menu is self-explanatory.

Option 3: Create/Edit Exception List

Let's skip this for now. It's important, but is really something best discussed when we
talk about more advance things. See the Exception Lists section in my Indexes
chapter.

Option 4: Delete Index
This is obvious. To delete an index definition, hit 4, then use Up Arrow or Down
Arrow to find the index to delete. Select it for Deletion with F4.

DEFINE FIELD Options (Shift-F8) 1, 2 and 4

Depending on the format of the field on which your cursor sits, you get a different
menu with Shift-F8 (again, I discuss all possible field formats and their Display
Mode Modifiers in my Fields: Introduction chapter). In this section, I'll go over
their listed options, one at a time, after I list all the possible Define Field Options
menus here for you. Note the upper border of each Define Field Options menu. That
tells you what sort of field you were on when you called the menu with Shift-F8:

Options for Alphanumeric and Text Field

1 - Lookup Field List 5 - Range Check
2 - Initial Formula 6 — Validation Time (Edit/Save)
3 - Initial Value 7 - Define Search Field List
4 - Initialize at Create/Save/Change 0 - Exit
Selection: 0
Field Options for Numeric Field
1 - Lookup Field List 6 — Validation Time (Edit/Save)
2 - Initial Formula 7 - Define Search Field List
3 - Initial Value 8 - Keep a Total
4 - Initialize at Create/Save/Change 9 - Remove Last Total
5 - Range Check 0 - Exit
Selection: 0

Options for Auto-Incrementing Field.
1 - Lookup Field List

2 - Set Value for Next Created Record
0 - Exit

Selection: 0

Field Options for Computed Field

1 - Lookup Field List
2 - Define Field Formula
0 - Exit

The formula value will be computed whenever displayed or accessed.
Selection: 0

For Beginners 21

About those menus: An alphanumeric field (first menu) is one that accepts
both letters and numbers. That would be an A or a U field. A numeric field (second
menu) is one that accepts only numbers. That would be a G, H, N, D, or T field. An
auto-incrementing field (third menu) is a numeric field (G, H, or N) that has the ::I
or ::J modifier, like G999::1 or GZZ9::J. A computed field (fourth menu) is one with
the ::C modifier, and can be either alphanumeric (A or U) or numeric (G, H, N, D,
or T). For example, A15::C or G999::C. Again, I discuss all possible field formats
and their Display Mode Modifiers in my Fields: Introduction chapter.

Option 1: Lookup Field List

All the above menus have this option. A field's lookup definition always includes a
Lookup Field List, and may also include a Lookup Index. Choosing option 1 starts
this lookup definition process by asking you for this field's Lookup Field List. This
list consists of the fields that display when the user performs a lookup on this field
during Browse mode. After selecting each field with F4 and then Saving the List with
F7 or F10, you're then offered a chance to assign an index to this lookup definition.
If you want to assign an index, use Up Arrow or Down Arrow to find the desired
index and then select it with F4. Otherwise, use F7 or F10 to save the lookup
definition without an index.

As a general rule, think of the Lookup Field List as consisting of the fields the
user sees during a Browse mode lookup on this field, and the Lookup Index the way
it'll sort. This usually means the first field in the lookup Field List will be the first
field in Lookup Index, but not always. Lookups can be a very complicated topic, so
I devote an entire chapter to it (Lookups).

Option 2: Define Initial Formula or Define Field Formula

This is almost the same for all the above menus. For alphanumeric and numeric
fields, option 2 is Initial Formula; and for computed fields, it's Define Field
Formula. These are essentially the same thing. When you choose option 2 for such
fields, you're offered the following Specify Formula menu:

Specify Formula

Operands can be numbers, character strings in quotes (" or '), or fields
selected with Select (F4). To select a field from another panel, move
to a link and press |.
Operators are: + - * / // ~ < > <= >= <> = NOT AND OR.
Parentheses () should be used to group items.

When finished, press Save (F10) or Cancel (F1).

For all intents and purposes, what you're doing here is telling DataPerfect
what you want to be the default value of this field, or what will be the value of this
field whenever a change is made anywhere in this record. To accomplish this, you
type in a formula you want to update either on record creation or whenever a change
is made to the record. If the formula is based on another field, you select the other
field with F4 to put it in the formula. When you hit F4, DataPerfect gives you a view
of the current panel and lets you cursor to the field you need in the formula. When
you land on that field, you just hit F4 again. DataPerfect then throws you back into
the Specify Formula screen, with the field you selected showing up there as a string,
like P1F3 (Panel 1 Field 3). Try it.

22 For Beginners

For instance, suppose the field in question is a U2 field in which the user is
to type in a two-letter State Code, like CA for California, or ID for Idaho. If this
application is going to be used only in Los Angeles, and it's used to enter names and
addresses of customers in a local video store, you can safely assume that almost all
such records will have CA in the State Code field. So you give that field a formula
like this in the Specify Formula screen:

Specify Formula

Operands can be numbers, character strings in quotes (" or '), or fields
selected with Select (F4). To select a field from another panel, move
to a link and press |.

Operators are: + - * / // ~ < > <= >= <> = NOT AND OR.

Parentheses () should be used to group items.

When finished, press Save (F10) or Cancel (F1).

ol

I know it doesn't look like a formula, but it is. After hitting F7 to exit the
Specify Formula screen, you then decide on the conditions for this formula to update.
Note the bottom of the screen that greets you when you exit the Specify Formula
screen:

Options for Alphanumeric and Text Field
1 - Lookup Field List 5 - Range Check
2 - Initial Formula 6 — Validation Time (Edit/Save)
3 - Initial Value 7 - Define Search Field List
4 - Initialize at Create/Save/Change 0 - Exit
Selection: 0

Field 1 of panel 1 Field Format: AlS

Automatically computed when record is created.

Continue to Option 4 to complete this.

Option 4: Initialize at Create/Save/Change

This comes into play in the above screen. The indicator at the bottom of the screen
tells you when the formula will update, and it's controlled by Option 4. The default
is what you see above: Automatically computed when record is created. When you
hit 4, it toggles between these formula update conditions:

Automatically computed when record is created.
Automatically computed when created record is saved.

Automatically computed at any change and when record is saved.
[blank]

Automatically computed when record created is the one you'd use if you just
want to set an initial value (default value) for the field. That's what we would want

For Beginners 23

in our video store application. We want the user to be able to override the value if
they want, but not have to type it in if it's CA.

Automatically computed when created record is saved is used if you need to
make sure the field formula is recomputed when the record is saved. This usually
comes up in network situations when you want to make sure the field formula checks
to see if someone else on the network already saved a record with the value computed
by the formula. This comes into play in a crucial way in my discussion of recursive
links in the The Recursive Link section of my Links chapter (Absolute
Incrementation Using a Recursive Panel Link on a Network).

Automatically computed at any change and when record is saved is a formula
update condition you'll use frequently. As a rule, you're going to either have a
formula update on any change (this condition), or on creation (the default condition).
When a formula is set to update on any change, it'll recompute as soon as the record
is put into Create (F9) or Edit (F6), and every time a value is entered in any field or
edited in any field. In our video store example, if we set the State Code field to
update to CA on any change instead of on creation, any attempt by the user to alter
that value (like putting in /D) will be changed to CA.

Why might you want a field formula to update on any change? Well, suppose
you have a Date of Birth field in your panel, and want another field to display the
person's age, based on what was entered in the Date of Birth field. You would want
the Age field to update on any change, not on creation. This allows the user to enter
a different Date of Birth value later, when he finds out he made a mistake, and have
the Age field update accordingly. If the Age field only updated on creation, the new
value entered in the Date of Birth field in Edit mode would have no effect on the Age
field.

The blank option looks like it offers you nothing. Go ahead and toggle 4 a
few times and see that one of the options is blank. The blank option is something
developers don't usually use, mainly because they don't know what it does. If the
update condition is blank, the field will update when, and only when, the user hits F6
while the cursor is on that field during Create or Edit modes.

That almost covers Define Field Option 2 (Define Field Formula). I need to
add only two points:

Computed Fields (::C)

If you're on a computed field when hitting Shift-F8, you don't get to decide on
conditions that cause the formula to update. It updates on any change, and whenever
the record is displayed. There's an important distinction between a formula that
updates on any change on a noncomputed field and one that updates on any change
on a computed field. 1 discuss this in detail later (see Choosing Between ::C and ::N
Fieldsin my Fields: Issues chapter). Suffice it to say for now that a computed field
updates on any change and whenever the record is displayed. You have no option 4
to set the formula update conditions for computed fields.

24 For Beginners

Auto-incrementing Fields (::1 or ::])

If you're on an auto-incrementing field when hitting Shift-F8, option 2 isn't Define
Field Formula. Rather, it's Set Value for Next Created Record. This makes sense
when you think about it.

DEFINE FIELD Options (Shift-F8) 3, 5, 6-9

Here are the two Field Options menus that have these four options:

Options for Alphanumeric and Text Field

1 - Lookup Field List 5 - Range Check
2 - Initial Formula 6 — Validation Time (Edit/Save)
3 - Initial Value 7 - Define Search Field List
4 - Initialize at Create/Save/Change 0 - Exit
Selection: 0
Field Options for Numeric Field
1 - Lookup Field List 6 — Validation Time (Edit/Save)
2 - Initial Formula 7 - Define Search Field List
3 - Initial Value 8 - Keep a Total
4 - Initialize at Create/Save/Change 9 - Remove Last Total
5 - Range Check 0 - Exit
Selection: 0

Option 3: Initial Value
I never use this. It's no different than simply using Initial Formula (option 2) with
initialization (option 4) set to on creation.

Field Option 5: Range Check

This allows you to define the lowest and highest possible value for the field. This
comes in handy when you want to limit the user to, say, 1 through 4 in a particular
G9 field; or A, B, and C in a Ul field. Otherwise a user may enter any number in the
G9 field (0-9), and any character in the Ul field (0-9, A-Z, and punctuation
characters).

Field Option 6: Validation Time

This determines when the Range Check (Option 5) will be examined. You can choose
between it being examined on Save or Edit. Hitting 6 toggles between On Save, On
Edit, or blank. When blank, the Range Check is useless. Otherwise, you're telling
DataPerfect when you want the user to receive the This field value is not allowed
error message: as soon as he leaves the field with the out-of-range data (On Edit), or
as soon as he attempts to save the record with out-of-range data in that field (On
Save).

Field Option 7: Define Search Field List

This is an interesting option, but to understand it you have to first examine
DataPerfect's search facility, which is pretty unintuitive. Suffice it to say here that
when you create a Search Field List for a particular field with option 7, you're telling
DataPerfect that when user issues a Search (F2) on this field , all the other fields on
its Search Field List are to be searched as well.

For Beginners 25

Field Option 8: Keep A Total

This option is offered only for numerical fields. To use it, the panel in which the field
resides must have a link to another panel that contains yet another numerical field.
Links are discussed elsewhere (my Links chapter), but assuming you know what
they are, option 8 allows you to have DataPerfect either Add or Subtract the value in
this field to a designated target field in the linked panel. To define a Keep A Total,
you tell DataPerfect three things, in this order:

° Whether you want this field's value Added to or Subtracted from the
target numerical field.

o What link you want this Keep A Total to use to find the target
numerical field.

° What field in the link's target panel you want to Add this field's value

to, or Subtract it from.
I go over Keep A Total in more detail in my Keep A Total chapter.
Field Option 9: Remove Last Total
If, for some reason, you want to delete the last Keep a Total you defined for this field

(Option 8), use option 9. Be careful. It'll delete that Keep A Total definition without
prompting you.

26 For Beginners

Files and Specifications

Though this chapter should interest experienced DataPerfect application developers,
it should also interest users of other database management systems. It explains the
various files used to run a DataPerfect application, including DataPerfect's two
flavors of runtime executables. Some of the file specifications mentioned at the end
of this chapter aren't found in the DataPerfect manual.

Program Files

To create and run a DataPerfect application, you only need two files:

DP .EXE
DP.SYS

These file are part the Developer version of DataPerfect 2.3. You may, however,
want to distribute your application with a runtime version of DataPerfect. There are
two such versions available. One is the Single User Runtime DataPerfect
(DPDRT.EXE and DRDRT.SYS), which allows only one user to access the same
database at any time, and keeps all users from altering the application itself.

There's also a Network Runtime DataPerfect (DPRUN.EXE and
DPRUN.SYS), which allows up to 9,999 users to access the same database
simultaneously on the same network. Like the full Developer version, it allows
multiple users to even edit the same record simultaneously. Unlike the Developer
version, this version won't allow users to alter the application itself.

Application Files

The .STR File

This is the application’s structure file. You name it when you first create your
application, though you may not supply its filename extension (DataPerfect insists
on .STR). The structure file determines how the application works. It’s what you’re
creating or modifying when you do things in Panel Define mode. It’s the only
essential file of the application. It's all you need to run a DataPerfect application,
besides the DataPerfect program files. If DataPerfect doesn't find the other
application files (.IND, .TXX and data files) upon loading the application, it will
prompt you to create them.

Files and Specifications 27

The .IND File

You have little control over the name assigned to this file. DataPerfect will look at
the name you gave your .STR file and use that, coupled with the .IND extension. This
is the application’s index file. It tells the .STR the location of each record in the
various data files. DataPerfect creates but one index file per application, covering all
the data files. It also sorts the records of the various data files in ways defined by the
developer of the application. For instance, an application might contain a Names
Panel. This panel would have a one-to-one relationship with a data file—probably one
the definer designated to contain Names. The index file for this application would
most likely contain, among its various other indexes, an index that sorts records in
the Name Panel by the Last Name field, and one that sorts those very same records
by the First Name field.

So the index file consists of all the indexes for the application. An index is
a kind of map of a panel’s records. It allows reports to send records in a certain order
to the printer, and lookups to display records in a certain order to the user’s eyes.
Like the index of a book, it’s sorted alphanumerically, but with a twist. Since a
record consists of fields, an index sorts records by a certain field primarily, another
field secondarily, etc.

DataPerfect limits your application’s index file to eight gigabytes.

The .TXX File

Like the index file, you have little control over the name assigned to this file.
DataPerfect will look at the name you gave your .STR file and use that, coupled with
the . TXX extension. The .TXX file holds all data found in an application’s variable-
length text fields. There’s only one .TXX file per application, whether that
application has hundreds of variable-length text fields, or none. A variable-length
text field has the following properties not shared by other DataPerfect fields:

° It may occupy more than one line on the screen

° It allows the user to enter more data than can be seen in its actual
screen display. That is, it scrolls during data entry to accommodate
more and more data. So a variable-length text field that occupies but
three lines on the screen will allow many more lines than that during

data entry.

o Each variable-length text field allows 64,000 characters.

o None of the data entered in a variable-length text field is stored in its
panel’s data file. Rather, it’s stored in a common storage area: the
TXX file.

28 Files and Specifications

The Data Files

Except for a very simple application, an application will have many data files.
Perhaps one for Invoices, one for Transactions, one for Customers, etc. The data file
is the only one of the files I mention here that doesn’t have a hardwired extension.
That is, you, the developer, may choose its complete filename, including its
extension. I discuss strategies for naming data files (and .STR files, for that matter)
in the For Beginners chapter (see Getting Started).

There's a one-to-one correspondence between a panel and a data file. A
DataPerfect application is limited to 99 panels, and therefore 99 data files.

The .TMP Files

Every time you load an application, DataPerfect creates three temporary files with the
extension .TMP. They take on the following patterns, where #### stands for a four-
number string:

DP{I####.TMP
DP { S####.TMP
DP {T####.TMP

Each network user loading that application gets a different trio of temporary
files, all stored in the directory where DataPerfect was loaded, or where directed by
the

/d=[directory]

startup option. All the temporary files in a given trio share the same four-number
string. Each user gets a different randomly generated four-number string. Needless
to say, you, the developer, have no control over these filenames.

DP{I#### . TMP is a temporary index file. It has the same format as the .IND
file. DataPerfect uses this only to hold the index generated for a Two Level Report
when that report needs a generated index.

DP{S####. TMP is a temporary scratch file. It’s just an output stream, so has
no specified format. DataPerfect uses it to hold report output information during its
label routine and to facilitate the Conditional Page Eject feature.

DP{T####.TMP is a temporary text file. It has the same format as the .TXX
file and .STR file. DataPerfect uses it for many purposes, holding all kinds of
information. Here’s a partial list:

Fast lookup information

Formula cascade information

Report variable values

Copied data for copy/paste operations

Files and Specifications 29

Upon exiting, DataPerfect always deletes the temporary files unless the
system crashes. However, if DataPerfect aborts due to some error, it still deletes the
temporary files.

Temporary files can accumulate on networks when the temporary files are
assigned to a shared drive. This is a poor practice. Instead of allowing that to happen,
if you’re running an application on a network, use the /d start-up option to direct the
temporary files to a local drive. This also improves performance.

Specifications

Here's a table outlining DataPerfect's various specifications:

DataPerfect Specifications

Number Size

.STR file 1 per application No limit determined yet

IND file 1 per application 8 gigabytes

.TXX file 1 per application 534,773,728 bytes

Panels 99 per application 2 billion bytes each

Data Files | 99 per application 2 billion bytes each

Fields 125 per panel (or Numeric: 14 digits
data file) Fixed-length: 78 characters

Variable-length: 64k characters

Records 16 million per panel

Indexes 200 per panel (or 2 billion bytes
data file)

Open Browse: 19

Files Create/Edit: 14

Reports 169 per application 64,000 bytes

Report 255 per report
Variables

Users on 9,999 editing same
Network | record

30 Files and Specifications

Fields: Introduction

Most of this chapter discusses pretty fundamental stuff. However, in what appear to
be very basic sections, I included a few points that the experienced DataPerfect
application developer should find interesting. I suggest perusing the entire chapter,
experienced or not.

Field Fundamentals

A field is the most elemental unit of data organization in a database. Data is
essentially organized in a database via three entities: the field, the record, and the data
file. In DataPerfect, of course, there's a one-to-one relationship between a data file
and a panel. A panel (or data file) is a group of records (Students), and a record is a
group of fields (Last Name, First Name, Data of Birth, etc.). In some database
management systems, you'll see data files referred to as tables, records as rows, and
fields as columns.

DataPerfect allows 125 fields per panel (or data file), providing a structure for
data entry. Each field has a format (numerical, alphanumeric, date, etc.) which
determines what sort of data it will accept.

When you, the definer, create a field, DataPerfect automatically gives it afield
code which references that field's panel number and field number for referencing it
in reports and formulas. For instance, if you see

P2F12

in a formula, that's the field code for field 12 in panel 2. You have no control over
what a field's field number will be, and therefore its field code. DataPerfect always
assigns a new field the lowest possible field number available for that panel, so
deleting a field allows its number (and, of course, its field code) to be reused when
creating another field later.

With the exception of the computed field (explained later), all DataPerfect
fields are real. A real field is one that stores its data somewhere in the application's
data files. A computed field's data, however, exists nowhere else but on the screen.
Further, with the exception of the variable-length text field (also explained later), real
fields store their data in their panel's data file. Variable-length text fields, however,
store their data in a different file: the .TXX file. That file holds all data from all
variable-length text fields in all panels in a single application.

Fields: Introduction 31

Field Codes and Field Names

Don't confuse a field's field code with its field name. A field may or may not have a
field name. This is up to the definer. When creating a field, DataPerfect always asks
you for its format and name. Though you must give it a format, you need not give it
aname. Further, if you refrain from giving a field a name during its creation, you can
return later to give it a name (or change its name) in Define Panel mode. To do that,
all you have to do is cursor to the field and hit F6. There you'll be offered another
chance at editing its format and name.

Differences between field codes and field names arise in different areas.
During a Quick Merge report (Ctrl-F9 while in Browse mode), DataPerfect will
recognize field names. For each field you chose for the Quick Merge report creation
process, DataPerfect will show you that field's field name and ask you if you want
that name in the resulting merge report. Also, when selecting a field with F4 in a
Specify Formula screen (while creating or editing a formula, either for a panel field,
a Report Variable, or a Search Condition), the resulting code that DataPerfect places
on the Specify Formula screen is that field's field code, not field name. But when the
cursor rests on a selected field in a Specify Formula screen, you can see its field name
(if it has one) on the bottom line of the Help window in the upper third of the screen.

To facilitate debugging and future development, name fields strategically.
Consider including field numbers in names, as well as detailed descriptions. For
example, in Define Panel mode, with the cursor on field 21 in Panel 3, I would
usually give that field a name like the following:

F21 - Last Name in Customer Info Panel

Field Types

Alphanumeric Fields: A, U, and Variable-Length Text

A and U Fields

These accept and hold any ASCII characters. A and U fields are essentially the same,
except that a U field converts all data entry to uppercase. A and U fields are fixed-
length fields with a 78-character limit. An A23 or U23 field, for instance, allows data
entry of up to 23 characters, including spaces. You can have an A78 field, but an A79
field is illegal. The DataPerfect panel allows up to 78 columns, thus the fixed-length
alphanumeric field format limit of 78 characters.

Variable-Length Text Fields

These are important variations of A and U fields. A Variable-Length Text field
allows more than one line to display in that field, and, as with a traditional word
processor, data entry is wrapped automatically with soft returns. The Variable-Length
Text field format consists of either a double-A entry, like A23A10, or a combination
of A and U, like U23A10. Both of these examples produce a field that displays 23
columns and 10 rows of data, but the second one converts all characters to uppercase

32 Fields: Introduction

as they're typed. The second component is always an A, whereas the first may be A
or U.

A Variable-Length Text field allows up to 64,000 characters of data entry,
and such data can occupy more space than is displayed. That is, the user can enter
more than 10 lines of data in an A23A10 or U23A10 field because DataPerfect will
scroll the field allowing for continuous data entry until the 64k limit is reached. In
Browse mode, if not all the text in the field can be displayed in the given Variable-
Length Text field format, DataPerfect displays an downward pointing arrowhead in
the lower right corner of the text field, indicating additional, yet undisplayed, text is
held in this field. You can view the additional text by scrolling with the Arrow keys
while in the Variable-Length Text field in Browse, Edit, or Create mode. The display
limit of a Variable-Length Text field is 78 columns and 15 rows, so the largest format
allowed would be either A78A15 or U78A15.

Unlike fixed-length alphanumeric fields (A and U), the Variable-Length Text
field not only accepts letters and numbers during data entry, but also bolding (F6),
underlining (F8), and carriage returns. Also unlike fixed-length alphanumeric fields,
Variable-Length Text field data isn't stored in its panel's data file. Rather, it's stored
in that panel's .TXX file. Since there's only one .TXX file, all Variable-Length Text
field data from all panels in a single application is found in that single .TXX file.
Though the .TXX file does have a size limit, it's pretty large: 534,773,728 bytes.

In an Edit Report Form screen, if the second A component of a Variable-
Length Text field format is zero, like A23A0 or U23A0, the entire field is printed.
Changing the zero to a number specifies how many lines should be printed. For
instance, a report field with format A23AS prints five lines of the field. Changing the
report field format's first component determines how wide the output will be. For
instance, changing A23A0 to A20AO prints 20 characters per line. However, this
doesn't result in truncating the data. It essentially changes the margins of that output.
See Variable-Length Text Fields in Reports in my Reports: Fields chapter for
more details on this.

Numeric Fields: N, G, H, F, D, and T

N Fields
These are left-aligned numeric fields, and shouldn't be used in formula arithmetic
calculations. Actually, you can use them in formula arithmetic calculations as long
as none of the N fields in the formula have decimal points, and the formula itself isn't
assigned to an N field that has a decimal point. If this confuses you, just don't put N
fields in formula arithmetic calculations.

N fields take 9s to stand for digits in the format. For instance,

N9999
will take numbers containing from one to four digits. However, please note that,

though you can create an N field with a minus sign, the value it holds isn't really a
negative number. For instance,

Fields: Introduction 33

N-9999

will always display the negative sign. When the user enters, say, 56 in that field, the
field will display and store the following:

-5600

If you create a second N-9999 with a field formula that adds 1 to the first N-9999
field, the second N-9999 field will display and store

-5601

which is not the equal to

-5600 + 1

Also, if a third field is formatted G-9999 (see the next section for a discussion of G
fields) instead of N-9999, and its field formula also adds 1 to the value found in the
first N-9999 field, it will also display and store

-5601

Again, this is not equal to

-5600 + 1

All this results from the fact that N fields aren't really supposed to be used in
arithmetic formulas. Think of them as A or U fields that take numerical characters.

G and H Fields
These are decimal (right-aligned) numeric fields, and can be freely used in formula
arithmetic calculations. When its value is zero, the G field displays and stores zeros,
whereas the H field displays and stores nothing (a blank); otherwise, these two field
types are identical.

Like the N field, the G and H fields use 9s as placeholders for digits. But they
can also use Zs for leading digits you don't want to display when zero. So, if the user
enters, say, 56 in a G9999 field, DataPerfect displays and stores

0056

But if the user entered 56 in a GZZZ9 field, DataPerfect displays (as right-aligned)
and stores

56
Further, you can insert a minus sign to the left of the leftmost digit to allow

the user to enter either positive or negative numbers. So a G-9999 field allows for
numbers from -9999 to 9999. Unlike the N-9999 field, however, the leftmost minus

34 Fields: Introduction

sign in a G field only displays and stores if the user actually enters a negative
number.
Now, note also the following possible field formats:

G9-9999
G99-999
G999-99

I don't recommend them as formats. They have odd consequences. No matter what
the user enters in those fields, DataPerfect will understand the number to be negative.
That will be true whether the user entered a negative sign or not. If the user enters,
say, 567 in each of the above three fields, DataPerfect will display and store the
following numbers respectively:

0-0567
00-567
005-67

But DataPerfect will consider the numerical value of each of the above, for purposes
of calculation when accessed by, say, field formulas,

-00567

This is very unintuitive, so don't put the negative sign anywhere but to the left of the
leftmost digit.
All the above discussion of G fields also applies to H fields.

F Fields

These are floating decimal fields, available only in reports (that is, you can't this
format when formatting a field in a panel). I discuss them in detail in the F Fields
section of my Reports: Fields chapter.

D Fields

These are date fields, which are special numerical fields. Their format always begins
with a D, followed by one of many possible combinations. Let's say the value ina D
field is January 9, 1996. Here are various ways a D field can display that value,
depending on its format:

Fields: Introduction 35

January 9, 1996

Format Display
1 |[D99/99/99 01/09/96

2 ||D99/99/9999 01/09/1996

3|(pz9/29/99 1/ 9/96

4 |[Dz29/29/9999 1/ 9/1996

5 [|D99/99 01/09

6 ||D99 01

7 ||DDMY99/99/99 [09/01/96

8 ||DYMDS9/99/99 [96/01/09

9 |[DYMD99/99 96/01

10 [[DYMDO99 96

For data entry purposes, you're probably going to choose one of the first four
formats above. The other six formats are usually used to display or print the contents
found in another field that's probably formatted like one of the first four. I suggest,
however, you shy away from using the Z place holder in DataPerfect date fields.
Regarding fields into which the user will be entering data, the Z place holder is very
unintuitive for months prior to October (the single-digit months). Even though the
date field is formatted DZ9/99/99, the user still must do something with the first
character in the field (skip it with the cursor key, or enter 0). This easily confuses the
user.

For computed fields, though, you might prefer the DZ9/99/99::C format.
Some like the DZ9/79/99::C format, which I think looks terrible for days 1 through
9. For the sake of consistency, I format even my computed date fields without Z place
holders. I want the user to get used to entering leading zeros for single-digit months
and days, so that's all I want them to see on the screen or reports.

Also note the order of displayed date field parts can be changed, as
demonstrated in the last four formats in the above table. And lastly, formats 5, 9, and
10 also demonstrate how DataPerfect lets you display only selected parts of the date.

A few comments about leaving parts of a date out of a date format, as in 5,
9, and 10. First, the way you do this is to make sure the part you want left out is at the
end of the format's date part ordering. So to leave out the year, no special ordering
need be added (example 5), since the year is the last part of this example, by default.
But to get rid of the day in example 9, I reorder things to make the day last in that
order. To get rid of both the month and the day in example 10, I reorder that as well,
putting these parts at the end of that order.

Second, you must realize that DataPerfect always stores a complete date for
any value saved in a date field, even if that date field's format has parts missing.
DataPerfect stores 1904 for a missing year, January for a missing month, and the first
of the month for a missing day. So if you enter 05 into a D99 field, DataPerfect will
store 05/01/1904, even though it displays 05. This holds true for date fields with parts

36 Fields: Introduction

missing unless the user enters a date in a date field by hitting F6 while on that field
in Edit or Create mode. DataPerfect assigns a special function to the F6 key when
hitting it while sitting on a date field during Create or Edit modes: it inserts today's
date in that field as long as no field formula is attached to the field (otherwise, it
updates the date field using that field formula). So hitting F6 on a date field with
parts missing will store today's date and not follow the rules I just outlined.

Date fields aren't special numerical fields just because of their formatting
capabilities. They're also special numerical fields because they allow date fields to
participate in arithmetic calculations. I get more into this later, but suffice it to say
here that if P1F1 and P1F2 are date fields where P1F1 holds 01/18/96 and P1F2
holds 01/21/96, then the formula

P1F2 - P1F1

yields
3

Date fields actually store the number of days since 03/01/1900, while displaying the
actual date intended. Again, I explain in detail how all this works later.

This entire discussion about date fields has assumed the date default you have
set for your DataPerfect application is U.S. format (month/day/year). Whatever you
have the default set for, that's what will display when no order indicators are present
in the format. The default is controlled in the Format Defaults menu (Shift-F9, 2):

Format Default
1 - Date Order: 1-DMY 2-MYD 3-YDM 4-DYM 5-YMD 6-MDY
2 - Time Order: 1-SMH 2-MHS 3-HSM 4-SHM 5-HMS 6-MSH
3 - Decimal Point Character: .

4

5

— Thousands Separator Character:
— Month Abbreviations
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Selection: 0

Note item 1 above. You may choose any of the six Date Orders you see there. The
sixth, of course, is U.S. format.

T Fields

These are time fields. Like date fields, they're special numerical fields that can be
used in arithmetic formulas. The time field can be thought to hold a quantity of time
(in hours, minutes, and seconds), or a specific time on the military clock. They're
formatted like this:

T99:99:99

By default, that's understood to be in U.S. format:

hours:minutes:seconds

As with other numerical fields, you can suppress the display of leading zeros with a
Z:

Fields: Introduction 37

T29:29:29

Also like the date field, the time field can be formatted to change its default
ordering of components, including amputated permutations:

02:06:15
Format Display Quantity Meaning
T99:99:99 02:06:15 | 2 hours, 6 minutes, 15 seconds
T29:29:729 2: 6:15 | 2 hours, 6 minutes, 15 seconds

TSMH99:99:99 | 15:06:02 | 15 seconds, 6 minutes, 2 hours

TMSH 06:15:02 | 6 minutes, 15 seconds, 2 hours
T99 02 2 hours

T99:99 02:06 2 hours, 6 minutes

TSMH99 15 15 seconds

TMSHZ9 6 6 minutes

Again like the date field, subtract one time field's value from another, and you
get the difference. Time fields actually store the number of seconds since midnight.
I get much more into time fields later.

Display Mode Indicators

Computed fields (::C)

The computed field has a few distinctive characteristics. It's basically a screen entity,
not existing in the data file at all. It derives its value only from its field formula
(Shift-F8, 2), ignoring any attempt by the user to Tab to it or enter data in it. Its field
formula will recalculate as soon as the panel is displayed, every time a change is
made in any field in its panel, and whenever a field's formula or report accesses it.
It's very similar to a Non-updatable field (::N), but different in important respects
you'll see next. In other database management systems the computed field is
frequently called a display field.

Non-updatable fields (::N)

Like the computed field, the Non-updatable field derives its value only from its field
formula (Shift-F8, 1 or Shift-F8, 2), ignoring any attempt by the user to Tab to it or
enter data in it. Unlike the computed field, the Non-updatable field's data is written
to the data file (stored in its record). Also unlike the computed field, it can be used
in indexes and link field lists (this is because its value is written to its panel's data
file). Also unlike the computed field, merely displaying its panel doesn't update it.
A Non-updatable field updates within definer-determined parameters, which can only

38 Fields: Introduction

come into play when in Edit or Create mode; whereas computed fields update even
when just in Browse mode.

Auto-Enter fields (::E)

This is straightforward. When a field is formatted Auto-Enter, the user's cursor will
automatically exit that field (as though they hit Tab) after filling that field with its
maximum number of characters.

Hidden fields (::H)
These have all the same characteristics as Non-Updatable fields, with one added
characteristic: they're hidden from the user.

Auto-Incrementing fields (::1, ::J)
These modifiers can only be placed on G, H, or N fields. It results in that field, in
Create mode, incrementing to the next number up. You setits Value for Next Created
Record with Shift-F8, 2. So if you place, say, a G9999::1 or G9999::] field in a panel,
each time the user creates a record, that field will be assigned the next number that
field can take. If that field's Value for Next Created Record was set at 0001, then the
first record created gets a 0001 in that field, the second gets a 0002, etc.

Each of these two modifiers updates as soon as the user hits F9 (Create). They
differ in two significant ways that are exposed in an application that's running on a
network. If two different users, each at a different workstation on a network, have the
same application loaded and hit F9, the following happens:

I field ::d field
Users' Actions User | User | User1 | User2
1 2
Both users hit F9 in Create. 001 001 001 002
User 1 hits F10. Then User 2 does. 001 002 001 002

Here's what's happening above. The field in question is initially set by the
definer to update to 001 as its Value for Next Created Record. Two cases are shown:
one where the field in question is a ::I field, and one where it's a ::J field. Note that
both cases yield the same final result (bottom row): User 1 gets a 001 in that field and
User 2 a 002. But the path the ::Ifield takes to that result is different than the path the
::J field takes. Note User 2's shaded cells. In the ::1 case, User 2 temporarily had 001
in that field, but in the ::J case he always had 002.

This becomes important later, as we'll see. Suffice it to say that the difference
between these two modifiers is that the ::I modifier gives all users in the same Create
session the same number, but reevaluates that choice on Save, making sure it's
unique. If itisn't unique at Save, it's incremented again. That's what happened to User
2 in the ::I field case. DataPerfect saw that another user saved a record in that panel
with 001 in that field (User 1), so it incremented it further. A ::J field, on the other
hand, assigns a unique number to its field on Create and doesn't reevaluate that value

Fields: Introduction 39

on Save. So if ten users all hit F9 at the same time in that panel (ten different
workstations), they'd all get a different number in that field immediately if that field
is a ::J field. Thus there's no need to reevaluate the field's value on Save.

The difference between the ::I and ::J fields has consequences when the user
decides to Cancel (F1) a Create operation before Saving it. If the auto-incrementing
field in question is an ::I field, the number the user saw in that field just before hitting
F1 will be available for the next created record. If the auto-incrementing field is a ::J
field, that number is gone.

The ::J modifier was introduced late in DataPerfect's evolution when it was
discovered developers were making improper use of the data link. I discuss this later,
in A Caveat Regarding Data Links in my Links chapter. Also, in The Recursive
Panel Link of that same chapter, I discuss reasons for avoiding Auto-Incrementing
fields altogether, in favor of a different scheme.

A final note. Many developers think they need to protect an
auto-incrementing field from the user accidentally editing its value. This isn't the
case. Even if you allow the user's cursor to land on that field (that is, you do not make
it a G999::IN field or a G999::IN field), DataPerfect won't allow the user to alter its
value.

Must Be Updated fields (::M)

If a field has the ::M modifier, and that field is empty (blank if a alphanumerical
field, or zero if numerical), DataPerfect won't let you save the record. For instance,
if a Client Panel record has a Social Security Number field formatted N999-99-
9999::M, DataPerfect won't let you save a record in that panel with a 000-00-000 in
that field. This modifier cannot be applied to a hidden field.

40 Fields: Introduction

Fields: Issues

In this chapter, I discuss what I consider to be interesting issues that revolve around
the Field. Though I primarily target the experienced DataPerfect application
developer here, the beginner should as least peruse this chapter.

Choosing Between ::C and ::N Fields

Do You Need the Field to Be Real?

A field is real just in case DataPerfect stores its data in its panel's data file. All
DataPerfect fields are real except computed fields (::C) and panel links. (Don't forget
a panel link, unlike a data link, is a field. DataPerfect assigns it a field number.)

Whether or not a field is real has significant consequences. If it is not real, the
following limitations arise:

° The field can't be included in an index.
° The field can't receive or send values in a Keep A Total operation.

So, if you must use the field in an Index Field List or have it send or receive
totals with DataPerfect's Keep A Total facility, you're committed to making it real,
thus shunning the computed field. This issue easily arises in a two-panel hierarchy
like the one that follows.

Suppose your application has a Customer Panel and a Transaction Panel, the
latter being a subpanel of the former:

Customer Panel

Transaction Panel

Though the Customer Panel might have a Customer Number field and an
index that sorts on the Customer Number field, you'll probably want that panel to
also have an index sort on the Last Name field. Fine. Now what about the
Transaction Panel?

Assuming you want a Last Name field in the Transaction Panel, do you want
the Last Name field to be part of an index in that panel? If you want to perform
Transaction Panel lookups sorted on the Last Name field, you'll have to place the
Last Name field in a Transaction Panel index. The Last Name field, then, would have
to be real, and thus not a computed field. Note, however, that though this situation
requires the Last Name field be real, it's not because the Last Name field is on a

Fields: Issues 41

lookup field list. Rather, it must be real because the lookup must be tied to an index
that includes the Last Name field on its field list. DataPerfect allows computed fields
in lookup field lists—it just banishes them from index field lists.

Note: DataPerfectbegan allowing computed fields
on lookup field lists with version 2.2, and
began allowing computed fields on link field
lists with its second official release of
version 2.3 (September 1993).

Issues Concerning Totaling

As a general rule, you can speed totalling operations by favoring computed fields
over non-updatable fields in panels that receive the totals. In a panel that receives
totals, replacing twenty computed fields with twenty non-updatable fields that update
on any change, dramatically slows the totalling. This is because each totalling event
will trigger the twenty non-updatable fields to update. However, if these twenty fields
were computed fields, the same totalling events wouldn't trigger them to update
because computed fields update only when they're displayed or directly accessed by
a formula. The speed difference here is considerable, even with a fast computer.
Consider the following two-panel hierarchy again:

Customer Panel

Transaction Panel

Let's say you'd like some fields in the Customer Panel to show the Date of the First
Transaction and the Date of the Last Transaction. These fields will typically be either
non-updatable fields that update on any change, or computed fields:

CUSTOMER PANEL

ID No.

Date of First Transaction: :
Date of Last Transaction:

Given the existence of the Balance field, the above panel obviously receives
totalling data from a Keep A Total taking place in at least one of its subpanels. Every
time it receives totalling data from a subpanel, it goes into Edit mode temporarily.
This causes all its real (noncomputed) fields that update on any change to update, but
leaves all its computed fields alone. So, if the two date fields you see above are non-
updatable fields that update on any change, every Transaction Panel record that
triggers the Keep A Total facility to carry totalling data to the Customer Panel will
also cause those two fields to update. But if those two fields are computed fields, the

42 Fields: Issues

Keep A Total facility won't cause them to update. The slowdown I'm referring to here
is the time it takes to save a record in the Transaction Panel.

With only two such fields in the Customer Panel, you probably won't see
much of a speed difference between formatting them as computed versus non-
updatable. But if you have many such non-updatable fields that update on any change
in the Customer Panel, Transaction Panel record Saves will take much longer than
if those non-updatable fields were computed instead. The difference is very
noticeable.

Keeping Subpanel Data Current
This issue became almost moot starting with the second release (September 1993) of

DataPerfect 2.3. Let's see the fields in both the Customer and Transaction Panels (I'll
take out the Customer Panel date fields because they're not important for this point):

CUSTOMER PANEL

ID No. Last Name First Name Balance

To Transaction Panel ==

TRANSACTION PANEL

ID No. Last Name First Name

Date Description

Note the three fields common to both panels: ID Number, Last Name, and
First Name. If this application is defined so the user always enters the Transaction
Panel via the panel link in the Customer Panel, there's no reason to allow the cursor
to ever land on these three common fields in the Transaction Panel. So these three
Transaction Panel fields will be either computed fields or non-updatable fields.

The ID Number field value will never change over time for the same
Customer, and it must be a real field (not computed) so that it can be used in the
index tied to the Customer Panel panel link. But the values in one or both of the
Name fields could change over time for the same Customer. The Customer may
marry and change her Last Name, for instance. Any change in the Last Name or First
Name fields you make in that Customer's record in the Customer Panel should
somehow reflect itself in that Customer's subrecords in the Transaction Panel.

Fields: Issues 43

Beginning application developers inevitably stumble here. There's no
essential reason for the Last Name and First Name fields to be in the Transaction
Panel, other than that it's nice to see them there. In this scheme, the user always picks
the Customer in the Customer Panel before entering the Transaction Panel, so they
already know whose Transaction Panel record is on the screen without having to see
Name fields in that Transaction Panel. And the definer can position each panel so
that the user always sees the Customer Panel record while working on the
Transaction Panel record. But there are other reasons to have the Name fields in the
subpanel, other than screen aesthetics and functionality. For one, it'll make report
defining much easier. But let's go back to how beginning developers typically
stumble here.

The mistake frequently made at this stage is to format the Name fields in the
Transaction Panel as non-updatable and then put the Customer Panel's Name fields
on the Customer Panel's panel link field list. This works fine as long as the Customer
never changes either of his names. On this scheme, DataPerfect will insert the
appropriate values in the Names fields in the Transaction Panel when the user
penetrates the panel link, and in Browse mode, it will keep the proper Transaction
Panel records tied to the appropriate Customer in the Customer Panel.

But as soon as the user changes the value found in one of the Name fields in
the Customer Panel, and then attempts to penetrate the panel link to Browse that
Customer's Transaction Panel records, they'll see this message:

No records are found in this subset. If you want to add records,
Press Create Record in Linked Panel (F5). Otherwise, you will
Remain in this panel.

NOTE: You will get this message again if you press F5 and you are
Not authorized to create a record in the linked panel.

Why is DataPerfect spitting out this message when it didn't before the user changed
the value in one of the Name fields? Well, because the definer put those Name fields
on the field list of the Customer Panel's panel link, when the user attempt to penetrate
that link, DataPerfect is attempts to find records in the Transaction Panel with the
current values in the ID Number, Last Name, and First Name fields. But they don't
exist.

There are three typical ways to handle this, with pros and cons for each:

Backward-Referring Computed Fields
Here you take the Name fields off the Customer Panel panel link field list, and then
format the Name fields in the Transaction Panel as computed fields with field
formulas that take the value found in the matching fields in the Customer Panel
parent record. This requires there be a link in the Transaction Panel to accomplish the
writing of the field formulas for these two fields.

On this scheme, you put in a hidden panel link in the Transaction Panel with
the following characteristics:

Target: Customer Panel
Index: ID Number, Last Name, First Name

44 Fields: Issues

Field List:

ID Number

Status: Hidden

That panel link takes the user from any Transaction Panel record to that record's
parent in the Customer Panel.
Here's what we have so far in our two panels:

Customer Panel fields
Field Code | Field Name Field Format
P1F1 ID Number G99999::J0
P1F2 Last Name Al5
P1F3 First Name AlS5
P1F4 Balance G272,2729.99::N
P1F5 Panel link to Displayed
Transaction Panel
Transaction Panel fields
Field Field Name Field Format
Code
P2F1 ID Number G99999::N
P2F2 Last Name Al5::C
P2F3 First Name Al5::C
P2F4 Date D99/99/9999
P2F5 Description A20
P2F6 Charge G%Z2,229.99
P1F7 Amount G%Z2,229.99
P2F8 Adjustment GZ,72729.99
P2F9 Panel link to Hidden
Customer Panel

When defining the field formula for the Last Name field in the Transaction
Panel, you use that panel's hidden panel link. The Last Name field in the Transaction
Panel would end up with this formula:

P2FO9P1F2

The Transaction Panel's First Name field would end up with this formula:

P2F9P1F3

Fields: Issues 45

The Customer Panel panel link that takes the user to the Transaction Panel
will have only the ID Number field on its field list, not the Last Name or First Name
fields. Since a Customer's ID Number will never change for that Customer, the
linkage now won't break when they change their name. And any change to their name
will always be reflected in their Transaction Panel records because the computed
Names fields will update every time that panel displays.

The downside to this approach is that the Names fields aren't real, and
therefore can't be used in an index. If you need an index in that panel with one or
both of these fields in its index field list, you'll need to use the Cascade Update
approach, discussed next.

Cascade Update

Use this approach if you need the fields like the Name fields in the Transaction Panel
to update whenever their parent record in the Customer Panel experiences changes
in one of the two Name fields. To make sure changes to the value found in a field in
a parent panel are reflected in all its linked records in one or more of its subpanels
(when the matching fields to update in its subrecords are real fields), make sure that,
for each subpanel to receive the automatic updates of these fields, the source panel
has a panel link with the following three characteristics:

° It has the fields in question on its link field list.
° It has Cascade Update on.

To turn a link's Cascade Update facility on, cursor to that link and Shift-F8,
7. Note that Shift-F8, 7 toggles between Cascade off (the default), Cascade Update
on, and Cascade Update/Delete on. Be careful not to turn Cascade Update/Delete on
when you only want Cascade Update on.

When a link has Cascade Update turned on, that link will make sure any
changes to values in fields on its field list will cascade to all subrecords linked to that
parent record via that link. So change the Last Name from Adams to Smith, and a link
with Cascade Update turned on will make sure all subrecords in the Transaction
Panel linked that Customer will have their Last Name field update from Adams to
Smith.

Don't get too excited about using Cascade Update. It has adownside that must
be taken seriously on large databases. If a parent record has hundreds, or worse,
thousands of subrecords to which to cascade a field list change via a Cascade Update
panel link, the user will find that changing any of the field list fields in question will
cause a serious delay in processing, with Please Wait appearing on the screen. Until
Cascade Update finishes updating dependent records, it will keep the current user
from using the keyboard, and lock out all other network users from saving any
records in that database!

This can be a real pain. With large databases, use backward-referring
computed fields unless you need these fields in an index. If you need them in an
index, and you expect their panel's data file may eventually hold many many records,
I suggest considering the next solution.

46 Fields: Issues

Backward-Referring Non-Updatable Fields

This method can be used only if supplemented with a report. It involves formatting
the fields in question as non-updatable instead of computed, using the same formulas
used in the computed field approach, setting them to update on any change. But that's
not enough, since such fields will only update their values when in Create or Edit
mode. Putting the parent record in Create or Edit mode won't have any impact on
these fields. To get around this, you can create a report that puts all records in this
panel in Edit mode. A simple report like this would be one that just places a value
(any value at all) in one of the non-updatable fields that update on any change. That
will trigger all such fields in that panel to update. Don't worry what value you have
the report put in that field—as long as it updates on any change, its field formula will
override what the report puts in there.

But suppose the user only changed one or two names in a database of a few
thousand Customers. You don't want to have this report go through all the records in
the Transaction Panel, as opposed to just those linked to Customers with name
changes. To show how to optimize this, let's use our Customer-Transaction Panel
example again. For each of our Name fields, we'll create a hidden field with the same
format in the same panel, like this:

CUSTOMER PANEL

To Transaction Panel i

Those two fields at the top are hidden versions of the Last and First Name fields
below them. They update to the values found in their matching fields on record
creation (not on any change).

Now put in a hidden G9 field in the Customer Panel, such that it updates on
any change to 1 if the value of either of the Name fields fails to be identical to that
found in its matching field. If the Last Name and First Name A15 fields are still P1F2
and P1F3, respectively, and the two new hidden A15 fields are P1F6 and P1F7
(matching the Last and First Name fields, respectively), then the formula for the new
hidden G9 field would be something like this:

if P1lF2"%%"=P1lF6"%%" or P1F3"%%"=P1lF7"%%" then O
else 1 endif

The above formula tests P1F2 and P1F6 for a perfect match, and tests P1F3
and P1F7 for a perfect match, and updates to O if either isn't; otherwise it updates to
1. Read Perfect Matches and the Identity Operatorin my Formulas chapter to see
why this formula will not work:

if P1F2=P1F6 or P1lF3=P1F7 then 0
else 1 endif

Fields: Issues 47

Now that we have a G9::H field that updates on any change to 1 if we have
a mismatch between the Last Name field and its matching A15::H field, or between
the First Name field and its matching A15::H field (otherwise this G9::H field update
to 0), we create an Exception List Index that holds all and only those Customer Panel
records that have a 1 in that G9::H field. That index, then, will hold all and only
Customer Panel records that have mismatches between the fields in question. See
Exception Lists in my Indexes chapter for more Exception List Indexes.

Next, we create a report that runs on the new Exception List Index. That is,
it sees all and only Customer Panel records that have mismatches between the fields
in question. For each such record, it takes the values found in the Last Name and
First Name fields and puts them in their matching A15:H fields, and then puts them
in the Last Name and First Name fields in all its subrecords in the Transaction Panel.
The first step (stuffing the A15::H fields) causes the G9::H field to update back from
1 to 0, effectively taking that record out of the Exception List Index on which this
report is running. The second step, of course, updates that Customer's Name fields
in his subrecords in the Transaction Panel.

Here's what such a report would look like:

Based on Exception List Index
FIRST PAGE HEADER =

——Empty-— Main Report:

OTHER PAGE HEADER Customer Panel

——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BODY —
——————————————— Store Value in Report Variable 1 ————————————————————— Store Name fields
777777777777777 Store Value in Report Variable 2 ---------—---—--——-——— |RV1 and RV2.
777777777777777 Store Report Variable 1 in Field 6 -----------------—— |Put those values in
——————————————— Store Report Variable 2 in Field 7 ------------------- |Al5::H fields.

SUBREPORT LINK/PANEL: 5 2 —
FIRST PAGE HEADER -

——Empty—- Subreport:

OTHER PAGE HEADER Transaction Panel

——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BODY- —
777777777777777 Store Report Variable 1 in Field 2 ——————————————————— Update the Trans
777777777777777 Store Report Variable 2 in Field 3 —-—————————-—-—-———~ Panel records with

new values.

TWO-LEVEL FOOTER -
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF SUBREPORT

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Note that in the above report, we really don't need to stuff the Transaction
Panel subrecords with Report Variables 1 and 2. All we need to do in the subreport
is stuff anything in a field in that panel that updates on any change. That will cause
all fields in that panel that update on any change to update, independently of what
was stuffed in the field with the Report Variable. Such fields that qualify here are the
Last Name and First Name fields.

48 Fields: Issues

Computed Fields and DataPerfect's Work Space

You need to be aware of another issue concerning computed fields: DataPerfect's
work space. When DataPerfect first loads, it allocates a finite amount of memory for
its work space. This is where DataPerfect computes your field formulas, remembers
the panel you just left when you landed in the current panel, etc. All computed fields
in the current panel are held in this work space until you leave that panel. So
computed fields, by their nature of living only in the current display, put demands on
the work space.

When DataPerfect's work space is taxed beyond its limits, it issues the Error
104 message. To work around this, DataPerfect has a startup switch (/L) that
increases its work space. It accomplishes this by decreasing the number of panels the
work space will remember from seven to three. This, of course, could cause a minor
performance hit during data entry, by causing DataPerfect to access the disk more
often, looking for panels accessed by field formulas in your current panel.

Though computed fields take up a lot of DataPerfect's work space, the most
common cause of an Error 104 isn't the computed field per se. Rather, it's a computed
field whose field formula accesses yet another computed field, even if both fields are
in the same panel. This is probably the greatest burden on DataPerfect's work space.
Make sure to rewrite any such formula from scratch so that it doesn't access another
computed field.

One other note about DataPerfect work space. You might have noticed your
application ran without Error 104 under DataPerfect 2.3's initial release (Feb 1993),
but ever since upgrading to DataPerfect 2.3 Sep 1993 or later, you got Error 104
frequently, even when using the /L switch. This is because some of the features
introduced by the September 1993 release caused a decrease in the available work
space. These features include the User ID Panel facility and its related
USER.FIELD.[n] function. Don't expect this to change with newer versions. Start
optimizing your applications right now by looking for computed fields that access
other computed fields, rewriting their field formulas.

Choosing Between G Fields and N Fields

Unless you have an overriding reason to use an N field, use a G field for numerical
data. As noted earlier, you should format a numerical field G if the field is to be used
in a formula. Plan ahead. You might need to access this numerical field with a
formula later.

The main consideration that should lead you to favor the N field over the G
field is when this field is a data entry field into which entering data would be
unintuitive when right-aligned. But if this is a non-updatable or hidden field, don't
use the N format unless you have a good reason to do so.

Another consideration. Hidden flags should be numerical fields (preferably
G fields, of course) unless other considerations prevent this. Such flags would be, for
instance, fields that are used in Exception List Indexes. You may need to use such
fields for totalling later, and you'll be out of luck if you formatted them alphanumeric.

Fields: Issues 49

For instance, my application's Transaction Panel might have an Exception List Index
that tracks payments, doing this by using a hidden G9 field as the sole occupant of
the Exception List. I may later decide that I want the total number of such payments
per account to be displayed in the Account Panel. This is a relatively painless change
if the hidden Exception List field is numerical. Not so if it's alphanumeric.

The H Field

The H field format isn't used enough by DataPerfect developers. It's essentially G
format that doesn't display zeros or masks when the field is blank. Though formats
GZ777, 72777, and HZZZ79 are, for all intents and purposes, the same (they all
display the same values in all cases), differences arise when masks appear. Consider
the typical phone number format: (999)999-9999.

G and H field formats are lousy for phone number fields in panels. Entering
numbers into a right-aligned field is unintuitive. Such fields are properly formatted
as N fields:

N(999)999-9999

Such a field could be formatted U13, but that format requires the user insert the
masks himself.

So we're committed to using the N format for phone number fields in a panel.
But this poses a slight problem in reports. Consider records with blank phone number
fields. If you don't want a report to print a (000)000-0000 for each blank phone
number, use the H format in the report (even though the field is still an N field in the
panel):

H(999)999-9999

Though the H field is technically incompatible with the N field, it works fine
when simply grabbing a phone number from a panel and sending it to the printer.
This is because both fields store their data as a 10-digit number, putting masks on
only for display purposes. But the H field won't print anything if the value is zero.

Here's what each format does in a report with a blank phone number entered
into the panel's N(999)999-9999 phone number field:

Report Field Report Output
Format

G(ZZ2)222-2222) - (

G(999)999-9999 (000)000-0000

N(ZZZ2)2Z22-222Z7 (000) 000-0000

H(999)999-9999

The last format is what you want for a phone number field in reports, but not panels.

50 Fields: Issues

There's one more possibility for blanking out phone numbers in reports when
no data exists in the field. You could format it in the report like this:

N (999)999-9999; ;E

The ;;E Print Mode Indicator (Delete Zero Subfields from the End) is designed to
drop the final subgroup of digits if all those digits are zero (see Print Mode Indicators
in my Reports: Fields chapter). If DataPerfect detects all digits in all subgroups
are zero, it fails to print that field at all. This is fine if no phone number ever has
0000 as its final subgroup of digits. But if a phone number does have 0000 as its final
subgroup, the above format will print as with that subgroup dropped. That is,

(310) 555-0000
will print as
(310) 555

I was assured by a student at one of my DataPerfect seminars that phone companies
don't allow 0000 as the final subgroup, but I'm not counting on that. I prefer to stick
with my H field report field conversion technique.

Date Fields

When You Might Not Want to Use the D Field for Dates

You have a few choices in deciding how to format date fields. As previously
outlined, DataPerfect has a special date field format (the D field), but you could also
use an A8 or U8 field, allowing dates to be entered as short as

3/6/96

or as long as

03/06/96

or an A10 or U10 field, allowing four-digit years, like

03/06/1996

Likewise, you could use numerical fields, like N99/99/99, N99/99/9999, G99/99/99,
or G99/99/9999 fields, allowing all the same possibilities as the A and U field
formats.

Alternatively, you can—and almost always should—use DataPerfect's date
field format. There are, however, good reason for occasionally entering or expressing
dates in fields other than the D field. Let's discuss these.

Fields: Issues 51

You want a date expressed in English.
Instead of displaying

01/12/93

to the user, you might want to display

January 12, 1993

Of course, such a field's data can't be used in a computation by some other field. But
such a field must convert data received from a real date field somewhere else in the
application, and that other field (the real date field) can be used in calculations.
Typically, fields that express dates in English, which must be A or U fields, will be
computed fields. For a formula that converts a the value found in a date field to its
English expansion, see APPLY.FORMAT in my Formulas chapter.

Your application will be taking dates prior to

March 2, 1900 or beyond December 31, 2078.

The DataPerfect date field won't accept such fields. You'll need to choose an A, U,
or N field for that. G fields would be silly, since they force the user to enter data in
them from right to left.

You want to express a date in a computed field

only under certain conditions, and display a text

message in other conditions.

In the application I use to run my practice, [have an A8::C field that displays the date
the last diagnosis was made on the patient, assuming one was made. If I failed to
enter a diagnosis in the Diagnosis Panel for this patient, the same field displays

Diag?

reminding me I have yet to enter a diagnosis for this patient. This application has
many such fields that display dates under certain conditions, and text messages in
other conditions.

A formula for such an A8 field might look something like this:

if P1F10P2F1="" then "Diag?"
else apply.format["D99/99/99";P1F10P2F2]
endif

Here DataPerfect looks through a panel link (P1F10) to see if anything is in the
Diagnosis field (P2F1) in Panel 2. If that field is blank, this computed field displays

Diag?

Otherwise, it displays a text conversion of the date it sees in a date field in Panel 2
(P2F2). This text conversion will look just like a date field display:

52 Fields: Issues

03/06/96

The above display is text in an A8 field, even though it looks like a numerical
display in a D99/99/99 field. Note that the formula for this requires use of the
APPLY .FORMAT function to convert anumerical value (that found in the date field,
P2F2) to text. For more on APPLY.FORMAT, see APPLY.FORMAT in my
Formulas chapter.

You want to provide the user with an intuitive
date lookup field.

[Refer to UD.STR here.
Find the single-panel Finding Dates series.]

Perhaps you've noticed this already. Incremental searching on a lookup is impossible
on date fields formatted with the U.S. format (DMDY99/99/99 or
DMDY99/99/9999). The highlight bar won't move until you've typed an entire date,
slashes included. Then it will move to the first it finds equal to or greater than that
date in the active index. The same unsatisfactory lookup searches arise when using
the alternative DYMD99/99/99 format or DYMD99/99/9999 format.

If, in a particular panel, finding records by date in a lookup is important,
consider creating a special field used solely for date-sorted lookups. That is, you
provide the user with the usual date field using the D field format. That field will be
for data entry, not for finding records incrementally in a lookup. Another field will
be reserved for that function, and it won't be a D field. If you're using four-digit years
in your data entry field, this other field—the date lookup field—will be a U10 field if
you want slashes in the date, or a U8 field if you don't want the slashes. The U10 date
lookup field will have a field formula like this, to update on any change:

apply.format ["N9999"; year [P1F1]]
"/"
apply.format ["NO99"; month [P1F1]]
"/"

apply.format ["N99";day[P1lF1]]

P1F1 is the date entered by the user in the data entry field. If the user entered
03/14/1994

in P1F1, which is formatted D99/99/9999, then the above U10 field will display
1994/03/14

A lookup on a field like that will accommodate incremental keystroke searches on
each number typed (with slashes). If you leave out the second and fourth lines in the
above formula (the slash lines), a U8 date field would display

19940314

Fields: Issues 53

allowing for incremental keystroke searches without typing in slashes. Here's the U8
formula, which updates on any change:

apply.format ["N9999"; year [P1F1]]
apply.format ["NO99"; month [P1F1]]
apply.format ["N99";day[P1lF1]]

You want to provide the user with an intuitive
Birthday lookup field.
Suppose you have a Birthdate field in a particular panel, but would like another field
to display that person's birthday. Here the issue is slightly different. Birthdays differ
from birthdates. The former doesn't include the year. You have two choices for
birthdays. Either case will grab its data from the Birthdate field, which we'll call
P1F1.

Assuming U.S. format, the first possibility is to create a US field that updates
on any change to

apply.format ["D99/99";P1F1]

The second possibility is to create a D99/99 field for that updates on any change to

P1F1

Incremental keystroke searches will only work, however, on the US5 field. Note that
the D99/99 format shows only the month and day, leaving out the year if the date is
the U.S. format.

The Date Field as a Special Numerical Field

Okay, those are the typical reasons for shunning the D field when creating a field that
will accept or express a date. Now let's go into more detail than before, regarding
DataPerfect's actual date field (the D field) as a special numerical field. DataPerfect's
date field accepts dates from March 2, 1900 to December 31, 2078. If you enter
March 1, 1900 in a date field and then save the record, DataPerfect saves it with
00/00/00 (or 00/00/0000) on the screen, and will consider that date, for purpose of
date field calculations (talked about later), March 1, 1900. Any earlier date will cause
DataPerfect to beep and prevent you from leaving that field, let alone saving the
record.

Further, a DataPerfect date field displays one thing but stores another. On the
screen, you'll see a date in the format demanded by the field format, like 03/06/96 or
03/06/1996. But that's not what DataPerfect stores for that date in that panel's data
file. Instead, DataPerfect stores the number of days since March 1, 1900 that date
represents. So 03/01/1900 is stored as 0, 03/02/1900 as 1, and so on, up to
12/31/2078, which is stored as 65319.

Again, when I say the date field stores a number like 65319, it stores it in that
panel's data file. You never see it. All you see is the actual date. DataPerfect stores
date field values this way so that calculations can be performed on them. If date field

54 Fields: Issues

PIF1 (D99/99/9999) displays 03/06/1996 and date field P1F2 (D99/99/9999)
displays 03/21/1996, then numerical field P1F3 (GZZZZ9), if formulated to update
on any change to

P1F2 - P1F1
displays
15

which is the number of days between the two dates. Behind the scenes, DataPerfect
is actually performing this calculation:

35084 - 35069

35084 is the number of days between 03/01/1900 and P1F2, and 35069 is the number
of days between 03/01/1900 and P1F1.

Two-Digit vs. Four-Digit Years

As of this writing, we're painfully close to the year 2000. I don't know what others
will do with their data at that time, but I don't store critical data with two-digit years.
I'm sure there'll be many utilities offered near the turn of the century, written to
convert data and date fields in corporate databases, but don't plan on that. Anyway,
DataPerfect isn't popular enough for such a utility to be written for it. Format all date
fields with four-digit years: D99/99/9999 or DZ9/79/9999.

Let's explain why this is important. To enter a date with the year 2000 in a
D99/99/99 field the user must enter the year portion of that date as 00. But
DataPerfect understands this to be the year 1900. Entering the year 2001 as 0/ in the
year portion of a D99/99/99 field is really entering the year 1901, and so forth. So
you can't enter a date beyond 12/31/1999 in a D99/99/99 field. No matter how you
do it, it will be stored as a date one hundred years before the date you intended it to
be.

This caveat against using two-digit years only applies to real (i.e., not
computed) fields in the panel. A computed date field may be formatted with a two-
digit year because it doesn't store its data in the data file. As far as reports are
concerned, you can use any format you want for dates sent to the printer (I usually
use D99/99/99) because doing so doesn't affect the data file. You just need to inform
the user that a date in a report that looks like 01/01/10 is probably in the year 2010,
not 1910. If you want, just make a simple rule: No two-digit years anywhere, not
even reports. Four-digit years may not be what your end user is used to, but they're
never ambiguous.

This problem of how DataPerfect stores D99/99/99 field data has implications
in a few areas. First, a calculation problem arises when you have, say, a G-9999 field
that displays the Days Remaining for loans. Its field formula determines how many
days remain until the Maturity Date of each loan. If the Maturity Date field is P1F1,
then the Days Remaining field formula would be

Fields: Issues 55

P1F1 - today

If the number is positive, it represents how many days until maturity; if negative, how
many days since maturity. But if the Maturity Date field is a D99/99/99 field, the
Days Remaining field will display incorrect values with Maturity Dates after
12/31/99 because they'll all be considered to be a hundred years earlier.

A second problem with D99/99/99 fields arises during data entry. Don't forget
that DataPerfect doesn't allow dates earlier than March 2, 1900 (and March 1, 1900
displays as 00/00/00). This means that a date field won't allow dates from 01/01/00
to 03/01/00, even if intended as being in the year 2000. DataPerfect will interpret
such data entry as attempts to enter dates in the year 1900, before March 2, 1900.

A third problem with D99/99/99 fields arises when performing lookups on
these fields. Dates after 12/31/99 won't sort properly, placing them before 12/31/99,
not after. Again, this is because DataPerfect stores them as a hundred years earlier.
Likewise, reports using indexes based on such fields will sort dates after 12/31/99
improperly.

A Note about International Dates

If you want to make your application available outside the United States, you need
to know that DataPerfect allows you to change the default Date field format (MDY)
to, say, European (DMY). You access that screen with Shift-F9, 2 and then choose
the default. This keeps you from constantly having to format each Date field in your
European application as DDMY99/99/9999, overriding the default
DMDY99/99/9999 that would be assumed if you left field D99/99/9999 and never
changed the system default with the Shift-F9, 2 screen.

Also, running DP.EXE /INT at a DOS prompt lets you change this default as
well. Doing that allows you to change not only the Date and Time field defaults, but
now certain error messages will read on the screen. The end result is the a new
executable named DPN.EXE. You can then rename that DP.EXE and use with the
original DP.SYS, or just use DPN.EXE with the original DP.SYS. When you do this,
you no longer have to use the Shift-F9, 2 screen to change the Date field default,
provided you created the new application with the new DP.EXE. If you created the
new application with DP.EXE before altering it with the /INT switch, you'll have to
use the Shift-F9, 2 screen to change that application's defaults. Altering DP.EXE
with the /INT switch affects future applications.

The Time Field

To take full advantage of the way DataPerfect handles time, you must pay close
attention to the distinction between what a field displays on the screen and what it
stores in the data file. Again, the date field, typically formatted D99/99/99, displays
a month, day and year, but stores, in the data file, the number of days since March 1,
1900. On the other hand, the time field, typically formatted T99:99:99, displays

56 Fields: Issues

hours, minutes, and seconds, but stores, in the data file, the number of seconds since
midnight.

Here I discuss DataPerfect's special time field, and how to use it to solve a
few special problems. DataPerfect offers a great number of time field formatting
possibilities that allow us to manipulate the way a slice of time is displayed to the
user. And because of the way DataPerfect stores the time field's data in the data file,
we can enter slices of time into ordinary mathematical computations, like elapsed
time computations. With the exception of the first section that follows (on using time
fields to guarantee uniqueness of records), much of this discussion will turn on the
distinction between what the time field displays versus what it stores.

Using Time Fields To Guarantee Uniqueness Of Records

First, a very simple way to use DataPerfect's time field. If you've been using
DataPerfect for even a short time, you must by now realize that one of the most
common uses for the auto-incrementing field (::I or ::J) is to guarantee the uniqueness
of records in an index. Placing an auto-incrementing field in a panel can be all you
need assure that two records with otherwise matching data in a particular index are
unique. Think of records in a Transactions Panel, where a customer may come in
twice in the same day and purchase the same item both times. Customer Number,
Date, and Item Number might all be the same in each record. An auto-incrementing
Transaction Number Field would work here, giving each record a unique number
within the database.

Note: DataPerfect application developers are
used to making sure each record in a data
file is unique across all indexes that govern
that file, but not all database programs
require this. RBase, for instance, doesn't
require all records in a data file be unique
across any index.

You might, though, have reasons to shy away from auto-incrementing fields
(I discuss these reasons in The Recursive Link in my Links chapter). In place of
using auto-incrementing fields to guarantee the uniqueness of records in a given
panel, we can use the two-field combination of a date field and a time field. This,
though, should be done with an important caution in mind. Let's explain.

The method, as you might surmise, is to place in each index in question, one
date field and one time field. Format each as either non-updatable (::N) or hidden
(::H), and then formulate the date field to update to TODAY on creation, and the
time field to update to NOW on creation. Because the smallest unit of the time field
is the second, uniqueness is guaranteed as long as no more than one record in the
panel is created in any given second.

Now this final condition about limiting record creation to one per second isn't
going to be a problem during manual data entry. But suppose you have a WordPerfect
Merge file of records to import into this panel, none with the date and time fields
mentioned above. In such a case, importing the data will take care of the blank date

Fields: Issues 57

and time fields (the import process will update each field automatically as each
record is imported). But if your computer is fast enough, and the importing doesn't
involve any totalling to other panels, it's certainly conceivable that you may import
more than one record per second. If so, you'll end up with DataPerfect skipping what
it considers to be duplicate records during the import process (each record that got
the date/time values given to the one that preceded it).

Keep this caveat in mind when using date and time fields to guarantee
uniqueness of records in an index.

Computing Elapsed Time: The Simple Case

You can use a time field to express either a specific time or a quantity of time. That
is, 08:23 can be used to express either the specific time 8:23am, or the quantity 8
hours and 23 minutes. Both senses of the time field can easily come into play in a
single panel. Consider, for instance, a Consultations Panel that keeps track of
consultations you do during each day in your business, allowing for easy billing of
clients based at an hourly rate. You could decide to design such a panel to have three
time fields:

Start Time Field
End Time Field
Elapsed Time Field

The Start Time Field and the End Time Field would be data entry fields, and
the Elapsed Time Field would be formatted as either non-updatable (::N) or
computed (::C), formulated to yield the elapsed time between the two other time
fields.

DataPerfect makes writing the field formula in the Elapsed Time Field very
easy because it offers a straightforward way to use a time field value in computations.
In the case outlined here, the Elapsed Time Field would simply be formulated as the
difference between the End Time Field and the Start Time Field. If the Start Time
Field is P1F1 and the End Time Field is P1F2, then the Elapsed Time Field formula
would be

P1F2 - PI1F1

If the Elapsed Time Field is a non-updatable field instead of a calculated field, then
its formula would be set to update on any change.

Nice and simple. This is because DataPerfect stores a time field's data as
simply the number of seconds after midnight, allowing us to use these fields in
computations just like other numerical fields, adding and subtracting them with ease.

Calculating Elapsed Time Across the 24-Hour Barrier

[Refer to UD.STR.
Find the single-panel Elapsed Time series.]

58 Fields: Issues

Suppose that, instead of a Consultations Panel that tracks events that span hours and
minutes within a single day, you want to create a Projects Panel that tracks events
that span days. In such a panel we'll need at least the following fields:

Start Date Field

Start Time Field

End Date Field

End Time Field

Field(s) showing elapsed days, hours, and minutes

Unfortunately, if the value in the End Time Field is less (earlier) than the
value in the Start Time Field, simple subtraction won't help us. To see this, consider
a project that started on 08/01/92 at 10:30, and ended on 08/03/92 at 09:00 (don't
forget that we're talking about military time here). Subtracting the Start Date from the
End Date, and the Start Time from the End Time, yields

2 days and a negative 01:30 hours

The true elapsed time, though, is

1 day and 22:30 hours

Let's outline two solutions to elapsed time that crosses midnight or that exceeds
twenty-four hours.

First Solution

Suppose we lay out our Projects Panel time fields something like this (I'll use field
codes in place of actual fields):

Start Day: P1F1 End Day: P1F3
Start Time: P1lF2 End Time: P1F4

P1F5 days, P1lF6 hours, P1lF7 minutes

One way to formulate the elapsed time fields P1F5, P1F6, and P1F7 is as follows
(explanations follow the two outlines):

Elapsed Days field (P1F5)

Formatted GZZ9::C, with the following field formula:
if P1F1=P1F3 then 0 else
if P1F4>=P1F2 then P1F3-P1F1 else

P1F3-P1F1-1
endif endif

Elapsed Hours field (P1F6) and Elapsed Minutes field (P1F7)

Fields: Issues 59

P1F6 formatted THMSZ9::C, and P1F7 formatted TMHSZ9::C,
each with the following field formula:

if P1F4>=P1F2 then P1F4-P1lF2
else P1lF4-P1F2+86400
endif

Let's explain the above, starting with the Elapsed Days Field, P1F5. The
format of the Elapsed Days Field is straightforward, and so is the first line of its field
formula. The second line of the formula covers the case when the End Time is greater
than or equal to the Start Time, which is a case where simple subtraction actually
works. The third line of the formula covers the remaining type of case, when the End
Time is smaller than the Start Time, which is like the case talked about earlier that
resulted in a negative value for the Elapsed Time Field when simple subtraction was
performed.

Understanding how I formatted the Elapsed Hours Field, P1F6, and the
Elapsed Minutes Field, P1F7, requires taking a look at the special power and
flexibility of DataPerfect's time field. DataPerfect allows us to change the display
order of the components of any particular time field (again, remember that we're
talking here of manipulating how time is displayed, not stored). The default display
order of a time field's components is

hours:minutes:seconds

If needed, we can alter the display order of any given time field's components
by simply using one of the following before the first 9 or Z place holder in the format
scheme:

Format Meaning

TMHS minutes:hours:seconds
TSMH seconds:minutes:hours
THSM hours:seconds:minutes

So, for instance, if a time field was formatted

TMHS99:99:99

and had a value corresponding to the time

10:30am and 23 seconds

it would display

30:10:23

60 Fields: Issues

Like it offers us with the date field, DataPerfect offers us a way to isolate just
one or two components of a time field by simply leaving out the Z's and 9's in the
appropriate places. For instance, to display only the hours and minutes of a given
time, we can leave the order of the components in their default order, and then leave
out the place holders for seconds:

T99:99

But to display only the minutes of a given time, we first need to alter the
display order of its components so that minutes is the first component, and then leave
out the place holders for hours and seconds. Any of the following formats will cause
a time field to display only the minutes component of its value:

TMHS99
TMHSZ9
TMSH99
TMSHZ9

So if the value held by a time field corresponds to

10:30am and 23 seconds

and it's formatted in one of the above ways, it will simply display

30

With formatting out of the way, we now take a look at the formula used for
both the Elapsed Hours Field and the Elapsed Minutes Field. Again, the field formula
for each field was the same:

if P1F4>=P1F2 then P1F4-P1lF2
else P1lF4-P1F2+86400
endif

The first line covers cases where the End Time is greater than or equal to the
Start Time—cases where simple subtraction works. The second line covers remaining
cases, where simple subtraction yields a negative number. In such cases we add the
number of seconds in a twenty-four-hour period (86,400) to that negative number.
Whether we want to display only hours or only minutes, is, again, determined by the
field format, not the field formula.

An Alternative Solution:
Using the Concepts of MOMENT and MODULO

Another way to successfully formulate the Elapsed Days Field, the Elapsed Hours
Field, and the Elapsed Minutes Field, is to use a concept I call the moment. Just as
what a DataPerfect date field actually records in the data file is the number of days
since March 1, 1900, I define a moment as the number of seconds since March 1,
1900.

Fields: Issues 61

Given there are 86,400 seconds per day, the present moment is expressed as

(86400*today) +now

In that formula,

86400*today

expresses the number of seconds in a day, multiplied by the number of days since
March 1, 1900, which gives us the number of seconds since March 1, 1900, as of
midnight last night. To add the number of seconds since midnight last night, we add
now. Given the highest date DataPerfect allows is December 31, 2078, the highest
moment DataPerfect can allow is December 31, 2078, 23:59:59, which can be
expressed with following DataPerfect formula:

(date[31;12;2078]*24*60*60)+86399

The above formula yields the following number of seconds:

5,643,647,999

Going through this multiplication is necessary only to determine how many
characters we should allocate to a moment field. We now know a moment field
should allow for a ten-digit number (e.g., G9999999999).

With the moment concept in mind, let's go back to our example of an elapsed
time that crosses midnight. Consider our prior scheme:

Field Field Format | Field Name

Code

P1F1 D99/99/9999 | Start date

P1F2 T99:99 Start time

P1F3 D99/99/9999 | End date

P1F4 T99:99 End time

P1F5 GZZ9::C Elapsed Days
P1lF6 TZ9::C Elapsed Hours
P1F7 TMHSZ9::C Elapsed Minutes

Relevant moment calculations would be the following:

Field Formula Field Name

(86400*P1F1)+P1F2 | Start Moment

(86400*P1F3)+P1F4 | End Moment

62 Fields: Issues

So the actual elapsed time in seconds is the End Moment less the Start Moment. Now
we need to convert the number seconds in the actual elapsed time, which is probably
in the thousands, if not tens or hundreds of thousands, into days, hours and minutes.

We can use the field formats already outlined for our Elapsed Days, Hours,
and Minutes Fields. We'll formulate the Elapsed Days Field as before, but formulate
the Elapsed Hours Field and the Elapsed Minutes Field using the moment concept:

Elapsed Days field (P1F5)

As before, formatted GZZ9::C, and also as before, with
the following field formula:

if P1F1=P1F3 then 0 else

if P1F4>=P1F2 then PlF3-P1lF1 else
P1F3-P1F1-1

endif endif

Elapsed Hours field (P1F6) and Elapsed Minutes field (P1F7)

P1F6 formatted THMSZ9::C, and P1F7 formatted TMHSZO9::C,
each with the following field formula:

((86400*P1F3)+P1F4-(86400*P1F1)-P1F2) // 86400

The format and formula of the Elapsed Days Field have already been
explained in the original solution to this problem. So have the formats for the Elapsed
Hours Field and the Elapsed Minutes Field. Let's discuss the formula used for each
of the latter two fields.

Note the use of the modulo operator, '//'. It yields the remainder of dividing
the expression on its left by the expression on its right. The expression on its left is
the End Moment minus the Start Moment, which is the actual elapsed time in
seconds. On its right is, of course, the number of seconds in a day. This operation, for
all intents and purposes, yields the remaining number of seconds after subtracting all
the full twenty-four-hour days in the actual elapsed time figure. Again, the TZ9::C
format displays only the hours in this figure, and the TMHSZ9::C format, only the
minutes.

Formula Changes to Trap Incorrect Data Entry

To accommodate the user entering incorrect Date and Time values (values that make
the Start Date/Time combination occur after the End Date/Time combination), our
formulas should be changed as follows:

The Elapsed Days field (PIF5)

if P1F1>=P1F3 then 0 else

if P1F4>=P1F2 then P19F3-P19F1 else
P1F3-P1F1-1

endif endif

Fields: Issues 63

The Elapsed Hours (P1F6) and Minutes (P1F7) formula for the first set of
Elapsed Time fields

if (86400*P19F1)+P19F2 >= (86400*P19F3)+P19F4
then 0 else

if P19F4>=P19F2 then P19F4-P19F2

else P19F4-P19F2+86400

endif endif

The Elapsed Hours (P1F6) and Minutes (P1F7) formula for the second set
of Elapsed Time fields

if (86400*P19F1)+P19F2 >= (86400*P19F3)+P19F4

then 0 else

((86400*P19F3)+P19F4- (86400*P19F1)-P19F2) // 86400
endif

Now both sets of Elapsed Hours and Minutes formulas use the moment
function, in order to take into account the possibility of the user incorrectly entering
an older End moment.

A Special Use for the MOMENT Function in Reports

Suppose you design a panel that includes a field that tells you the last time any given
record was edited in that panel's data file. Actually this takes two fields, one a date
field that updates on any change to today, and the other a time field that updates on
any change to now. This pair of fields always show either when the record was
created, or the last time it was edited, which ever is later. Simple, so far.

Further suppose you need a report that, among other things, puts data into one
or more of this panel's fields. For instance, my doctor's office billing application has
an Insurance Billing report that date-stamps each record it sends from the
Transactions Panel to the printer. It does this by entering the current date into the
otherwise blank non-updatable Insurance Billed Field of that record. The Insurance
Billed field is a date field. This gives me a way to see if and when I billed a particular
transaction. It also gives me a convenient way of excluding billed transactions from
the report process—I merely have to run the report on an Exception List Index that
excludes Transaction Panel records with a blank Insurance Billed field.

But, as described previously, I also placed date and time fields in the
Transactions Panel that let me know when a record has been edited. Let's call them
the Last Edited fields. There's a reason I need to know when a record was last edited,
but that's not important right now. But what is important is that I don't want the
Insurance Billing report to trigger these two Last Edited fields to update to today and
now respectively. I only want them to update when the user manually enters data into
the panel.

Do you see the problem here? Those Last Edited fields are date and time
fields that update on any change to today and now. But when a report places a value
in any field of a record (in this case the report is placing today in the Insurance Billed
field), that puts that record into Edit mode, consequently triggering updates in all

64 Fields: Issues

fields in that record that are supposed to update on any change. So after running this
report that, say, sends a hundred Transaction Panel records to the printer in the form
of a series of insurance bills, the Transaction Panel will show each of those hundred
records as having just been edited, showing in each of these records' Last Edit fields,
the date and time this report printed them on their respective insurance bill. But |
want the Last Edited fields only to show the last time a user put that record in Edit
mode, not my Insurance Billing report.

To keep a report from triggering the two Last Edited Fields when it enters
data into some other field in the panel, we'll need to use our moment function again.
Let's explain.

[Refer to UD.STR for this technique.

Load the Moment field; Proofing; Incrementing on a network panel.

See how you can't edit a record there and save it with a date in the Proofed field.
But the Mark Records as Proofed report successfully puts today's date in that field.]

With the moment function we can create a window of time where a report
fails to trigger selected fields while editing a record. First we need a
(G9999999999::H field that houses moment values. It's hidden for obvious reasons,
and is ten characters long for reasons explained previously. It has no formula or
initial value assigned to it.

Next, we need to reformulate each field that we want to be able to offer
update protection when selected reports place the record in Edit mode. To do this,
let's suppose such a field that needs update protection is P1F1. Further suppose that
the hidden field that will receive report-entered moment values is P1F2. With that,
we can formulate protected P1F1 as follows:

if (86400*today) +now<P1lF2
then P1F1

else

endif

The first two lines of the formula basically say that

if the current moment is less than the value held in the
hidden Moment field, don't update P1F1

The third line (the ELSE statement) is to be filled in by the definer. It would
contain the formula that is supposed to update on any change in the usual conditions.

To have our report take advantage of this, we make sure that when it's about
to enter data into the panel's fields, its first act of data entry is to enter the current
moment, plus a few seconds, into the hidden Moment field, P1F2:

(86400*today) +tnow+3

The other acts of entering data in that record by this report must immediately follow.
If you feel that all the data entry, coupled with saving of the record, can't take place
within 3 seconds of the report entering the above value into the hidden Moment field,
then increase the number of added seconds, thus increasing the window of protection

Fields: Issues 65

for the vulnerable field or fields. This method allows altering the size of the window
of update protection on a report-by-report basis.

Let's summarize this technique. It's purpose is to have P1F1 update on any
change other than that caused by a particular report. We create a hidden Moment
field that has no formula attached to it. It's just blank for now. We adjust our P1F1
formula so that instead of reading like

blah blah blah

it now reads like this:

if (86400*today) +now<P1lF2
then P1F1

else blah blah blah

endif

This way, P1F1 only updates after first examining the Moment field P1F2.
If the current moment is smaller than the value found in the Moment field, P1F1
won't update; otherwise, it will. At first, the value in the Moment field is 0, so P1F1
will certainly update on the next Edit. When our report runs, however, it temporarily
interferes with P1F1 updating by putting a value in the Moment field that is three
seconds into the future. This means that for the next three seconds, P1F1 won't
update in Edit mode. After those three seconds are up, P1F1 will update in Edit
mode. But by that time the report has left that record, so the record is no longer in
Edit mode. The next time the user hits F6 in the record, the current moment will
again be greater than (later than) the value in the Moment field, so P1F1 updates.

Notes on Deleting a Field

Deleting a field (while in Define Panel mode) can have serious consequences. With
the exception of one problem indicated below, all the following problems will be
found by simply running DPDIAG on the .STR after the field is deleted. This is an
essential practice after deleting a field. Run DPDIAG often during heavy .STR
development periods, and always after deleting a field when you can't be absolutely
sure such a deletion won't cause one of the following problems:

66 Fields: Issues

Because it results in the deleting of all indexes that contain that field,
it might delete an index that's used by a lookup definition.

Because it results in the deleting of all indexes that contain that field,
it might delete an index that, though it's not used in a lookup
definition, is the best index DataPerfect can use during a lookup on
a particular field that doesn't have an index in its lookup definition.
DPDiag will not detect this problem.

Because it results in the deleting of all indexes that contain that field,
it might delete an index that's used in a link definition, corrupting that
link.

It will corrupt a link if the deleted field was on that link's field list.
It will corrupt a link that has a computed field (::C) on its field list, if
the deleted field is accessed by that computed field.

Fields: Issues 67

68 Lookups

Lookups

Though I include a lot here for the beginner, most of this chapter targets the
experienced DataPerfect application developer. There's a lot here not found in the
DataPerfect manual.

Fundamentals of Lookups

One of the most powerful facilities DataPerfect offers is its lookup facility. Here the
user can type-to-search his way to the desired record rapidly, with little degradation
in search speed with large increases in database size. If the user's cursor is on the Last
Name field in a database, he can perform a Browse Mode lookup (Up Arrow or F8)
and see all the records in that data file displayed alphabetically by Last Name in the
upper or lower third of the screen. A highlight bar will initially sit on the first record
waiting for the user to move it to the desired record and hit Enter. Other than just
using the typical cursor keys to move the highlight bar (Up Arrow and Down Arrow
move it one record at a time, and PgDn and PgUp move it five records at a time),
you can just start typing the Last Name desired. As you type, the highlight bar moves
closer to the desired record. It does this by reading your keystrokes, one keystroke at
a time, zeroing in on the desired record. When you type S, the highlight bar moves
to the first record that begins with § in the Last Name field. Then when you type M,
it moves to the first record it finds that begins with SM in the Last Name field, and
SO on.

DataPerfect lets the developer define a different lookup for each field in a
record, as well as choose a different sorting index for each lookup. For instance, in
my office I frequently want to call a Patient to see how they're doing, but can't, for
the life of me, remember their Last Name (and I sure don't remember their Account
Number). With the DataPerfect application I wrote and use to run my practice, [can
cursor to the Last Name field perform a lookup that displays all records sorted by
Last Name, or cursor to the First Name field and perform a lookup that displays all
records sorted by First Name, or cursor to the Account Number field and perform a
lookup that displays all records sorted by Account Number. If needed, I could, in a
manner of seconds, define a lookup on the Account Balance field that would let me
perform a lookup sorted by that field.

You don't need to enter Define mode to define a lookup. Just cursor to the
field on which you want a lookup and hit Shift-F8, 1. Next, you're asked to choose
the fields that will comprise this field's lookup field list. For each field you want on
that list, you cursor to it and select it with F4. If you make a mistake, hit 2 to delete
the last entry on the list, or 1 to delete the whole list. Then F7, F10, or 0, to exit and
save. You're then asked for the index to sort the lookup, allowing you to browse all
the indexes of that panel using Up Arrow or Down Arrow. You select an index by

Lookups 69

hitting F4. Now the user can perform a lookup on that field in Browse mode by
simply hitting Up Arrow or F8.

It's important to be clear on the difference between the two central entities
involved in designing a lookup. The lookup field list determines what fields the
lookup will display, and in what order. The lookup index determines how DataPerfect
will sort that display. If defined properly, the user should be able to type-to-search to
a desired record as described before.

The DataPerfect manual says the following about this way of using a lookup:

For this type of search to work properly,
the first field in the lookup field 1list
should be the same as the first field in
the index.
[Reference Manual, p. 178]

For now, it's a good idea to make sure the first field in the lookup field list is the first
field in the lookup Index. Later, we'll see when this is unnecessary, and even
undesirable.

Subfield Lookups

Starting with version 2.3, DataPerfect let's you search for records using both the first
and the second fields in the lookup display, using Tab. Let's say you perform a
lookup on the Last Name field in your Customer Panel, where that field's lookup
sorts on an index having as its first two fields, Last Name and First Name,
respectively. Further, the lookup field list also has as its first two fields, Last Name
and First Name, respectively.

Now, looking for John Smith, you perform a lookup on the Last Name field
and hit SM. You land on the first occurrence of a Smith. If you have many Smith's in
the database, you can now hit Tab. This results in further keystrokes narrowing down
the search by sorting on the second field of the lookup field list. Hitting JO gets you
to John Smith's record.

A Subfield Lookup is designed to work only if the first two fields of the
lookup field list match the first two fields of the lookup index. At least that's the way
it works if you entered the panel directly from the Panel List. If, instead, you entered
the panel with a panel link or with a menu and a keyword, Subfield lookups work
slightly differently. In such a situation, the first two fields of the lookup field list
must either be the first two fields of the index DataPerfect is using to sort the lookup,
or the first two fields that follow the common fields. The common fields are the fields
in the subpanel that correspond to the fields of the field list of the panel link that got
you there (the parent panel panel link's field list). Let's explain all this with an
example Attorney's Office application.

70 Lookups

The Panel Link

Say you go from the Attorney Panel to the Client Panel with a panel link. Further,
let's say you decided to link these panels on the Attorney ID Number field (that is, the
panel link's field list consists of just one field, the Attorney ID Number field). Now
let's say the Client Panel has at least the following four fields:

Attorney ID Number
Client ID Number

Last Name (Client)
First Name (Client)

The panel link places the user on the Last Name field in the Client Panel.

The Lookup Index
The Client Panel index the panel link uses to get you into the Client Panel is

Attorney ID Number, Last Name, First Name,
Client ID Number

Let's use the same index for the lookup on the Last Name field.

The Lookup Field List

You probably don't care to have the Attorney ID Number field in the lookup field list
on the Last Name field because you already know who the Attorney is when you're
in the Client Panel (you picked him or her before penetrating the panel link). So
having their Attorney ID Number field in the lookup is a waste. Instead, we'll have
the lookup field list start with Last Name, followed by First Name.

Note that the above scheme refrains from making the first field in the lookup
field list be the first field in the lookup index, thusly violating the previously cited
rule in DataPerfect manual. Nonetheless, as long as you entered that panel with the
noted panel link, lookups designed this way will sort by Last Name; keystroking by
Last Name will narrow down the correct record or records; and Tab will cause a
subsort on the First Name field. This won't work properly, however, if you enter the
panel directly from the Panel List.

What's happening here is that, after panel link penetration, DataPerfect is
allowing the Last Name lookup to sort on the first field that follows the common
fields in the panel link's field list, thusly having the sort ignore the Attorney ID
Number field all together. The field that immediately follows those common fields
is the Last Name field.

So, I can define one Attorney Panel panel link that uses the

Attorney ID Number, Last Name, First Name,
Client ID Number

index in the Client Panel, and define that panel link to take me to Client Panel's Last

Name field, allowing lookups there by Last Name. I can then define a second
Attorney Panel panel link that uses the

Lookups 71

Attorney ID Number, First Name, Last Name,
Client ID Number

index in the Client Panel, and define that panel link to take me to the Client Panel's
First Name field, allowing lookups by First Name. And finally, I can define a third
Attorney Panel panel link that uses the

Attorney ID Number, Client ID Number, Last Name,
First Name

index in the Client Panel, and define that panel link to take me to the Client ID
Number field, allowing lookups by Client ID Number.

You'll see later that, by virtue of DataPerfect 2.3's Smart Lookups algorithm,
I can now reduce those three parent panel panel links to one, without loosing the
ability to perform all three distinctly sorted subpanel lookups. For now, though, just
know that the first field in the lookup field list need not be the first field in the lookup
index if you typically enter the panel via a panel link and the lookup field is the field
that follows the common fields of the panel link.

The Data Link Subgroup Lookup

[Refer to UD.STR
Find the Data Link Subgroup Lookup series.
Load the Transaction Panel.]

The Data Link Subgroup Lookup offers the definer a way to strategically filter what
records the user sees during a Create or Edit mode lookup on a data link. Though the
DataPerfect 2.3 manual fails to mention the Data Link Subgroup Lookup, the
README file that was found on the shipped diskettes does, without referring to it
as the Data Link Subgroup Lookup. Here's the relevant README passage:

DATAPERFECT: Lookup

Performing a lookup on a data link while
you are creating or editing a record will
display records from the linked panel based
upon the data link Key Field List. If the
first field in the Key Field List is the
data link field, you will be able to see
all records in the linked panel; otherwise,
you will see only the records that match
the fields of the Key Field List.

[README 02/01/93]

Starting with version 2.3, the data link's field list also acts as a record filter
for the lookup display during Create or Edit. This allows you to define a data link in
such a way that, during Create or Edit, a lookup performed on it will display a
defined subgroup of the linked panel's records—thus the name, Data Link Subgroup
Lookup.

72 Lookups

If you perform a lookup on a data-linked field during Create or Edit, the
lookup will display the linked panel's records filtered by all fields preceding the data-
linked field in the data link's field list (i.e., all the fields preceding the data-linked
field in the field list must match the corresponding fields in the displayed record).

So, if the data-linked field is the first field in the data link's field list, then no
fields precede it in the data link's field list. Performing a lookup on this field during
Create or Edit will effectively display an unfiltered display of the linked panel's
records (all the linked panel's records will be displayed). This effectively keeps
things the way they were with DataPerfect 2.2, because it fails to create a Data Link
Subgroup Lookup.

To create a Data Link Subgroup Lookup, the data-linked field must come
somewhere after the first field in the data link's field list. If the data-linked field is the
second field in the data link's field list, the lookup will display the linked panel's
records filtered by the first field in the field list. If the data-linked field is the third
field in the field list, the display will be filtered by the first and second fields in the
field list. And so on. Note, though, that if the data-linked field is absent from the
field list, the lookup display will be empty, displaying the No Data message.

Let's clarify this with some examples. Suppose you run a local software retail
store, like Egghead. Like Egghead, you sell more than just software—your customers
can also purchase books and peripherals, like printer cables. Let's say the categories
of Software, Books, and Peripherals exhausts everything you sell.

We'll place all those items for sale in the Item Panel, which will have at least
two fields: Item and Category, where the latter field will be a U4 field that takes three
possible values: SOFT, BOOK, or PERI. We'll create two indexes in the Item Panel,
one sorting by Item, the other by Category. Pretty straightforward.

Now the Transaction Panel. There, we'll have at least the Category and Item
fields again, along with the usual Date and Amount fields. On the Item field we'll
place a data link that ties the field to the Item Panel, and have it land on the Category
field. The data link will use the {Category, Item} index in the Item Panel, and have
a field list consisting of Category and Item, in that order.

Here are the two panels, showing minimal configurations:

Category: :

Item: :

Item Panel

Transaction Panel

Lookups 73

When the user enters the Transaction Panel and goes into Create mode, he
first fills in the Date and the Category (SOFT, BOOK or PERI). Then he Tabs to the
Item field and hits F8 or Up Arrow. What DataPerfect does at this point is where
version 2.3 differs from 2.2. The lookup performed on the Item field during Create
or Edit will show only records matching the Category field to its left. So if the user
filled in SOFT in the Category field, hitting Up Arrow on the Item field during
Create or Edit will display only a list Software records. Under DataPerfect 2.2, you
would have seen all records in the Items Panel during this Create or Edit lookup.

Again, if a lookup is performed on a data-linked field during Create or Edit,
DataPerfect first examines what field you're performing the lookup on (in this case,
the Item field of the Transactions Panel). Then DataPerfect looks to see if that field
is on the data link's field list. If it isn't, you get a recordless lookup, displaying the No
Data message. If it is in the field list, the lookup display will be filtered by all fields
that precede it on the data link's field list (in this case, it was filtered by the Category
field).

So, a good rule to follow here is this. If you attach a data link to a field that
is to be used as a sort of Pick List field during data entry, then make sure the field list
assigned to that data link has the data-linked field in a desirable spot. This will be
determined by whether or not you want the lookup display to be filtered. If so, make
sure the lookup field immediately follows the filter fields in the link field list.

Making Lookups Look Better (Browse Mode)

[Refer to UD.STR.
Find the Making Lookups Look Better single-panel series.]

One way to spruce up your lookups is to use hidden fields in lookup field lists. Say
you have a lookup that displays Last Name, First Name, and Address. Right now, the
columns look like this:

Abramson Helen Los Angeles CA 90024
Jones Jim Santa Monica CA 90403
Watson Alan Beverly Hills CA 90291

Hidden fields allow for this sort of lookup:

Abramson, Helen Los Angeles, CA 90024
Jones, Jim Santa Monica, CA 90403
Watson, Alan Beverly Hills, CA 90291

The lookup is still performed on the Last Name field, and the index used has Last
Name and First Name as its first two fields, but the lookup field list starts with the
two hidden fields shown above.

A simple version of the first hidden field in the lookup field list would have
a formula like this:

cat.t [P1F1;", "PlF2]

74 Lookups

where P1F1 is the Last Name field and P1F2 is the First Name field.
The second hidden field in the lookup field list would have a formula
something like this:

cat.t [P1F3;", "PlF4;
" "apply.format["N99999-9999; ;,E";P1lF5]
]

where P1F3 is the City field, P1F4 is the State Code field, and P1FS5 is the Zip Code
field. Note that the ;;E modifier is used here, even though this isn't a report field. It
can be used in formulas like this, even when part of a panel field instead of a report
field. It just won't have any effect if you use it as a panel field modifier directly. It's
effectiveness comes via the APPLY.FORMAT function. Try it.

Smart Lookups (Browse Mode)

[Refer to UD.STR.
Find the Smart Lookups series.
Load the Attorney Panel.]

I want to thank Ray Babbitt of Novel/WPCorp for his help in getting this
information to you. The information in the flow charts was derived mainly from
personal telephone and eMail conversations with Ray.

Though DataPerfect lookups are, on the surface, pretty straightforward, their
inner workings can be very complex. DataPerfect application developers found this
out when they upgraded from DataPerfect 2.2 to 2.3. Many of their lookups, all of
which worked beautifully under 2.2, worked terribly under 2.3. They worked, but not
the way they did under 2.2.

Version 2.3 introduced a new logic behind Browse mode lookup display.
What fields will display, and what index will sort that display, is more under the
control of this new behind-the-scenes algorithm than under the control of the
designer of the database. Sort of, anyway. Let's explain.

Under version 2.2, when a developer defined a lookup, he assigned two things
to that lookup: a lookup index and a lookup field list. Let's say the user entered that
panel from the Panel List. Here, when the user sits on that field under DataPerfect 2.2
and performs a Browse mode lookup, those two elements control the event. If no
lookup was defined for that field, a Browse mode lookup would be governed by the
lowest numbered index (probably index 1, unless it was deleted) and would display
that index's field list.

Alternatively, if they entered that panel from a panel link and attempted the
same Browse mode lookup, the index that will sort that field's lookup will be the one
that was attached to the panel link, no matter what index was assigned by the
developer to that field's lookup definition. Let me explain this with an example.

In the billing application I use to run my practice, I have an initial panel called
the Doctor Panel. There the user picks the Doctor of the patient in question. Next the
user penetrates a panel link to the Accounts Panel, where they pick the Account

Lookups 75

(Patient) in question. Then they penetrate a panel link to the Case Panel. Then the
Transaction Panel where they create, edit or delete records. Very logical and
predictable.

Let's back up a little. I said that after picking the Doctor in the Doctor Panel,
the user penetrates a panel link to the Account Panel. Then the user performs a
Browse mode lookup to find the Account in question. In this case, the Doctor Panel
panel link that takes the user to the Account Panel is tied to this index:

Doctor Code, Last Name, First Name, Middle Name,
Account Number

where the Name fields there are the Patient's Names, not the Doctor's. Of course that
panel link has a single field on its field list:

Doctor Code

If the user penetrates that panel link and lands on the Last Name field in the
Account Panel, and then does a lookup, all is well. They'll see a lookup displaying
Patients sorted by Last Name. But if the user only remembers the Patient's First
Name, and then moves to the First Name field and does a lookup, all will not be well
under DataPerfect 2.2. The index that will sort that lookup under DataPerfect 2.2 is
the index that's tied to the panel link that took the user to that panel. So, though the
lookup field list for that field might begin with the First Name field, it won't sort that
way. It'll sort by the Last Name field. Before version 2.3, a panel link's index always
governed how Browse mode lookups would sort in the target panel, no matter what
the developer put in the lookup definition for the field on which the lookup is being
performed.

The way around this was to create more than one panel link in the parent
panel (Doctor Panel), where each one used a different target panel (Account Panel)
index. That's what I had to do before version 2.3. I had three panel links, with panel
text describing what they did:

Patient Accounts

Sorted by

Last First Acct
Name Name Number

Lower Left Corner
of Doctor Panel

So, if the user wanted to enter the Account Panel and find a Patient by Last
Name, they use the first link. Otherwise they used one of the other two. This worked
fine, but was a little cumbersome. They had to keep exiting the Account Panel and
re-entering it whenever they wanted to change the sort for their Account Panel
lookup.

76 Lookups

This changed with version 2.3. Here's what that same lower left corner of the
Doctor Panel looks like now:

Patient
Accts

That's the first of the three links in the old Doctor Panel—the one previously
labeled Last Name. But now, when the user penetrates that link, they find a Browse
mode lookup in the Account Panel sorts records by Last Name if the cursor is on the
Last Name field, sorts records by First Name if the cursor was on the First Name
field, and sorts records by Account Number if the cursor is on the Account Number
field. All this, even though the user arrives in the Account Panel via a panel link
that's tied to an index that sorts by Last Name.

With this new power in lookups comes added complexity in understanding
the logic that governs Browse mode lookup displays. Put simply, if you were used
to designing lookups in version prior to 2.3, you might find they just don't seem to
display the way you want with version 2.3. Let's go over the new logic.

The Smart Lookups Algorithm

Here I'll attempt to explain how DataPerfect chooses to sort and display Browse
mode lookups. This algorithm, introduced with version 2.3, governs what has come
to be called Smart Lookups. The flow charts I present convey a logic that may seem
terribly complicated, but I have faith that after a few readings you'll find the beauty
in it all. Neither the DataPerfect 2.3 manual nor any accompanying README file
even mentions Smart Lookups.

In the charts that follow, I speak of an index activating a field in this or that
situation. This only applies to situations where you entered a panel from a panel link
that has a field list, or from a menu using a keyword. In such situations, DataPerfect
assumes you don't want records in the target panel sorted by the common fields of the
link index (the fields that correspond to the link field list or menu keyword), because
all the records you're about to access in the target panel have the same values in those
fields. Consequently, DataPerfect strips the common fields from the sorting process,
sorting instead on the next fields in the index. That's what I mean by the index
activating that field: it upgrades that field's status to primary sort field for that
lookup event.

For instance, if you just went from the Customer Panel to the Transaction
Panel, and did so with a panel link that has as its field list, the Customer ID field, you
know all the records you're about to see in the Transaction Panel are of that particular
Customer. So why bother including the Customer ID in the sorting process of a
lookup in the Transaction Panel? Consequently, DataPerfect takes the liberty of

Lookups 77

stripping the common fields from the sorting process, sorting instead on the next
field in the index.

Using a different example, if we penetrate a panel link that has as its field list,
the Attorney ID field, then any index in the subpanel that has Attorney ID as its first
field will activate its second field. In this situation, the

Attorney ID, Client ID

index will activate the Client ID field. Likewise, the

Attorney ID, Trial Date

index will activate the Trial Date field. But the

Client ID, Attorney ID

index won't activate any field at all in this situation because it doesn't start with the
link's field list (the Attorney ID field).
Using the same logic, if we penetrate a panel link with

Attorney ID, Client ID

as its field list, then any subpanel index with Attorney ID and Client ID as its first
two fields (in that order) will activate its third field.

Again, when I say this or that field in the target panel's index is activated, 1
mean a lookup at that point in time will cause the display to sort by that field, even
though that field isn't the first field in the index in question. So, though the link index
that got us into, say, the Client Panel starts with the Attorney ID field, a Browse
mode lookup performed on the Client ID field may sort on the Client ID field instead
of the Attorney ID field.

Now the logic (algorithm). When you tell DataPerfect you want a Browse
mode lookup by hitting Up Arrow or F8, DataPerfect will try very hard to find an
index that activates the lookup field (the current field). That is, DataPerfect will look
for an index that makes the lookup field the primary sorting field. DataPerfect will
do this while keeping it consistent with the panel link's two filters: the field list of the
link that got you into that panel in the first place, and any exception list tied to that
link's index.

78 Lookups

Smart Lookup Algorithm 1
When the Lookup Field Has a Lookup Definition

Did you enter the panel with a
panel link or a menu item with a
keyword?

YES

Lookup works as defined.

Does the lookup index share the
same exception list as the

link index and also activate the
lookup field?

—YES—

Lookup works as defined.

Is there an index that shares
the same exception list as the
link index and also activates
lookup field?

—YES—

Lookup uses the first such
index DP finds, starting
with index #1. It will
display (and sort by) the
lookup field, following it
with the rest of the lookup
field 1list.

Has a lookup already been
performed in this panel during
this session?

—YES—

NO
L

DP uses the index used by
that lookup, displaying
and sorting by) the field
it activates. That field
will then be followed by
the lookup field list.

DP uses the link index,
displaying (and sorting by) the
field it activates. That field
will then be followed by the
lookup field list.

Lookups 79

Smart Lookup Algorithm 2
When the Lookup Field Doesn't Have a Lookup Definition

Did you enter the panel with a panel
link or a menu item with a keyword?

YES
|

NO
|

Is there an index that shares

the same exception list as the
link index, and also activates
the lookup field?

Does an index exist with the
lookup field as field one?

YES

NO

|

NO

|

YES

Has a lookup already been
performed in this panel
during this session?

Has a lookup already been
performed in this panel
during this session?

YES

|

NO

YES

|

NO

lookup,
field,
field.

DP uses the index used by that
displaying its first
followed by the lookup

DP uses the link index,
displaying (and sorting by)
the field it activates.
That field will then be
followed by the lookup
field.

DP uses index #1,
displaying (and sorting by)
its first field. That
field will then be followed
by the lookup field.

index DP finds,
index #1.
(and sort by)

Lookup uses the first such

It will display

the lookup field.
That field will then be
followed by the fields that
follow it in the index.

starting with

80 Lookups

Strategy in Defining a Browse Mode Lookup
Using the Smart Lookups Algorithms

You don't really need to understand those flow charts if you adopt three rules in
defining a lookup. These should work for you in almost all situations:

1. Construct the lookup field list the way you would like it to be in all
situations, whether entry into that panel is keyed or unkeyed.
2. Define the lookup index to be one you would like to
sort lookups after an unkeyed entry into that panel.
3. For each possible keyed entry into that panel, make
sure there exists an index that activates the lookup
field.

In the above rules, I refer to entry into the panel in question as being keyed
or unkeyed. A keyed penetration into a panel is either via a panel link with a field list
or via a menu item with a keyword. An entry into a panel is unkeyed when it's via the
Panel List, a panel link without a field list, or a menu item without a keyword.

Now some examples to clarify this. Let's go back to our Attorney's Office
application. Its overly simple panel hierarchy is the following:

Attorney Panel

Client Panel

Transaction Panel

Each Attorney Panel record has a unique Attorney ID Number. Each Client Panel
record has a unique Client ID Number. Each Transaction Panel record has a unique
Transaction ID Number. The two panel links are defined this way:

Panel Link 1

Purpose: Takes user from Attorney Panel to Client
Panel

Index: Attorney ID Number, Client ID Number

F/List: Attorney ID Number

Panel Link 2

Purpose: Takes user from Client Panel to Transaction
Panel

Index: Attorney ID Number, Client ID Number,
Transaction ID Number

F/List: Attorney ID Number, Client ID Number

Lookups 81

Now I go to the Client Panel and define a lookup on the Last Name field.
Following the three-step rule I outlined, I'll decide how I'd like to see my records
displayed during Browse mode when I hit Up Arrow or F8 on that field in all
situations, regardless of whether I enter that panel via key fields or not. I decide that
I'd like the its lookup field list to be

Last Name, First Name

I want the lookup on the Last Name field to display those two fields whether or not
I enter that panel keyed. That satisfies rule 1.

Next, I choose an index I'd like this lookup to use after an unkeyed entry into
that panel. 1 choose the following:

Last Name, First Name, Client ID Number,
Attorney ID Number

That satisfies rule 2.

Finally, I make sure that, for each keyed penetration into this panel, there's an
index that the Smart Lookup algorithm will pick, and will sort consistent with the
field list chosen in step 1. The only panel link right now that takes me to the Client
Panel is one that has

Attorney ID Number

as its field list, so I want at least one index that starts with Attorney ID Number
(which is the single common field in this case), immediately followed by the Last
Name field. The following index works:

Attorney ID Number, Last Name, First Name,
Client ID Number

When penetrating Panel Link 1, the above index will activate the Last Name field
(the field immediately following the common field in the index).

Now, for any other keyed entry into the Client Panel, I'll need to make sure
there exists an index that activates the Last Name field. In such an application, it's
unlikely there'll be a panel link that has a field list other than { Attorney ID Number},
but you get the idea.

What if you don't want the lookup field
to be the first field in its own lookup field list?

This takes a little work. In case you wonder why you may want to do this, let's return
to the Attorney's Office application.

Instead of having the user perform a Client ID Number lookup on the Client
ID Number field (it's protected with the ::N modifier, so the user can't Tab to it),
we'll use the Middle Name field for that purpose. Further, we'll let the user know
about that in our help screens. To do this, we use a different method than previously

82 Lookups

outlined, because we don't want the lookup routine to activate the lookup field (the
Middle Name field). Rather, we need it to activate the Client ID Number field.

Given that we're entering the Client Panel via a panel link with Attorney ID
Number as its field list, we assign

Attorney ID Number, Client ID Number

as the index for this lookup, thus activating the Client ID Number field in the Client
Panel. We then assign the lookup a field list to the Middle Name field that starts with
the Client ID Number field. That's all, as long as we enter the Client Panel via the
panel link.

How is this different than our more typical example, where we want the
lookup field to be the activated field? It's the index here that makes the difference.
When we want the lookup field to be the activated field, we use an index that would
work when entering this panel unkeyed (rule 2). But in this case we want to activate
a field other than the lookup field. Here we choose an index that activates this other
field in a keyed entry into the panel. This is only going to work, however, if you
arrive into this panel in the same keyed way every time. That is, you never enter this
panel unkeyed (e.g., from the Panel List), and you never enter this panel keyed on a
different field list (e.g., from a panel link with a different field list than the one
originally planned for). In any of these other situations, the lookup won't sort
properly. For instance, if you enter the panel from the Panel List, the lookup will sort
by Attorney ID Number, but with a lookup field list starting with Client ID Number.
But, since you shouldn't give users access to the Panel List anyway, this may be a
moot point in most applications.

Reasons for Assigning a Lookup to a Hidden Field

I talked about why you might want to put a hidden field (::H) on a lookup field list.
Why might you want to assign an entire lookup definition to a hidden field? If the
user never lands on it, why bother assign a lookup to it? Here are two reasons:

Facilitating a Subrecord Lookup

The most common reason [know of to define a lookup on a hidden field is to affect
how a panel link displays dependent records during an F8 Browse mode lookup on
that panel link. For instance, consider our Attorney's Office application again:

Attorney Panel

Client Panel

Transaction Panel

Lookups 83

Suppose you would like to position the cursor on the panel link that takes you
from the Attorney Panel to the Client Panel and view, via an F8 Browse mode lookup
on that link, Clients sorted by Last Name. Don't forget that an F8 lookup on a panel
link in Browse mode displays dependent records in the subpanel, not records in the
current panel. Further, you would like this lookup to display the following fields:

Last Name, First Name, Client ID Number, Balance

Further suppose that's not the type of lookup you want to assign to the first field you
land on when penetrating that panel link. That is, you would like that panel link to
take the user directly to the Last Name field, but you want the Last Name field's
lookup to display the following fields:

Last Name, First Name, Client ID Number, Home Phone,
Work Phone

Or, alternatively, suppose you want that panel link to allow an F8 Browse mode
lookup that sorts by Last Name, but hitting Down Arrow on that link in Browse
mode takes the user directly to the Client ID field, not the Last Name field.

Well, at first, that may seem impossible, because hitting F8 on a panel link
during Browse mode is supposed to produce the lookup display based on the lookup
definition of its target field. But don't forget that the target field of a panel link can
be hidden, which will make it a field the user never lands on after penetrating a panel
link. So you're free to give the panel link an F8 subpanel lookup that's independent
of the field the user actually lands on in the subpanel, by making the target field of
panel link a hidden subpanel field. Define the lookup on that hidden field to your
heart's delight, but make sure the field you want the user to land on after penetrating
the panel link is the first editable field in the Edit Order that follows this special
purpose hidden field.

Facilitating a Lookup in a Report

The User Chooses Next Record By Lookup code (see User Chooses Next Record
By LookUp in my Iteration Control chapter) allows the definer to present the user
with a lookup during report generation. The field list for that report lookup is the
field list found in the lookup definition assigned to the active sorting field of the
index that's active at that point in the report. If no lookup definition has been assigned
that field, the report lookup will display all and only fields in the active index,
starting with the active sorting field.

Suppose you put a report lookup in a section of a report that uses a reverse
index (see Sorting Backwards with Reverse Indexes in my Indexes chapter). This
index will probably sort by a hidden field at that point in the report. If you don't
assign a lookup field list to that hidden field, the report lookup will probably display
what appears to be meaningless numbers (the reverse field itself).

84 Lookups

Reasons for Assigning a Lookup to a Non-Updatable Field

Other than the two reasons outlined above for assigning lookup definitions to a
hidden field, both of which can be good reasons for doing so to a non-updatable field,
there's a third reason you might want to assign a lookup to a non-updatable (::N)
field. Consider our Attorney's Office application again:

Attorney Panel

Client Panel

Transaction Panel

Suppose you want the Client ID Number field in the Client Panel to be
defined as non-updatable, keeping its value out of the hands of the user. It might be
a field that updates on creation based on a recursive link scheme (see The Recursive
Panel Link in my Links chapter). Suppose also you want the user to be able to
perform lookups on that field, and have them sorted by Client ID Number. In such
a case you could go ahead and define the lookup on that field and let the user know
via a help screen that he can access the Client ID Number field for lookup purposes
by using the shifted white cursor keys (or Alt-num keys on a notebook computer—see
Sizing and Moving the Panelin my For Beginners chapter for a discussion of the
Alt-num method of cursoring).

Also note I discuss an alternative to using a lookup on a non-updatable field
above, in What if you don't want the lookup field to be the first field in its own lookup
field list?

A Note about Saving a Lookup Definition

It's easy to inadvertently save a lookup definition without an assigned index. This
happens after examining or editing an existing lookup definition. While sitting on a
field, you decide to examine that field's lookup definition. You Shift-F8, 1 and then
look at the fields chosen for its field list. You either leave them alone or change them,
and then hit F10. Now you find yourself in the lookup index screen. The index you
selected before appears there. It looks fine, so you hit F10.

You just removed the index from the lookup definition! When you access the
Shift-F8, 1 screen to inspect a lookup definition, you're first presented with the
Define Lookup Field List screen. Fine. If it looks okay, just hit F10. Next you see the
Index Selection screen. If you just hit F10 or F7 here (or F1, for that matter), you just
told DataPerfect you don't want any index assigned to this lookup definition. That's
telling DataPerfect to feel free to just use the Smart Lookups algorithm to decide how
to sort this lookup. When you see that Index Selection screen, and you want an index

Lookups 85

assigned to this lookup definition, select it with F4, even if it was already selected
previously.

This issue arose with version 2.3. Before version 2.3, you had no option to
save a lookup definition without an index. With version 2.3, you do this by simply
hitting F7, F10, or F1 while in the index selection screen.

To see what fields and index are in fact assigned, without going through these
two screens, just hit Shift-F8 and take a look at the area near the bottom of the
screen, where you'll see your lookup definition (if one exists at all). It should look
something like this:

Record Lookup Index and Field List: 5 - 35 2 1

That line (which would be missing if this field doesn't have a lookup definition) tells
you this field has a lookup definition that uses index 5, and a field list of fields 35,
2, and 1.

If you go into that lookup definition and hit F10 on the Define Lookup Field
List, and again on the Index Selection screen, you'll get this line on your Shift-F8
screen:

Record Lookup Index and Field List: 0 - 35 2 1

That zero on the left says the lookup doesn't have an index assigned to it. By
assigning it no index, you're telling DataPerfect you're fine with the Smart Lookups
algorithm deciding what index to use with that field list on any given occasion.
This section is extremely important. Reread it if you don't see it's significance.
You can easily blow away a working lookup definition if you don't understand this.

Troubleshooting Lookups

Problem
Your lookup seems to display properly, but keystroking doesn't seem to move the
highlight bar properly.

Solution

The lookup field list is out of sync with the lookup index. This would be like having
the Last Name field as the first field in the lookup field list, but the index is sorting
primarily on the First Name field. This sort of thing can arise, of course, if you
simply chose the wrong index for that field's lookup definition. But if the index
seems appropriate for the current field's lookup field list, consider how entry into that
panel is taking place here.

If you enter that panel via a panel link with a field list or via a menu option
with a keyword, then the field that's acting as the primary sorting field during the
lookup may very well not be the field you think it is. For instance, if the panel link
that gets you into this panel has Account Number on its field list, then, during a
lookup on the Last Name field DataPerfect will look for an index in that panel that

86 Lookups

begins with Account Number and Last Name. It won't use an index that begins with
Last Name, even if it's assigned to the lookup definition of that field. If there's no
index in that panel beginning with Account Number and Last Name, this lookup will
essentially have no index on which to sort the displayed records. For more on this,
see Smart Lookups (Browse Mode) in this chapter.

Problem

A report lookup (resulting from a User Chooses Next Record By Lookup code)
shows an undesired field in the first column of the lookup display. That field is
displaying a five-digit number instead of a date, or a negative number instead of a
positive one, even though lookups in that panel during Browse mode always look
fine.

Solution

Examine the index this report lookup is using. Locate the field in that index that's the
primary sorting field in that part of the report. If this is in the main report, that field
would be the index's first field. If this is a subreport, it's the field that immediately
follows the link field list as defined by the subreport definition.

Now see if that field has a lookup field list defined. That's what the report
lookup uses, if it exists. If it doesn't have a lookup field list, the report lookup will
display all the fields in the index active in that part of the report. So, to control a
report lookup display, give that active sorting field the proper lookup field list. Even
if the active sorting field at that point in the report is a hidden G9999 field holding
a five-digit Julian Date value, or a hidden G-9999 field, you can still give it a lookup
field list that begins with a displayed date field or displayed G9999 field.

Problem
Sometimes a particular field's lookup displays properly, and sometimes it doesn't. It
seems to display improperly after performing lookups on other fields.

Solution

Unless you actually assign a lookup definition to that field, DataPerfect will choose
the lowest number index that makes that field the primary sorting field. If no index
makes that field the primary sorting field, and a lookup has already been performed
in that panel this session, DataPerfect will use the index used by that other lookup.
Take a look at the flow chart on this in Smart Lookups (Browse Mode) in this
chapter. So, to solve this problem, assign a lookup definition to that field.

Problem

When you enter a particular panel from the Panel List, no matter what field you're on,
performing a lookup fails to show all records in the panel. You've checked the lookup
definitions on these fields and find none of them have indexes with Exception Lists
assigned to them.

Lookups 87

Solution

Check the lowest numbered index in that panel. It probably has an Exception List on
it. When you enter a panel from the Panel List, you're initially under the control of
the lowest numbered index. Though DataPerfect gives way to a field's lookup
definition, it does so only if consistent with an Exception List that may be assigned
to it. This is precisely why the lowest numbered index should never have an
Exception List on it.

Problem

When you enter a particular panel from a particular menu item or panel link, no
matter what field you're on, performing a lookup fails to show all records in the
panel. You've checked the lookup definitions on these fields and find none of them
have indexes with Exception Lists assigned to them.

Solution

Check the index assigned to that menu item or panel link. It probably has an
Exception List on it. When you enter a panel via a menu item or panel link, you're
initially under the control of the index assigned to that entity. Though DataPerfect
gives way to a field's lookup definition, it does so only if consistent with an
Exception List that may be assigned to it.

Problem

Though lookups in other panels seem okay, lookups in a particular panel seem
uncharacteristically slow. Moving the highlight bar up and down the lookup display
is a slow as molasses.

Solution

Either turn off Auto Display or go with less computed fields in that panel. Either of
these slows down lookups. Auto Display is accessed with Alt-F8, Alt-F8, which
gives you the Panel Options menu:

Panel Option

1 - Edit Filename 5 - Change Edit Order

2 - Change Color 6 - Edit Panel Name

3 - Auto-Save (Y/N) 7 - Recompute Field Offsets

4 - Auto-Display Record (Y/N) 8 - Auto-Edit/Auto-Create/Menu

Browse Change => Menu
Display each record during Lookup.
Selection: 0

Note Display each record during Lookup in the lower left corner. That
disappears when you hit 4 above, and reappears when you hit it again. Turning that
off will speed lookups, but will keep the user from seeing records in the panel change
while moving the highlight bar in the lookup display. This holds for report lookups
in that panel too.

88 Lookups

Indexes

This chapter is directed at both inexperienced and experienced DataPerfect
application developers.

Introduction

The

As you find out early in this game, you don't have a working panel without at least
one index defined for that panel. What exactly are you defining when you define an
index?

An index is an ordered set of pointers that direct the .STR file to specific
records in a particular panel's data file. An index's set of pointers are determined by
the ordered field list the definer assigns that index. So, when you create an index, you
create a way of accessing its panel's data file. You don't affect its data file
directly—that is, the data file on disk isn't changed at all when you create an index for
its panel. Rather, you offer the .STR an ordered access to those records.

An index determines how a data file's records sort during particular events.
For instance, a definer-determined index will determine the sort order of records
processed by a report, or the sort order of records displayed during a lookup. A report
that prints Monthly Statements sorted by Last Name uses a different index than one
that prints them by Account Number. The same for lookups: one may display Clients
sorted by Last Name, and another by First Name, or even Birthdate. Each such
lookup will be defined in a way that uses a different index.

So, again, an index determines how records in its panel's data file sort when
a particular event uses that index. And, though defining an index amounts to creating
an ordered list of fields found in a panel, defining that index has no affect on that
panel's data file on disk. However, defining an index directly affects both the .STR
and .IND files. That is, unlike a panel's data file, both the .STR and .IND files are
rewritten to disk when you create, edit or delete an index. Let's examine what role
each of these files plays in indexing.

.IND File

The .IND file stores all indexes for all data files in a single application. You're
limited to 200 indexes per panel. The .IND's file size limitation is 8 gigabytes. When
you create or edit an index, DataPerfect puts information about that index in the .IND
file, and puts pointers in the .IND file that direct that particular index to each and
every record. Unless there's an Exception List placed on that index (see Exception
Lists later in this chapter), there will be a pointer in that index's portion of the .IND
file for every record in the data file associated with that index's panel.

Indexes 89

Within a single data file's group of indexes, what makes one index's set of
pointers different from another's is their sort order. One index might have pointers
that point to all records in the Client Panel (one pointer per Client), sorted by Last
Name. Another index might have pointers that point to all the same records, but
sorted by First Name. The Last Name index considers, say, John Adams' record as
the first record in the Client Panel, and Alice Zane's as the last; whereas the First
Name index will see Alice's record before John's. Put another way, the Last Name
index will store pointers for records in the Client Panel data file in the .IND file in
such a way that John's record gets a lower number (earlier in the index) than Alice's.
The opposite is true of the First Name index.

These pointers in the .IND file direct the .STR file to records in a panel's data
file in an ordered fashion, depending on what database event is active. By a database
event, I mean an event like a lookup that's displaying, or a report that's running. An
essential part of the definition of each of these sorts of database events is the index
the definer assigns to it.

How Indexes Sort

90

An index definition consists simply of an ordered set of real (i.e., not computed)
fields in a particular panel. We call this set of fields an index field list. Understanding
how an index will sort records if it has only one field on its field list is easy. It sorts
by that field alone.

Consider a panel's data file to have only two records:

John Adams
Alice Zane

Say Index 1 in that panel has a field list consisting simply of the Last Name field.
Then a lookup using that index will display records just as you see above.

Now consider Index 2. Its field list consists simply of the First Name field.
A lookup using that index will display records like this:

Alice Zane
John Adams

What confuses some users in the first stages of application development is
how an index sorts records when its field list has more than one field. In the above
data file example, say Index 3 has this field list:

Last Name, First Name

Assume Index 4 has this field list:

First Name, Last Name

Indexes

What do fields after the first field in an index field list do? Well, think of it this way.
Index 3 will first sort records alphabetically by the first field in its field list (the Last
Name field). If no two records have the same value in that field, the sorting is done.
If two or more records have the same value in the first field in the index field list,
then DataPerfect will attempt to break the tie by looking at the second field in the
index field list. If there are two or more records with the same value in the first two
fields, DataPerfect will attempt to break the tie in the third field in the index field list.
Index 4 will use the same sorting logic, but start with the First Name field and move
to the Last Name field only when needed to break a tie.

Now, in our example above, DataPerfect doesn't need to look any further than
the first field of either index's field list. But suppose that data file has these records:

John Adams
Alice Zane
John Smith
Sally Zane
John Jones
Jack Zane

In the above example of a data file, Indexes 1 and 2 won't work. Again, these
two indexes each have only a single field in its index field list. Why won't they work?
Because each one can't break ties on the first field in its index field list. There are two
or more records in the above data file that have the same value in the Last Name
field, so Index 1 can't break the tie on its single-field field list. And there are two or
more records there that have the same value in the First Name field, so Index 2 can't
break the tie on its single-field field list. To break these ties, we need at least one
more field in each of these index field lists. Here's how Index 3 sorts the above list
of records:

John Adams
John Jones —— Sorted by Last Name field,

John Smith which is first in index field list.
Alice Zane —
Jack Zane |} Broken ties using First Name field,
Sally Zane - which is second in index field list.

And here's how Index 2 sorts that same list of records:

Alice Zane —— Sorted by First Name field,

Jack Zane which is first in index field list.

John Adams —

John Jones |——— Broken ties using Last Name field
John Smith - which is second in index field list.
Sally Zane

Indexes 91

Uniqueness and Picking Fields for the Index Field List

92

As you can surmise, there might be cases where there aren't enough fields in an index
to break all ties that might occur in a panel's data file. What if the above data file has
another record, this one for another John Jones? This gives us two records with
identical values in all fields of an index—in this case, both indexes. After finished
creating or editing an index definition, if DataPerfect finds two or more records in
that data file that match on all fields in that index field list, you get the following
error message:

Warning: Redefine this index. The index keys are not unique.

This means two or more records in that data file match on all fields in that index field
list. So you'll need to either add more fields to the index field list, or use different
fields completely.

A situation that would cause above error message would be this. Your panel
has a data file with the following records:

John Adams
John Smith
Sally Zane

So far you only defined one index in this panel, which we'll call Index 1. Its field list
consists of but one field, the Last Name field. Fine. So far, no two records in that list
share the same value for the Last Name field, so as far as DataPerfect is concerned,
the data file has no duplicates. Next you create Index 2, whose field list consists
solely of the First Name field. Well, note that two records in that list share the same
value for that field. When you exit the Define Index screen, DataPerfect will beep
with the Redefine this index message.

Alternatively, you may have created such an index before ever adding records
to that panel's data file. In that case, the moment you attempt to save a record that
matches an already existing record on all fields of an index field list, you'll get this
message:

Not

This record is not unique. At least one index key was
Found to be duplicated in the index(es).

In order to save the record, data must be entered into the
Fields which will make the record unique in panel: 1

Note that the above error message refers to Panel 1. You might think it should
be obvious which panel has the indexing error, because it must always be the current
panel. Right? Wrong. DataPerfect allows you to define elements of a panel so that
saving a record in it affects records in other data files. Such devices include the
Cascade Update and the Keep A Total facilities. So when you save a new index
definition, you might notice that message above appear with a foreign panel
referenced.

Indexes

To get around problems like two Clients matching on all their name fields,
even their Middle Name fields, most application developers add an ID Number field
such panels. This might be the Client's Social Security Number or one assigned by
the field itself with the ::I or ::J. If we put that field on every index field list in that
panel, we can have more than one Client with the same name. So, instead of having

(A) Last Name, First Name
(B) First Name, Last Name

as two indexes in the Client Panel, we might have the following indexes:

(1) ID Number
(2) Last Name, First Name, ID Number
(3) First Name, Last Name, ID Number

A few comments about the above Indexes 1-3. Unlike Indexes A and B,
Indexes 1-3 all include the ID Number field. Also note that Index 1 has only one
field: the ID Number field. This last point has double-edged importance. It guarantees
that no ID Number will ever be used twice. Think about this a second. Suppose Index
1 wasn't there, and all we have in that panel is Index 2 and 3. That would allow us to
create two records with the same ID Number, like these:

ID Last First

Number Name Name
Record 1 1001 Adams John
Record 2 1001 Zane Sally

Each of those records is unique if our only two indexes are these:

(2) Last Name, First Name, ID Number
(3) First Name, Last Name, ID Number

That's because these two records don't match on all of their index list fields. In fact,
they match on only one. Now add back Index 1:

(1) ID Number
(2) Last Name, First Name, ID Number
(3) First Name, Last Name, ID Number

Index 1 won't allow the creation of both those records because they'll match on all its
index field list fields (there's only one field on its field list). So Index 1 guarantees
we never create two records with the same ID Number, and Indexes 2 and 3 allow for
more than one Client with the same name because they'll have different ID Numbers.

Also, it's good practice to make Index 1 the single-field index that contains
a record's uniquely identifying field (like the ID Number field). When you enter a
panel from the Panel List, DataPerfect accesses records in that panel via the lowest
numbered index. I say lowest numbered instead of Index I because you might have
deleted Index 1 sometime during development. This is a good place to put that

Indexes 93

single-field index. And because DataPerfect uses the lowest numbered index to
access the panel from the Panel List, don't ever put an Exception List on that index
(see Exception Lists later in this chapter).

Sorting Backwards with Reverse Indexes

94

A developer frequently needs to use reverse indexes in his application. These are
indexes that sort in reverse order with respect to a field in the same panel. Usually
that means sorting in reverse order with respect to a date field or a numerical ID field,
like an Account Number field or Transaction Number field. Let's explain.

Reverse Sorting by Number

Via a Panel Link
Let's say you have the following familiar panel hierarchy:

Customer Panel

Invoice Panel

Transaction Panel

Further assume the Customer Panel has an auto-incrementing G99999::J Customer
Number field P1F1 that's the sole occupant of that panel link's field list. Likewise,
the Invoice Panel has a matching G99999::N Customer Number field P2F1, as well
as having an auto-incrementing G9999::J Invoice Number field P2F2 that's used to
uniquely identify each Invoice. Simple enough.

Now you'd like the panel link that takes the user from the Customer Panel to
the Invoice Panel to land on that Customer's most recent Invoice. Here's how to do
this:

° Create a hidden G-99999::H field in the Invoice Panel that updates on
any change to

-P2F2

Let's assume its field code is P2F3. We'll name it the Reverse Invoice
Number field.

° Create an Invoice Panel index consisting only of the Customer
Number and Reverse Invoice Number fields, in that order.

° Assign the above index to the Customer Panel panel link. That panel
link has the Customer Number as the only field on its field list
already.

Indexes

That panel link will take the user to the Customer's most recent Invoice in the
Invoice Panel. For lookups to work correctly in the Invoice Panel, however, it must
have a

<Customer Number, Invoice Number>

index. If that panel only has the

<Customer Number, Reverse Invoice Number>

index, Invoice Panel lookups performed on the Invoice Number field won't work
quite right. In the latter case, performing such a lookup will indeed produce a lookup
display that sorts records in reverse order (with the highest Invoice Number at the
top). But when you try to type numbers in that lookup, the lookup highlight bar won't
move. The lookup is actually waiting for you to type negative numbers because the
index that's active after penetrating the panel link is the Reverse Invoice Number
index. But if there is a

<Customer Number, Invoice Number>

index in the Invoice Panel, the Smart Lookups algorithm will use that index,
provided you don't assign the

<Customer Number, Reverse Invoice Number>

index to the Invoice Number field's lookup definition.
If the lookup uses the

<Customer Number, Invoice Number>

index, it will produce a lookup with records sorted so the lowest numbered Invoice
for that Customer is at the top, but the record you initially land on after penetrating
the panel link will be the highest numbered Invoice for that Customer. Again, the
reason you land on the highest numbered Invoice when penetrating the panel link is
that the link uses this index:

<Customer Number, Reverse Invoice Number>

But the reason the actual lookup display on the Invoice Number field sorts with the
lowest Invoice Number on top is because the Smart Lookups algorithm will choose
this index for a lookup on that field after penetrating that panel link:

<Customer Number, Invoice Number>

So it works fine now. What this is doing is letting the panel link use a reverse
sort, which places the user on the most recent Invoice (highest Invoice Number) in
the Invoice Panel, while assigning a forward sort to the Invoice Number field in the
Invoice Panel, allowing the user to type-to-search in the Invoice Panel to find the

Indexes 95

96

desired Invoice if the most recent one isn't the one they want. See Smart Lookups in
my Lookups chapter. This can be a very complicated topic.

In the Level 1 Panel
But what if you want a reverse sort on the Customer Number field in the top panel
(the Level 1 panel) in this panel hierarchy: the Customer Panel. I don't know why
you'd want that, but let's say you do. Well, here's the problem you face.

Let's say you assign the Customer Number field a lookup definition that has
a field list beginning with the Customer Number field. Then you assign that lookup
definition this single-field reverse index:

<Reverse Customer Number>

The Reverse Customer Number field will be a G-99999 field that's formulated to
update on any change to

-P1F1

We'll call that field P1F6.

What's wrong with this picture? Well, when you perform a Browse mode
lookup on the Customer Number field with that lookup definition, it will sort with
this index:

<Reverse Customer Number>

But that index is sorting by P1F6 (negative numbers), not P1F1 (positive numbers).
What will happen is that you'll find the first Invoice Number at the bottom of the
lookup display (in virtue of the lookup's reverse index), and you'll see only positive
numbers (in virtue of the lookup field list), but you won't be able to type-to-search
on that lookup. Because the lookup is using the reverse index to sort its display, it's
expecting you to type in negative numbers corresponding to values that would appear
in P1F6, not P1F1.

There are a couple of ways around this. First, if your application gives the
user access to the Panel List (I suggest you never do this), make index 1 in that panel
the reverse index. Then just make sure that panel also has an index that sorts forward
by Customer Number. When entering a panel directly from the Panel List,
DataPerfect puts you on the first record of that panel's lowest numbered index. In this
situation, then, DataPerfect will put you on the record with the highest Customer
Number. But when you perform a lookup on that field, the Smart Lookups algorithm
will sort by the first index it finds that sorts primarily by the Customer Number, if
you haven't already assigned one to that field's lookup definition.

Second, if your application only gives users access to panels via menus (I
highly recommend this), then define entry to the Customer Number Panel with a
menu option that uses the reverse index. Again, as long as you create a forward-
sorting Customer Number field index in that panel, and don't put the reverse index
in that field's lookup definition, the Smart Lookups algorithm will sort by the first

Indexes

index it finds that sorts primarily by the Customer Number, if you haven't already
assigned one to that field's lookup definition. In this situation, the lowest numbered
index need not be the reverse index.

Again, if you don't understand what I mean by the Smart Lookups algorithm,
read up on it in Smart Lookups in my Lookups chapter.

Reverse Sorting by Date

Now let's consider the panel link that takes the user from the Invoice Panel to the
Transaction Panel. Let's say you'd like that link to land on the most recent
Transaction for that Invoice. This panel link has only the Invoice Number field on its
field list. Let's assume the Transaction Panel has, among other fields, an
auto-incrementing G99999::J Transaction Number field P3F1 and a D99/99/9999
Date field P3F2. Here's what we need to do:

° Create a hidden G-99999::H or D-99/99/9999::H field in the
Transaction Panel that updates on any change to

-P3F2

Let's assume its field code is P3F3. We'll name it the Reverse Date
field. Note that you can use either a G or a D field for this. Most use
the G field, since it takes less screen space. Don't forget that a D field
holds a five-digit number in the data file, not a date as we know it.
Both fields are just holding the negative of the five-digit Julian
number held by P3F2 (the Date field). If this confuses you, see The
Date Field as a Special Numerical Field in my Fields: Issues
chapter for a discussion of the difference between what D fields store

and what they display.

° Create a Transaction Panel index consisting only of the Invoice
Number and Reverse Date fields, in that order.

° Assign the above index to the Invoice Panel panel link. That panel

link has the Invoice Number as the only field on its field list already.

This panel link will now take the user to the Invoice's most recent Transaction
in the Transaction Panel. Lookups on that Date field will now sort with the earliest
on the bottom and the latest on the top, but, like the Invoice Number field discussion
above, type-to-search won't work unless that panel has a

<Invoice Number, Date>

index for the Smart Lookups algorithm to grab. If such an index exists, and that field
doesn't have the

<Invoice Number, Reverse Date>

Indexes 97

index assigned to its lookup definition, the lookup will allow type-to-search on that
field. But there are certain issues to consider when designing a database that allows
for type-to-search lookups on date fields. Read my discussion on Date field lookups
in Date Fields in my Fields: Issues chapter. Also make sure you read Reverse
Sorting by Number above, so you understand the issues that arise in the subsections
called Via a Panel Link and In the Level 1 Panel. Those issues apply to reverse
sorting by date as well.

The .STR File and Index Regeneration

98

When you create, edit, or delete an index definition, you don't just affect the .IND
file. You also dramatically affect the .STR file. So just how are these two files related
in terms of indexes?

Like the .IND file, the .STR file also has index pointers. Unlike the .IND file,
these pointers don't point to records in a data file. Rather, they point to the pointers
in the .IND file. These .STR index pointer live in index blocks in the .STR file.
Further, these .STR index blocks live in one or two possible physical locations of the
.STR file, which I'll call the Old Index Block Pool and the New Index Block Pool. All
newly created index blocks are placed in the New Index Block Pool. After an all-
panel Index Regeneration (Shift-F9, 1, 2), index blocks found in the New Index
Block Pool are swept into the Old Index Block Pool. During that time, any holes
created by deleting an index block in the Old Index Block Pool are filled.
Graphically, this would look like this:

Old Index Block Pool | 1 2 3 4 5 6 7

New Index Block
Pool
Indexes Just Regenerated
Old Index Block Pool | 1 2 3 4 6 7
New Index Block 8 9
Pool

Old Index Block Pool | 1 2 3 4 6 7 8 9

New Index Block
Pool

Indexes Regenerated Again

Indexes

Think of the above index blocks as physical places in the .STR where the
.STR hooks into the .IND file. If the .STR file is a hand and the .IND file a glove,
these index blocks are hand fingers that fit and move glove fingers. The gloved hand
then manipulates data files.

In the first graphical display, the .STR hooks into the newly generated .IND
in a particular way. Index blocks 1 through 7 hook the .STR into indexes 1 through
7 in the .IND file. That .STR hand has fingers in particular locations that fit an .IND
glove that has its fingers in compatible locations.

In the second graphical display, the user just created Indexes 8 and 9, and
deleted Index 5. DataPerfect creates two new index blocks in the New Index Block
Pool, and leaves a hole where Index Block 5 was in the Old Index Block Pool. The
IND file associated with the second .STR expects to find Index Block 8 in the New
Index Blocks Pool, in that particular physical location. Invoking our hand-and-finger
metaphor, the second .STR hand has some of the same fingers as the first one, but is
missing one (Index Block 5), and has a couple of new ones where fingers didn't exist
in the first one (Index Blocks 8 and 9). It won't work with the .IND the first .STR
worked with. That hand won't fit the old glove.

The above considerations become very important when deciding whether or
not you need to regenerate indexes upon installing a new version of an .STR at your
client's site. I talk about this in When It's Okay to Overwrite an .STR in my
Application Maintenance Issues chapter.

Exception Lists
What They Are

When you call your Define Index menu with Ctrl-F8, you see the following options:

Define Index
1 - Create Index
2 - Edit Index Field List
3 - Create/Edit Exception List

4 - Delete Index
0 - Exit

Selection: 0

Options 1, 2, and 4 are straightforward, but 3 isn't. What exactly is an Exception
List?

You can attach an Exception List to any existing index, though you should
never attach it to the lowest numbered index for a given panel. I'll explain this caveat
later, but for now, let's talk about Exception Lists. When you attach an Exception List
to an index, you're restricting what records will be seen by that index (what records
will have pointers in that index). Simply put, for any given record, it gets into an
index that has an Exception List if any of its fields on the Exception List are filled
in. Put another way, a record is kicked out of an index if all its fields in the Exception
List are empty. A numerical field is considered empty if its value is zero, and a text
field is considered empty if it's blank.

Indexes 99

100

To attach an Exception List to an index you first enter the Define Index menu
with Ctrl-F8, then choose 3. With the cursor keys, find the desired index and select
it with F4. Tab to each field you want to include in the Exception List and select it
with F4. When done selecting fields for the Exception List, F7 your way back to the
panel display. Though the fields you choose need not be part of that (or any other)
index in that panel, each field in the Exception List must be a real field (i.e., it can't
be a computed field).

After an Exception List is attached to an index, you can always go back at any
time to see what fields are on that index's Exception List by browsing the index
definition the usual way, with Ctrl-F8, 2. On that screen (the Index Selection screen),
after you cursor to the index in question, you'll see an uppercase E to the immediate
left of each field that's in its Exception List.

An example of an index with a single-field Exception List might be one in an
Account Panel that has the Balance field as its only Exception List field. That index
will include only records with a positive or negative balance, and exclude all records
with zero balance. This index will see (have pointers for) only records with a balance,
so any entity that uses that index, like a lookup or a report, will likewise see only
records with a balance. More on strategically using Exception List indexes later.

An example of an index with an Exception List that has more than one field
is an index in the Transaction Panel of my doctor's office application. This
Transaction Panel index includes (has pointers for) all Transactions that are payments
(as opposed to charges or adjustments) in virtue of having an Exception List with two
hidden G9 fields. One of these hidden G9 fields is formulated to update on any
change from O to 1 if the Transaction is a payment from an insurance carrier, and the
other hidden G9 field is formulated to update on any change from O to 1 if the
Transaction is a payment that's not from an insurance carrier. A Transaction Panel
record with one or both of these G9 fields filled in (i.e., with a value of 1 instead of
0) will be considered a payment from any source, thanks to this Exception List Index.
Likewise, a different Exception List Index—one with only the G9 field that updates
on any change from O to 1 if the Transaction is a payment from an insurance
carrier—will point to all and only Transactions that are payments from an insurance
carrier.

A couple of notes about DataPerfect's Help screen on Exception Lists. In the
first few releases of DataPerfect 2.3, there's an error in this Help screen. Until
recently, Ctrl-F8, F3 displayed the following:

An index exception 1list determines which
fields are to Dbe checked for an empty
value. If a field in the exception list is
empty, the record will not be placed in the
index.

This is false. A record is excluded (has no pointers in the index) here only if
all the Exception List fields are empty. It's included (has pointers in the index) if any
are not empty.

That Help screen changed a bit in later releases of DataPerfect 2.3:

Indexes

An index exception 1list determines which
fields are to be checked for an empty
value. If all fields in the exception list
are empty, the record will not be placed in
the index.

Though that second sentence is true, it doesn't tell you what happens if one but not
all fields in the Exception List are empty. Here's how I'd rewrite it:

An index exception list determines which
fields are to be checked for an empty
value. If and only if all fields in the
exception list are empty, the record will
not be placed in the index.

That covers situations where one but not all Exception List fields are empty.

It's sometimes confusing to think about which records are excluded by an
Exception List, and which are included. I think it's a lot easier to think about which
records will be included in an Exception List Index, instead of thinking about which
records will be excluded. A record is included in an Exception List index if any of
the Exception List fields are not empty. If one or more of those fields are filled in, the
record gets in the index.

The Lowest Numbered Index: A Caveat

Earlier, I mentioned you should never attach an Exception List to the lowest
numbered index in a panel. The only thing the DataPerfect reference manual says
about this is this:

One exception list per index is allowed. At
least one index per panel (usually the
first index) should not include an
exception list.

That caveat is inadequate. The index that should never have an Exception List is the
lowest numbered index in the panel. Why? Because when you enter that panel from
the Panel List, you're under the control of that panel's lowest numbered index. All
subsequent lookups after that entry will be restricted by that Exception List. This will
tend to be very confusing. Leave that lowest numbered index without an Exception
List. Also note that I don't say you should protect Index 1, but instead talk about the
lowest numbered index. That's because you may end up deleting index 1 at some
point, resulting in some other index being the lower numbered index in that panel.

Aiding Lookups with Exception List Indexes

[Refer to UD.STR for this.
Find the ELI in Lookups single-panel series.]

One basic use for an Exception List Index is to exclude certain records in a lookup
display. In my Phonebook Database, I might want to have a series of G9 fields help

Indexes 101

102

me find certain groups of people. One such G9 field might be titled Consultant field.
I could define it so that I would enter / if the person is a consultant for my business,
and leave it 0 otherwise. If I were to then create an Exception List Index for that
panel—one that excludes records with a blank Consultant field—I could then assign
this Exception List Index to the lookup for the Consultant field. This lookup now
displays all and only consultants.

The above is an example of using an Exception List Index that excludes
records from a lookup based on whether or not the value of a displayed flag field is
blank. Another use might be to base record exclusion on the given value of a field,
not just whether or not it's blank. This is a little more complicated and employs an
Exception List that includes a hidden G9 field. Let's explain.

In my Customers Database I might want the Accounts Panel to contain a
lookup that displays all and only those accounts with positive balances. This time it
won't suffice to have an Exception List Index exclude records with a blank Balance
field because that won't exclude negative balances.

For this I can use a hidden G9 field that updates on any change to 1 when the
Balance field is greater than 0, otherwise it remains 0. In UD.STR's ELI in Lookups
panel (on your diskette), such a field is the hidden field 5, which has this formula:

if P6F4>0 then 1 else 0 endif

In that formula, P6F4 is the Balance field. I can now define an Exception List Index
that excludes records with field 5 blank. Using this Exception List Index for a lookup
will result in the lookup displaying all and only records with positive balances.

To create a lookup that uses this Exception List Index, I created a U1 field
that updates on any change to blank, so the user can't save any characters in it. It's just
there to land on and do a lookup. I assigned our special Exception List Index to its
lookup definition. Now its lookup displays all and only records with a positive
balance. To test it, do a lookup on the Last Name for First Name fields to see records
with both positive and negative balances. Then do a lookup on the Positive Balance
lookup field.

Speeding Reports with Exception List Indexes

Perhaps the way to speed a report is to assign it an Exception List Index when such
an index is appropriate. For instance, suppose you want to print Monthly Statements
sorted by Account Number, but only want to print those with a positive balance. You
can use the Initial Report Definition Screen 's Search Conditions (option 4) to do this,
with a formula like this on the Specify Formula screen:

P1F4>0

But what exactly is that going to do? It will cause the report to examine every record
in its assigned index, but print only those with a positive balance. That can take a
long time if most of your clients keep their balances clear.

Indexes

Alternatively, you can create an Exception List Index that sees only those
records with a positive balance. An Exception List Index like that one we created in
Aiding Lookups with Exception List Indexes above will do fine here. If it's just a copy
of the Last Name index, but with an Exception List consisting of the Positive Balance
Flag field attached to it, it will still sort by Last Name, but point only to records with
a positive balance. If, instead of putting Search Conditions on this report, we assign
the report this Exception List Index, the records it examines will be precisely those
it prints. That is, it won't even see records with other than positive balances. The
speed difference here can be the difference between a report that takes hours versus
one that takes seconds or minutes.

Slightly more complicated is to create a Subreport that uses a panel link
governed by an Exception List Index. This will cause the subreport to see only those
records that satisfy a particular condition (the condition implied by the Exception List
Index's fields not all being blank).

So don't even think about using Search Conditions if you can create an
Exception List Index to satisfy the same conditions. Using Search Conditions will
still result in the report examining every record in the panel. Using an Exception List
Index won't.

Aiding Computed Fields in a Parent Panel with Exception List
Indexes

[Refer to UD.STR for this.
Find the ELIs Aiding Parent ::C Fields series.
Load the Account Panel.]

Let's consider this simple panel hierarchy:

Account Panel

Transaction Panel

Most Recent Transaction

Suppose you'd like a computed field in the Account Panel to display the most recent
Transaction for the currently displayed Account. The typical way to do this in the
Account Panel is to could create a hidden panel link that leads to the Transaction
Panel, making sure the panel link is governed by a Transaction Panel index that sorts
records in reverse chronological order by Account Number. Then formulate the
computed fields to grab values found in the Date and Amount fields of the
Transaction Panel record using the new panel link. Let's explain.

First, we create a Transaction Panel index that sorts Transaction Panel
records in reverse chronological order by Account Number. In the Transaction Panel
in UD.STR's ELIs Aiding Parent ::C Fields panel series, that's Index 3. It turns on
the P8F10 in that panel (the Reverse Date field). Records sorted in the Transaction
Panel by that index are sorted primarily by Account Number (the first field in its

Indexes 103

104

index field list), and secondarily by Reverse Date (the second field in its index field
list). The Reverse Date is just the negative of the value found in the Date field in that
panel. A Reverse Date field is typically formatted

G-99999::H
and formulated to update on any change to

-P1F1

where P1F1 is the Date field from which it's grabbing its date. Though you can also
format the Reverse Date field

D-99/99/9999::H

and use the same field formula,
G-99999::H

takes less screen space. See Reverse Sorting by Date above for more on Reverse
Dates.

Second, we create a hidden Account Panel panel link that targets the
Transaction Panel, uses this our new index, and has only the Account Number field
on its link field list.

Third, we formulate a couple of Account Panel computed fields that use this
panel link to grab values found in the Date and Amount fields of the most recent
Transaction Panel record for the currently displayed Account Panel record. In
UD.STR's ELIs Aiding Parent ::C Fields panel series, these two Account Panel
computed fields are fields 8 and 9 (H$Z2779.99::C and D99/99/99::C, respectively),
and the panel link they're using is field 10.

Most Recent Payment

But suppose you would like to have a pair of computed fields in the Accounts Panel
display the most recent payment on that account, and, like UD.STR's ELIs Aiding
Parent ::C Fields panel series, you don't have a separate panel for payments (your
Transactions Panel holds both debits and credits). To do this, we create a Transaction
Panel index that sorts in reverse chronological order by Account Number and assign
it an Exception List that contains a G9 field that updates on any change from O to 1
if the Transaction is a payment. Then we formulate the computed fields to grab
values found in the Date and Amount fields of the Transaction Panel record using the
new panel link. Again, let's explain.

First, we create a Transaction Panel G9::H field that updates from O to 1 if
its Transaction Panel record is a payment. In my office's billing application, I can
easily create G9::H fields for Exception List Indexes like this because its Transaction
Panel has a U3 field called the Quick-Entry Code field. All Transactions Panel
records that are payments have a Q/E Code beginning with P (e.g., PKO stands for
Payment by Check in Office, PKM for Payment by Check in Mail, PCO for Payment

Indexes

by Credit Card in Office, etc.). This facilitates formulating a G9::H field that looks
for payments. In UD.STR's ELIs Aiding Parent ::C Fields panel series Transaction
Panel, field 1 is the Q/E Code field, and field 8 is the G9::H field that updates on any
change to 1 if the Q/E Code field value begins with P. The formula for the G9::H
field is

if P8F1="P" then 1 else 0 endif

The above updates to 1 when the first character of the Q/E Code is P, otherwise it
updates to 0. See String Identity in the my Formulas chapter if you don't understand
why that formula updates to 1 if the first character of the value in P1F1 is P.

Second, we need to create a Transaction Panel index like we did in the
previous example (consisting of Account Number and Reverse Date fields, in that
order), but assign it an Exception List. That Exception List will consist solely of our
new G9::H field that updates from O to 1 when the Transaction is a payment (i.e., the
Q/E Code begins with P).

Third, we create a hidden Account Panel panel link that targets the
Transaction Panel, uses our new Exception List Index, and has only the Account
Number field on its link field list.

Fourth, we formulate Account Panel computed fields that use this panel link
to grab values found in the Date and Amount fields of the most recent Transaction
Panel record for the currently displayed Account Panel record. In UD.STR's ELIs
Aiding Parent ::C Fields panel series, these two Account Panel computed fields are
fields 3 and 4 (again, H$ZZ779.99::C and D99/99/99::C, respectively), and the panel
link they're using is field 7.

In my billing application I have a series of such computed fields in the
Account Panel, each using a different hidden panel link, showing such things as the
following:

Most recent insurance payment (Q/E Code is PIN)

Most recent private payment (Q/E Code starts with P but isn't PIN)
Most recent office visit (Q/E Code starts with V)

Most recent transaction (any Q/E Code)

For each of the above I have a special G9::H field in the Transaction Panel, coupled
with a corresponding Exception List Index to be used by a hidden Account Panel
panel link.

Dividing Data File Record Access with Exception List Indexes

Consider this panel hierarchy:

Doctor Panel

Account Panel
T

Indexes 105

106

|
Case Panel

Transaction Panel

Male vs. Female Account

Suppose you'd like to set up a menu so one menu item takes the user to all females
in the Account Panel, and another menu item takes the user to all males in the same
panel. Or perhaps you want a panel link in the Account Panel to take the user to all
Active Cases in the Case Panel for the currently displayed Account in the Account
Panel, and another panel link to take him to all and only Inactive Cases for this
Account.

To do this, we use Exception List Indexes that divide a data file's records in
two, allowing one menu option (or panel link) to give access to one portion, and
another menu option (or panel link) to give access to the other portion. Each member
of this pair of menu items (or panel links) targets the same panel.

Think about this a little. In the first case (female versus male Accounts in the
Accounts Panel), all we need in the Accounts Panel is an Exception List Index that
sees only females, and one that sees only males. To do this, we could create a G9::H
field that updates on any change from O to 1 if the Sex field (formatted U1) in the
Account Panel has F in it. We then create another G9::H field that updates on any
change from O to 1 if the Sex field has M in it. An Exception List Index that has one
or the other of these new G9::H fields on its field list, sees only Accounts of a single
sex. Assigning such an Exception List Index to a menu option limits that menu
option's access to a single sex.

Active vs. Inactive Case
In the second case (active versus inactive Cases in the Case Panel), you could have
a single displayed and editable Case Status field in the Case Panel, formatted G9.
That field will have a formula that updates on creation to 1. The user is instructed to
leave it as 1 until the Case is to be considered inactive, at which time they change its
value to 0. If those are the only two options you want for that field, you'd put a Range
of O to I on it. Next create a G9::H field that updates on any change from O to 1 if the
Case Status field is O.

Now we can create two Exception List Indexes. One that sees only active
Case records, and one that sees only inactive ones. The active Exception List Index
has the displayed G9 field on its Exception List. The inactive Exception List Index
has the hidden G9 field on its Exception List. Assigning the active Exception List
Index to a panel link in the Account Panel gives access to only active Cases in the
Case Panel. Likewise, the inactive Exception List Index gives an Account Panel
panel link access to only inactive Cases in the Case Panel.

Indexes

Warning: Exception List Index Bug in Version 2.2

DataPerfect 2.2 has a fairly dangerous bug that involves Exception List Indexes. If
the user deletes a record that is in an Exception List Index, while operating within an
environment governed by that Exception List Index, DataPerfect 2.2 may corrupt the
record counter for that panel, causing indexing problems. Version 2.3 corrects this
problem.

By operating within the environment governed by an Exception List Index,
I mean placing yourself within the following situations:

° You're in a lookup display governed by an Exception List Index.

° You entered the currently displayed panel via a panel link or a menu
option governed by an Exception List Index.

° You're running a report governed by an Exception List Index.

In any of these three environments, deleting records may result in serious
problems (in the third environment I'm speaking of having the report itself doing the
deleting). After such deletions, you'll frequently notice the record counter in the
upper left corner of the panel display is artificially high.

I've also found that assigning an Exception List to the last index of a panel
can result in another serious problem. In such a case, deleting records with Shift-F$
may cause the same corruption mentioned above without even operating within an
environment governed by an Exception List Index.

To work around the problems outlined above, I suggest you take the
following precautions:

° Don't use Exception List Indexes for lookups unless you have
DPMouse© installed with the Delete Protect flag active.
° Hide all panel links governed by Exception List Indexes. This will

keep users from penetrating these links and then deleting subrecords
within an environment governed by an Exception List Index.
° Don't attach an Exception List to the last index of a panel.

The above precautions apply to DataPerfect 2.2, and are unnecessary with version
2.3.

Indexes 107

108 Links

Links

This chapter targets both beginners and the experienced.

Flat-File DBMS vs. Relational DBMS

Database management systems (DBMSs) are divided into two very different groups:
flat-file DBMSs and relational DBMSs. DataPerfect is a relational DBMS. Let's
outline the differences between a flat-file DBMS and a relational DBMS.

A flat-file DBMS allows you to create applications that manage data in only
one file; whereas, a relational DBMS allows you to create applications that manage
data interrelated across many files. Flat-file DBMSs are great for things like
phonebooks, where you're only interested in data conveniently housed by a single file
of records. Here, each record contains all the information you need for a phonebook
entry.

But how would you run your auto parts store with a flat-file DBMS?
Assuming that, as well as parts descriptions, you would like to record customer
transactions with this application, how could you do this with only one data file? This
would be cumbersome in a single-file system because each time you enter a
transaction for a customer you would have to type in the customer's name and part
description by hand. It would be a lot easier if you could do the following:

o For each customer, enter customer information once in a Customer
file.

o For each part, enter part information once in a Part file.

o For each transaction, pick the customer from a pick list of records in

the Customer file, and pick the part from a pick list of records in the
Part file, to create a unique record in the Transaction file.

In the above scheme, the user types customer and part information only once
for each customer and part. With a relational DBMS program like DataPerfect, you
can create an application that interrelates these three files of records each time the
user enters a transaction. This then allows users to create many records in the
Transaction file for the same customer, or many records in the Transaction file with
the same part, without having to type customer or part information repeatedly.

With DataPerfect, we assign each data file a single panel, which serves as
both a data entry form and a view of the data. We might design an application with
three panels:

® Part Panel
o Customer Panel
o Transaction Panel

Links 109

Now we need links that allow the application to interrelate these three data
files.

The Four Linking Relationships

In any DBMS program, a link expresses one of the following relationships between
the records of the two files it links:

o One-to-many
o Many-to-one
o One-to-one
° Many-to-many
Let's use examples related to our Auto Parts application to clarify these
relationships.

One-to-Many Linking

The most common linking relationship is the one-to-many relationship. Consider our
Customer Panel and Transaction Panel. The Customer-Transaction relationship is
typically a one-to-many relationship, in that each Customer can have many
Transactions. Or, to put it another way, each record in the Customer Panel can have
many related records in the Transaction Panel. This is sometimes expressed as a
parent record in the Customer Panel having many children records in the Transaction
Panel.

Many-to-One Linking

The second most common linking relationship is the converse of the one-to-many
relationship: the many-to-one relationship. Such a relationship is the Transaction-
Customer relationship. This is pretty obvious if you understood my explanation of
the one-to-many relationship, so let's move on to the next relationship.

One-to-One Linking

Probably the next most common linking relationship is the one-fo-one relationship.
In DataPerfect applications, this type of linking usually shows up when the developer
wants to add an extension to the panel seen on the screen. We might consider this for
our Auto Parts application if we decide we want only basic information in the Part
Panel, and very technical information about each part in an extension of the Part
Panel. This extension might be a Part Specifications Panel. There would be one
record in the Part Specifications Panel for each record in the Part Panel, and vice
versa. For now, though, we'll limit our discussion to the three panels outlined above.

110 Links

Many-to-Many Linking

Probably the most complicated linking relationship is the many-to-many relationship.
Instead of expressing this relationship with a link, DataPerfect applications express
it with a panel that joins data from two other panels. Consider the relationship
between the Part Panel and the Customer Panel. From the vantage point of the Part
Panel, one Part can show up in many Customers' shopping bags (one-to-many), and
many Parts can show up in a single Customer's shopping bag (many-to-one). From
the vantage point of the Customer Panel, one Customer can buy many Parts (one-to-
many) and many Customers can buy the same Part (many-to-one). The Part-Customer
relationship, then, is many-to-many. In its own way, the Transaction Panel expresses
this many-to-many relationship by joining a Customer and a Part in each record.

The Two Types of DataPerfect Links

With DataPerfect, we use panel links and data links to express these linking
relationships. Defining either type of link simply amounts to giving it four

characteristics:
° Target panel
° Target panel field to land on
° Target panel index
° Source panel field list

Think of links, be they panel links or data links, as simply bridges between
a source panel field list and a target panel index. Each takes the user from the
displayed record in the source panel to related records in the target panel, filtering the
target panel's records with the link field list (which consists of source panel fields),
and sorting them with the link index (which is a target panel index).

The differences between a panel link and a data link arise from the fact that
a data link is attached to a field and a panel link stands alone. Though each takes the
user from the displayed record in the source panel to related records in the target
panel, the data link, in virtue of being tied to a field, provides for data checking
during data entry. This difference between the two links is sometimes expressed as
the panel link links panels, whereas the data link links a field with a panel. Don't
think of the difference only in this way, however. The difference between the two
types of links is much more than that, and you need to understand their differences
if you want to prevent problems with your database applications.

In deciding between creating a panel link or a data link, always choose a panel
link unless you need data checking on a particular field. That is, never create a data
link for navigation between panels. Never. All these should be panel links:

Links 111

o A link used only to take the user to a subpanel.

o A link used only to take the user to a parent panel.

° A link used only for the purpose of grabbing a field in another panel
during a formula computation.

o A link used only to facilitate a Keep A Total operation to a different
panel.

o A link used only to make a subreport possible in particular reports.

If none of the above links need provide the user with a pick list during data entry,
they should all be panel links, not data links.

But, again, on the definitional level, these two links are essentially the same:
both simply link a source panel's field list with a target panel's index. I can't stress
this point enough. When 1 first started defining panel links, I thought I had to
guarantee the farget panel index was an ordered subset of some source panel index.
That is, consider the typical Customer application that has a Customer Panel, Invoice
Panel, and a Transaction Panel. Suppose I wanted to create a panel link in the
Customer Panel that takes the user to the Invoice Panel. DataPerfect is going to ask
me for an index in the Invoice Panel and a field list in the Customer Panel. I won't
be asked for the existence of any particular index in the Customer Panel. I can tie this
panel link to the following two entities:

° An Invoice Panel index consisting of Customer ID and Invoice
Number, in that order.
° A Customer Panel field list consisting only of the Customer ID field.

Though I probably would have defined a Customer Panel index with
Customer ID as its first field, the panel link defined above doesn't require such an
index exist. The set-subset relationship that must exist for a panel link isn't between
an index of the source panel and an index of the target panel; rather, it's a relationship
between an ordered set of fields in the source panel (the link's field list) and an index
in the target panel. There need not be any index in the source panel that works with
the field list for the link in question.

That the target panel index need not be a subset of a source panel index can
be useful. Consider a powerful enhancement made in the first interim release of
DataPerfect 2.3 (September 1993):

DataPerfect now allows Computed fields
(::C) in Link Field Lists and in Index
Exception Lists.
[README (09/01/93)]

This means we can now place fields that aren't even real fields in link field
lists, and therefore aren't even candidates for indexes (computed fields don't exist in
the data file—that's why, we can't put them in indexes). That said, consider the
following, which revolves around the User ID facility introduced with that same
release of DataPerfect:

112 Links

o Hide a computed field that updates to the User ID of the current user.

° Create a panel link that has this hidden computed field in its link field
list, and uses a target panel index that includes a corresponding real
User ID field in the target panel.

The above panel link only allows access to records created with the current
User ID. This might be attractive in certain high security areas of a database. Or you
could use this panel link as access to a subpanel that serves as a notepad for users,
letting them create and access only their own notes.

Creating and Defining a Panel Link

While in Define Panel mode, if you hit FS§ with your cursor not on a field,
DataPerfect places a single-character block in the panel if there's room. This will be
apanel link after you define it further. To define that panel link, move the cursor over
it and hit FS again. DataPerfect now throws you into the Panel List, asking you for
this link's target panel. After you select the target panel by hitting Enter, DataPerfect
asks you for the link index (again, this is a farget panel index). After cursoring to the
index you want, select it with F4. Next you build the link field list (consisting, again,
of source panel fields). The help screen on this is very clear, but it doesn't really tell
you the logic behind picking a link field list.

The link field list serves as a filter that determines what records the user
accesses when penetrating that link. At least that's one way of thinking about it. But
the link field list also can be seen as a list of fields that, when combined with the link
index, determine what records will be linked to the current record in the link's panel.
In order for the link field to work properly with the link index, however, it must be
a set of fields in the source panel that mirror, in the same order, fields in the target
panel index chosen as the link index. And the index fields in the link field list must
mirror the target panel's fields starting with the index's first field.

Let's clarify this with an example. You want a panel link in the Invoice Panel
that allows the user to access Transaction Panel records related to the current Invoice
Panel record. That is, you want the user to be able to easily move from an Invoice to
the Transactions that are part of that and only that Invoice.

A typical way to define this link is to choose the Transaction Panel as its
target panel, and a Transaction Panel index that looks like this:

Invoice Number, Transaction Number

Given the index chosen for this link, we would assign only one field to the
link's field list:

Invoice Number

What would a link like this do for the user who's sitting in the Invoice Panel?
Just this. When the user penetrates that link he accesses Transaction Panel records

Links 113

that have the Invoice Number found in the record he just left in the Invoice Panel. Put
another way, that link /inks any given Invoice to all and only its Transactions. The
link field list, in concert with the link index, links each record in the Invoice Panel
with records in the Transaction Panel that have the same value in the Invoice Number
field. Put more generically, the link links each Invoice Panel record with Transaction
Panel records that have the same value in the fields comprising the link field list. This
link works fine if its field list mirrors the fields in the link's index, starting with the
first field of the link index

Let's clarify what I mean when I say the link field list must mirror the fields
in the link index. First, don't forget that the link index is composed of fields in the
target panel, but the link field list is composed of fields in the source panel. So
they're never the same fields. Second, when you examine each field in the link field
list, and do so in order, you must find that each such field is of a format compatible
with the corresponding field in the link index field list (here you compare the first
field in the link field list with the first field in the link index, the second field in the
link field list with the second field in the link index, etc.).

By compatible format, I mean that the two fields being compared must both
be the same length and of the same type. They're the same type if both are G fields,
or both are N fields, or both are A fields, etc. One can be, say, a GZZ9 field and the
other a G999 field (same length and same type, even though one has Zs and the other
doesn't). Or one can be a G999 field and the other an H999 field, because an H999
field is really just a G999 field that displays nothing when O (both are simply right-
aligned numerical field formats). But you can't have one field an N999 field and the
other a G999 field. Those two aren't the same type—the first is left-aligned and the
second right-aligned. And you can't have one field a G999 field and the other a G99
field because they're not the same length.

That's what it takes to define a panel link. A panel link is essentially a screen
entity that links one panel with another, and does so via a target panel index and a
source panel field list. A typical panel link takes you from an existing record to
dependent records in another panel. Some developers talk about such a link as taking
you to the current record's subrecords; others talk about it taking you to the current
record's attached records; and the DataPerfect manual talks about it taking you to
dependent records. This link is typically used, as you have probably surmised, to
express a one-to-many relationship.

The Link Index and Link Field List

Let's return to our application that has an Invoice Panel and a Transaction Panel. To
link these two panels in a meaningful way with a panel link in the Invoice Panel, we
need an appropriate Transaction Panel index (the target panel index). If we want the
panel link to provide access only to Transactions of the Invoice the user just left in
the Invoice Panel, we don't want a Transaction Panel index that starts with the
Transaction Number field. Rather, we need a Transaction Panel index that starts with
the Invoice Number field. This way, if we assign a link field list consisting of just the
Invoice Number field in the Invoice Panel, the link field list filters the user's access

114 Links

to Transaction Panel records to just those with the Invoice Number of the Invoice
Panel record he or she just left.

In general, database programming would call the Invoice Number field in this
case the key field on which this link links these two panels. The value found in the
Invoice Number field will be shared by all records found in the Transaction Panel
when penetrating this panel link.

The Link Field List's Role in Record Attachment

In deciding on a field list for this link, we need to think about what records we want
attached to the current record during Browse mode. This applies equally to both the
panel link and the data link. During Browse mode you want the user to use the
Invoice Panel panel link to access records in the Transaction Panel that have the same
Invoice Number. To determine what field list to use here, think about what fields in
the attached records (Transactions) must match the current record (Invoice). In this
case, that’s just the Invoice Number field.

If this panel link has a field list of just Invoice Number, and an index that
starts with Invoice Number, then penetrating that link during Browse mode puts the
user in the Transaction Panel with access to all and only Transactions with the
Invoice Number of the currently displayed record in the Invoice Panel.

Suppose we may want a data link on the Item field in the Transaction Panel.
This would allow the user to pick an Item from an Item Panel pick list during Create
or Edit mode in the Transaction Panel. Again, in forming this link’s field list,
consider what records you want it to attach to the current record during Browse
mode. In this case, you want only one record attached to the current record. That is,
the record in the Item Panel that’s related to the current record in the Transaction
Panel is simply the record the user chose from the pick list during Create or Edit
mode. So you need a field list that limits Browse mode access to that single record
in the Item Panel. In this case, such a field list consists of Item Name or Item ID
Number, or both.

The Link Field List's Role in Field Filling

But the field list does more than just determine what records are attached to the
current record during Browse mode. The link field list also determines what fields
will be filled in during Create or Edit mode. In the case of the panel link, the link
field list causes its corresponding fields in the target panel to be filled in with the
values in the current source panel record. Whereas, in the case of a data link, the link
field list causes its corresponding fields in the source panel to be filled in with the
values found in the rarget panel record the user chooses from the pick list.

In the case of the Transaction Panel data link (on the Item field), if the
Transaction Panel has both an Item Name field and an Item Number field, then you
can have both fields filled in when the user chooses a record from the Create or Edit
mode pick list. Just put both Item Name and Item Number on the link field list, and
choose the

<Item Name, Item Number>

Links 115

index; or put both Item Number and Item Name on the link field list, and choose the

<Item Number, Item Name>
index.

In Summary
In summary, the link field list does two things. First, it acts as a filter in determining
what records will end up attached to the current record during Browse mode. Second,
it determines what fields will be automatically filled in during Create or Edit mode.

It’s precisely the second point above where panel links and data links diverge.
The field list of a panel link takes values from the source panel’s record and puts
them in the corresponding fields in the target panel’s record; whereas, the field list
of a data link takes values from the record the user selects from the target panel (via
a pick list lookup) and puts them in the corresponding fields in the source panel’s
record (the current record).

That’s all you need to know to construct a link’s field list. Just make sure the
index you choose begins with fields that mirror the field list, in the same order.
Follow these rules, and all your links will be well-formed.

A Note about a Panel Link's Index

Though the entity that generally determines what records will be available to the user
after penetrating a panel link is its field list, be aware that not all indexes give full
access to records. If a panel link's index has an Exception List attached to it, it may
very well not give access to all the records it would have if it had no Exception List
attached to it. Attaching an Exception List index to a panel link is a particularly
powerful thing to do, so make sure you read Exception Lists in my Indexes chapter
if you're not sure of them.

The Action of a Panel Link

Back to the Invoice-Transaction application. If you assign this Invoice Panel panel
link a Transaction Panel index that starts with the Invoice Number field, and assign
it a field list consisting of simply the Invoice Panel's Invoice Number field, the
following will happen:

® [f the cursor is on the panel link in the Invoice Panel in Browse mode, and
there are Transaction Panel records that correspond with the current Invoice Panel
record (children records of the current Invoice Panel record), hitting Down Arrow
will put the user in the Transaction Panel with access only to records with the same
Invoice Number he just left in the Invoice Panel.

® [f the cursor is on the panel link in the Invoice Panel in Browse mode, and
there are no records in the Transaction Panel that correspond to the current Invoice
Panel record, hitting Down Arrow will inform the user that no related subrecords
exist in the Target Panel with this message:

116 Links

No records are found in this subset. If you want to add records,
press Create Record in Linked Panel (F5). Otherwise, you will
remain in this panel.

Hitting FS will put the user in Create mode in the Transaction Panel, with the
Invoice Number field automatically filled in with the Invoice Number of the parent
Invoice Panel record. That is, DataPerfect starts the creation of a new subrecord,
filling in fields in the Transaction Panel with values found in the field list fields of
the Invoice Panel panel link. In this case, the field list only has one field.

® If the cursor is on the panel link in the Invoice Panel in Browse mode,
whether or not there are records in the Transaction Panel that correspond to the
current Invoice Panel number, hitting FS will put the user in Create mode in the
Transaction Panel, with the Invoice Number field automatically filled in with the
Invoice Number of the parent Invoice Panel record.

® If the cursor is on the panel link in the Invoice Panel in Create or Edit
mode, all the above apply, but DataPerfect will save the Invoice Panel record before
moving to the Transaction Panel.

® If the cursor is on the panel link in the Invoice Panel in Browse mode,
hitting Up Arrow does just what this does when on any other field in the panel: it
produces a Lookup of records in the Invoice Panel.

® If the cursor is on the panel link in the Invoice Panel in Browse mode,
hitting F8 does something different than it does when on a data field. When on a data
field during Browse mode, hitting F8 produces a Lookup of Invoice Panel records.
When on a panel link, hitting F8 produces a Lookup of Transaction Panel records
with the current Invoice Number. So hitting F8 while on a data field in Browse mode
produces a Lookup that displays records of the current panel; whereas, hitting F8
while on a panel link in Browse mode produces a Lookup that displays dependent
(related by the link's field list) records in the linked panel.

The Data Link

Of course, DataPerfect also offers another type of link: the data link. Whereas a panel
link links a panel to another panel, a data link links a field to another panel. Whereas
a panel link is used to take the user from a record to its subrecords (e.g., from the
current record in the Invoice Panel to its dependent records in the Transactions
Panel), a data link is used to provide the user a pick list during data entry in the
current panel, where he's allowed to pick a value that exists in another panel's record.

Let's explain. In our Invoice-Transaction application, we would probably also
have a third panel: the Items Panel. The Items Panel contains all the sellable Items,
representing each as a single record. In the Transaction Panel, we probably would
want to put a data link on Item field. If it's properly linked to the Items Panel then,
during Create or Edit mode, when the user performs a Lookup by hitting Up Arrow
or F8 on the Item field in the Transaction Panel, he'll see a lookup displaying records
in the Items Panel (the linked panel), not the Transaction Panel (the current panel).
DataPerfect is providing the user with a list of possible values from which to choose
for the current field (the Item field in the Transaction Panel).

Links 117

So, whereas a panel link is attached to a panel, providing the user a means of
traveling from a record to its related records in another panel, a data link is attached
to a field, providing the user a pick list for data entry into that field during Create or
Edit mode.

Defining a Data Link

To define a data link, you need to be in Define Panel mode. Cursor to the field on
which you want to attach the data link and hit FS (the cursor must be on the field
before hitting FS, otherwise DataPerfect thinks you're creating a panel link). Now
DataPerfect asks you for the same information about this link that it asks when
defining a panel link:

Target panel

Target panel field to land on
Target panel index

Source panel field list

That's it. You now have a data link on that field.

Controlling the Data Link's

Create/Edit Mode Lookup Display

When the user is in Create or Edit mode, sitting on a data-linked field, hitting Up
Arrow or F8 produces a lookup display of record in the linked panel. To make sure
that lookup display works properly, please focus on this rule:

A data link's index and field list determine its Browse
mode linkage; whereas, a data link's target field's
lookup definition determines its Create or Edit mode
lookup display.

I have fixed many developer's applications by simply applying that rule here and
there, in panels they said weren't working properly.

Let's explain. When defining a data link, picking an index and field list will
determine what will be linked to the current record in the source panel during Browse
mode. Say you have an Auto Parts application, something like this:

Customer Panel Part Panel

I

Invoice Panel

I

Transaction Panel

118 Links

Here the user picks a Customer in the Customer Panel, penetrates the panel
link to the Invoice Panel, picks an Invoice, and then penetrates the panel link to the
Transaction Panel. There, they hit F9 to go into Create mode, if they aren't in that
mode already, and Tab to the Part Number field. The Part Number field is data
linked, so when they hit Up Arrow or F8, they get a display of Parts in the Part
Panel. They hit Enter on their choice and then, if necessary, continue filling in other
fields in the Transaction Panel record.

In defining the data link on the Part Number field in the Transaction Panel,
the index and field list you assign it determine what records in the Part Panel will be
attached or linked to the current record in the Transaction Panel during Browse
mode. Another way of saying this is that the data link's index and field list will
determine what records it allows you to access in the Part Panel when in Browse
mode in the Transaction Panel. The data link's index and field list play almost no part
in how the link Create or Edit mode lookup display behaves.

So when deciding on a data link's index and field list, think only about what
you want it to attach to the current record during Browse mode. In this case, we want
the data link to attach exactly one record in the Part Panel to the current Transaction
Panel record. That is, we want this data link to allow Browse mode access from the
current Transaction Panel record the single Part Panel record this Transaction Panel
record is about. So the Part Panel (target panel) index we would choose for this data
link would begin with the Part Number field, and the Transaction Panel (source
panel) field list would consist of only the Part Number field. Assuming no two
records in the Part Panel have the same Part Number, this will effectively link a
single Part Panel record to each Transaction Panel record.

But what do we do to control the Create or Edit mode lookup display
behavior of this data link? Suppose we want the Create or Edit mode lookup on that
data link to display Parts in the Part Panel alphabetically by Part Name, not
numerically by Part Number. Does this mean we must change the index we chose for
our data link? Don't forget that we chose an index that sorts by Part Number, not Part
Name. The answer is no. What controls the way target panel records display during
a lookup on a source panel data link during Create or Edit mode is the lookup
definition on the target field. It has essentially nothing to do with the index and field
list chosen for that data link.

So, even though we assigned this data link a Part Panel index that sorts by
Part Number, and a field list consisting solely of Part Number, we can still get its
Create or Edit mode lookups to sort Part Panel records alphabetically by Part Name.
To do this, we first make sure the target field of this data link is the Part Name field
in the Part Panel, not the Part Number field in the Part Panel. Then we exit the
Transaction Panel and load the Part Panel and take a look at the lookup definition on
the Part Name field. That lookup definition will determine how Create or Edit mode
lookups will sort when hitting Up Arrow or F8 on the data linked Part Number field
in the Transaction Panel. So we would now choose for that lookup definition, an
index that sorts by Part Name and a field list beginning with Part Name. Now Create
or Edit mode lookups on the Part Number field in the Transaction Panel will sort by
Part Name, not Part Number, even though the data link on that field is defined with
an index that sorts by Part Number.

Links 119

So, please, paste this to your computer terminal!:

A data link's index and field list determine its Browse
mode linkage; whereas, a data link's target field's
lookup definition determines its Create or Edit mode
lookup display.

The Link Options Menus

There's actually a little more to discuss regarding defining a link, whether it be a
panel link or a data link. When you're done creating the link (giving it its target panel,
field to land on, index, and field list), you're then presented with one of these two
menus just before returning to Browse mode with F7 or F10:

Define Panel Link
Link to Panel:3 Fieldl Indexl Field List to Build Key:1

1 - Edit Target Field/Target Index/Field List

2 - Define Related Records Window 5 - Display/Hide Link

3 - Create/Edit Window Field List 6 - Define Lookup List
4 - Delete Window 7 - Cascade Off
Window Off

Selection: 0

Define Data Link for Field
Link to Panel:2 Fieldl Indexl Field List to Build Key:1
1 - Edit Target Field/Target Index/Field List

2 - Remove Data Link 5 - Prompt-Create
3 - Auto-Create 6 - Check During Data Entry Off
4 - No-Create 7 - Cascade Off

Prompt for creating related record if not found.
Selection: 0 —

The first menu, of course, is for the panel link, and the second, the data link. At this
point, you don't have to do anything at all with such a menu. Just hit F7 or F10 to
return to Browse mode, accepting the defaults above.

You can always return to the Panel Link Options menu later, in either Browse
mode or in Define Panel mode. In Browse mode, you can access the Panel Link
Options menu with Shift-F8; whereas in Define Panel mode you can access it with
either F5 or Shift-F8. On the other hand, you can return to the Data Link Options
menu only in Define Panel, and only with FS.

Let's discuss the options on each menu.

Panel Link Options

Define Panel Link
Link to Panel:3 Fieldl Indexl Field List to Build Key:1
1 - Edit Target Field/Target Index/Field List

2 - Define Related Records Window 5 - Display/Hide Link
3 - Create/Edit Window Field List 6 - Define Lookup List
4 - Delete Window 7 - Cascade Off

Window Off

Selection: 0

120 Links

Option 1 (Edit Target Field/Target Index/Field List)
This lets you change any or all of the four essentials of the link:

Target panel

Target panel field to land on
Target panel index

Source panel field list

Option 2 (Define Related Records Window)

A panel link, unlike a data link, may have a Window. This is a view, in the current
panel, of records in the link's target panel. After hitting 2, DataPerfect allows you to
place and size the Window, and then asks you what fields you want to display in it.
You're also given the option of framing the Window with a single-line border, as well
as the option of having the Window display its records from the bottom (end) of the
index instead of the top (beginning). For an example of a panel link Window, load
UD.STR. Find the Default Schemes, Hidden Panel, & Undelete series and load the
Client Panel.

Option 3 (Create/Edit Window Field List)

Option 4 (Delete Window)

These options let you later return to modify the properties of a panel link Window,
or delete it altogether.

Option 5 (Display/Hide Link)
Hitting 5 toggles between displaying the panel link (the default), or hiding it. You
should consider hiding it if it's on there for things like field formula or report access
to other panels. If you don't intend for the user to ever penetrate that link in Browse
mode, hide it.

When you hide a link with option 5, the menu reflects that change to the right
of option 5:

5 - Display/Hide Link Hidden

6 — Define Lookup List
7 - Cascade Off

Option 6 (Define Lookup List)
This lets you assign a lookup definition to a panel link, just as you do with any other
field.

Option 7 (Cascade Off, Cascade Update,

Cascade Update/Delete)
This toggles between these three states:

Links 121

° Cascade Off
° Cascade Update On
° Cascade Update/Delete On

What changes is the way option 7 reads on the screen with each press of 7:

5 - Prompt-Create
6 — Check During Data Entry Off
7 - Cascade Off

5 - Prompt-Create
6 - Check During Data Entry Off
7 - Cascade Update On

5 - Prompt-Create
6 — Check During Data Entry Off
7 - Cascade Update/Delete On

Cascade Update On will cascade changes made to values found in the current
record to subrecords through that link. For fields to cascade, they must be on the
link's field list. So, suppose the Last Name field is on this link's field list, and, in Edit
mode, you change the Last Name field value from Smith to Adams. If that link is
setup with Cascade Update On, DataPerfect will change the Last Name field from
Smith to Adams in all records related to the current record via that link. This
preserves the linkage that would be lost if Cascade was off. Cascade Update has a
downside that must be taken seriously on large databases, however. See Keeping
Subpanel Data Currentin my Fields: Introduction chapter for a discussion of this.

Cascade Update/Delete On does everything Cascade Update On does, but
also deletes all records related to the current record via that link when the current
record is deleted. This prevents orphaned subrecords. This is a fairly dangerous
option and should used with caution. You can allow the user to accidentally delete
thousands of records with a single keystroke this way.

Data Link Options

Define Data Link for Field
Link to Panel:2 Fieldl Indexl Field List to Build Key:1
1 - Edit Target Field/Target Index/Field List
2 - Remove Data Link 5 - Prompt-Create
3 - Auto-Create 6 - Check During Data Entry Off
4 - No-Create 7 - Cascade Off
Prompt for creating related record if not found.
Selection: 0

Option 1 (Edit Target Field/Target Index/Field List)
This is just like it is under Panel Link Options above.

Option 2 (Remove Data Link)

Unlike the panel link, you can remove a data link after you create it. Option 2 lets you
do this.

122 Links

Option 3 (Auto-Create)

Option 4 (No Create, No Access)

Option 5 (Prompt-Create)

Option 6 (Check During Data Entry Off)

You can leave that menu just as it is, in its default state you see above, with

Prompt for creating related record if not found.

sitting there, just under option 4. If so, then, when the user is in Create or Edit mode
and enters data in that field that isn't found in the linked panel, DataPerfect will
prompt him with this screen:

Value Not Found
The field value entered is not found in the other panel.

Do you want t
1 - Create a New Record in the Other Panel
2 - Lookup a Record in the Other Panel
0 - Reenter the Value for this Field

Alternatively, you can change this behavior with other options that follow.
Option 3 (Auto-Create). Hitting 3 changes the menu to this:

Define Data Link for Field:
Link to Panel:4 Fieldl Indexl Field List to Build Key:1
1 - Edit Target Field/Target Index/Field List

2 - Remove Data Link 5 - Prompt-Create
3 - Auto-Create 6 — Check During Data Entry Off
4 - No-Create 7 - Cascade Off

Automatically create related record if record not found.
Selection: 0

This option will probably confuse the user. If the user places a value in the current
data-linked field that doesn't exist in the linked record, and this option is active, the
user will suddenly find himself in the Create mode in the linked panel. There they
must save the record with F10 or F7, which throws them back into Create mode in
the current panel.

Option 4 (No Create, No Access). Hitting 4 changes the menu to this:
Define Data Link for Field

Link to Panel:2 Fieldl Indexl Field List to Build Key:1
1 - Edit Target Field/Target Index/Field List

2 - Remove Data Link 5 - Prompt-Create
3 - Auto-Create 6 - Check During Data Entry Off
4 - No Access 7 - Cascade Off

Do not allow user to create related record if not found.
Selection: 0

Note that

Prompt for creating related record if not found.

has changed to

Do not allow user to create related record if not found.

If you don't want the user to be able to create a new record in the linked panel,
this is the option you use for that data link. Note that option 4 on that menu now

Links 123

reads No Access instead of No Create. If you then hit 4 again, the menu changes to

this:

Link to Panel:2 Fieldl
1 - Edit Target
2 - Remove Data
3 - Auto-Create
4 - No-Create
No Access
Selection: 0

Define Data Link for Field

Indexl Field List to Build Key:1

Field/Target Index/Field List

Link 5 - Prompt-Create
6 — Check During Data Entry Off
7 - Cascade Off

Note that

Do not allow user to create related record if not found.

changed to

No Access

The No Access option not

only keeps the user from creating new records in the

linked panel (via the data link), but keeps the user from penetrating that link at all,

even in Browse mode.

At this point, hitting 4 will toggle between these two menus and options:

Link to Panel:2 Fieldl
1 - Edit Target
2 - Remove Data
3 - Auto-Create

4 - No Access
Do not allow user to
Selection: 0

Define Data Link for Field

Indexl Field List to Build Key:1

Field/Target Index/Field List

Link 5 - Prompt-Create
6 - Check During Data Entry Off
7 - Cascade Off

create related record if not found.

Link to Panel:2 Fieldl
1 - Edit Target
2 - Remove Data
3 - Auto-Create
4 - No-Create
No Access

Define Data Link for Field

Indexl Field List to Build Key:1

Field/Target Index/Field List

Link 5 - Prompt-Create
6 - Check During Data Entry Off
7 - Cascade Off

Selection: 0

The active option is always displayed just under option 4.
Option 5 (Prompt-Create). Hitting § gets you back to this menu's original

state, with

Prompt for creating related record if not found.

displayed as the active status for that data link:

Link to Panel:2 Fieldl
1 - Edit Target
2 - Remove Data
3 - Auto-Create
4 - No-Create

Define Data Link for Field:

Indexl Field List to Build Key:1

Field/Target Index/Field List

Link 5 - Prompt-Create
6 — Check During Data Entry Off
7 - Cascade Off

124 Links

Prompt for creating related record if not found.
Selection: 0

Option 6 (Check During Data Entry Off). Hitting 6, changes the menu to this:

Define Data Link for Field
Link to Panel:2 Fieldl Indexl Field List to Build Key:1
1 - Edit Target Field/Target Index/Field List
2 - Remove Data Link 5 - Prompt-Create
3 - Auto-Create 6 — Check During Data Entry Off
4 - No-Create 7 - Cascade Off
Don't check data link path during data entry.
Selection: 0

This results in the data link no longer checking what the user enters in that field.
They can enter anything compatible with the field's format, whether or not it exists
in the linked panel.

Option 7 (Cascade Update, Cascade Update/Delete)
This is just like it is under Panel Link Options above.

Data Link Options Caveats

Option 5 (Prompt Create)

If the user enters data in a data-linked field with the Prompt Create option active, and
that data has no match in the linked panel, the user can still save that record. The
closest thing you can do to prevent this is to formulate that field to blank out when
the user enters data not found in the linked panel, and format the data-linked field
::M. The formula would look something like this:

if P1F1<>P1lF1P2F1 then "" else P1lF1l endif

That formula tests whether or not the data the user entered in P1F1 (Panel 1)
is identical to that found in P2F1 (Panel 2), using the data link found on P1F1. If it
isn't (which it won't be if the user enters a value not found in the linked panel), P1F1
blanks out. If it is (which it will be if the user enters a value found in the linked
panel), P1F1 accepts the value the user entered. If P1F1 is formatted ::M, then the
user won't be able to save the record if P1F1 is blank.

Option 4 (No Create, No Access)

Note also that if you change the data link to a No Create or No Access data link,
though DataPerfect won't let you save the record if the data in that field doesn't match
arecord found in the linked panel, it will let you save that record with a blank in that
field. This can be overcome by making that field a ::M field.

Data Link Subgroup Lookups

The Data Link Subgroup Lookup was introduced with version 2.3 of DataPerfect. It
offers the definer a way to strategically filter what records the user sees during a
Create or Edit mode lookup on a data link. Though the DataPerfect 2.3 manual fails
to mention the Data Link Subgroup Lookup, the README file found on the shipped
diskettes does, without referring to it as the Data Link Subgroup Lookup. Here's the
relevant README passage:

Links 125

DATAPERFECT: Lookup

Performing a lookup on a data 1link while you are
creating or editing a record will display records from
the linked panel based upon the data link Key Field
List. If the first field in the Key Field List is the
data link field, you will be able to see all records in
the linked panel; otherwise, you will see only the
records that match the fields of the Key Field List.

[README 02/01/93]

Starting with version 2.3, the data link's field list also acts as a record filter
for the Create or Edit mode lookup display, not just the Browse mode lookup display.
This allows you to define a data link in such a way that, during Create or Edit mode,
a lookup performed on it will display a defined subgroup of the target panel's
records—thus the name, Data Link Subgroup Lookup.

If you perform a lookup on a data-linked field during Create or Edit mode, the
lookup will display the target panel's records filtered by all fields preceding the data-
linked field in the link field list. That is, all the fields preceding the data-linked field
in the link field list must have values that match the corresponding values found in
the fields in the displayed record.

So, if the data-linked field is the first field in the data link's field list, then no
fields precede it in the data link's field list. Performing a lookup on this field during
Create or Edit will effectively display an unfiltered display of the linked panel's
records (all the linked panel's records will be displayed). This effectively keeps
things the way they were with DataPerfect 2.2, because it fails to create a Data Link
Subgroup Lookup.

To create a Data Link Subgroup Lookup, the data-linked field must come
somewhere after the first field in the link field list. If the data-linked field is the
second field in the link field list, the lookup will display the target panel's records
filtered by the first field in the link field list. If the data-linked field is the third field
in the link field list, the display will be filtered by the first and second fields in the
field list. And so on. Note, though, that if the data-linked field is absent from the
field list, the lookup display will be empty, displaying the No Data message.

Let's clarify this with some examples. Suppose you run a local software retail
store, like Egghead Discount Software. Like Egghead, you sell more than just
software—your customers can also purchase books and peripherals. Let's say the
Categories of Software, Books, and Peripherals exhausts everything you sell.

We'll place all those items for sale in the Item Panel, which will have at least
two fields, Item and Category, where the latter field will be a U4 field that takes three
possible values: SOFT, BOOK, or PERI. We'll create two indexes in the Item Panel,
one sorting by Item, the other by Category. Straightforward, so far.

Now the Transaction Panel. There, we'll have at least the Category and Item
fields again, along with the usual Date and Amount fields. On the Item field we'll
place a data link that ties the field to the Item Panel, and have it target the Category
field in the Item Panel. That data link will use the

<Category, Item>

126 Links

index in the Item Panel, and have a field list consisting of

Category, Item

Here are the two panels, showing minimal configurations:

Cat. Item Amount

Item Panel

Transaction Panel

When the user enters the Transaction Panel and goes into Create mode, he first fills
in the Date and the Category (SOFT, BOOK or PERI). Then he cursors to the Item
field and hits F8 or Up Arrow. What DataPerfect does at this point is where version
2.3 differs from 2.2. The lookup performed on the Item field during Create or Edit
mode will show only records matching the Category field to its left. So if the user
filled in SOFT in the Category field, hitting a lookup on the Item field during Create
or Edit mode will display only a list of Software records.

Again, if a lookup is performed on a data-linked field during Create or Edit
mode, DataPerfect first examines what field you're performing the lookup on (in this
case, the Item field of the Transactions Panel). Then DataPerfect looks to see if that
field is on the data link's field list. If it isn't, you get a recordless lookup, displaying
the No Data message. If it is in the field list, the lookup display will be filtered by all
fields that precede it on the data link's field list (in this case, it was filtered by the
Category field), making sure the only records that display are those that have the
value the user entered in the Category field.

So a good rule to follow here is this. If you attach a data link to a field that's
to be used as a Pick List field during data entry (which is the only reason you should
ever create a data link), then make sure the link field list has the data-linked field in
a desirable spot. This will be determined by whether or not you want the lookup
display to be filtered. If so, make sure the data-linked field immediately follows the
filter fields in the link field list. Also be sure to adjust the Edit Order so the user will
always fill in the filter fields before landing on the data-linked field.

See Data Link Subgroup Lookups and the USER.FIELD[n] Function in
the User ID Panel section of my Securing the Application chapter for more on
this idea.

Links 127

Choosing Between the Panel Link and the Data Link

It's easy to develop a bias in working with panel links and data links. That bias is that
the panel link is for going down the typical panel hierarchy, and the data link is for
going up. Or, put another way, the panel link provides a path to a child record, and
the data link to the parent. Or, in keeping with our previous discussion, the panel link
expresses either a one-to-many or a one-to-one relationship, and the data link
expresses the many-to-one relationship. This bias, though it may describe as many
as ninety percent of the typical links in a complex application, will limit your
awareness of possibilities for application development.

Again, whether it be a panel link or a data link, a link is simply a bridge
between a field list in the source panel and an index of the target panel, regardless of
the relative position of each panel in the panel hierarchy. A panel link, then,
depending on how it's defined, can just as easily take the user up the panel hierarchy
as down.

Consider, again, the typical Customer-Invoice-Transaction application. Its
panel hierarchy would look like this:

Customer Panel

Invoice Panel

Transaction Panel

Here, going down the hierarchy is going from the one to the many, or from
the parent to the child, typically expressed with panel links. But suppose you want
to define a Keep A Total operation in the Transaction Panel, such that credits and
debits entered there carry to fields that hold their totals in the Invoice Panel. Many
assume the only way to do this is to use a data link—perhaps hidden—in the
Transaction Panel, using it as the conduit to the parent Invoice Panel in the Keep A
Total operation. But a panel link not only works just as well here, it's easier to define
and takes less screen space. Let's explore this.

What pushes many to use a data link for the totalling routine is that we
typically total to a parent record. And in the panel hierarchy, we typically use panel
links to take us to child records, not parent records, leaving data links for Create or
Edit mode lookups that target parent records. So, many may opt for the data link in
their totalling routines because it's typically used to connect to a parent panel.

Let's go back to our Customer-Invoice-Transaction application. The totalling
routine requires a link that takes us to the current Transaction Panel record's parent
in the Invoice Panel. Whichever link we choose—panel link or data link—the link's
field list must contain just the right key fields such that, when combined with an
appropriate Invoice Panel index, it lands on the parent of the current Transaction
Panel record.

128 Links

If we assume every Invoice has a unique Invoice Number generated by the ::1
or ::J format, then a Transaction Panel link that lands on the parent Invoice Panel
record of the current Transaction Panel record will have a field list composed simply
of Invoice Number. But both a data link and a panel link can be defined this way,
because each has the same simple elements:

Target panel

Target panel field to land on
Target panel index

Source panel field list

In this case, the link—be it a data link or a panel link—will have its parent
panel as its target panel. That is, either link will go up the panel hierarchy.

Choosing the panel link for a totalling routine has certain advantages over the
data link. For one, we can create it in a panel filled with data; whereas, if you choose
a data link, and want that link hidden, you may have to create a hidden field to
accommodate the scheme. This would require purging the panel of data. And the
panel link takes up less screen space, being only one character in size.

Before version 2.3, though, there was a good reason to use data links in
totalling schemes if the link had to be hidden. You might want to hide a link to a
record in a higher panel so as not to tempt the user to penetrate it and get confused—if
it only exists for totalling to a higher panel, you should hide it. Every hidden panel
link looks the same, but hidden data links can be attached to fields of different sizes,
signalling the definer as to which higher panel this or that data link leads to. For
instance, the Customer Number field might be G9999 and the Invoice Number field
might be G999 (one character smaller in length). A data link on a hidden Customer
Number field is then easy to discern from a data link on a hidden Invoice Number
field.

But DataPerfect 2.3 brought us field names. When in Define mode, cursoring
to a field will display its field name on the last line in the help screen. This field
name is optional, and can be as simple as Date, or as informative as Panel link to the
parent Invoice Panel record. You're allowed up to 47 characters. With this
enhancement, I see no reason to use hidden data links at all.

So, in summary, the issue of whether or not the link goes up or down the
panel hierarchy is irrelevant. If data checking isn't required, use a panel link for either
direction. Data links should only be used for data checking (Create or Edit mode Pick
Lists).

A Caveat Regarding Data Links

I've said, many times, you shouldn't create a data link for any reason other than for
data checking (i.e., Create or Edit mode pick lists). Why do I insist on this?

Data links are intended for data checking and not for navigating between
panels. The latter is the job for a panel link. I've seen many developers use data links
where panel links should be used. Most of the time this mistake is done where a one-

Links 129

to-many link is required. One-to-many linkage is the forte of the panel link, but
DataPerfect allows you to create a one-to-many data link as well. There's really no
difference in what goes into the creation of either link. Both the data link and the
panel link definition processes involve assigning the same components:

Target panel

Target panel field to land on
Target panel index

Source panel field list

So you could create a data link that provides one-to-many linkage. But why
shouldn't you? Though there are no definitional differences between the panel link
and the data link, there are three practical differences between them:

° A data link is attached to an existing field. A panel link is a field.

o During Create or Edit mode, a lookup on a data linked field provides
alookup that displays records in a foreign panel for data entry into the
current field in the current panel.

° Penetrating a data link while in Create or Edit mode leaves the source
panel record in its current state (Create or Edit mode) while placing
the user in the target panel; whereas, penetrating a panel link while in
Create or Edit mode saves the current record before placing the user
in the target panel. Following this logic through, you'll find yourself
in Create or Edit mode when you return to the source panel in the data
link situation, but find yourself In Browse mode when returning to the
source panel in the panel link situation.

The third difference above has serious consequences when opting for a one-
to-many data link over a one-to-many panel link. Remember that a one-to-many link
is the kind that's typified by the Invoice-Transaction relationship. Such a link takes
you from a parent record to its many subrecords.

Say you just created Invoice 012 in the Invoice Panel and want to penetrate
a link to the Transaction Panel to enter some Transactions for that Invoice. Whether
you use a data link or a panel link for this, in either case, when you arrive in the
Transaction Panel you'll see the Invoice Number field in each Transaction Panel
record you create has 012 already filled in for you (if you designed this one-to-many
linkage properly).

But let's say the link you use for this is a panel link. After you save these
Transaction Panel records for Invoice 012 and exit back to the Invoice Panel, you'll
find Invoice 012 in Browse mode. Now you decide to delete Invoice 012 (the
Customer changed his mind). If you have Cascade Update/Delete on that panel link
(Shift-F8, 7), its subrecords in the Transaction Panel will also be deleted. Likewise,
if you leave Invoice 012 in place, but change it's Invoice Number to 013 for some
reason, Cascade Update or Cascade Update/Delete on that panel link will preserve
the linkage, modifying the Invoice Number for each of those Transaction Panel
subrecords so they're still attached to the Invoice with its new Invoice Number.

130 Links

But if this link is a data link, things are very different. Again, you just
returned from the Transaction Panel to the Invoice Panel, but in this situation you
find yourself in either Create or Edit mode, not Browse mode. So Invoice 012 was
never saved. If you now decide to Cancel the creation of Invoice 012, you now have
Transaction Panel records attached to a nonexistent Invoice 012. Don't forget those
Transaction Panel records were saved with 012 in their Invoice Number field.
Alternatively, say you decide you really want 013 as this new Invoice Number, not
012. So you Tab to the Invoice Number field and change 012 to 013. Now you have
Invoice 013 with no Transactions, and Transactions in the Transaction Panel that are
attached to a nonexistent Invoice 012. Again, don't forget those Transaction Panel
records were saved with 012 in their Invoice Number field, not 013. And Cascade
Update and Cascade Update/Delete won't help here. That only comes into effect if
a saved record is altered or deleted. Invoice 012 was not saved upon first re-entering
the Invoice Panel after creating those Transaction Panel records.

This is especially troublesome on a network, which will give rise to a another
flavor of this problem. Suppose Sue and Tom, each on a different work station on the
same network, both access the Customer Panel in our example application. Each is
creating a new Customer record, though for different Customers. Further suppose the
Customer ID field is a G999::1 field, which is being used by the developer to give
each new Customer a unique number, incrementing each time the user goes into
Create mode. Sue hits F9 to create a new Customer record and sees the Customer ID
field fill in the next number in sequence, which is, say, 012. This application,
unfortunately, requires she use a data link to access the Invoice Panel from the
Customer Panel. So, while still in Create mode in the Customer Panel, she Tabs to
that data link and hits FS to create the first Invoice record for this Customer. She
finds herself in the Invoice Panel in Create mode. Assuming the Invoice Number
field is also a G9999::1 field, let's say she sees 0134 in that field. After filling in the
appropriate information in that Invoice record, while still in Create mode, she cursors
to a data link in that panel that takes her to the Transaction Panel. She hits FS to
create some Transactions in the Transaction Panel for Invoice 0134. Now she finds
herself in the Transaction Panel in Create mode.

In the mean time, Tom has done everything Sue has done, only for his
Customer. What's wrong with this picture? Well, the ::I field modifier will increment
the G999::1 field to the next number in the series in Create mode. So both Sue and
Tom are working on a Customer record with 012 in the Customer ID field—a record
that has yet to be saved. Likewise, both Sue and Tom are working on an Invoice
record with 0134 in its Invoice Number field—a record that has yet to be saved. Both
Sue and Tom are in the Transaction Panel, creating Transactions for their respective
Customer.

When Sue is done saving her last Transaction for her new Customer, she has
a bunch of Transactions linked to Customer 012, Invoice 0134. When Tom is done
saving Transactions for his new Customer, he also has a bunch of Transactions linked
to Customer 012, Invoice 0134. Now Sue and Tom have created Transactions for the
same Customer instead of two different Customers. Further, they have created
Transactions for the same Invoice instead of two different Invoices.

Links 131

When Sue exits from the Transaction Panel to the Invoice Panel, she finds
she's still in Create mode in the Invoice Panel. When she exits the Invoice Panel,
DataPerfect saves Invoice 0134 and returns her to the Customer Panel. There, she
finds she's in Create mode. She saves that record for Customer 012.

On the other hand, when Tom exits from the Transaction Panel to the Invoice
Panel, he also finds himself in Create mode in the Invoice Panel, but when he exits
to the Customer Panel, DataPerfect saves that Invoice Panel records with 0135 in the
Invoice Number field, not 0134. This is because the ::I modifier increments the field
value by one when you hit F9, and checks again on Save to see if that number has
been used sometime since you hit F9, probably by someone else on the network. In
this case, DataPerfect sees 0134 has been saved by someone else, so it increments to
0135. But now all those Transaction Panel records Tom created are linked to the
wrong Invoice, since they were saved with 0134 in their Invoice Number field.

To add insult to injury, when Tom exits back to the Customer Panel and saves
that Customer Panel record, he finds its Customer ID field goes from 012 to 013.
Again, the same logic rules: DataPerfect sees that someone else saved arecord in that
panel with 012 in that field before Tom did, so it increments a second time on Save,
to 013.

So, Tom has created a Customer 013 record with no Invoice, an Invoice 0135
record with no Transactions, and Transactions that belong to Sue's newly created
Customer 012 and Invoice 0134.

The above possibilities arise when using a data link instead of a panel link for
a one-to-many linkage because of the unfortunate interplay between these two facts:

° Penetrating data link while in Create or Edit mode leaves the source
panel record in its current state (Create or Edit mode) while placing
the user in the target panel.

o A ::I field increments when the user hits F9, and then rechecks on
Save to make sure that new number hasn't already been saved by
someone else since the user hit F9. If so, it increments again.

The possibility for the above improper use of data links is the reason
DataPerfect's author eventually created the ::J field modifier (introduced with the
initial release of version 2.3). A ::J field increments when the user hits F9 and yields
aunique value, even if someone else hits F9 on the network in that panel at the same
time. If two network users hit F9 at the same time in the same panel, a ::J field will
give each user a different number, one being one higher than the other. That value
will never change, even on Save. Further, say you hit F9 and a ::J field increments
to 012. Then you Cancel with F1, deciding not to create a new record after all. Well,
the next time you hit F9, that field will increment to 013, not 012. Cancelling a
record creation loses the number the ::J increments to, but not the number the ::1 field
increments to.

If you replay the Tom and Sue case outlined above, but this time with ::J
fields instead of ::I fields, you'll see the problems that arose from using the data link
as a one-to-many link resolve themselves. Still, just don't use the data link as a one-
to-many link. It was only created for data entry pick lists.

132 Links

The Recursive Panel Link

[Refer to UD.STR for this.
Find the Recursive Links series and load the Customer Panel.]

If you frequent the DataPerfect section of the WordPerfect Users Forum on
CompuServe, you inevitably find recursive panel links discussed. A panel link is
recursive when it takes the user back to the same panel. Don't look to the Define
Panel Link menu for a special selection that makes a link recursive—it's not there.
You make a panel link recursive by simply choosing the same panel as its source and
destination panel.

Why do this? On the surface it sounds rather silly, but there are good reasons
for creating recursive panel links. Consider the topic of incrementation.

Conditional Incrementation Using a Recursive Panel Link

Though DataPerfect offers the auto-incrementing field (:I or ::J), this only increments
a field absolutely with respect to its panel. You might, though, have reasons for a
field to increment conditionally. Consider the three-panel Customer application to
clarify the difference here:

Customer Panel Panel 1

I

Invoice Panel Panel 2

I

Transaction Panel Panel 3

Suppose we identify each record in each of the panels with a number:
Customer Number, Invoice Number, and Transaction Number. Further suppose each
Customer has a unique Customer Number and each Invoice a unique Invoice
Number, but Transactions will have Transaction Numbers that are unique only
within the world of a single Invoice. That is, the Transaction Number field will
increment conditionally with respect to its Invoice Number, starting over with each
new Invoice.

Suppose our Transaction Number field is P3F1 and formatted G99::N. How
do we formulate it to increment with each new Transaction, but start from 01 with
each new Invoice? The auto-incrementing field won't help because it doesn't give a
hoot what this particular Transaction's Invoice Number is. It's going to increment to
the next number by adding one to the Transaction field's highest number used in the
panel as a whole, as opposed to adding one to the Transaction field's highest number
for this particular Invoice.

To properly formulate P3F1, you can take the following steps, all while in the
Transaction Panel (Panel 3):

Links 133

1. Create a hidden Reverse Transaction Number field (P3F2) and format
it G-99::H. Formulate it to update on any change to -P3F1.

2. Create an index whose first field is the Invoice Number field (P3F3),
and whose second field is the hidden Reverse Transaction Number
field (P3F2). This index sorts forward by Invoice Number, but
backwards by Transaction Number.

3. Create a panel link whose destination panel is the Transaction Panel.
Assign it the above index, and a field list consisting only of the
Invoice Number field (P3F3). Hide the link.

Note: Ponder the panel link you just created:

° Because its field list consists only of the single Invoice
Number field (P2F3), it takes the user to all and only
Transactions of a particular Invoice.

] It's recursive, in that its source and destination panels are the
same.

] It takes the user to the highest numbered Transaction for
each Invoice.

Such a panel link seems more likely to reside in the Invoice Panel than
the Transaction Panel, taking the user from a particular Invoice to its
Transactions, but we'll keep it the Transaction Panel anyway.

4. Formulate the Transaction Number field (P3F1) in Specify Formula
screen: F4 and Tab to the new panel link. Down Arrow through the
link. Tab to the Transaction Number field. F4. Add one to this field.
Have it update on record creation.

Following the above formula procedure, if the recursive panel link is P3F4,
the formula will be

P3F4P3F1 + 1

The Transaction Number field will now increment conditionally, starting from 01
with each new invoice. Put simply, we created a Transaction Panel panel link that
sees only Transaction Panel records for that particular Transaction Panel record's
Invoice, and lands on the record with the highest Transaction Number. We then
formulated P3F1 to increment by adding one to the Transaction Number it sees on
the other side of this link.

Absolute Incrementation Using a Recursive Panel Link

That's how to use the recursive panel link to conditionally increment a field. Now,
though DataPerfect offers the auto-incrementing field to absolutely increment a field,
you might have reasons to have that field absolutely increment its records without
formatting it as auto-incrementing (::I or ::J).

I'll take this moment to outline my reasons for shunning auto-incrementing
fields, even when I need a field to increment absolutely.

134 Links

Reasons for Avoiding Auto-Incrementing Fields
Here are my reasons for avoiding auto-incrementing fields whenever possible:

1. Auto-incrementing fields make the export and subsequent re-import of
merge file data less than smooth for the uninitiated. Upon import, DataPerfect asks
the user what to do with the import file's auto-incrementing fields. If no such fields
exist in the panel in question, DataPerfect won't prompt for this, making import
smoother for the uninitiated.

2. When developing an application, you no doubt use dummy data to test and
retest your panels and reports. If your application includes auto-incrementing fields,
then when ready to release your application to a client, you must remember to reset
all the auto-incrementing fields after deleting the dummy data.

3. More importantly for the developer, though, is the ease of upgrading a
client's application. Suppose you have a copy of your client's .STR file (without their
data) and decide to simply add, alter, or delete a few reports. Now you want to
upgrade their application. The standard method (that is, that method that was
supported by WordPerfect Corporation, and later, Novell) for upgrading your client's
application in such a situation would be the following five steps:

a. Run DPEXP on the new .STR file, creating an .STE file.

b. Load the new .STE file in your text editor and delete all that precedes
REPORTS:. Then delete all but the new and altered reports. Make
sure the file has a blank final line. Save the file as, say,
REPORT.STE.

C. On your client's computer, run DPIMP on REPORT.STE, importing
it into their old .STR file.

d. Delete reports that are now obsolete.

e. Re-order the Report List with DPOrder.

There's a simpler way to do this, though it was never supported by
DataPerfect's manufacturers. If the only change you made to the previous .STR file
was to add, alter, or delete reports, and no field in the application is formatted as
auto-incrementing, you might be able to simply overwrite the old .STR with the new.
This means you can just send client the new .STR with a batch file that copies the
new .STR to the appropriate directory.

What are some of the things the developer might do to the new .STR that
would preclude simply overwriting the old .STR with the new? Here are a few:

° Adding, altering or deleting an index.
° Altering the format of a field (there are some exceptions to this)
° Adding or deleting a field (also some exceptions)

If you think about it, this is pretty obvious. If you do one of the above to the
.STR in your office, its relationship with the data it will govern in your client's office

Links 135

may be critically altered. But if you simply add, alter, or delete a few reports, you
haven't altered how the .STR relates to the data files it governs.

Now where do auto-incrementing fields fit in here? Well, auto-incrementing
field pointers are stored in the .STR. That is, the .STR holds information telling it
what the next highest number is for each auto-incrementing field in the database. If
you don't reset the auto-incrementing fields to correspond with their current states in
your client's database, overwriting the old .STR with the new will obviously cause
problems.

If you insist on having auto-incrementing fields in your client's database, you
might consider giving your client a report that prints out the state of each auto-
incrementing field in the database—hidden or otherwise—and have them fax it to you
just before you ship the new .STR. This way you can reset the auto-incrementing
fields at the last minute, coordinating this with the client.

Please don't start overwriting client .STR files with new ones until you've
read When It's Okay to Overwrite an .STR in my Application Maintenance
Issues chapter! I discuss this in more detail there.

Back to Recursive Linking and Absolute Incrementation

Many of the above concerns disappear with proper use of the recursive panel link.
Consider our Customer application again:

Customer Panel Panel 1

I

Invoice Panel Panel 2

I

Transaction Panel Panel 3

Unlike the Transaction Number field, we want the Customer and Invoice
Number fields to increment absolutely. To do this, we again call on our recursive
panel link, though this time we'll also make the link virfual (I'll explain what a virtual
panel link is in a second).

Here's what I suggest. Let's do this for the Customer Panel, leaving it up to
you to do the same for the Invoice Panel. Assuming the Customer Number field is
P1F1, do the following:

1. Create a hidden Reverse Customer Number field (P1F2) and format
it G-9999::H. Formulate it to update on any change to -P1F1.

2. Create an index consisting simply of the hidden Reverse Customer
Number field (P1F2). This index sorts backwards on Customer
Number.

3. Create a panel link whose destination panel is the Customer Panel.

Assign it the above index. When asked for a field list, don't select any
field—just hit 0, F7, or F10 (don't hit F1 here, or else you'll have to
define the link again). Hide the link.

136 Links

Note: Ponder the panel link you just created:

Like the panel link for conditional incrementation, it's recursive, taking
the user to its own panel, based on a reverse sort. What makes this
link different than the other recursive panel link is that it works without
a field list to filter the records the user can access in the destination
panel: it's a virtual link. Penetrating a virtual link has the same effect
as entering the destination panel from the Panel List, except the virtual
link has the definer choose which index will govern entry into the
destination panel (remember that entry into a panel from the Panel List
is always controlled by the lowest numbered index in that panel).

4. Formulate the Customer Number field (P1F1) by first having the
formula penetrate the recursive virtual panel link and grab the
Customer Number field. Then add one to it. Have it update on record
creation.

Following the above formula procedure, if the recursive virtual panel link is
P1F4, the formula will be

P1F4P1F1 + 1

The Customer Number field will now increment absolutely.

Let's go back now to the concern I outlined involving upgrading a client's
application. If all of the application's absolutely incrementing fields increment with
the recursive virtual panel link scheme I just outlined, then information as to the next
highest number for each such field is stored in the that field's data file, not its .STR
file. This frees you, the developer, from being concerned about the next highest
number for each auto-incrementing field in the client's database the next time you
want to upgrade their application.

Absolute Incrementation
Using a Recursive Panel Link on a Network

[Refer to UD.STR for this.
Find the panel called Moment field; Proofing; Incrementing on a network.
The Record Number field increments this way in that panel.]

This concerns you if you decide to implement my suggestions regarding using
absolute incrementation with recursive links instead of using ::I or ::J modifiers, and
are doing so on a network. Note that I said such an absolutely incrementing field
should update on record creation:

Formulate the Customer Number field (P1lF1l) by first
having the formula penetrate the recursive virtual panel
link and grab the Customer Number field. Then add one to
it. Have it update on record creation.

In the past, I taught that, to use this scheme on a network, just set the
absolutely incrementing field to update when created record is saved instead of

Links 137

simply when record is created. Well, a fellow DP developer who attended my 1995
Atlanta seminar (Ireland's Frank Hannah) recently pointed out that doesn't work as
nicely on his network. Even Lew Bastian (DataPerfect's author) thought the recursive
linking approach worked fine on all networks, and he, like me, uses it instead of ::I
or ::J. I'll outline the problem, and a simple solution.

To review, the typical way to implement the suggested absolutely
incrementing field using a recursive link scheme would resemble this:

Absolute Incrementation Using One Recursive Link

P1F1 Absolutely incrementing field without ::I or ::J.
Formulated to update when created record is saved
(not when record is created) to PIF3PI1FI+1.
P1F3P1F1 is obtained by penetrating link P1F3.

P1F2 Reverse field.
Formulated as -PIF1 to update on any change.

P1F3 Recursive panel link.
Takes the user to the same panel, uses Index 1,
and lacks a field list.

Index 1 Reverse index.
Its field list only contains one field: P1lF2.

The problem arises this way. On a network, one user hits F9 in that panel.
Then, while the first user is still in Create, another user hits F9 in the same panel.
Now they both have the same number in P1F1. One user then saves his record
successfully. Then the other attempts to save. Unfortunately, the second user is told
he's attempting to save a nonunique record. He must now cancel (F1) and create (F9)
all over again. This time, it works because he gets a higher number in P1F1. Though
no corruption occurs this way, it's annoying.

Because setting a field formula to update when created record is saved causes
a field to recalculate its formula on Save, this should have safeguarded us here,
producing a different number when the second user saves his record. But apparently
when a formula is set to update when created record is saved, DataPerfect 2.3 caches
(stores in memory) a copy of the panel link and the record on the other side of the
link it sees on Create. Then, on Save, it does indeed take another look through the
link, but it takes its second look through the cached link-record combination (the
copy in memory). So it sees the value it saw on Create again, even if the field
formula that uses that link updates when created record is saved. So, in such cases,
setting P1F1 to update when created record is saved gives the same result as having
it update when record is created. Thus when the second user saves his record he gets
the nonunique record error message and has to cancel and create again.

You can solve this by adding a new panel link to your already existing
recursive panel link scheme (and you can do this to a panel with data in it). Let's say
your new panel link is P1F4. All you have to do is this:

° Make sure the Edit Order places P1F1 before P1F2. This is important.
° As before, P1F2 is formulated as -PIF1 to update on any change.

138 Links

o Create a second panel link. The two panel links are identical. Each
takes the user to the same panel, uses Index 1, and lacks a field list.
This isn't different than before, except you now have two links instead
of one.

o As before, formulate P1F1 to update when created record is saved
(not when record is created). What's new with P1F1 is its field
formula. Use

(if P1F2=0 then P1F3P1F1l else P1lF4P1F1 endif)+1

or its equivalent

if P1F2=0 then P1lF3P1F1l+1 else P1lF4P1F1+1 endif

In the above, P1F3PI1F1] is obtained by selecting P1F1 via the first recursive
link, and PI1F4PIF1 by selecting P1F1 via the second recursive link. This formula
takes advantage of the fact that, given the Edit Order, P1F2 is momentarily 0 on
Create. When it sees P1F2 is 0, P1F1 grabs the value on the other side of the first
recursive link and adds 1 to it. Later, on Save, when it sees P1F2 has changed to
something other than 0, it grabs the value on the other side of the second recursive
link and adds 1 to it. Because the second recursive link was not accessed on Create,
it was never cached. The value the field formula sees on the other side of this link on
Save, then, is new. Edit Order is important here. The incrementing field must come
before the reverse field. The Edit Order of the links is irrelevant.

Again, this entire discussion only concerns you if you use the absolute
incrementation using a recursive link scheme on a network. If you're using it on a
single-user setup, you can implement the single-/ink method. And don't forget you
can always update your scheme to the rwo-links method without exporting any data,
because all you have to do is add a panel link and change a field formula. Both of
these can be done with data in the database. Here's a summary of the two-links
method:

Links 139

Absolute Incrementation Using Two Recursive Links

P1F1 Absolutely incrementing field without ::I or ::J.
Formulated to update when created record is saved
(not when record is created) to

if PIF2=0 then PI1F3PI1F1+1 else PI1F4PI1F1+1 endif
PIF3PIF1 is obtained by penetrating link P1F3.
PI1F4PIF1 is obtained by penetrating link P1F4.

P1F2 Reverse field.
Formulated as -PIF1 to update on any change.

P1F3 Recursive panel link.
Takes the user to the same panel, uses Index 1, and
lacks a field 1list.

P1F4 Second recursive panel link.
Identical to link P1F3.

Index 1 Reverse index.
Its field list only contains one field: P1lF2.
Note P1F1 must precede P1lF2 in Edit Order.
Late Breaking Note

Just before shipping this manuscript to the publisher, Lew Bastian (DataPerfect's
author) contacted me. After reading a copy of the manuscript I sent him, he said he's
now considering changing DataPerfect to make the two-links method unnecessary on
a network. That is, he's considering having DataPerfect clear the link cache before
Save. This will slightly slow Saves, but make things more logical in terms of the
Update When Created Record is Saved option. By the time you read this, Lew may
have already made this change to DataPerfect. See Support Avenues in Epilogue
for ways to keep current on this. If Lew makes this change, the single-link method
will suffice. The two-links method, though unnecessary, will still work. So this
change won't break an application that employs the two-links method.

Virtual Link vs. Subreport Using Virtual Link

The recursive link discussed above is what DataPerfect calls a virtual link. A virtual
link, though still assigned an index, lacks a field list. A virtual link need not be
recursive, however. It's simply a panel link that lacks a field list. Don't confuse this
with something else that sounds related: Subreport Using Virtual Link. Though this
isn't the place to get into the Subreport Using Virtual Link (I talk in detail about this
in Subreport Using Virtual Link in my Subreports chapter), suffice it to say this is
option 4 in the following menu, called by Ctrl-F7, 6 in the Report Body of the Edit
Report Form screen:

140 Links

Subreports & Record Creation

1 - Include Subreport
2 - Create Record Through Link
3 - Create Record From Panel List
4 - Subreport Using Virtual Link
0 - Return to Edit

Selection: 0

Until version 2.3, DataPerfect offered only option 1 above (Include
Subreport). To create a subreport that way, you need the appropriate panel link
waiting for you in the Report Body's associated panel. If this panel link is one you
prefer the user not see, you create and hide it for this report (see The Link Options
Menus earlier in this chapter for more on hiding a link). Many of us have tons of
these hidden panel links in the applications we created with DataPerfect 2.0 through
2.2. We created them with the sole purpose of facilitating the definition of subreports.

With version 2.3, we don't need these hidden panel links—at least those
created for subreports. Option 4 allows a report to essentially create a temporary
panel link while it runs. When defining such a subreport, you tell DataPerfect what
index and field list to use. This is just like defining a panel link (with one exception,
which I'll outline later). And, just like the panel link definition process, you may elect
to forego the field list altogether.

DataPerfect's use of the term virtual in these two concepts is confusing. A
panel link is virtual when it lacks a field list. But DataPerfect's Subreport Using
Virtual Link option involves creating a subreport without an existing panel link. The
phrase Subreport Using Virtual Link makes sense to me. It involves a subreport that
really uses a virtual object: a temporary panel link the report creates on the fly. But
DataPerfect's virtual panel link really isn't virtual: it's as real as any other panel link.
What makes it different is that it's missing something other panel links have: a field
list. Perhaps it should be called fieldless, unkeyed, or unfiltered.

Again, I discuss the Subreport Using Virtual Link extensively in Subreport
Using Virtual Link in my Subreports chapter.

Making Panel Links Safer

Starting with version 2.3, DataPerfect's panel link is characterized by a behavior
many developers and users don't like. When sitting on a panel link, hitting FS puts
you in the subpanel in Create mode. Because of this, the user can easily find himself
unintentionally in Create mode in the subpanel. Then, to add to this problem, the user
may become confused when he sees he's in Create mode, and hit F7 (Exit) instead
of F1 (Cancel). Whereas F1 will gracefully resolve this situation, F7 won't. F7 exits
the subpanel and saves the record the user never wanted to create in the first place.

Computed Fields Next to Links

By far, the most common way of dealing with this is to place an A2::C field next to
each panel link, and then formulate each of these A2::C fields to update to ASCII 25
(Down Arrow) if it sees a record on the other side of its adjacent link. To define this
formula, you need to penetrate the panel link on the Specify Formula screen and

Links 141

select (F4) a numerical field in the subpanel that will never be 0, or a text field in the
subpanel that will never be blank. Such a formula would look something like

if P1IF10P2F1 <> "" then "l" else "F5" endif

where P1F10 is the adjacent link and the selected subpanel field P2F1 is text, or

if P1IF10P2F1 <> 0 then "I" else "F5" endif

if P2F1 is numerical. However, the first formula works for both situations because
DataPerfect evaluates "" as a blank if the field in question is text field, and O if the
field in question is a numerical field.

In any event, the above A2::C field displays Down Arrow if it sees a record
on the other side of the link, otherwise it displays F5. If it abuts the panel link in
question, it reminds the user which key to hit. If he follows the directions this A2::C
field offers, he hits FS only if there aren't any subrecords attached to the currently
displayed record in the parent panel. If there are such records, he hits Down Arrow,
even if he wants to create a new subrecord. If he indeed wants to create a new
subrecord when some already exist, he hits Down Arrow in the parent panel, relying
on F9 in the subpanel to get into Create mode there.

A popular alternative to the above scheme is to simply have an Al::C field
display an asterisk if it sees a record on the other side of the link. This formula would
look like this:

if PIF10P2F1 <> "" then "*" else "" endif

The DPMouse© Alternative

But there's a powerful alternative to using computed fields here. If you install a copy
of DPMouse®© alongside DataPerfect, you can make it so the user can only penetrate
a panel link or data link by hitting FS. At that point DPMouse© presents the user
with a popup that offers him the choice to access the subpanel in Browse mode or
Create mode. This way the user's hand is held in a way that greatly limits the
possibility of inadvertent record creations in a subpanel. Take a look at the
DPMouse© manual I provided on diskette for more details on this DataPerfect
addon.

A related issue is finding a way to keep users out of a subpanel under certain
conditions; that is, closing a panel link under certain conditions. This might involve
keeping certain users out all the time, or all users out under certain conditions.
DPMouse© will allow the developer to do this. For more on this, see Using
DPMouse®© To Conditionally Close A Panel Link in my Securing Data Entry
chapter, as well as the DPMouse© manual I provided on diskette. Also see User ID
Panel in my Securing the Application chapter for ideas on how to combine
DPMouse© and the USER.FIELD function to control not only whern a link can be
penetrated, but who penetrates it.

142 Links

Troubleshooting Links

Problem

The subrecord isn't linked after exiting back to the parent panel. That is, you create
a few records on the other side of a panel link, and then exit back to the parent panel.
When you attempt to penetrate the panel link with Down Arrow to browse the
subrecords, you receive the No records are found in this subset message.

Solution

One of these is probably true:

° The link field list isn't a perfect match on an ordered subset of fields that start
the link index. That is, some field on the link field list isn't matched on the
link index; or it's matched by a field of different type or length; or the fields
in the link index that match the link field list aren't in the same order as they
are in the link field list; or the first field in the link index isn't the matching
field for the first field in the link field list.

° Some matching field in the link index is an auto-incrementing field.

o Some matching field in the link index has a field formula that, on Save,
changes the value it inherits from the field it matches.

° The indexes in the target panel need to be regenerated.

Problem
A Create or Edit mode data link lookup fails to sort properly no matter how you
define the link.

Solution

You're working on the wrong entity. A Create or Edit mode data link lookup display
is controlled by the target field, not the source field. Exit the source panel and load
the target panel. Define the target field's Browse mode lookup the way you want it
to display in the Create or Edit mode data link lookup you just left. Now return to the
source panel and try again.

Problem
You edit certain fields in the parent record and later find its subrecords in a linked
panel are no longer linked to this parent record.

Solution

You're editing one or more fields in the field list of the panel link in question. You

have a few choices here to stop this from happening:

° Put the ::N modifier on each link field list field.

° Install DPMouse®© and place an ASCII 250 character (-) next to any link field
list field that isn't a ::N field. This will keep the field from being edited after
the record is saved. Read up on DPMouse© in the manual I provided on
diskette.

° Put Cascade Update or Cascade Update/Delete on that panel link. This will
make sure that whenever the user edits a link field list field, its change will

Links 143

cascade to all dependent subrecords accessed via that panel link, thus
preserving linkage. Cascade Update/Delete goes a little further than just
Cascade Update. For more on Cascade Update and Cascade Update/Delete,
see Panel Link Options in The Link Options Menus in this chapter.

Problem
In the parent record you see what looks like data from subrecords overriding the
display. This seems to hide some fields you don't want hidden.

Solution
Youinadvertently defined a window for some panel link in that panel. Go find it and,
with the cursor on that link, turn off its window with Shift-F8, 4.

Problem
Some fields seem to be hidden ever since defining a panel link in the same panel. But
those fields aren't ::H fields.

Solution
Same as above. Get rid of the inadvertently created panel link window.

Problem

You got fancy with a panel link and put a ::C field on its field list. It worked fine in
your office, but when your client installed the new .STR, that link no longer properly
controlled access to subrecords.

Solution

Your client is using a version of DataPerfect prior to the September 1993 version 2.3.
Computed fields weren't allowed on link field lists until this second release of version
of 2.3.

Problem
Referential Integrity options (Cascade Update and Cascade Update/Delete) worked
fine in your office, but when you sent the .STR your client, it didn't work properly.

Solution
Same as above. Referential Integrity options weren't introduced until the second
release of DataPerfect 2.3 (September 1993).

Problem

You're using a Keep A Total to update subrecords through a panel link. It's supposed
to act as sort of date stamp, where a change in the parent record causes a Keep A
Total to subpanel records, which in turn causes a date field in each one of the
subrecords to update to today's date. But when you examine each parent record's
subrecords, you find only one of its subrecords was updated with the Keep A Total
operation.

144 Links

Solution

A Keep A Total operation only targets the first record it sees on the other side of a
link. If you want all subrecords of a parent record to update via some formula or
another, you'll need to come up with a Cascade Update scheme, or else use a report.

Problem

When you penetrate a panel link, lookups in the subpanel work fine, but not when
you enter that same subpanel from the Panel List. Or vice versa: when you enter the
panel via the panel link, lookups don't work properly, but they work fine when enter
that same subpanel from the Panel List. Or lookups in that subpanel work fine when
entering that panel from the Panel List, and also when entering it from some panel
links, but not others.

Solution
This isn't a link problem. It's a Smart Lookups problem. Read up on this in Smart
Lookups in my Lookups chapter.

Problem
In Create or Edit mode you keep getting a No Data message when performing a
lookup on a data link field.

Solution

Other than the obvious, which is that the target panel has no records, check the link
definition to make sure that either the data link field is the first field of both the link
field list and index, or else all fields that precede the data link field in the link field
list and index are filled with data at the time the user is to perform the lookup on the
data link field. Read Data Link Subgroup Lookups in this chapter for more on this.

Problem
Any attempt to create or edit a record after penetration of a particular data link is met
with the You don't have access rights to do that message.

Solution

This is a common problem when upgrading a DataPerfect database created with
DataPerfect 2.2 or earlier, to 2.3 status. Make sure that the data link is set for Prompt
for creating related record if not found in the Define Data Link menu (option 5).
Also, if a menu item governs entry into the panel with the data link, make sure you
have Restrict Modification to First Level set to No for that menu item.

Problem
Your recursive link doesn't seem to result in your incrementing field incrementing

properly.
Solution

The most common reason for this is selecting the reverse field when passing through
the recursive link in the Specify Formula screen, instead of the incrementing field

Links 145

itself. The reverse field is the one that updates on any change to the negative of the
incrementing field.

Problem
When you delete a record in one panel, records seem to be deleted in another panel.

Solution

At least one link (perhaps hidden) has Cascade Update/Delete on. Cascade Delete is
the only way to delete a record in a foreign panel while deleting a record in the
current panel.

Problem
When you create a record in one panel, sometimes records in another panel get
created.

Solution

There's at least one Keep A Total in the current panel that targets that other panel.
The Keep A Total facility is the only way to create a record in a foreign panel when
saving a record in the current panel.

146 Links

Keep A Total

This chapter targets both the beginner and the experienced.

Introduction

Keep A Total is one of DataPerfect's most powerful features. Before DataPerfect, you
were hard put to find this feature in a database management system. What Keep A
Total does in DataPerfect is what other database management systems typically call
master file updates. Let's say you create an application with following panel
hierarchy:

Customer Panel

Invoice Panel

Transaction Panel

The Invoice Panel will hold totals carried from the Transaction Panel (Total
Charges, Total Payments, Balance, etc.). The Customer Panel will have similar fields.
The fields that hold totals in the Customer Panel and the Invoice Panel will somehow
update by receiving data from the Transaction Panel. When the user enters a record
in the Transaction Panel, you want the value in its Amount field to somehow
influence the appropriate fields in the Invoice Panel and Customer Panel so the user
will always have current values in the latter two panels.

DataPerfect has always made it easy to get the database to update the
appropriate fields in the top two panels with each record created, edited or deleted in
the lowest panel. This has been true beginning with DataPerfect's initial release as
2.0. Not so with other database management systems. If you wanted each Transaction
Panel record Create, Edit or Delete to dynamically update the appropriate fields in
the top two panels, even if your database management system had an application
generator, you had to write many lines of code for each such Transaction Panel field,
telling it what to do with each Create, Edit or Delete, with respect to totalling to the
top two panels. Until recently, one of DataPerfect's major competitors (Alpha Four),
didn't allow any dynamic master file updates. Rather, you had to provide the user
with a master file update routine to run daily, weekly, or monthly. So totals in the top
two panels wouldn't be up to date until after this master file update routine was run.
For some developers, it was DataPerfect's Keep A Total facility that most influenced
their choice of DataPerfect over other database management systems available.

Keep A Total 147

Implementing a Keep A Total

Say those three panels look something like this:

CUSTOMER PANEL

ID Last Name

First Name Balance

To Invoices i

INVOICE PANEL

To Transactions i

ID

Inv #

TRANSACTION PANEL

Last Name First Name

Description

Charge

Payment

You'd like the following to happen when the user creates a Transaction Panel

record:
o If he places a value in the Charge field, on Save DataPerfect will do
the following with that value:
o Add it to the Charges field in the Invoice Panel
® Add it to the Balance field in the Invoice Panel
® Add it to the Balance field in the Customer Panel
°

If he places a value in the Payment field, on Save DataPerfect will do
the following with that value:

o Add it to the Payments field in the Invoice Panel
o Subtract it from the Balance field in the Invoice Panel
o Subtract it from the Balance field in the Customer Panel

Further, if the user edits or deletes a Transaction Panel record, you'd like the
totals in the top two panels adjusted up or down appropriately.

All

the above is easily accomplished with only a few keystrokes when

defining a panel. If you want a field to carry its value to a foreign panel, for the
purpose of updating a field in the foreign panel that holds a total, you simply need to
make sure there exists a link in the current panel, where that link leads to the current
record's parent record in that foreign panel.

148 Keep A Total

In the above case, let's consider the Charge field in the Transaction Panel. To
get DataPerfect to update the Charges and Balance fields in the Invoice Panel, and
the Balance field in the Customer Panel, we need a link in the Transaction Panel that
targets the current record's parent record in Invoice Panel, and another link that
targets its parent record in the Customer Panel. Each link may be either a panel link
or a data link. As long as passing through that link in Browse mode lands the user on
the parent record of the current Transaction Panel's record, it'll work. We might as
well make them hidden panel links. Then all we do now is create three instances of
Keep A Total on the Charge field in the Transaction Panel.

To create the first instance of Keep A Total on the Transaction Panel Charge
field, we cursor to that field in either Browse mode or Define Panel mode, and
Shift-F8, 8 to get a Totaling menu:

Totaling:
You have chosen to keep a total in another field.

Do you want to:

1 - Add the value to another field

2 - Subtract the value from another field
Selection: O
Field 5 of panel 3 Field Format: GZZZ9.99

When we choose 1 (Add the value to another field), DataPerfect presents us
with the current panel and waits for us to Tab to the link we want to use to target,
say, the Invoice Panel. After hitting Down Arrow on the desired link, DataPerfect
presents us with the Invoice Panel, where we must Tab to the target numerical field
and hit F4 to select it. That's all there is to attaching a Keep A Total option to a
numerical field. Now when a Transaction Panel record is saved, DataPerfect will see
if the value in the Charge field changed. If it did, DataPerfect will adjust the total in
the Charges field in the Invoice Panel appropriately.

We repeat the above procedure on the Charge field in the Transaction Panel
two more times, once to create a Keep A Total that targets the Balance field in the
Invoice Panel (using the same link we did above), and once to create a Keep A Total
that targets the Balance field in the Customer Panel (using a different link—one that
targets the parent record in the Customer Panel).

After you create these three Keep A Total codes for the Charge field in the
Transaction Panel, your Field Options screen (Shift-F8) for that field should have
something like this at the bottom:

The value in this field is added to field 6 of panel 2 through link 7
The value in this field is added to field 4 of panel 2 through link 7
The value in this field is added to field 4 of panel 1 through link 8

The wording of these three lines is straightforward, except, perhaps, for the
references to numbered links. If the link is a data link, the number refers to the field
to which it's attached. If the link is a panel link, the number refers to that link's field
number. Don't forget that a panel link is a field, so it gets a field number.

This accomplishes all I need for the Charge field to carry its value from the
Transaction Panel to the Charges and Balance fields in the Invoice Panel, and the
Balance field in the Customer Panel. DataPerfect will also adjust those target values

Keep A Total 149

in the Invoice Panel and the Customer Panel when the Charge field in the Transaction
Panel is edited, or a record in the Transaction Panel is deleted.

To setup the Keep A Total codes on the Payment field in the Transaction
Panel, you take similar steps. You'll have its value added to the Payments field in the
Invoice Panel instead of the Charges field, and you'll have its value subtracted from
the Balance field in the Invoice Panel and the Customer Panel instead of added.
Otherwise, the methodology here is the same as with the Charges field.

When There's No Parent Record

Suppose you enter the Transaction Panel directly from the Panel List, not knowing
if there's a corresponding parent record in the Invoice Panel and Customer Panel to
receive totals generated by the Charge and Payment fields in the Transaction Panel.
That is, in Create mode in the Transaction Panel you enter values in all these fields
(panel links to the current record's parent records in the Invoice Panel and Customer
Panel are hidden):

TRANSACTION PANEL

ID Last Name First Name

Now you save the record. If there's no Invoice Panel and Customer Panel parent
records for this Transaction Panel record, where will the Keep A Total codes deposit
their values?

DataPerfect always makes sure there's a target for a Keep A Total operation.
So in the above example, DataPerfect makes sure there's a Invoice Panel record with
the proper Invoice Number and a Customer Panel record with the proper Customer
ID Number. If there isn't, DataPerfect creates what's needed in those two higher
panels before completing the Keep A Total operations. That is, when you finish
saving the record in the Transaction Panel, exit to the Panel List, and then enter each
of the top two panels from the Panel List, you'll find the appropriate Customer Panel
and Invoice Panel records there, even though you didn't create them before that last
Transaction Panel record creation. The records created in the two upper panels in this
situation will have values only in fields matching those in the field list of the link
used by the Keep A Total. No other fields will be filled in.

150 Keep A Total

Notes on Target Panels for Keep A Total Operations

Please read Issues Concerning Totaling in the Choosing Between ::C and ::N Fields
section of my Fields: Issues chapter for special considerations in designing the
target panel of Keep A Total operations.

Panel Hierarchies and Keep A Total: a Caveat

Let's return to the following panel hierarchy:

Customer Panel

Invoice Panel

Transaction Panel

Note that in the previous discussion of this panel hierarchy, I placed multiple Keep
A Total codes on each relevant field in the Transaction Panel (Charge and Payment
fields). Some of these Keep A Total codes targeted the Invoice Panel, and some the
Customer Panel.

Now, I could just as easily have created Keep A Total codes in the
Transaction Panel that target only the Invoice Panel, and then place Keep A Total
codes onrelevant fields in the Invoice Panel, making them target the Customer Panel.
I call this piggybacking Keep A Total operations. The first set of Keep A Total codes
(in the Transaction Panel) update the Invoice Panel. After that Keep A Total
operation completes, the second set of Keep A Total codes (in the Invoice Panel)
update the Customer Panel.

In earlier versions of DataPerfect, I found piggybacking Keep A Total
operations unreliable. This may not be the case with recent versions of DataPerfect.
I haven't tested it for a long time. I have, however, heard users complaining that, in
some of their applications, it didn't update the higher panels, even with DataPerfect
2.3. I suggest you refrain from piggybacking Keep A Total operations, opting to
always place a Keep A Total code in the lowest possible panel, even if that means
placing multiple Keep A Total codes on a single field. In general, I consider this rule
to ease the strain on a relational database.

Using Keep A Total to Update Records in Foreign Panels

Once you realize that the Keep A Total code updates records in foreign panels
(panels other than the current panel), it's tempting, and sometimes wise, to use this
facility solely for the purpose of triggering foreign panel records to update when the
user creates a record in the current panel, or to actually create foreign panel records

Keep A Total 151

when a user creates a record in the current panel. Consider the following scenario,
with the following familiar panel hierarchy:

Customer Panel

Invoice Panel

Transaction Panel

When a new Customer makes their first purchase in your store, you'd like this
application to automatically create a record in a fourth panel that serves as a reminder
to send a Thank You letter to that new Customer thirty days after their initial
purchase. You plan on creating a report that prints these Thank You letters, recording
the print date in a special date field.

Such a Thank You Panel might look like this:

THANK YOU PANEL

ID Last Name First Name

Initial Purchase:
Thirty Days Later:
Letter Generated:

In the above panel, if the Initial Purchase field is P4F4, then the Thirty Days Later
field would have a field formula that updates on any change to

P4F4 + 30
The Indexes

Now we create the following three indexes for this new panel:

(1) ID
(2) Thirty Days Later, Last Name, First Name, ID
(3) ID, Last Name, First Name, Initial Purchase

The first index guarantees we never have more than one record per Customer. The
second is for our future report (I won't bother constructing the report here). The third
is what we'll use to allow our Keep A Total to work.

152 Keep A Total

The Keep A Total

Now we need to create the Keep A Total in the Transaction Panel that forces creation
of the proper record in the new Thank You Panel for each Customer on their first
day's purchase. Before we do that, we need an additional field in the Transaction
Panel. It's a G9::H field that has a field formula that updates to 1 if there's no record
for this Customer in the Thank You Panel; otherwise it updates to 0. That field will
be the one that has the special Keep A Total that totals to the Thank You Panel. We
can make the Keep A Total target the Thirty Days Later field because that field will
update to thirty days after the Initial Purchase field no matter what, even if a Keep A
Total value drops into it. Don't forget that a Keep A Total needs to target a numerical
field of some kind. This one will do nicely, even though it's not really storing any
total at all. We're simply using it as a dummy receptacle to allow the Keep A Total
to cause the Thank You Panel record to be created.

The Formula on the Transaction Panel G9::H Field

The field formula for this G9::H field uses a hidden link that targets the Thank You
Panel. This hidden link uses the first index noted above and, like the index itself; it
has only the ID field on its field list. The field formula will update on any change to
1 if it sees a record on the other side of this link, otherwise it remains O.

The Keep A Total on the Transaction Panel G9::H Field

The Keep A Total on this G9::H field will use a different hidden link than its field
formula uses. That link would also be hidden. It targets the Thank You Panel. It uses
the third index we listed for the Thank You Panel. This link will have a field list
matching all the above fields (the Initial Purchase field above, of course, will be
matched by the Transaction Panel's Date field).

How it Works: An Example

Let’s outline what the above scheme does with a real example. The user creates a

record for Sally Adams in the Transaction Panel. The G9::H field formula looks on

the other side of the special link we created that uses Thank You Panel’s index 1.
Two possibilities arise here. DataPerfect takes only one of them:

o If the G9::H field formula sees no record in the Thank You Panel

(i.e., it sees no record there with Sally Adams’ ID Number), it updates

to 1. Since the field value goes from O to 1, its Keep A Total code

detects a change in the field’s value. The Keep A Total facility then

attempts to add 1 to Sally Adams’ record in the Thank You Panel.

Since none exists, DataPerfect creates one automatically. In virtue of

the link used by this Keep A Total to create a Thank You Panel

record for Sally Adams, that record’s ID, Last Name, First Name, and

Initial Purchase fields are filled in. While creating this record,

DataPerfect adds 1 to its Thirty Days Later field. This event is only

temporary, however, as DataPerfect overrides that with that field’s

field formula. Since that field formula updates on any change, it

Keep A Total 153

overrides the adding of 1 to its value. That formula updates the Thirty
Days Later date field to thirty days after the date it sees in the Initial
Purchase field in that record.

If the G9::H field formula does see a record in the Thank You Panel
(i.e., it sees a record there with Sally Adams’ ID Number), it updates
to 0. Since the field goes from O to 0, its Keep A Total code detects
no change in the field’s value. So the Keep A Total facility refrains
from attempting addition to the Thank You Panel. This results in
DataPerfect leaving the Thank You Panel record for Sally Adams
alone.

General Principles

Here are the general principles for using a Keep A Total to update a foreign panel a
single time on record creation in the current panel:

Create a G9::H field in the current panel that updates to 1 when the
foreign panel needs updating, otherwise it updates to 0.

Put a Keep A Total on that G9::H field, and have that Keep A Total
target a numerical field in the foreign panel that needs updating.

If available, make the target of the Keep A Total a numerical field
that has a field formula that updates on any change. This way you
don’t need a field in the foreign panel to hold an ever increasing total.
The target field’s field formula will override any addition made to
that field by the Keep A Total. Otherwise, you can just create a G9::H
field in the foreign panel that updates to 0 on any change. That, too,
will override the Keep A Total addition. Or, if you really can use a
running total in the foreign panel, create a field there to hold the ever
increasing total, and let that be the receptacle for the Keep A Total
operation.

If, instead of wanting a Keep A Total to update a foreign panel a single time
on record creation in the current panel, you want it to update that record in the
foreign panel every time the current panel’s record changes, you’d alter the principles

slightly:
°

154 Keep A Total

In the current panel, create a G9999999999::H field. This must be a
ten-character field.

Create a formula on that G9999999999::H that updates on any change
to

(86400*today) tnow

which is the number of seconds since March 1, 1900, otherwise called
the Moment in this book (for a discussion of the concept of Moment,
see An Alternative Solution: Using the Concepts of MOMENT and
MODULO in the Fields: Issues chapter).

° Put a Keep A Total on that G9999999999::H field, and have that
Keep A Total target a numerical field in the foreign panel that needs
updating.
° If available, make the target of the Keep A Total a numerical field
that has a field formula that updates on any change. Otherwise, create
a G9::H field in the foreign panel that updates to 0 on any change.
The above scenario will trigger a Keep A Total to the foreign panel every
time the user saves a created or edited record in the current panel, because hitting F9
or F6 will each cause the G9999999999::H field to increase in value.

Keep A Total vs. Cascade Update

Perhaps it’s obvious, but I need to make this clear right now. A Keep A Total only
updates a single record in its target panel. What record it updates depends on the link
it’s using. Whatever record you land on when penetrating that link in Browse mode
is the record the Keep A Total will update. If no record exists on the other side of the
link during Browse mode, then the Keep A Total operation will create whatever
record you’d create by penetrating that link with F5.

So, given the above, you won’t go far attempting to use Keep A Total to
update more than one record on the other side of a link. For instance, consider the
following familiar panel hierarchy:

Customer Panel

Invoice Panel

Transaction Panel

Suppose you want Last Name and First Name fields in all three panels, and you want
all of them to be real fields (i.e., not computed fields). Further, you want any change
made to one of the two name fields in the Customer Panel to be reflected down the
panel hierarchy, updating those fields in subrecords for that Customer Panel record.
That is, when Sally marries, and the data entry person changes Sally Adams to Sally
Jones in the Customer Panel, you want Sally Adams to change to Sally Jones in all
and only Sally’s records in the Invoice Panel and Transaction Panel.

Keep A Total won’t help here. Suppose I create a G9999999999::H field in
the Customer Panel, formulating it to update on any change to

(86400*today) +now

I then put two Keep A Total codes on this field. One targets the Invoice Panel, the
other the Transaction Panel. Each targets a numerical field that itself updates on any
change to some value, overriding the addition Keep A Total event. I'm following the
general principles I outlined above.

Keep A Total 155

Further, I make sure the Last Name and First Name fields in the Invoice Panel
and Transaction Panel each are formulated to update on any change to the values they
see in the Last Name and First Name fields in the Customer Panel. These field
formulas would use links (perhaps hidden) that go to the parent record in the
Customer Panel. This way, any time an Invoice Panel or Transaction Panel record is
placed in Edit mode, which happens every time a Keep A Total sends a value to it,
the Last Name and First Name fields will update to values found in the Customer
Panel.

Well, such a scheme will only cause an update to occur in the single record
the Keep A Total sees on the other side of the link. That’s all. So only one Invoice
Panel record and one Transaction Panel record will update each time, not all of
Sally’s subrecords. This will most likely update Sally’s first Invoice Panel record,
and her first Transaction Panel record (or perhaps the last of each, depending on how
you index the links that take you from the Customer Panel to the Invoice Panel and
Transaction Panel).

There are basically two ways to get real fields (i.e., not computed fields) in
the subpanels to update to changes made in fields higher in the panel hierarchy. One
is to construct a report that does the job for you, perhaps to be run at the end of each
week. This is time consuming, so I don’t recommend it. The other is to use Cascade
Update on a panel link that contains the fields to update on its field list. In any event,
it wasn't the point of this section to discuss Cascade Update in as much as it was to
point out a common mistake developers commit with Keep A Total codes. I discuss
Cascade Update in the Keeping Subpanel Data Current section of my Fields:
Issues chapter.

156 Keep A Total

Reports: Introduction

Though I mainly target the beginner here, experienced DataPerfect application
developers should still peruse this chapter.

Introduction

DataPerfect's report facility is one of its most powerful features. Unfortunately, with
this power comes complexity that easily discourages the beginning DataPerfect
application developer.

We usually think of a database report as a hardcopy form of data gathered
from a database and sent to a printer, like a Day Sheet outlining all activity in an auto
parts store, or a receipt handed to a patient for insurance reimbursement. But besides
reports that send data to a printer, DataPerfect also allows the developer to create
reports that send the same data to a disk file (perhaps to be printed later, or for
electronic archiving purposes), as well as reports that send data to the screen.
Actually, with DataPerfect, you can have a report do any one, two, or three of these
three possibilities as well. But there's one more thing a developer can do with the
DataPerfect report facility: it can be used to define routines that manipulate data in
the database, like purge records in particular data files, or update particular fields in
particular records. This latter option is usually reserved for a separate facility in a
database program—a facility that allows the user to run routines from a menu. In
DataPerfect, the report facility is used for this.

So, DataPerfect's report facility offers the developer a way to do one, two,
three, or all four of the following in a single report:

1. Gather data from a database and send it to a printer.

2. Gather data from a database and send it to a disk file in either DOS
Text or WordPerfect format

3. Gather data from a database and send it to the screen.

4. Manipulate data in a database in unattended fashion.

As I'mentioned, sometimes these options are combined in the same report, or
in a pair of reports that are typically run one right after the other. For instance, at the
end of each month of practice, I load my chiropractic billing application and run an
Aging of Accounts report to update the aging fields in every record in the Case Panel.
I've defined it to show me on the screen what's happening at each stage of its work,
so it combines features 3 and 4 above. When that's done, I then run my Monthly
Statements report, which sends data to the printer and creates a Transaction Panel
record for each patient, recording the date and amount of the billing for that month
for that patient. So the Monthly Statements report uses features 1 and 4 above. If |
wanted, I could have the Monthly Statements report simultaneously create a disk file

Reports: Introduction 157

of all the output that was sent to the printer (feature 2), to be printed later, or for
archiving purposes.

So that's typical of what the DataPerfect report facility can do. How do we
actually create reports with it?

The Initial Report Definition Screen

First, from Browse mode in a panel display, hit Shift-F7 to call the Report List. If no
reports have been created in this application, you'll see only one item on that list:
Built-In Short Reports. That report serves as a template for creating a new report, and
can't be deleted. Any previously created report on the list can be used as a template
as well. In such a case, you can just highlight the old report and hit Insert. This gives
you a copy of the old report to work on. But let's go back to Built-In Short Reports,
which is what you use when you want to create a report when none exist on the
Report List, or when you want to create one that isn't based on an existing report.

To create your first report, back out of the Report List with F7 and load the
panel on which to base the report. If that's the panel you just landed on when backing
out of the Report List, you can go back to the Report List with Shift-F7. If that's not
the panel on which you want to base this new report, hit F7 and pick one from the
Panel List by highlighting it and hitting Enter. Now go back to the Report List with
Shift-F7. The panel you previously loaded will be the panel on which you're about
to based this new report. By saying a report is based on, say, the Invoice Panel, we're
saying that that report is working in the world of Invoice Panel records. That is, when
that report starts running, it sees nothing but Invoice Panel records, and if you don't
add certain other features to its Report Definition—like a subreport or two (more on
this later)—that report will never see anything but Invoice Panel records.

So, to start creating a report based on the currently loaded panel, highlight
Built-In Short Reports in the Report List and hit Insert. This will bring you into what
I call the Initial Report Definition Screen (DataPerfect doesn't call this screen
anything in particular, so I'll label it this way in this book). You should see the
following:

158 Reports: Introduction

REPORT: New Report

Destination: Screen Only
1 - Printer On/Off
2 - Disk File On/Off

3 - Index Number 1

4 - Search Conditions No Search

5 - Sort Direction Forward

6 — Disk File Mode WP/DOS No Disk File

7 - Print Margins Top Bottom Left Text Lines
6 0 0 54

8 - Edit Report Form

9 - Edit Report Name

Selection: (Press Shift-F7 to begin the report) 0

Let's go over the various options you see above.

Report Name

Notice the first line above. The name of the report is New Report. That's the first
thing I change. Hit 9 (Edit Report Name) to give your new report a better name. You
can change your mind later, so just give it any old name now.

Options 1 and 2: Destination

For now, leave option 1 set for Screen Only. This way you don't waste paper while
trying to figure out why reports aren't working. Even the most seasoned DataPerfect
expert can waste tons of paper experimenting with a new Report Definition that isn't
working just right. It's better to see the report at least looks somewhat right on the
screen before committing to printing it. Also, before I use Option 1 to tell
DataPerfect to send the report the printer, I frequently use Option 2 and view the
subsequent output with a file viewer. I hate wasting paper.

By the way, using Options 1 or 2 doesn't result in the report suddenly being
sent to the printer or to disk. These are just settings that determine where the report
output will go when you later decide to run the report.

If you fiddled with Options 1 and 2 already, you may have noticed you can
actually get the Destination to be both Printer and Disk File, like so:

Destination: Printer LPT1 Create Disk File

That's not a glitch. This will really send the data to both the printer and a disk file. To
eliminate one or the other, hit the appropriate Option number again to toggle it off.
If you didn't get that double output configuration, see if you can get it by tapping on
1 and 2 a few times, and then return the Destination value back to Screen Only.

Reports: Introduction 159

Option 6: Disk File Mode

With Destination set for Screen Only, Option 6 should look like this:

6 — Disk File Mode WP/DOS No Disk File

That makes sense because you're not directing output to the disk. Now do the

following:
° Hit 2 to direct output to a disk file.
° Hit 1 to create a new file.

° Type TEST.RPT for the file's name and hit Enter.

Three changes should now appear in the Initial Report Definition screen:

° Create Disk File appears in the Destination area.

° A new line displays just under Option 2, showing the output filename.

° Option 6 (Disk File Mode) now says either DOS Text or WordPerfect
instead of No Disk File.

Hit 6 to see it toggle between DOS Text and WordPerfect. Now go back and hit 2 to
toggle Disk File off again. This reverses the three changes outlined above.

Option 7: Print Margins

This is the only remaining Option on the Initial Report Definition Screen that doesn't
have much to do with the panel you were in when you first started this process. Its
default values read like this:

7 - Print Margins Top Bottom Left Text Lines
6 0 0 54

Here's how the above parameters work. DataPerfect thinks in terms of the
number of lines on a page. Unlike its big sister, WordPerfect 5.x and above. it doesn't
understand inches. DataPerfect works more like WordPerfect 4.x in this regard. So
you first have to consider the paper you want to use for this or that report. Assuming
it's letter size, you're talking about eleven inches in length. At 6 lines per inch, that's
66 lines per page.

Second, you have to consider the type of printer you're going to use. If given
the chance, a dot matrix printer will print on all 66 lines. Not true for a laser, which
will print on no more than 60 lines per page by default (still assuming 6 lines per
inch). Lasers have a half-inch No Print zone on all four sides.

Let's take a look at the four fields in the Print Margins line in our initial menu.
The first three are fairly straightforward. They represent margins at the top, bottom
and left of each page. The top and bottom margins are in terms of lines, and the left
margin is in terms of columns or characters (we’re talking about monospaced fonts
here, like Courier, not proportional fonts, like CG Times). The fourth field (Text

160 Reports: Introduction

Lines) represents the total number of lines DataPerfect will count before
automatically issuing a page eject.
The default values for these four fields result in the following:

o DataPerfect will start each page one inch from the top (Top = 6).

° DataPerfect will consider the first column to be on the far left of the
paper (Left = 0).

o DataPerfect will issue a page eject after counting 54 lines (Text
Lines = 54).

The above yields a flush-left report that prints with one-inch margins (6
lines), top and bottom. Note that the Text Lines value makes the Bottom value of 0
irrelevant here. If the paper is ejected after printing 54 lines, which followed the 6-
line margin at the top, it's essentially ejecting after 60 lines, leaving a margin of 6
lines at the bottom. For a typical report, I always leave the Bottom value at 0, and
determine my bottom margin by the combination of the Top value and the Text Lines
value.

The rule here is that

Top + Text Lines + Bottom

must not exceed the printable zone of your paper. For a dot matrix, this total must not
exceed 66, and for a laser, 60. If you always accept the default

6 + 54 +0

for paper length parameters, then your report will work with letter-size paper on both
a dot matrix and a laser. Alternatively, if you like to print reports that use more than
60 lines per letter-size page, then you'll have to modify the report when using a laser.

Left Margin

I didn't talk much about the Left margin. Let's do that now. Note that there isn't any
Right margin field. DataPerfect assumes you'll be determining right margins within
the guts of the report itself (8 - Edit Report Form, which we have yet to cover), by
using carriage returns at the end of each line. So it just needs to know where to start
each line. Or better, it just needs to know where on the physical page to consider
column one to be. A value of zero here tells DataPerfect to consider column one to
be the far left of the paper (as far left as the printer allows).

T'usually don't accept the default for this value. Many of my reports, like Daily
Activity reports and Monthly Performance reports, are going to end up in three-ring
binders. For such reports, I usually increase this value to at least three, leaving room
for the binder holes. A value of three for Left margin means that DataPerfect will
consider column one to be three characters to the right of the leftmost printable
column on the physical page.

The Left margin field is deceivingly convenient. It frees you from having to
determine how many columns to the right to start each line in the Edit Report Form
screen itself (item 8, which, again, we discuss later). Just go ahead and consider the

Reports: Introduction 161

first column to be the far left of the Edit Report Form screen and print out the report.
If it's too far to the left, adjust only one figure: the Left margin in the Initial Report
Definition Screen. This saves you having to adjust each line of the Edit Report Form
screen itself.

Labels

With respect to a report that generates labels, item 7 is handled a little differently.
Here the only field you care about is the Left margin field. Set all the others to zero.
After testing the report by printing out a few labels, see if you have to adjust the Left
margin.

Finding What Panel a Report Is Based On

We've covered all items on the Initial Report Definition Screen that don't depend on
the panel that was displayed when you started this process. As mentioned earlier,
that's the panel the report is based on. To see what panel a report is based on, take a
look at the Report List (where you were after you first hit Shift-F7, but just before
the Initial Report Definition Screen). To the far right of any given report name, you
should see the panel number (P1 for Panel 1), like so:

Monthly Statements Pl

There’s another way to see what panel the report is based on, especially if you
really don't remember exactly what, say, Panel 1 is. Hit 8 (Edit Report Form) and,
with your cursor still in the section called First Page Header, hit F4. This will take
you to the panel that report is based on. In any given section of a Edit Report Form
screen, this is how to find out what panel that section is based on. This becomes more
important when defining subreports within the report, and you're wondering where
you are in this or that section. When done looking, F7 to return to the Edit Report
Form screen. F7 again to return to the Initial Report Definition screen.

Panel-Dependent Initial Report Definition Screen Options

There are four more options on our Initial Report Definition Screen, all of which
relate to the panel on which the report is based:

Index Number
Search Conditions
Sort Direction
Edit Report Form

QO U1 W

The first three can be covered pretty quickly, reserving the bulk of our work here to
explain Edit Report Form.

162 Reports: Introduction

Option 3: Index Number

This defaults to the lowest numbered index for that panel (that’s not always Index 1
because you may have deleted Index 1). This index is from the panel the report is
based on. To take a look at just what that index is, simply hit 3. From there, you may
select a different index by using Up Arrow or Down Arrow, hitting F4 to select it.

If, after browsing the indexes, you decide you should have based this report
on a different panel, you'll have to start the Report Definition process over again.
Though DataPerfect allows you to change the index for an existing Report Definition,
it doesn’t allow you to change the panel on which you based the Report Definition.
To change the panel on which to base the report, exit the Report Definition with F7
enough times to return to the Panel List. Load the panel on which you want to base
the report, hit Shift-F7, and then, with the highlight bar on Built-In Short Reports,
hit the Insert key.

Your choice of index here is crucial. It determines the order the report will
process that panel's records. It may even exclude an entire class of records without
you realizing it, if you inadvertently select an index with an Exception List attached
to it. If you see an FE attached to a field in the Index view after hitting 3, then that
index has an Exception List attached to it. You probably don't even know what an
Exception List is at this stage, so don't worry about this. The upshot here is that the
report index is an important setting, not to be taken lightly. See Exception Lists in my
Indexes chapter for more on this.

Option 4: Search Conditions

This is used to narrow the scope of a report. It works just like F2 works when a panel
displays in Browse Mode, allowing you to define the report to search based on
formula, template, etc. I can safely say I never use this option. Never. No Search
always displays to the right of Search Conditions on my Initial Report Definition
Screen. I suggest using a combination of Prompts and Iteration Control to narrow
down the scope of a report. The Search Conditions option is cumbersome,
unintuitive, and easy to forget it's set when you run a report a few months later. See
Prompt for Report Variable in the Global Report Options section of my Report
Options chapter for a discussion of prompts, an my Iteration Control chapter for
a discussion of Iteration Control.

Option 5: Sort Direction

This is straightforward. It determines whether the report processes records forwards
or backwards, based on the index selected in Item 3.

Reports: Introduction 163

Option 8: Edit Report Form

This is the guts of your Report Definition. I said DataPerfect’s report facility is one
of its most powerful facilities. This is where you access that power. When you choose
Edit Report Form, you see this:

Column 1
Type the text to be included in the report. To include a data field,
press Select (F4), move to the field (possibly through links,) and again
press Select. While the cursor is on a report field mark, you can press
F6 to edit the report format. To include variable fields, prompts or
special control instructions, press Report Options (Ctrl-F7).

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
——Empty--
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER

——Empty--

Your cursor initially sits in the First Page Header, as seen above.

The DataPerfect report facility is, like the report facilities in other database
management systems, a band report facility. That is, the different sections or
groupings of the report (First Page Header, Other Page Header, etc.) are displayed as
banded sections of the screen. Let’s go over the top help box you see there, one
sentence at a time:

———— Column 1
Type the text to be included in the report. To include a data field,
press Select (F4), move to the field (possibly through links,) and again
press Select. While the cursor is on a report field mark, you can press
F6 to edit the report format. To include variable fields, prompts or
special control instructions, press Report Options (Ctrl-F7).

Type the text to be included in the report.

It means just that. In any section of the Edit Report Form screen, you can just start
typing. What you type will, when the report runs, either display on the screen or be
sent to a printer or disk file, depending on other things you may have put in that Edit
Report Form screen.

To include a data field, press Select (F4),

move to the field (possibly through links)

and again press Select.

Go ahead and hit F4 and notice that DataPerfect throws you back into the panel on
which you based this report. At this point, you can just hit F7 to get back to the Edit
Report Form screen (as I mentioned before, when I'm not sure what panel I based the

164 Reports: Introduction

report on, [use F4 to see, and then F7 to return to the Edit Report Form screen).
Alternatively, before returning to the Edit Report Form screen with F7, you can select
a field with F4. Go ahead and do that. Note that DataPerfect throws you back into the
Edit Report Form screen, but with an important difference. Now there’s a copy of the
field you selected from the panel, showing up in the section of the Edit Report Form
screen you were in when you hit F4 initially.

If your cursor was in the First Page Header when you hit initially F4, your
screen should now look something like this after selecting a field:

Column 16
Type the text to be included in the report. To include a data field,
press Select (F4), move to the field (possibly through links,) and again
press Select. While the cursor is on a report field mark, you can press
F6 to edit the report format. To include variable fields, prompts or
special control instructions, press Report Options (Ctrl-F7).

FIRST PAGE HEADER

OTHER PAGE HEADER
——Empty-—-—
TWO-LEVEL REPORT HEADER
——Empty-—-—
REPORT BODY-
——Empty-——
TWO-LEVEL FOOTER
——Empty-——
PAGE FOOTER
——Empty-—-—
FINAL FOOTER
——Empty-—-—

If the field you selected was, say, an A15 field, then the cursor would now be sitting
in column 16, as noted at the top of the screen.

Move the cursor to the left, so it sits on the selected field in the Edit Report
Form screen. Note the screen changed to show you information about that selected
field:

Column 1
Type the text to be included in the report. To include a data field,
press Select (F4), move to the field (possibly through links,) and again
press Select. While the cursor is on a report field mark, you can press
F6 to edit the report format. To include variable fields, prompts or
special control instructions, press Report Options (Ctrl-F7).

Path to field: P1F1
Last Name

Field Format: Al5
FIRST PAGE HEADER

OTHER PAGE HEADER
——Empty-—-—

DataPerfect shows you where the field comes from (P/F1 means Panel 1 Field 1),
what name (if any) you assigned it in that panel, and what format it has in the Edit
Report Form screen.

Note that the sentence I cited here has a parenthetical possibly through links.
If you don't know what links are yet, this won't make much sense to you. If you do,
suffice it to say here that DataPerfect allows you to select a field in a linked panel if

Reports: Introduction 165

you hit F4 in the Edit Report Form screen, and then Tab to the link in question and
hit Down Arrow. At that point, you then Tab to the linked panel's field you desire
and hit F4.

While the cursor is on a report field mark,

you can press F6 to edit the report format.

This is pretty clear, though it probably should have said fo edit the report field
format. Hit F6 while the cursor is on that field. You now can edit the format of that
field. If you do, this will only affect how that field’s data is sent to the screen, printer,
or disk file when running this report. It doesn’t affect any other reports, nor does it
affect the format of that field in the panel from which it was selected. For instance,
you might want to alter the field’s format in a report to get it to fit on the paper, or
to convert it to all upper case characters for address labels.

To include variable fields, prompts

or special control instructions,

press Report Options (Ctrl-F7).

This can be complicated. What you get when you hit Ctrl-F7 is different in each
section of the Edit Report Form screen. That is, Ctrl-F7 gives you a different menu
of options in the First Page Header, versus, say, what it gives you in the Report Body
or Final Footer. When I spoke of the power of DataPerfect’s report facility, I was
really referring to the Report Options you access via Ctrl-F7 in the various sections
of a Edit Report Form screen. I could write a book just on this. But before I get into
the Ctrl-F7 Report Options in each section, let’s discuss something more basic: the
Edit Report Form Screen Sections.

The Edit Report Form Screen Sections Delineated

By Edit Report Form Screen Sections, I mean the First Page Header, Other Page
Header, Two-Level Report Header, Report Body, Two Level-Report Footer, Page
Footer, and Final Footer.

First Page Header

As long as there are records to process by the Report Body, DataPerfect processes the
First Page Header first, and processes it only once per report. So when a report is run,
DataPerfect first takes a look to see if there are any records for the Report Body to
process. Why might DataPerfect see no records to process by the Report Body? Well,
here are the most common reasons for DataPerfect to stop the report cold because it
fails to see records for the Report Body to process (in the following list, the panel
refers to the panel on which the report is based):

166 Reports: Introduction

o There are no records in the panel.

° The report’s index has an Exception List that excludes all records in
the panel.

° The report’s Search Conditions exclude all records in the panel.

° Iteration Control options used in the report exclude all records in the
panel.

If any of the above are true, no section of the Report Definition will run because all
sections of the Report Definition are merely appendages to the Report Body. And the
Report Body runs on records.

The First Page Header would be whatever you want at the top of the first page
of your report. It shows up nowhere else, no matter how many pages are printed. So,
if you’re defining a report that prints out all teachers and their schedules for this
academic year, you might put

FALLBROOK HIGH
Teachers and Schedules

in that report's First Page Header.

Other Page Header
Aslong as there are records to process by the Report Body, DataPerfect processes the
Other Page Header at the beginning of each page, beginning with the second page.
So, unlike the First Page Header, which prints only once per report, the Other Page
Header prints at the top of every page of the report except for the first page. There is,
however, a way to make it print on the first page as well. We'll discuss that later.
So, in the same report mentioned above, you might consider putting the
following in its Other Page Header:

Teachers and Schedules (cont’d.)

The Other Page Header is also a typical place to put a Page Number field, which I
talk about later.

Two-Level Report Header
Aslong as there are records to process by the Report Body, DataPerfect processes the
Two-Level Report Header once per Two-Level Report group. This only happens if
you define your report to be a Two-Level Report. We’ll talk more later on how to do
this, but suffice it to say that the place you tell DataPerfect that this is a Two-Level
Report is the First Page Header.

So what’s a Two-Level Report? Well, suppose our report is running on the
Class Panel, which has records that show the name and time of each class, as well as
the teacher assigned to it. It has one record per class. Now, suppose we’d like this
report to show all the classes grouped together by teacher.

If we run this report on an index that sorts by Teacher and Class, in that order,
we’re likely to produce a report that prints like this:

Reports: Introduction 167

Alexander, Joseph Art 1 TuTh 10
Alexander, Joseph Art 2 MWE 9
Alexander, Joseph Art 3 MWE 11
Donaldson, James Math 2 MWE 10
Donaldson, James Math 5 TuTh 10
Green, Sally History 1 MWE 9
Green, Sally History 2 MWE 10
Green, Sally History 3 TuTh 9
But this is more readable:

Alexander, Joseph

Art 1 TuTh 10

Art 2 MWE 9

Art 3 MWE 11
Donaldson, James

Math 2 MWE 10

Math 5 TuTh 10
Green, Sally

History 1 MWE 9

History 2 MWE 10

History 3 TuTh 9

The latter is a Two-Level Report. Its Two-Level Report Header is the space

occupied by the teacher’s name in each grouping. That’s the header of each group,
as opposed to the header of the report (First Page Header) or the header of each page
(Other Page Header). More on the details, tricks and traps of Two-Level Reports
later.

Report Body
DataPerfect processes the Report Body once per record. So, each line of the
following represents one pass of the Report Body:

Alexander, Joseph Art 1 TuTh 10
Alexander, Joseph Art 2 MWE 9

Alexander, Joseph Art 3 MWE 11
Donaldson, James Math 2 MWE 10
Donaldson, James Math 5 TuTh 10
Green, Sally History 1 MWE 9

Green, Sally History 2 MWE 10
Green, Sally History 3 TuTh 9

An Edit Report Form screen that would produce a report like you see above would
look something like this:

FIRST PAGE HEADER
——Empty-—-—

OTHER PAGE HEADER
——Empty—-—
TWO-LEVEL REPORT HEADER
——Empty-—-—
REPORT BODY-

TWO-LEVEL FOOTER
——Empty-—-—
PAGE FOOTER
——Empty-—-—
FINAL FOOTER
——Empty-—-—

168 Reports: Introduction

In the above Edit Report Form screen, the fields you see in the Report Body
were placed there by hitting F4 (which places me in the panel on which the report is
based), Tabbing to the Teacher Name field, and hitting F4 again. This places the
Teacher Name field in the Report Body, represented by the horizontal block you see
above. The same procedure was used for the Class Name and Class Time fields.

I might want to put in some text to make the report more readable:

FIRST PAGE HEADER
FALLBROOK HIGH
Teachers and Schedules

Teacher Class Time

OTHER PAGE HEADER
Schedules (cont’d.)

Teacher Class Time

TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER

——Empty--

This would produce a report like this (I'll put a ruler above the printout for
later reference, when I start playing with the Left Margin setting—it's not part of the
report printout):

1 2 3 4 5 6 7
01234567890123456789012345678901234567890123456789012345678901234567890123456789
FALLBROOK HIGH
Teachers and Schedules
Teacher Class Time
Alexander, Joseph Art 1 TuTh 10
Alexander, Joseph Art 2 MWE 9
Alexander, Joseph Art 3 MWE 11
Donaldson, James Math 2 MWE 10
Donaldson, James Math 5 TuTh 10
Green, Sally History 1 MWE 9
Green, Sally History 2 MWE 10
Green, Sally History 3 TuTh 9

And if there are enough records to produce more than one page, each page
after the first page would have this as the top:

Schedules (cont'd.)

Teacher Class Time

If we want to make sure the text is centered on the page instead of flush left,
we would go the Initial Report Definition screen and set the Left Margin to
accommodate that. This is where the ruler I put in above comes in handy for
discussion. A setting of 13 for the Left Margin makes it print like this (again, the
ruler isn't part of the report printout):

Reports: Introduction 169

1 2 3 4 5 6 7
01234567890123456789012345678901234567890123456789012345678901234567890123456789

FALLBROOK HIGH
Teachers and Schedules
Teacher Class Time
Alexander, Joseph Art 1 TuTh 10
Alexander, Joseph Art 2 MWFE 9
Alexander, Joseph Art 3 MWE 11
Donaldson, James Math 2 MWE 10
Donaldson, James Math 5 TuTh 10
Green, Sally History 1 MWE 9
Green, Sally History 2 MWE 10
Green, Sally History 3 TuTh 9

Note there isn’t any setting in the Initial Report Definition Screen that centers
a report on the printed page. For this, you must rely on calculating what the Left
Margin should be to accomplish this. In the above example I counted the total
characters across the Report Body. That's 52. Subtracting from 80 (the total number
of characters across the page, using Courier font), we get 28. Half that would be the
Left Margin (14).

Of course things are often not that simple. Inevitably you print the report out
and look at it and then adjust the Left Margin accordingly. Also, you might want to
accommodate another half inch or so for the holes needed for a three-ring binder. At
10 characters per inch (for Courier), that adds another 5 for the holes, bringing the
Left Margin to about 19. Again, print out the report, punch the holes, examine, and
change the Left Margin if needed.

Two-Level Report Footer

As long as there are records to process by the Report Body, DataPerfect processes the
Two-Level Report Footer once per Two-Level Report group. Like the Two-Level
Report Header, this only happens if you define your report to be a Two-Level Report
(again, we talk about this in detail later).

Page Footer
DataPerfect prints a Page Footer at the end of each page.

Final Footer

DataPerfect prints the Final Footer only once per report: at the very end. Unless you
put in a specific code that forces it to print at the bottom of the final page, it will
simply begin printing after everything else in the report has printed, always starting
on its own line.

The Report Algorithm

Okay, here's the process DataPerfect goes through, step by step, when running a
report. First, DataPerfect sees if any records should be evaluated by the Report Body.
There might not be any to process because there aren’t any in the panel on which the
report is based, or the report index has an Exception List that excludes all records in
the panel on which the report is based. If there are no records to evaluate, the report
aborts immediately, issuing the No Data message. If there are records for the Report

170 Reports: Introduction

Body to evaluate, DataPerfect processes the various sections of the Edit Report Form
screen in this order:

1.
2.

First Page Header is processed.

If there’s an Include Header Before Data code (Ctrl-F7, 3) in Other

Page Header, Other Page Header is processed; otherwise, Other Page

Header is skipped.

What happens next depends on whether a Two-Level Report is

defined in First Page Header.

a. If a Two-Level Report is not defined in First Page Header,
Report Body is processed once per record.

b. If a Two-Level Report is defined in First Page Header,
Two-Level Report Header is processed. Then Report Body is
processed once for each record that belongs in the first group
of records as determined by the Two-Level Report definition
found in First Page Header. Then Two-Level Report Footer
is processed. If another group of records exists (where such a
group is determined by the Two-Level Report Definition in
First Page Header), Two-Level Report Header is processed
again, followed by Report Body once per record in that group
of records, followed by Two-Level Report Footer again. This
cycling ends when there are no records left to process by
Report Body.

During all the above, whenever the report is near the end of a page,

with just enough room to print Page Footer, Page Footer is processed,

a page eject is issued, and Other Page Header is processed at the top

of the next page. Then it continues where it left off in step 3.

At the end of the entire report, Final Footer is processed.

General Theory in Creating a Report

The primary reason you’re going to create a report is to send data to the printer. Your
main concerns are these:

Processing all and only the right records, in the right order.
Getting just the right information from each record to print.
Getting the report to look good.

Getting the report to complete in a reasonable amount of time.

Processing the Right Records

Here, you’re best off going from the general to the specific. Choose an appropriate
panel on which to base the report. Then choose an appropriate index. This will
determine not only the right order, but may impact which records will be processed.
If there’s no Exception List attached to an index, it includes all records in the panel.

Reports: Introduction 171

If there is an Exception List attached to an index, it may not include all records in the
panel. You need to be aware of this when assigning an index to your report.

Narrow down the records to be processed with Search Conditions or Iteration
Control Options. I devote an entire chapter to formulas (which is what you need to
understand to construct Search Conditions), and an entire chapter to Iteration
Control. You're almost always better off using Iteration Control options for this
instead of Search Conditions.

Getting the Right Information to Print

The primary way you’re going to do this is to use F4 to select fields from the panel,
placing them one at a time into the Edit Report Form screen. If needed, change the
field format of a field after you place it in the Edit Report Form screen. You can do
that by cursoring to the field in the Edit Report Form screen and hitting F6. This
allows you to, say, shorten an A35 field to an A20 field, and, perhaps, change it so
it prints all upper case (changing it to U20), all without changing the field's format
in the panel itself.

Also note that if the panel on which this report is based has, say, an A15 Last
Name field and an A15 First Name field, selecting them in the report with F4 and
typing a comma after the Last Name field, will result in a Edit Report Form screen
like this:

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

,,,,,,,,,,,,,,,,

TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

But that Edit Report Form screen prints like this:

Alexander , Joseph
Donaldson , James
Green , Sally

Think about this a few minutes to see why this is so. To get rid of those
spaces before each comma, you need to alter the field format a little. DataPerfect
offers Print Mode Indicators to handle situations like this. The ones relevant here are
those that strip off blanks at the ends of fields. Here are the three that do that:

;B Truncate Both Leading and Trailing Blanks
HA Suppress Leading Blanks
;5T Truncate Trailing Blanks

The above are the mnemonics in the DataPerfect manual. I use different
mnemonics to remember Print Mode Indicators:

172 Reports: Introduction

;B Remove both
;7S Remove starting
i T Remove trailing

Reformatting the first field in the Report Body from A15to A15;;B or A15;;T
will solve this problem and give us a report that prints like this:

Alexander, Joseph
Donaldson, James
Green, Sally

I didn’t reformat the field in the panel. Rather, I did that in the Edit Report Form
screen itself by cursoring to the field in question, hitting F6, and then altering the
field format. Note also that Print Mode Indicators use double semi-colons, in contrast
to the Display Mode Indicators (e.g., ::N), which use the double colon. I discuss all
Print Mode Indicators in detail in Print Mode Indicators in my Reports: Fields
chapter.

Getting the Report to Look Good

This can simply be an issue of deciding between things like Subreports and
Two-Level Reports on the one hand, or as complex as coming up with complicated
printer control strings that move the laser printer head up and down the paper, while
the report prints with exotic proportional fonts. If your report requires a lot of
proportional font work, DataPerfect's report facility is going to frustrate you when
contrasted with the Windows database managers out there. It just doesn't have the
formatting power these other have in this regard.

But if your report requires grabbing data from many linked data files,
DataPerfect's report facility will offer you power and flexibility lacking in other
database managers. So there's a trade-off here. DataPerfect's report facility's power
rests with it's data access flexibility, and, as you'll see later, its Iteration Control
options. I'm not going to take up space on this topic. It's best served by your
experimenting, first defining the proposed report with it set to print to the screen.
Then, if it looks good, set it to print to a file. If that file looks good in your file
viewer, then set it to print to the printer and start examining hard copy.

Getting the Report to Complete in a Reasonable Amount of Time

First, use the right index. And if available, use an index with an appropriate
Exception List on it (see Speeding Reports with Exception List Indexes in the
Exception Lists section of my Indexes chapter). This can make a big difference. If
you use an index with an Exception List on it that limits records to only those you
want for this report, great. For instance, in an Accounts Panel you might have a field
showing Account Balance. If you want to make a report print Monthly Statements for
all and only those Accounts with a positive balance, you don’t want the report to have
to search the entire Accounts Panel data file. If you have an index with an Exception

Reports: Introduction 173

List on it that excludes all records without a positive balance, you’ll greatly speed up
this report.

When combined with the appropriate index, Iteration Control options can
greatly speed reports. I devote an entire chapter to this topic (see the lteration
Control chapter). If you understand Iteration Control, and how to integrate it with
appropriate indexes, you frequently can take a report that previously took a hour to
finish on a large database, and turn it into a report that finishes in less than a minute.

Knowing Your Place

When constructing a Report Definition in the Edit Report Form screen, it's crucial
you know where you are in your panel hierarchy, and what record your report would
be working on or have access to if active at this moment. In any section of your Edit
Report Form screen you can see what panel is being accessed by that section by
hitting F4. Hitting F7 then takes you back to where you were before taking a peek at
the panel. But this doesn't tell you what record that report will be accessing at that
moment. Let's explain.

In the Main Report

In the First Page Header of the main report, the report has access to the first record
in the active index and no others. In fact, the main report's First Page Header is
printed only once—at the beginning of the whole report—and, at that time, the first
record in the active index (the index assigned to the report in the Initial Report
Definition Screen) is the one up for processing. Selecting fields with F4 in the main
report's First Page Header will be selecting fields from that record.

The main report's Other Page Header is processed only when the report
definition senses the end of a page while in the main report (as opposed to when it's
in subreport). At that time, it issues a page eject and prints the Other Page Header at
the beginning of the next page. The record the Other Page Header has access to at
that moment will be the first record in the index processed on that new page.
Selecting fields with F4 in the main report's Other Page Header will be selecting
fields from that record.

The main report's Report Body, of course, processes every record in the active
index, barring certain Iteration Control options that may be active.

In a Subreport

But let's talk about subreports here. In the above statements, I was very careful to
refer to the main report's First Page Header, Other Page Header and Report Body.
Things get a little more complicated when trying to keep track of where you are in
terms of what records are being processed in subreports. First, always remember that
a subreport is based on a single record in its parent report. That isn't to say that it has
access to only a single record. Rather, it lives in a world of records that are

174 Reports: Introduction

determined by the parent record it just left in its parent report, consistent with the
index and field list that creates the subreport.

For instance, if the main report is based on the Invoice Panel, and the
subreport is based on the Transaction Panel, you're most likely going to define this
report in such a way that the subreport is based on the Invoice Number of the record
in the main report. This might be done by creating the subreport using a panel link
in the Invoice Panel that takes you to the Transaction Panel, where this link has a
field list consisting solely of the Invoice Number field in the Invoice Panel. The
index for this panel link probably will be a Transaction Panel index with Invoice
Number and Date as its first two fields, so that records accessed via that link will be
in chronological order for each given Invoice.

In the above example, the subreport will, at any moment in time, have access
only to a well-defined subset of the Transaction Panel records: those records that
have the same Invoice Number as the parent record just left in the Invoice Panel in
the main report. So, the subreport's First Page Header will have access to the first
record it comes to in the subset of records tied to the current parent record. In our
Invoice/Transaction example, that would be the earliest Transaction Panel record tied
to the Invoice Panel record the report just left when entering the subreport.

Likewise, if the report comes to the end of a page when in a subreport, it will
process the Other Page Header of that subreport and not the Other Page Header of
the main report. This means you need to put an Other Page Header in all subreports
that might be active at the end of a page, if you want an Other Page Header to print
properly. Further, it means that the record the Other Page Header will have access to
at that moment in time will be the first record it sees in the subset on the next page,
so you can't just Block and Copy the Other Page Header from the main report to the
Other Page Header of the subreport. If you do that, you'll be selecting fields from the
wrong panel and can actually cause the report to kick the user to DOS! See my caveat
about this in the In Report Definition Mode section of my The Clipboard chapter.

The subreport's Report Body, of course, will process all record in its subset,
in the order its index dictates.

So, in complex reports, you must constantly think about where you are in the
panel hierarchy as well as in the record stream. This gets tricky with subreports, and
even more trickier with the Subreport Using Virtual Link option. With the latter,
you're allowed to create a subreport that is not only free of being tied to an existing
link, but also free of having any field list at all. It provides unfiltered access to all
records in a panel while in a subreport. A common mistake developers make in using
this very powerful Report Definition option is to forget that the main report runs once
per record in the main panel, causing the Subreport Using Virtual Link to run on all
its records over and over again—one full cycle per main report record. Take a look
at some of the reports Dummy Report Examples in the Subreports chapter for
examples of reports that take this into account (especially the Report That Branches
to Other Reports).

Reports: Introduction 175

176 Reports: General Structure

Reports: General Structure

Though I mainly target the beginner here, I do cover topics that will benefit the
experienced DataPerfect application developer.

The Basic Report

Let’s do a simple report, starting from the beginning. Say I have a Class Panel that
looks like this:

CLASS PANEL

r Semester
- e N9999, G9

Schedule

Al5, AlO

To the right of the panel, I indicated the format for each field. Further, I have
a single record for each Class that occurs in each Semester for each Year. So,
assuming no two Classes have the same Name, my indexes for this panel include all
the fields you see above.

Let’s say I want a report to list all Classes in order of their being taught, and,
when taught in the same Semester, list them in alphabetical order by Name. That is,
I want a report to list Classes sorted primarily by time taught, and secondarily by
Name. Then I’'ll need to base the report on the following index on my Initial Report
Definition Screen (item 3):

Year, Semester, Name, Schedule

After choosing Edit Report Form on the Initial Report Definition Screen (item
8), I see this:

FIRST PAGE HEADER
——Empty-——
OTHER PAGE HEADER
——Empty-——
TWO-LEVEL REPORT HEADER

——Empty-—-—
REPORT BODY-
——Empty-—-—
TWO-LEVEL FOOTER
——Empty-—-—
PAGE FOOTER
——Empty-—-—
FINAL FOOTER
——Empty-——

Reports: General Structure 177

Then I put in some text in the report, leaving x’s to make space for

inserted later:

CLASSES TAUGHT AT FALLBROOK HIGH

Year/Semester Class Name

FIRST PAGE HEADER

fields to be

Schedule

OTHER PAGE HEADER

Page xx

Classes, cont’d.

Year/Semester Class Name

Schedule

——Empty--

XXXK/X

TWO-LEVEL REPORT HEADER

REPORT BODY

——Empty--

TWO-LEVEL FOOTER

PAGE FOOTER

——Empty--

——Empty--

FINAL FOOTER

I'll leave it all flush left, allowing the Print Margins setting on the Initial Report
Definition Screen to handle centering later, at which time I'll give it a big Left

margin.

So, with the above layout, DataPerfect will first print the First Page Header
and then start printing the Report Body once per record. Each time it comes to the
end of a page, it will issue a page eject and print the Other Page Header at the top of
the next page, and then start printing the Report Body once per record, starting where
it left off on the previous page. The report ends when there are no more records in
that index. It won’t print the First Page Header more than that once. If I had a Page
Footer defined, it would have printed that at the end of each page. If I had a Final
Footer defined, it would print that once, at the very end.

So, with my x’s still in place, my report’s first page would look like this:

CLASSES TAUGHT AT FALLBROOK HIGH

Year/Semester Class Name Schedule

XXXX/X XXXXXKXXXKXXKXKXKK XXXXXKXKXKX
XXXX/X XXXXXXXXKXXKXKXKX XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKXK XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKXK XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKXK XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKK XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKK XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKK XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKXK XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKXK XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKK XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKK XXXXXKXXKXKX
XXXX/X XXXXXXXXKXXKXKXKK XXXXXKXKXKX
XXXX/X XXXXXKXXKXKXXKXKXKXK XXXXXKXXKXKX
XXXX/X XXXXXKXXKXKXXKXKXKXK XXXXXKXKXKX
XXXX/X XXXXXKXXXKXXKXKXKXX XXXXXKXKXKX
XXXX/X XXXXXKXXXKXXKXKXKXX XXXXXKXXKXKX
XXXX/X XXXXXKXXXKXXKXKXKXK XXXXXKXXKXKX

And each subsequent page would look like this:

178 Reports: General Structure

Page xx

Classes, cont’d
Year/Semester Class Name Schedule
XXxXX/X XXXKXXXKXXKXKXXKKKK XXXXXXKXXKX
XXxXX/X XXXKXXXKXXKXKXXKKKK XXXKXXXKXXKKX
XXxXX/X XXXKXXXKXXKXKXXKKKK XXXXXXKXKKX
XXxXX/X XXXKXXXKXXKXKXXKKKK XXXXXXKXXKX
XXxXX/X XXXKXXXKXXKXKXXKKKK XXXXXXKXXKKX
XXXX/X XXXKXXXKXKXKXXKKKK XXXKXXKKXXKX
XXxXX/X XXXKXXXKXXKXXXKKKK XXXXXXKXKKX
XXxXX/X XXXKXXXKXXKXXXKKKK XXXXXXKXXKKX
XXxXX/X XXXKXXXKXXKXKXXKKKK XXXXXXKXKKX
XXxXX/X XXXKXXXKXKXKXXKKKK XXXXXXKXXKKX
XXXX/X XXXKXXXKXKXKXXKKKK XXXKXXKKXXKX
XXxXX/X XXXKXXXKXXKXKXXKKKK XXXXXXKXXKX
XXxXX/X XXXKXXXKXXKXXXKKKK XXXXXXKXKKX
XXXX/X XXXKXXXKXXKXKXXKKKK XXXXXXKXXKKX
XXxXX/X XXXKXXXKXXKXKXXKKKK XXXXXXKXXKX
XXxXX/X XXXKXXXKXXKXXXKKKK XXXXXXKXXKKX
XXxXX/X XXXKXXXKXKXXXKKKK XXXXXXKXXKKX
XXXX/X XXXKXXXKXXKXKXXKKKK XXXKXXXKXXKKX

Let's figure out what I need for my Left margin setting. With 80 possible
columns and 45 actual columns printed above, if I subtract 45 from 80 I get 35. Half
that is about 18, which is a good start for my Left margin setting. If [want to add a
half-inch for binder holes, I would increase that figure by 5 (figuring 10 characters
per inch with courier print), for a Left margin of 23. That should get me pretty close
to centered text on three-hole punched paper. Of course I’d have to actually print it
out to see, and possibly reset that Left margin.

Of course [don’t want all those x’s in my report. So let’s put actual fields in
my Edit Report Form screen. In the Other Page Header [have Page xx. To put a Page
Number field in there instead of those x’s, I cursor to the two x’s and delete them.
And then I Ctrl-F7 for Report Options available to me in the Other Page Header (the
Report Options menu you get with Ctrl-F7 depends on what section of the Edit
Report Form screen you’re in). I now see this menu:

Report Options for Other Page Header:

1 - Select Report Field
2 - Eliminate Line if Blank
3 - Include Before First Record

4 - Skip if Start of Two Level

Selection: O0[OK-Enter]

I'want a field that keeps track of the current page number and prints it. L hit 1, looking
for such a special field and get this menu (the Select Report Field menu you get by
hitting 1 also depends on the section of the Edit Report Form screen you’re in):

Report Fields and Variable
- Date
Time
Page Number
Store Value in Report Variable
Print Report Variable
6 - Set Page Number
Selection: 0[OK-Enter]

Turn Print Off
Turn Print On
Turn File Off
Turn File On
Printer Control

1
2
3
4
5

W > oo
| I R |

Reports: General Structure 179

Take a look at 3 above. That’s what I want. When I hit 3, DataPerfect inserts
a GZZZ779 field in my Edit Report Form screen, wherever I had my cursor at that
moment. If [move the cursor to the left, landing it on that new field, I'll see its
properties in the upper left portion of the Edit Report Form screen:

Column 1
Type the text to be included in the repo
press Select (F4), move to the field (po
press Select. While the cursor is on a
F6 to edit the report format. To includ
special control instructions, press Repo

Page

Field Format: GZZZZZ9
FIRST PAGE HEADER—

Notice that the screen now displays Page and Field Format: GZZZZZ9,
telling me this is a Page Number field with a format of GZZZZ79. While on that
field with my cursor, I can change its format to have less digits by hitting F6 and
typing it, say, GZ9. This field will now print the current Page Number in GZ9
format, with the Edit Report Form screen looking like this now:

FIRST PAGE HEADER
CLASSES TAUGHT AT FALLBROOK HIGH

Year/Semester Class Name Schedule

OTHER PAGE HEADER

Page
Classes, cont’d.

Year/Semester Class Name Schedule

TWO-LEVEL REPORT HEADER
——Empty-—-—
REPORT BODY

XXXK/X

TWO-LEVEL FOOTER
——Empty-—-—
PAGE FOOTER
——Empty-—-—
FINAL FOOTER
——Empty-—-—

Now I replace the x’s in the Report Body. First I cursor the first set of x’s,
representing the Year/Semester combination, and delete them. Then I hit F4, which
throws me into the Class Panel. I then Tab to the Year field and F4. This places an
N9999 Year field in my Edit Report Form screen. I then type in the /' if I previously
deleted it and then F4 again. I then Tab to the Semester field and F4. Now I have
both fields in my Edit Report Form screen. The same process is done for the Name
and Schedule fields, giving me the following Edit Report Form screen:

180 Reports: General Structure

FIRST PAGE HEADER
CLASSES TAUGHT AT FALLBROOK HIGH

Year/Semester Class Name Schedule

OTHER PAGE HEADER

Page :
Classes, cont’d.

Year/Semester Class Name Schedule

TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty-—-

This will produce a first page like this:

CLASSES TAUGHT AT FALLBROOK HIGH

Year/Semester Class Name Schedule
1995/1 Art 1 MWEF 10-11
1995/1 Art 1 TuTh 9-11
1995/1 Biology 1 MWE 9-10
1995/1 Design 2 MWE 9-10
1995/2 Art 2 MWEF 10-11
1995/2 Biology 2 TuTh 9-11
etc.

And subsequent pages will look like this:

Page 2
Classes, cont’d
Year/Semester Class Name Schedule
1996/1 Art 1 MWEF 10-11
1996/1 Art 1 TuTh 9-11
etc.

Two-Level Reports

Let’s say you’d like this report organized a little differently. Say you’d like it to not
repeat the same Year value over and over again. Rather, you’d like it to group records

by Year like this:
CLASSES TAUGHT AT FALLBROOK HIGH
Year Semester Class Name Schedule
1995
1 Art 1 MWE 10-11
1 Art 1 TuTh 9-11
1 Biology 1 MWF 9-10
1 Design 2 MWF 9-10

Reports: General Structure 181

2 Art 2 MWE 10-11

2 Biology 2 TuTh 9-11
1996

1 Art 1 MWE 11-12

1 Biology 2 TuTh 9-11

2 Art 2 MWE 10-11

2 History 1 MWE 8-9
etc.

You can easily produce the above with a Two-Level Report version of the
report I was defining previously. To accomplish the above grouping in my report, |
cursor to the First Page Header and Ctrl-F7, giving me the following menu:

Report Options for First Page Header:

Select Report Field
Eliminate Line if Blank
Skip to Bottom of Page
4 - Page Eject
5 - Two-Level Report
Selection: 0

Prompt for Report Variable

Do Report in Subgroups

Create Record From Panel List
Create Secondary Merge Report
Iteration Control (Skip, etc.)

w N
[
w0 00 -J oy
L O |

Note item 5: Two-Level Report. That’s the one I need to select in the First
Page Header now. When I do, DataPerfect presents me with the panel on which this
report is based and asks me for the Two-Level Sort Field for this Two-Level Report.
The Two-Level Sort Field is the field DataPerfect will use to group records for this
report, and this should be the first field of the index assigned to the report. In this
case, I want records grouped by Year, so I’ll choose the Year field as the Two-Level
Sort Field by Tabbing to it and hitting F4. Assuming the Year field is the first field
in that panel, this is what the First Page Header how looks like (I also took out the
‘I’ between ‘Year’ and ‘Semester’):

FIRST PAGE HEADER
777777777777777 Two-Level Report Sorted by Field: 1 ———————-——————————
CLASSES TAUGHT AT FALLBROOK HIGH

Year Semester Class Name Schedule

OTHER PAGE HEADER
Page
Classes, cont’d.

Year Semester Class Name Schedule

TWO-LEVEL REPORT HEADER

REPORT BODY-

TWO-LEVEL FOOTER
——Empty-—-—
PAGE FOOTER
——Empty-—-—
FINAL FOOTER
——Empty-—-—

Note also I took the Year field out of the Report Body section and put it in the
Two-Level Report Header section instead. I also got rid of the ¢/° that preceded the
Semester field. Everything else remains the same as before.

What does the above Edit Report Form screen really say? It says DataPerfect
will first group all records in that panel by Year. Then the Report Body will print
those records as before, but will print the Year field (the Two-Level Report Header)
at the beginning of each group a header to that group. Like this:

182 Reports: General Structure

CLASSES TAUGHT AT FALLBROOK HIGH

Year Semester Class Name Schedule
1995
1 Art 1 MWE 10-11
1 Art 1 TuTh 9-11
1 Biology 1 MWE 9-10
1 Design 2 MWE 9-10
2 Art 2 MWE 10-11
2 Biology 2 TuTh 9-11
1996
1 Art 1 MWE 11-12
1 Biology 2 TuTh 9-11
2 Art 2 MWE 10-11
2 History 1 MWE 8-9
etc.

Subgroup Reports

But suppose you want that report by Semester, not just Year. That is, you want it to
group by Year/Semester, printing each Year/Semester once, with all its Class records
below it. This is easily done with a different option, very similar to the Two-Level
Report option.

In the First Page Header, Ctrl-F7, 7 is Do Report in Subgroups. This is
similar to, but different from, Ctrl-F7, 5, which is a Two-Level Report. Whereas a
Two-Level Report groups records by the first field in the active index, a Subgroup
Report groups records by the combination of the first and second fields of the active
index. Further, it prints the First Page Header more than once. It prints it at the
beginning of each Subgroup, ignoring the Two-Level Report Header section.

So I change my Edit Report Form screen to look like this:

FIRST PAGE HEADER

777777777777777 Do Report in Subgroups—--——--————————————————————————————
Year/Semester Class Name Schedule

HEE/

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

And it prints like this:

Schedule

Class Name

Year/Semester

1995/1

Art 1
Art 1
Biology 1
Design 2

MWE 10-11
TuTh 9-11
MWE 9-10
MWE 9-10
1995/2

Reports: General Structure 183

Art 2 MWE 10-11

Biology 2 TuTh 9-11
1996/1

Art 1 MWE 11-12

Biology 2 TuTh 9-11
1996/2

Art 2 MWE 10-11

History 1 MWE 8-9

The Subgroup Report does the following: It first groups the records by the
first-second field combination in the index, like you see above. Then it prints the
First Page Header at the beginning of each subgroup. This differs from the
Two-Level Report not only in that it groups on a different set of fields in the index
(the Two-Level Report groups on the first field, not the first-second combination),
but it takes the First Page Header as its group header, not the Two-Level Report
Header.

This has a limiting consequence. Because the Subgroup Report uses the First
Page Header as its group header, you have no real First Page Header for your Edit
Report Form screen when doing a Subgroup Report. The Other Page Header works
as usual in the Subgroup Report, however.

The Subreport

Note: For more on the ins and outs of Subreports,
see my Subreports chapter.

Many times your database application will have a panel that is a sort of hybrid of two
or more panels. In my Fallbrook High application, I might not only have a Class
Panel, but also a Teacher Panel. The Teacher Panel might look something like this:

TEACHER PANEL

Last Name First Name

Or, because two Teachers might have the same First and Last Names, something like
this:

TEACHER PANEL

ID

Last Name First Name

184 Reports: General Structure

In the second version of the Teacher Panel, I putin an ID field. It’s a G9999::1
field that automatically assigns a unique four-digit number to each Teacher Panel
record (i.e., a unique four-digit number for each Teacher). If you’re unsure of the ::1
modifier, see Display Mode Indicators in my Fields: Introduction chapter.

In fact, as a general rule, it’s a good idea to have an ID field in the Class Panel
too. In my Fallbrook High example, there probably won’t ever be two Classes with
the same values in the Year, Semester, Name and Schedule fields, but it’s still good
database practice to give every record in a panel a unique ID value that will not only
fail to appear in any other record in that panel, but will never change after the record
is saved. So if Art History 101, being taught in 1996 in Semester 1 on MWF 10-11,
is assigned ID 0032, then even if I later change its Name to History Of Art 101, any
reference to that Class Panel record anywhere else in the database, in any other panel,
will still refer to that very same Class Panel record, because it’s still referring to
Class Panel record 0032. If this isn’t all that clear right now, it will be after you read
the Links chapter.

So let’s change our Class Panel to look something like this:

CLASS PANEL

Name Schedule

The ID field above is a G9999::I field.

Now, if I put the ID field in the Class Panel’s various indexes, I actually allow
for more than one Class to have the same Name and be taught at the precisely the
same time (Year, Semester, and Schedule). This could certainly happen if two
different Teachers taught that Class at the same time.

My Class Panel indexes could now look like this:

Class Panel Indexes

No. | Field List

1 Year, Semester, Name, Schedule, ID

2 Name, Year, Semester, Schedule, ID

3 ID, Year, Semester, Name, Schedule

4 ID, Name, Year, Semester, Schedule

I can then assign Classes to Teachers in a third panel called the Class/Teacher Panel:

Reports: General Structure 185

CLASS/TEACHER PANEL

Class

Year Semester

Name Schedule

Teacher

Last Name First Name

Now, suppose I wanted to create a report that would print out a list of
Teachers showing, under each Teacher’s name, all the Classes that Teacher ever
taught. I’d like the Teachers to be listed in alphabetical order by Last Name, and their
Classes listed chronologically. It would look something like this:

FALLBROOK HIGH TEACHERS
Adams, Joyce

1995/1 Physics 1
1995/1 Math 2
1995/2 Physics 2
1995/2 Math 1
1996/1 Math 2
1996/1 Physics 1

Appleton, Sam

1995/1 Art History 1
1995/1 Life Drawing 2
1995/2 Life Drawing 1
1995/2 Art History 2
1996/1 Art History 1
1996/1 Life Drawing 2

etc.

Though there are tricks I can use to do the above as a Two-Level Report based on the
Class/Teacher Panel, it’s difficult. Let’s see why.

To define a Two-Level Report on the Class/Teacher Panel in the way that will
produce a report like I just outlined above, I first need to find an index in that panel
that sorts by Last Name. If I don’t have one, I can certainly create one. Let’s take a
look at these possibilities:

186 Reports: General Structure

Class/Teacher Panel Indexes

No. | Field List

1 Last Name, First Name, Teacher ID, Year, Semester, Class Name, Schedule

2 Last Name, Teacher ID, First Name, Year, Semester, Class Name, Schedule

3 Last Name, Teacher ID, Year, Semester, Class Name, Schedule

4 Last Name, Year, Semester, Class Name, Schedule, First Name, Teacher ID

The first makes the most sense because it sorts first by Last Name, then by
First Name, then by the time the Class took place (Year/Semester). That clearly
represents the sorting of the report as outlined by hand above. But if I were to do a
Two-Level Report using that index, I would get a report that groups by Last Name
only. Don’t forget that Two-Level Reports group by the first field of the index. This
means that if [have two Teachers with the same Last Name, they’ll share the same
group in the report, and the header for that group will be the first name of those two
Teachers in the index. So, if both Joyce Adams and Steve Adams teach at Fallbrook
High, this Two-Level Report will print all the Classes of both Joyce and Steve in the
same group, headed only by the name Joyce Adams. This isn’t what I want.

Okay, then what about a Subgroup Report? That at least groups records by the
first two fields of the index, taken as a unit. That would work if no two Teachers had
the same Last and First Names. If that were the case, I could get rid of the Teacher
ID field and use this index:

Last Name, First Name, Year, Semester, Class Name, Schedule

A Subgroup Report using that index would group the records by the
combination of the Last and First Name fields, which means each Teacher gets his
or her own group, even if they have the same Last Name.

But I'm allowing for the very common possibility that two Teachers have the
same Last and First Name, so I need a Teacher ID field. A Subgroup Report that uses
an index that begins with those two fields will, again, group by those two fields. But
that means that if I have, say, two Teachers with the name Steve Adams, then all the
Classes of those two Teachers will be in the same group in this Subgroup Report,
sharing the same header, Steve Adams.

If T'had a Subgroup Report option to group by the first three fields, I could use
it here. Then I could use this index:

Last Name, First Name, Teacher ID, Year, Semester, Class Name, Schedule

But no such option exists as of this writing. I need a different approach: the
Subreport.

Whereas you use the Report Options (Ctrl-F7) in the First Page Header to
tell DataPerfect to run a report as Two-Level Report or a Subgroup Report, you use

Reports: General Structure 187

the Report Options in the Report Body to tell DataPerfect to run a Subreport. You
access the Subreport options with Ctrl-F7, 6, which gives you this menu:

Subreports & Record Creation

— Include Subreport

- Create Record Through Link

- Create Record From Panel List

— Subreport Using Virtual Link
0 - Return to Edit

Selection: 0

BSw N

The two options relevant to my current problem are Include Subreport and Subreport
Using Virtual Link. Understanding either of these requires that you already
understand what a link is, and how to create one. If you don’t, it’s time to read my
Links chapter.

Let’s assume I have a panel link in the Class Panel and one in the Teacher
Panel, and that each of these takes the user to the Class/Teacher Panel. The Class
Panel panel link will link on the Class ID field, and the Teacher Panel panel link will
link on the Teacher ID field. That is, each panel link has only one field in its field list,
and that’s the ID field in that panel.

Note: ID fields like these are ideal for panel link
field lists because their values typically
never change after the record is saved. So
linkage is never broken.

My Class and Teacher Panels might now look like this:

CLASS PANEL TEACHER PANEL
Clgss D Iegcher ID
?e?r ?emester Eaft;N?m? N F}rft?N?m? L
Name Schedule
To Class/Teacher Panel To Class/Teacher Panel

The panel link in the Class Panel has the following properties:

Class Panel Panel Link

Field List Class ID

Index Class ID, Year, Semester, Name, Schedule

When the user penetrates that link, he lands in the Class/Teacher Panel with
access only to records with the same Class ID value found in the record he just left
in the Class Panel. That is, penetrating that panel link gives him access to all and only
Class/Teacher records that belong to the Class he’s Browsing in the Class Panel.

Likewise, the panel link in the Teacher Panel has the following properties:

188 Reports: General Structure

Teacher Panel Panel Link

Field List Teacher ID

Index Teacher ID, Year, Semester, Name, Schedule

That gives the user access to all and only Class/Teacher Panel records that belong to
the Teacher he’s Browsing in the Teacher Panel.

Now I have what I need for the report at hand. First, I’ll base the report on the
Teacher Panel, not the Class/Teacher Panel. So I1oad the Teacher Panel and Shift-F7
to call the Report List. In the Report List, I hit Insert on Built-In Short Reports. Now
the Edit Report Form screen is based on the Teacher Panel.

Next, still on the Initial Report Definition Screen, I pick 3 (Index Number)
and choose an index that sorts by the Last Name field in the Teacher Panel.

Now I hit 8 (Edit Report Form) and put in my First Page Header and Other
Page Header. Then I cursor to the Report Body and F4 to select the Teacher’s Last
Name and First Name fields, separating them with a comma, and reformatting (F6)
the Last Name field to have the ;T Print Mode Indicator (to strip off any trailing
spaces in the Last Name field before printing the comma and First Name).

So far I have this:

FIRST PAGE HEADER
FALLBROOK HIGH TEACHERS

OTHER PAGE HEADER
FALLBROOK HIGH TEACHERS, continued
TWO-LEVEL REPORT HEADER
——Empty—--
REPORT BODY.

<Al5;;T and Al5>

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

That Edit Report Form screen will, of course, only print a list of Teachers. For
each Teacher’s list of Classes, I need my Subreport. In the Report Body, I cursor to
just past the First Name field (the second field in the report) and hit Enter twice so
the list of Classes begins two lines after the Teacher’s name. I then hit Ctrl-F7, 6 to
see my Subreport options menu:

Subreports & Record Creation

Include Subreport

Create Record Through Link

Create Record From Panel List
4 - Subreport Using Virtual Link
0 - Return to Edit

Selection: 0

W N
[

I want my Subreport to use the panel link I just put in the Teacher Panel, so I choose
1. The difference between choice 1 and 4 is that 1 uses an existing panel link and 4
has the Subreport create a temporary panel link on the fly, and then remove it when
the Subreport is done. Option 1 is easier to understand at this stage, but 4 is better to

Reports: General Structure 189

use once you understand what you’re doing (that is, after you read my Subreports
chapter).

Okay, I choose 1. DataPerfect now puts me in the panel on which the report
is based (the Teacher Panel), and asks me to Move to the desired panel link or data
link, then press Select (F4). This is asking me what link the report should use in
creating its Subreport. The Subreport will have precisely the same access the user has
when penetrating that link with Down Arrow in Browse mode. That is, it will have
access to all and only those records in the Class/Teacher Panel that relate to the
Teacher Panel record that is currently being processed by the Report Body.

FIRST PAGE HEADER
FALLBROOK HIGH TEACHERS

OTHER PAGE HEADER
FALLBROOK HIGH TEACHERS, continued
TWO-LEVEL REPORT HEADER
——Empty-—-—
REPORT BODY-

SUBREPORT LINK/PANEL: 4 3
FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
——Empty--
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF SUBREPORT:

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

In the above Edit Report Form screen, notice that a new section has been
inserted into the Report Body. It starts with SUBREPORT LINK/PANEL: 4 3 and
ends with END OF SUBREPORT. That’s the Subreport I just created. The first line
of it says that the Subreport is using a link whose field number is 4 (DataPerfect
considers panel links to be fields, and this panel was the fourth field I created in this
panel) and whose target is Panel 3, which is the Class/Teacher Panel. So the
Subreport takes the report into the Class/Teacher Panel, doing this for each record it
comes to in the Report Body of the main report.

Notice also that a Subreport has all the same sections available to you the
main report has. It’s a complete report in and of itself. It can even have Subreports
in its own Report Body.

In this Subreport, I'll put in another Other Page Header and a few fields. The
Subreport’s Other Page Header will print just in case the report comes to the end of
apage before finishing the current Subreport. I'll select the Year, Semester and Class
Name fields with F4, also puting in a /' between the Year and Semester fields. And
finally, I’ll add some needed spacing by putting carriage returns in the First Page
Header and Other Page Headers, and one in the Final Footer. This gives me a Edit
Report Form screen something like this:

190 Reports: General Structure

FIRST PAGE HEADER
FALLBROOK HIGH TEACHERS

OTHER PAGE HEADER
FALLBROOK HIGH TEACHERS, continued

TWO-LEVEL REPORT HEADER
——Empty-——
REPORT BODY-

SUBREPORT LINK/PANEL: 4 3
FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
FALLBROOK HIGH TEACHERS, continued

TWO-LEVEL REPORT HEADER
——Empty-——
REPORT BODY-

TWO-LEVEL FOOTER
——Empty-—-—
PAGE FOOTER

——Empty-—-—
FINAL FOOTER
——Empty-—-—
END OF SUBREPORT:

TWO-LEVEL FOOTER
——Empty-—-—
PAGE FOOTER
——Empty—-—
FINAL FOOTER
——Empty-—-—

That Edit Report Form screen produces a report something like this, without
the annotations:

FALLBROOK HIGH TEACHERS First Page Header

Adams, Joyce Report Body, Record 1

1995/1 Physics 1
1995/1 Math 2

1995/2 Physics 2 Subreport for
1995/2 Math 1 Record 1
1996/1 Math 2

1996/1 Physics 1

Appleton, Sam Report Body, Record 2

1995/1 Art History 1
1995/1 Life Drawing 2 W
1995/2 Life Drawing 1 Subreport for
1995/2 Art History 2 Record 2
1996/1 Art History 1
1996/1 Life Drawing 2

etc. Report Body, Record 3

Reports: General Structure 191

Two-Level Reports in Subreports

I can take this another step. I can put a Two-Level Report inside the Subreport:

FIRST PAGE HEADER
FALLBROOK HIGH TEACHERS

OTHER PAGE HEADER

FALLBROOK HIGH TEACHERS, continued

TWO-LEVEL REPORT HEADER

——Empty-—-—
REPORT BODY-

SUBREPORT LINK/PANEL: 4 3

FIRST PAGE HEADER

777777777777777 Two-Level Report Sorted by Field: 2 —-————————-

OTHER PAGE HEADER

FALLBROOK HIGH TEACHERS, continued

TWO-LEVEL REPORT HEADER

<Year>

REPORT BODY

S <Semester and Class Name>

TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER

——Empty--
FINAL FOOTER

——Empty--
END OF SUBREPORT:

TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER

——Empty--
FINAL FOOTER

——Empty-—-—

In the above Edit Report Form screen, in the Subreport’s First Page Header,
I told DataPerfect I wanted a Two-Level Report (Ctrl-F7, §), and, when prompted
to do so, selected the Year field in the Class/Teacher Panel (I Tabbed to that field
and then hit F4) to sort this Two-Level Report. I also changed the Report Body a
little. I moved the Year field out of the Report Body and put it in the Subreport’s
Two-Level Report Header. I also put an § immediately before the Semester field.

Here’s what the Edit Report Form screen will produce:

FALLBROOK HIGH TEACHERS First Page Header

Adams, Joyce Report Body, Record 1
1995 —
S1 Physics 1
S1 Math 2
S2 Physics 2
S2 Math 1 for Record 1
1996
S1 Math 2
S1 Physics 1

Appleton, Sam

192 Reports: General Structure

Report Body, Record 2

Subreport as Two-Level Report

1995 —
S1 Art History 1
S1 Life Drawing 2
S2 Life Drawing 1 Subreport as Two-Level Report
S2 Art History 2 for Record 2

1996
S1 Art History 1
S1 Life Drawing 2

etc. Report Body, Record 3

The Primary Sorting Field

This brings up an important point about Subreports, Two-Level Reports, and
Subgroup Reports. Note that the panel link on which I based the above Subreport has
the following properties:

Teacher Panel Panel Link

Field List Teacher ID

Index Teacher ID, Year, Semester, Name, Schedule

Now review what I did when I created the Two-Level Report inside the Subreport.
I told DataPerfect to sort that Two-Level Report on the Year field in the
Class/Teacher Panel. And the index you see above is active when this report is
processing that Two-Level Report. But the Year field is not the first field in the
active index at that moment; whereas, I told you earlier that you must choose the first
field of the index assigned to the report. Well, that’s not completely accurate. What
you’re supposed to do is make sure the Two-Level Report sorting field is the primary
sorting field on which DataPerfect will be sorting in that part of the report. If you're
not in a Subreport—that is, you’re in the main report, then the primary sorting field
will be the first field in the report index. But if you’re in a Subreport, the primary
sorting field will be the first field in the active index that follows the fields that make
up the field list of the link that takes you to that Subreport. This sound much more
complicated than it is. Let’s explain.

In the main report of this subreport, DataPerfect is sorting on the Teacher’s
Last Name and First Name fields. That’s the first field of the active index. In this
case the active index is the index assigned to the report as a whole in the Initial
Report Definition Screen. But in the Subreport, the active index (the index on the
link used to create the Subreport) starts with the Teacher ID field, followed by the
Class Year field. But when you or the report penetrates that link, you land in the
Class/Teacher Panel with access only to records of a single Teacher (the Teacher you
just left in the Teacher Panel). This is because the field list of that link consists of the
Teacher ID field. That effectively filters out all other Class/Teacher Panel records
from view.

So when the main report, which is in the Teacher Panel, penetrates the panel
link on its way to the Subreport, it has access only to those Class/Teacher Panel

Reports: General Structure 193

records that belong to the Teacher it was processing just before penetrating the link.
So it wouldn't make sense for DataPerfect to be sorting on the first field of the active
index (which is the Teacher ID field), because all and only the records with that
single Teacher ID value are in its world at this moment. So DataPerfect sorts at this
point on the field that immediately follows the fields in the link’s field list, which,
in this case, is the Year field. The Year field is the primary sorting field in the active
index of this Subreport.

If you want to create a Two-Level Report in this Subreport (as I just did), then
you must choose the second field in the active index as the field on which to sort the
Two-Level Report. That’s because the second field in this case is the primary sorting
field. Again, in the main report, the first field is always the primary sorting field.
Also note that the primary sorting field in a Subreport need not be the second field
in the active index. If there’s more than one field on the field list of the link used to
create the Subreport, the primary sorting field will be later in the index field list than
the second field. The primary sorting field is the field in the index that immediately
follows the link field list, no matter how many fields are in the link field list.

Subgroup Reports in Subreports

Just as you can put a Two-Level Report in a Subreport, you can put its cousin, the
Subgroup Report, in a Subreport. Instead of using Ctrl-F7, 5 in the Subreport’s First
Page Header, I would use Ctrl-7, 7. That inserts the Do Report in Subgroups code
there. I would also move the Semester field into the Subreport’s First Page Header,
just after the Do Report in Subgroups code. Here’s what that Edit Report Form
screen would look like:

194 Reports: General Structure

FIRST PAGE HEADER
FALLBROOK HIGH TEACHERS

OTHER PAGE HEADER
FALLBROOK HIGH TEACHERS, continued

TWO-LEVEL REPORT HEADER
——Empty-——
REPORT BODY-

SUBREPORT LINK/PANEL: 4 3
FIRST PAGE HEADER

= <Year/Semester>
OTHER PAGE HEADER
FALLBROOK HIGH TEACHERS, continued

TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

T <Class Name>
TWO-LEVEL FOOTER
——Empty--

PAGE FOOTER

——Empty--

FINAL FOOTER

——Empty--

END OF SUBREPORT:

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

And here’s what it produces:

FALLBROOK HIGH TEACHERS First Page Header
Adams, Joyce Report Body, Record 1
1995/1 -
Physics 1
Math 2
1995/2
Physics 2 Subreport in Subgroups
Math 1 for Record 1
1996/1
Math 2
Physics 1
Appleton, Sam Report Body, Record 2
1995/1 -
Art History 1
Life Drawing 2
1995/2
Life Drawing 1 Subreport in Subgroups
Art History 2 for Record 2
1996/1
Art History 1
Life Drawing 2
etc. Report Body, Record 3

Reports: General Structure 195

Though Subgroup Reports are supposed to group records by the first-second field
combination in the index, note that, in this case, it groups them by the second-third
field combination. Again, just like the Two-Level Report I earlier inserted in a
Subreport, this Subgroup Report considers the primary sorting field in that part of the
report (the Subreport) to be the second field of the active index, not the first field.
Unlike the Two-Level Report, which groups records by the solitary primary sorting
field in the active index, the Subgroup Report sorts on the first-second field
combination, starting with the primary sorting field in the active index. That
combination, in this case, is the second-third field combination of that active index.

196 Reports: General Structure

Reports: Fields

Fields in Report Definitions have different rules than those found in panels. Again,
though my main focus here is the beginner, experienced DataPerfect application
developers will get something out of this chapter.

F Fields

These are floating decimal fields, available only in reports. This field type begins
either with FN or FZ, followed by a number from 3 to 16. The FZ field strips leading
zeroes, otherwise they're the same. The number in this field type determines how
many character spaces, including the decimal point, will be allotted. The need for this
field type arises in reports where you don't have enough room to print the largest
possible value that may be found in the accessed numerical field.

For instance, suppose your report is to print the value found in a panel's
(G999.9999 field. That field contains eight characters, counting the decimal. You only
have room for six characters on that line in the report. You could use a G999.99 field
in the report (which would round the number to the nearest two decimals), but you
want this report to show as much of the decimal part of the number as possible. If
you format this report field FN6, the report will always print all the digits to the left
of the decimal, coupled with as many of those to the right as possible, for a maximum
of six, including the decimal point.

Here are examples I took from the DataPerfect manual to clear this up for

you:
Number FN6 FN10 FZ6 FZ10
12.66666 12.667 0012.66666 12.667 12.66666
23,987.3456 023987 23987.3456 23987 23987.3456
-34.5 -34.5 -0000034.5 -34.5 -34.5
7,376,191.4 AKX KKK 07376191.4 KKK KK 7376191.4

Note that the F field displays the negative sign if the accessed panel field has
a negative value. Also note the asterisks where the field format was too small to
accommodate all the digits to the left of the decimal. Asterisks display in any
DataPerfect numerical field when the value in that field doesn't fit that field's format.
This goes for N, G, and H fields as well as F fields.

Reports: Fields 197

Print Mode Indicators

As T've mentioned previously (in my Fields: Introduction chapter), there are
special field modifiers that may be used in reports, while having no effect on field
display in a panel. These Print Mode Indicators, as the DataPerfect manual calls
them, all follow a double semi-colon, as opposed to a double colon. They can be
placed on any field selected in a Report Definition or used in formatting Report
Variables. If the field in the Edit Report Form screen was selected with the F4 key,
to alter its format in the report, you just cursor to that field, hit F6, and then fill in the
new format.

Print Mode Indicators That Alter Field Output Spacing
These Print Mode Indicators tighten field output by stripping it of wasted space:

55T (Truncate Trailing Blanks)
Say you select an A15 field with F4 in the Edit Report Form screen, and then change
its format to A10;;T. This field will now print no more than the first ten characters
in the field, and will remove all trailing spaces from the output. By truncating the
trailing spaces, the space taken up by the actual field in the report adjusts downward
(from the right) to fit the actual output.

So, say these two fields appear in your Edit Report Form screen:

If the first field's output is Sally, and the second's is Adams, then if the two fields are
each formatted A10, the output for that line is

Sally Adams

To remove the trailing spaces in the first field's output, we change its format to
A10;;T to get this output:

Sally Adams

558 (Suppress Leading Blanks)
This removes the leading spaces from a field's output, instead of the trailing spaces.
It would have no effect on the example above unless the user entered, say, two spaces
in the first field before typing Sally. More commonly, it would be used with G fields
that have their leading zeros suppressed with the Z placeholder.

For instance, look at the following line from an Edit Report Form screen:

It's been : : days since your last checkup.

The above field is a GZZZ09 field (perhaps a Report Variable that's being printed, or
an actual field from a panel—it's not important for this example which it is). If the
field in the Edit Report Form screen remains GZZZ9, without a Print Mode Indicator

198 Reports: Fields

added to it, we'll get output like this for someone who hasn't had a checkup in eighty-
five days :

It's been 85 days since your last checkup.

If we reformat that field to GZZZ9;;S we get the following output:

It's been 85 days since your last checkup.

;3B (Truncate Both Leading and Trailing Blanks)
Very straightforward. It works just like using both ;;S and ;;T on the same string.

5s1-9 (Truncate Leading and Trailing Blanks and Leave n Spaces)

This option works just like ;;B with one added feature. After removing leading and
trailing spaces, it then adds the number of spaces indicated to the end of the output.
This mean that the output might actually take up more space than the original field.
For instance, if the field is formatted A15;;9, and it contains Sally Adams, the final
output will occupy 20 character spaces (11 for Sally Adams plus 9).

5sE (Delete Zero Subfields from the End)

This is intended for numeric fields only. If that field is divided into subgroups of
contiguous digits, it drops the final subgroup if it's zero, and truncates the resulting
trailing spaces. Its classical use is with 9-digit Zip Code fields that are formatted
N99999-99909. If the final four digits in that field are all zero, and the report field is
formatted

N99999-9999;;E

then the output will lack the hyphen and the trailing zeroes. Also, if there's no data
in a numerical fields modified by the ;;E Print Mode Indicator, it won't print
anything. In either case the indicator removes any resulting trailing spaces.

So, in the case of only the final subgroup having all zeroes, the output will
decrease by five character spaces (the hyphen and the four zeroes). In the second
case, where there's no data at all, there won't be any output.

Print Mode Indicators That Don't Alter Field Output Spacing

53D (Delete All Blanks)
The DataPerfect manual misleads you here:

This indicator removes all blanks from
fields that have G, H, or N formats. Data
is shifted from the right of the blanks to
the left, and the trailing spaces are not
truncated. This option will maintain the
amount of space specified by the field
format in the report.

Reports: Fields 199

Yes, this indicator removes all blanks from fields that have G, H, or N formats, but
it also does this with alpha fields (A and U). All data is shifted to left after spaces are
deleted, but the end result still occupies the same amount of space (This latter point
is why I didn't include this in the Print Mode Indicators That Alter Field Output
Spacing section above.). So, essentially, all those spaces are thrown to the end of the
string.

;sR (Right Adjust Characters)

;5L (Left Adjust Characters)

;;C (Center Characters)

The output here always maintains its original space. ;;R shifts all data to the
rightmost edge of that space. ;;L shifts it to the left. ;;C centers it.

;s P (Postal Bar Code)

This Print Mode Indicator works only if DPPrint is active. If attached to a Zip Code
field (N99999-9999;;P), DataPerfect will print the Zip Code out using bar codes the
Post Office recognizes. The bar codes will show up under the Zip Code.

550 (Enclose Alphanumeric Fields in Double Quotes)

This Print Mode Indicator only works on alpha fields (A and U). It encloses the field
output with quotes. What the DataPerfect manual doesn't tell you is that it removes
trailing (not leading) spaces first. So it acts like putting quotes around a ;;T field.
When using the ;;Q Print Mode Indicator, all other indicators attached to that field
will be ignored. You might want to use this format for comma delimited exports, but
don't forget to manually insert the commas between fields. Also don't forget it fails
to do anything with numerical fields, so you'll have to manually enter quotes for
them.

;3N (New Occurrence of Field)
Read my the Variable-Length Text Fields in Reports section, later in this chapter, for
an explanation of the ;;N Print Mode Indicator.

Summary Table

Here are three fields that might be found in an Edit Report Form screen. I put the
format of each field above it:

A20 G$%222,229.99 N999 999 9999

And here are the printed results using Print Mode Indicators. Each line uses a
different Print Mode Indicator, as noted on the left. The block below each string
shows the field placement and how much space the field actually occupies on paper
(I reformatted the example found in the DataPerfect manual for this):

200 Reports: Fields

Indicator Print Result

None Lynda A. Warner $485.27 012 345 6789
=T Lynda A. Warner $485.27 012 345 6789

s S mmms s e B oI

..s Lynda A. Warner $485.27 012 345 6789

s S mmms s s e S oI

B Lynda A. Warner $485.27 012 345 6789

E e e IR I

T | Lynda A. Warner $485.27 012 345 6789

s S mmms s e S oI

6 Lynda A. Warner $485.27 012 345 6789
s e e i I
s $485.27 012 345 6789

JJE S e S

=D LyndaA.Warner $485.27 012 345 6789
s S mmms s s e S oI
R Lynda A. Warner $485.27 012 345 6789
s S mmms s s e S oI
= Lynda A. Warner $485.27 012 345 6789
s S mmms s s e S oI
..C Lynda A. Warner $485.27 012 345 6789
s S mmms s s e S oI

The last four Print Mode Indicators (D, R, L, C) are grouped together because
they don't alter field output spacing. The other do, so, when you use them, columns
might not line up in the report if you don't use tabs between fields. That said, say you
place fields like this in your Edit Report Form screen:

1 2 3
Columns 123456789012345678901234567890123456789

Fields

In the above example, the first two fields are formatted A10, and the third
GZZZ2,779.99. The periods represent spaces. The definer intends for these fields to
start at columns 1, 12 and 25, respectively, yielding output like this:

1 2 3

Columns 123456789012345678901234567890123456789
Sally Adams 234.00
John Smith 2188.00
Sam Yardley 5.00

Leaving the fields formatted A10, A10, and GZZZ,779.99, you get the following
output:

1 2 3
Columns 123456789012345678901234567890123456789
Sally Adams 234.00
John Smith 2188.00
Sam Yardley 5.00

Reports: Fields 201

Adding the ;;T Print Mode Indicator to only the first field yields this:

1 2 3
Columns 123456789012345678901234567890123456789
Sally Adams 234.00
John Smith 2188.00
Sam Yardley 5.00

And adding the ;;T Print Mode Indicator to both the first and second fields yields

this:
1 2 3
Columns 123456789012345678901234567890123456789
Sally Adams 234.00
John Smith 2188.00
Sam Yardley 5.00

And finally, taking the ;;T Print Mode Indicator off the second field (but leaving it
on the first field), and then replacing the spaces between the second and third fields
with a Tab to Column 25 (when you hit Tab in the Edit Report Form screen
DataPerfect prompts you for a column number), we have an Edit Report Form screen
that looks like this (with the period representing a space and angle brackets indicating
the Tab to Column code):

That yields output like this:

1 2 3
Columns 123456789012345678901234567890123456789
Sally Adams 234.00
John Smith 2188.00
Sam Yardley 5.00

That was the originally intended result.

Sneaking Print Mode Indicators into Panel Fields

Now wait a minute. I began this discussion of Print Mode Indicators saying they are
special field modifiers that may be used in reports, while having no effect on field
display in a panel. Well, 1 lied. That's what the DataPerfect manual wants you to
think, and it's probably how they really are supposed to be used, but there's a sneaky
way to get them to affect panel fields. I give examples of this in more detail in the
APPLY.FORMAT section of my Formulas chapter.

Youdo this with the APPLY.FORMAT function. If you don't understand how
to use that function, wait until you get to my discussion of it referenced in the above
paragraph, otherwise I doubt you'll understand what I'm about to say.

202 Reports: Fields

First off, though DataPerfect lets you put a Print Mode Indicator in a panel
field's format (e.g., A20;;R), it won't have any effect. To sneak a Print Mode
Indicator into a panel field's display formatting, in a way that actually impacts the
display, that field will have to be one that displays data via a field formula. Second,
that formula must use the APPLY .FORMAT function to convert the data using the
appropriate Print Mode Indicator.

For instance, suppose P1F1 and P1F2 are the First Name and Last Name
fields in an application, and both are formatted A15. Because they're both A fields,
they're both left-aligned. A third field, formatted A30::C, can display a right-aligned
concatenation of the /eft-aligned strings found in P1F1 and P1F2 with this formula:

apply.format ["A30;;R";cat.t[P1lF1;" "P1lF2]]

I give other examples of using Print Mode Indicators in panel field formulas in the
APPLY.FORMAT section of my Formulas chapter.

Variable-Length Text Fields in Reports

DataPerfect Report Definitions offer you a variety of ways to control variable-length
text field output, so I must devote an entire section to that topic now.

When in an Edit Report Form screen, if you simply select a variable-length
text field with the F4 key and leave it in default format, you'll notice that DataPerfect
inserted a field with a format of AxAO, where x is the width assigned to that field in
its panel. So if the variable-length text field in the panel is A25A5, selecting it with
F4 in an Edit Report Form screen will insert a single-line field of the format A25A0,
not A25A5. It will appear no different on the Edit Report Form screen than an A25
field. The only way you would know it's a variable-length text field is by cursoring
to the field and watching field format indicator, just above the First Page Header.

The x component of an AxAy report field tells DataPerfect how many
characters to print per line. You can change that value by just editing the report field
with F6. If the panel field is A25AS, hitting F4 to select it in the Report Definition
inserts an A25A0 field. If you edit it with the F6, and change the 25 to a 20,
DataPerfect will print 20 characters per line for that field, wrapping where necessary.
It won't truncate. It'll wrap. So you still print out the entire field's contents, even
though you decreased the x component in the report field. Likewise, if you increase
the x component, DataPerfect will simply wrap lines not ending with a carriage return
further to the right.

But what's that y component? Well, the manual is misleading (actually,
incorrect) in its explanation of it. If the y component is greater than 0, DataPerfect
will print the first y lines of the remaining lines of that field. By remaining lines, 1
mean all those lines that have yet to be printed from that field for that record. So, let's
say we reformat that field to A25A1. If this is the first time that variable-length text
field has been accessed by this Report Body, when DataPerfect comes to that A25A1
field, it will print the first line of the variable-length text field, and then set the

Reports: Fields 203

report's internal pointer for that field to its next line, waiting for another call to print
data from that field for that record.

Now, if you put another A25Ay field in that Report Body, somewhere after
the first A25Ay field, when DataPerfect comes to that second A25Ay field, it will
begin printing where it left off with the previous A25Ay field. So if the first field that
accesses that variable-length text field is A25A1, and the second one is A25A3, the
first will print the first line and the second will print the next three lines (the second,
third and fourth lines).

If the y component is 0, DataPerfect prints all the remaining lines in that
variable-length text field, starting where the last AxAy access of that field left off for
that record.

So, to summarize this with a rule, for any given record, an AxAy report field
will print x characters per line. If y is 0, it prints all of the remaining lines of that
field. If y is greater than 0, it prints y of the remaining lines. When all the lines of that
field are printed, the report's internal pointer for that field will be reset to the
beginning of the field, waiting for the next AxAy access of that field.

Here's the mistake the manual made:

If you want to use the same text
field twice 1in a report, you have two
options.

In the first use of the text field,
the format must end with something other
than Al (for example, A0, A2, A3, etc.).
DataPerfect then <resets its internal
pointer back to the beginning of the field.
When the text field is selected for the
second use, DataPerfect prints the field
from its beginning.

To reset the DataPerfect internal
pointer to the beginning of the field, you
must change the text field format in the
second use to include the ;;N print mode
indicator (see Field Format, Print Mode
Indicators in Reference). This indicator
tells DataPerfect that it has a new
occurrence of the field, and the field will
be printed from the beginning.

That second paragraph is false. DataPerfect resets its internal pointer back to the
beginning of the field only when the last line has printed. This is true no matter what
y is. So setting y to some value other than 1 makes no difference.

For any given record, there's only one way of assuring the report's internal
pointer for that field is reset to the beginning of that field after the current AxAy field
prints. That's to set y to a value that assures this particular AxAy field prints all the
remaining lines in that field. Setting y to 0 will certainly assure this, but you could
also set y to some other value that will assure it as well (if you know that at this stage
of the Report Body there will never be more than 2 lines remaining, setting y to 2 will
work).

204 Reports: Fields

The ;;N Print Mode Indicator (New Occurrence of Field)

Alternatively, you can forget about getting the current AxAy field to reset the report's
internal pointer to the beginning after that field prints. Instead, you can attach the ;;N
Print Mode Indicator to the next AxAy field. The ;;N Print Mode Indicator tells
DataPerfect to start at the beginning of the variable-length text field. So an A25A3;;N
field will print the first three lines of the field, even if the report's internal pointer for
that field wasn't at the beginning of the field at that time. The ;;N Print Mode
Indicator resets that pointer to beginning of the field before counting x lines. When
done, the pointer is left at the end of line x.

Examples

Consider the following panel display of a record that has three fixed-length fields and
one variable-length text field (field formats shown on the right):

Name: Sally Adams A20
Home Phone: 310/555-1414 N999/999-9999
Work Phone: 310/555-1515 N999/999-9999
Address: 123 Elm Street A20A5

Apt 213

Anywhere, CA 90024

USA

What follows is an extensive list of examples of different variations of the AxAy
report field. In each case, the Edit Report Form screen layout in the Report Body is
indicated, followed by the output it would produce:

Report Body layout

Output
Sally Adams Sally Adams
123 Elm Street 123 Elm Street
Apt 213 Apt 213
Anywhere, CA 90024 Anywhere, CA 90024
USA USA
Report Body layout

Reports: Fields 205

Output

Sally Adams 123 Elm Street
Apt 213
Anywhere, CA 90024
USA
Report Body layout
A20A0:
Output
123 Elm Street Sally Adams
Apt 213
Anywhere, CA 90024
USA
Report Body layout

Output
Sally Adams 123 Elm Street
Apt 213
Anywhere, CA 90024
USA

310/555-1414

Report Body layout

A20AQ:

Output
123 Elm Street Sally Adams
Apt 213
Anywhere, CA 90024
USA
310/555-1414
Report Body layout

Output

206 Reports: Fields

Sally Adams 123 Elm Street

310/555-1414 Apt 213
Anywhere, CA 90024
USA
Report Body layout

Output

123 Elm Street Sally Adams
Apt213 310/555-1414

Anywhere, CA 90024
USA

Report Body layout

Output

123 Elm Street

310/555-1414 Apt 213
Anywhere, CA 90024

USA

Sally Adams

310/555-1515

Report Body layout

Output

Sally Adams
310/555-1414

123 Elm Street

Apt 213
Anywhere, CA 90024
USA
310/555-1515
Report Body layout

Reports: Fields 207

208

Output

Sally Adams
310/555-1414
310/555-1515

123 Elm Street
Apt 213
Anywhere,
USA

CA 90024

Report Body layout

A20AI1:

Output

123 Elm Street

Apt 213
Anywhere,
USA

CA 90024

Sally Adams
310/555-1414
310/555-1515

Report Body layout (includes the ;;N indicator)

Output

Sally Adams
310/555-1414
310/555-1515

A20A1:
A20AL;;
A20A0; ;N

123
123
123
Apt
Anywhere,
USA

Elm
Elm
Elm
213

Street
Street
Street

CA 90024

Report Body layout (includes the ;;N indicator)

A20A1
A20A0

Output

123 Elm Street
123 Elm Street
123 Elm Street

Anywhere, CA

USA

A20A1:

PN
PN

Sally Adams
310/555-1414
310/555-1515

90024

Reports: Fields

Report Options

Here I discuss the various Report Options accessed via Ctrl-F7 in the Edit Report
Form screen. This is mainly for beginners, with a few topics that will offer new
information to many experienced DataPerfect application developers.

The Report Options Menus

Here are Report Options menus called by Ctrl-F7 in the various sections of your Edit
Report Form screen:

Report Options 209

Report Options for First Page Header:

- Select Report Field

— Eliminate Line if Blank
- Skip to Bottom of Page
- Page Eject

5 - Two-Level Report

=W N
w0 00 ~-J oy

Prompt for Report Variable

Do Report in Subgroups

Create Record From Panel List
Create Secondary Merge Report
Iteration Control (Skip, etc.)

Selection: 0

Report Options for Other Page Header

1 - Select Report Field 4
2 - Eliminate Line if Blank
3 - Include Before First Record

Selection: 0

Skip if Start of Two Level

Report Options for Two-Level Header

1 - Select Report Field 4
2 - Eliminate Line if Blank
3 - Conditional Page Eject

Page Eject

Selection: 0

Report Options for Report Bod

2 - Eliminate Line if Blank 5
3 - Skip to Bottom of Page

Selection: 0

1 Select Report Field 6 Subreports
2 - Eliminate Line if Blank 7 Record Number
3 - Conditional Page Eject 8 Store Report Variable into Field
4 - Skip to Bottom of Page 9 Iteration Control (Skip, etc.)
5 - Labels A Delete Record
Selection: 0
Report Options for Two-Level Footer
1 - Select Report Field 4 Page Eject

Number of Records in Section

Report Options in Page Footer

S

1 - Select Report Field
2 - Eliminate Line if Blank 5
3 - Skip to Bottom of Page

Selection: 0

Include After Last Record
Number of Records on Page

Report Options in Final Footer

1 - Select Report Field
2 - Eliminate Line if Blank
3 - Page Eject

o U1 >

Selection: 0

Number of Records in Report
Create Record From Panel List
Skip to Bottom of Page

210 Report Options

Global Report Options
Though the Report Options menu in each section varies somewhat from the Report
Options menus in other sections, there are some options that appear on all such
Report Options menus. Let's go over these first.

Select Report Field

Ctrl-F7, 1 (Select Report Field) calls the Report Fields and Variables menu:

Report Fields and Variable
1 - Date
2 - Time
3 - Page Number
4 - Store Value in Report Variable
5 - Print Report Variable
6 - Set Page Number

Selection: 0

Turn Print Off

Turn Print On

Turn File Off

Turn File On
Printer Control
Open Filename in RV

QWP 0o

This is the same in every Edit Report Form screen section, and is very
straightforward.

Options 1, 2, and 3 (Date, Time and Page Number)

These options allow you to insert Date, Time and Page Number fields respectively.
The first prints today's date in D99/99/99 format. The second prints the current time
in TZ9:99 format. And the third prints the current page number in GZZZZ79 format.
You can reformat any of these three fields with F6.

Option 4 (Store Value in Report Variable)

This option allows you to create a Report Variable. It first prompts you for the Report
Variable's number, then calls a Specify Formula screen, where you give that Report
Variable a formula. See my Formulas chapter for more on formulas.

Option 5 (Print Report Variable)

This option allows you to print the value found in a selected Report Variable. I go
over this in my Report Variables chapter, in the Printing Data Not Already in
Fields section.

Option 6 (Set Page Number)

This options allows you to reset the page number counter, which prints with option
3. Sometimes you don't want the page number counter to start at the beginning of the
report. Sometimes you want it to start over with each new section. This option meets
these sorts of needs.

Report Options 211

Options 7, 8, 9, and A (Turn Print/File On/Off)

T'use these options throughout this book when outlining report examples. They allow
you to place text in a report that displays via the screen to the user, without going to
the printer or disk file. Examine many examples of this in the Subreports chapter.
Here's a small piece from that chapter:

FIRST PAGE HEADER

777777777777777 Turn Print off-------- - ---------- - - - - - -----—-—-———————— | Main Report
777777777777777 Turn File Off-------- - - - - - -——--—--—--——-—-—-————————————— |First Page Header
You just chose to print a series of Day Sheets, one per Doctor.

Please fill in the desired Date at the prompt and hit ENTER; Explanatory text for

otherwise, hit F1 now to cancel this procedure. the user to read
777777777777777 Prompt for Value of Report Variable 1 ————-———-————————
777777777777777 Turn Print On-————----—-—————————————————— - ———

OTHER PAGE HEADER

The above explanatory text is seen by the user when the report runs, but never finds
itself going to the printer or a disk file.

Option B (Printer Control)
This option allows you to insert printer control strings that end up taking no visible
space in the various report sections of the Edit Report Form screen. When you insert
a printer control string in the field called with B, the string can only be seen again
when the cursor sits on the place where the Printer Code was inserted. With the
cursor there, the Edit Report Form screen displays the printer control string in the
area just under the help box at top of the Edit Report Form screen.

One thing about the Printer Control option. Any attempt to insert an ASCII
27 (the leftward arrow that starts laser printer control strings) will be replaced with

<27>

You can either enter

<27>

directly or enter an ASCII 27 and let DataPerfect convert it automatically to a

<27>

Option C (Open Filename in Report Variable)

Introduced with DataPerfect 2.3c, this option lets you direct disk file output to the
value found in a Report Variable. This can be conveniently used to allow the user to
decide the filename of the output disk file, or you can use a Report Variable formula
to determine the filename. I discuss this option in detail in the Open Filename in RV
section of my Printer Control chapter.

212 Report Options

Eliminate Line if Blank

Ctrl-F7, 2 places the Eliminate Line if Blank code in any Edit Report Form screen
section. It's purpose is straightforward. You may have fields that are occasionally
blank, and you don't want them printed when blank. This would be typical of series
of fixed-length fields that make up an address. You might allow the user to enter
information in more than one line before tabbing to the City field in the following
panel:

Acct Last Name First Name

Address 1
Address 2
City, ST, Zip :

In the above panel, not all records will have data in both Address fields.
Here's a simple report that lists people and their addresses:

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

Name fields

Address 1 field
Address 2 field
City, ST, Zip fields

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Without the Eliminate Line if Blank code available to us, that Report
Definition could easily print a list like this:

Adams, Sally
123 Elm St.

Los Angeles, CA 90024
Jackson, Sam

Jackson and Associates, Inc.
1245 Oak St.

Freeware, CA 90002

Smith, John

2345 Woodley Ave.
Perfection, CA 90034

By putting the Eliminate Line if Blank code to the left of each Address field
in the Report Body, that same report prints like this:

Report Options 213

Adams, Sally
123 Elm St.
Los Angeles, CA 90024

Jackson, Sam

Jackson and Associates, Inc.
1245 Oak St.

Freeware, CA 90002

Smith, John
2345 Woodley Ave.
Perfection, CA 90034

When you put the Eliminate Line if Blank code in a report, you won't see it
where you inserted it. You only know it's there when you cursor to that spot and
watch the screen, just below the help box. You'll see the Eliminate Line if Blank
phrase appear.

The Eliminate Line if Blank code will keep its line from printing as long as
that code is all the way to the left on that line, all the fields on that line are blank, and
there's no text typed in the Edit Report Form screen on that line.

Page Eject and Skip to Bottom of Page

With the exception of the Other Page Header section, you'll find either the Page Eject
code or the Skip to Bottom of Page code available to you everywhere in the Edit
Report Form screen. So I'll include them here in the Global Report Options section.

Though these two codes appear very similar, they're different. The Page Eject
code issues a form feed to the printer or disk file. You'll find Page Ejects in a disk file
as ASCII 12 characters (). The Skip to Bottom of Page code, however, fills the
remainder of the page with enough blank lines to cause the printing to go to the next
page.

This difference in behavior has consequences. If you use Page Eject,
DataPerfect issues a form feed to the printer or disk file without sending a footer to
the printer or disk file. Whereas, because Skip to Bottom of Page fills the remainder
of the page with blank lines, DataPerfect processes the appropriate footer, if present.
The Page Eject code was originally offered to allow the definer to send a form feed
to a laser printer, since they don't automatically eject a page at the end of a print job.

Prompt for Report Variable

Though the Prompt for Report Variable code isn't available anywhere but the First
Page Header's Report Options menu (Ctrl-F7, 6), there are frequently reasons to
Block and Move it to other sections in the Edit Report Form screen. So I'll include
it in the Global Report Options section.

After hitting Ctrl-F7, 6, you're prompted for three things:

° The Report Variable number
° The Prompt (single line, up to 78 characters)
° The Report Variable format

214 Report Options

The Report Variable number is the number of the Report Variable that will get the
value the user enters at the prompt. The Prompt is the language the user will see
when the prompt is active, like

Start Date:

The Report Variable format is no different than a normal field format. It's the format
of the field the user will see and use when they type in their response.

Iteration Control

Though this option shows up in only two Edit Report Form screen sections (First
Page Header and Report Body), you can Block and Move its various options to other
sections. I offer an extensive discussion of this in my Iteration Control chapter.

Section-Specific Report Options

This section deals with Report Options that never occur in more than one Edit Report
Form screen section, and should never be Blocked and Moved to sections other than
where they can be called from the Report Options menu.

Section-Specific Report Options for First Page Header

Two-Level Report, Do Report in Subgroups
I discuss these in the Reports: General Structure chapter.

Create Record From Panel List

If you choose Create Record From Panel List, DataPerfect offers you the Panel List.
After you choose a panel with Enter, DataPerfect returns you to the Edit Report
Form screen, where you'll find a new Report Body waiting for you to store Report
Variable values in various fields to create the new record. This option is also offered
in the Final Footer (Ctrl-F7, 5) section, and as a submenu option in the Report Body
section (Ctrl-F7, 6, 3).

Create Secondary Merge Report

This is an interesting enhancement introduced with version 2.3. It allows you to
quickly create a WordPerfect Merge file from the current panel. When you choose
it, DataPerfect asks you for the first field in the merge file. You may choose one from
the current panel by hitting 1, or insert a Report Variable by hitting 2. If you choose
to insert a Report Variable, DataPerfect will ask for the Report Variable's number and
format. In either case (choosing a field or a Report Variable), DataPerfect allows you
to give the resulting merge field a field name. You do this with as many fields as you
want. When you exit this menu, you have a report that will produce a WordPerfect
Merge file.

Report Options 215

This is best learned by playing with it. It's quite convenient and simple. Try
both with field names and without them. Examine the difference in the resulting First
Page Header in each case. Note also that you can exit and come back later to add
more fields by choosing this option again in the First Page Header. In that case,
DataPerfect will simply add those to the end of the line in the Report Body. You can
always edit this report later, moving fields around, checking Report Variable
formulas, and reformatting fields.

Section-Specific Report Options for Other Page Header

Include Before First Record

Use this when you want the Other Page Header to show up on the first page as well
as subsequent pages. Without this code, the Other Page Header won't print on the
first page. This is usually used when, after thinking it over a little, you realize that
your First Page Header and Other Page Header should be identical. In that case, you
don't need a First Page Header. Just put the Include Before First Record code in the
Other Page Header, at the very end of that section (following its contents). When you
do, you'll see Include Header Before Data inserted in the Other Page Header.

Skip if Start of Two Level

You use this if, when running a Two-Level Report, you don't want the Other Page
Header to appear at the top of the page when the Two-Level Header is about to print.
That is, use this when you don't want both the Other Page Header and the Two-Level
Header to both appear on the top of a page.

Section-Specific Report Options for Two-Level Header

Conditional Page Eject

DataPerfect also offers this in the Report Body. This code works slightly differently
in each section. When used in the Two-Level Header section, this code makes sure
that a group of records in a Two-Level Report doesn't split across two pages. When
used in the Report Body, it makes sure that a record doesn't split across two pages.

Section-Specific Report Options for Report Body

Conditional Page Eject

DataPerfect also offers this in the Two-Level Header. This code works slightly
differently in each section. When used in the Report Body, this code makes sure a
record doesn't split across two pages. When used in the Two-Level Header section,
it makes sure a group of records in a Two-Level Report doesn't split across two

pages.

Labels

This is pretty straightforward and easy to use. When choosing this option in the
Report Body, DataPerfect asks for the number of labels across each page, the width
of each label in characters, and the number of lines per label. After supplying

216 Report Options

DataPerfect with this data, DataPerfect inserts a code in the Report Body, informing
you of the data just supplied. The code, which should be inserted at the beginning of
the Report Body, before any selected fields, will look something like this:

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY-
7777777777 3 Records per Line. Record Width & Depth: 25 6 ————————————

TWO-LEVEL FOOTER
——Empty-——
PAGE FOOTER
——Empty-—-—
FINAL FOOTER
——Empty-—-—

The number of lines per label (in this case, six) includes lines that will be blank. The
above report will print four lines of text per label, but the labels accommodate six
lines.

One important note. For labels, set your Bottom margin (on the Initial Report
Definition Screen) to 99 to avoid page eject problems. Though setting that to 0 will
work on laser printers (because they work with physical pages), setting it to 0 may
give you problems if you're using a continuous feed of labels on a dot matrix printer.
Though a Bottom margin setting of 0 keeps DataPerfect from issuing a page eject,
it stills lets the printer issue its internal page eject, which, by default, occurs after 60
lines with a laser, and after 66 lines with a dot matrix. A Bottom margin setting of
99 keeps the printer from issuing any page eject at all.

Subreports
This option produces the following submenu:

Subreports & Record Creation

Include Subreport

Create Record Through Link

Create Record From Panel List
4 - Subreport Using Virtual Link
0 - Return to Edit

Selection: 0

w N
[

Include Subreport and Subreport Using Virtual Link are covered quite extensively
in my Subreports chapter. If you choose Create Record Through Link, DataPerfect
asks you for a link in the current panel. After you select it with F4, DataPerfect
returns you to the Edit Report Form screen, where you'll see a new Report Body
waiting for your input. Alternatively, if you choose Create Record From Panel List,
DataPerfect offers you the Panel List. After you choose a panel with Enter,
DataPerfect returns you to the Edit Report Form screen, where you'll find a new
Report Body waiting for your input. In either case, you can store Report Variable
values in various fields to create the new record. This option is also offered in the
First Page Header section (Ctrl-F7, 8) and Final Footer section (Ctrl-F7, 5).

Report Options 217

Record Number

This option inserts a GZZZZ79 Record Number field in the Report Body. It simply
prints the current record number for that Report Body section of the report definition
(it starts over with each Report Body section). You can reformat the field with F6.

Delete Record

This is simple and dangerous. Use it with caution. Choosing this option in the Report
Variable will cause each record the Report Body sees to disappear from the database.
Each deletion has the same effect as manually deleting the record in Browse mode,
so any Keep A Total codes in the panel will trigger and update their target panel
records. See the Keep A Total chapter if you don't know what this means.

Section-Specific Report Options for Two-Level Footer

Number of Records in Section
Very simple. It prints the number of records processed in that Two-Level group of
records. It's a GZZZZ709 field you can reformat with F6.

Section-Specific Report Options in Page Footer

Include After Last Record
Normally, the Page Footer isn't printed on the last page. That's the job of the Final
Footer. If you choose this code, both will print on the last page.

Number of Records on Page
Straightforward. It's a GZZZZ709 field you can reformat with F6.

Section-Specific Report Options in Final Footer

Number of Records in Report
This code prints the number of records processed by that report or subreport. It's a
GZZ77709 field you can reformat with F6.

Create Record From Panel List

If you choose Create Record From Panel List, DataPerfect offers you the Panel List.
After you choose a panel with Enter, DataPerfect returns you to the Edit Report
Form screen, where you'll find a new Report Body waiting for you to store Report
Variable values in various fields to create the new record. This option is also offered
in the First Page Header (Ctrl-F7, 8) section, and as a submenu option in the Report
Body section (Ctrl-F7, 6, 3).

218 Report Options

Report Variables

Before long, you’ll use Report Variables routinely when defining your reports.
There’s almost no way around this, so let’s discuss them. This chapter is for both
beginners and the experienced DataPerfect application developer.

Introduction

A Report Variable is a report entity that takes on a value temporarily during the life
of areport. DataPerfect allows up to 255 Report Variables per Report Form. You can
create a Report Variable in one of two ways in an Edit Report Form screen.

One way is to prompt the user for it (Ctrl-F7, 6) in the First Page Header.
When you do this, DataPerfect asks you for the Report Variable number, the prompt
(up to 78 characters), and the field format (any format at all). When the user sees this
prompt, and fills in the prompt field, DataPerfect will then stuff the assigned Report
Variable with the user's reply. Though DataPerfect only offers the Prompt For code
in the First Page Header, you can actually place it in other sections. To do this, just
create it in the First Page Header and move it elsewhere with Block, Cut and Paste
(Alt-F4, Arrow, Ctrl-F4 to Cut it, and Ctrl-F4 to Paste it).

The second way to create a Report Variable is to define it directly. You can
do this in any Edit Report Form screen section with Ctrl-F4, 1, 4. In every section,
the steps for creating a Report Variable are the same after Ctrl-F7,1,4. You're asked
for a number to assign this Report Variable, and then offered a Specify Formula
Screen that's blank, except for the following at the top:

Specify Formula
Operands can be numbers, character strings in quotes (™ or '), or fields
selected with Select (F4). To select a field from another panel, move

to a link and press |.

Operators are: + — * / // ~ < > <= >= <> = NOT AND OR.

Parentheses () should be used to group items.

When finished, press Save (F10) or Cancel (F1).

That Specify Formula Screen is the same one you see when defining field
formulas in panels. It works the same in each case. Here we’re telling DataPerfect
what value to assign the Report Variable we just named with a number from 1 to 255.
Via the Specify Formula Screen, we can assign our Report Variable any legal value
or well-formed formula. All the same rules about defining field formulas apply here,
so read up on that in the Formulas chapter if you’re unclear about how to define a
formula, and what constitutes a well-formed formula. Let's discuss some basic
reasons you might need to use a Report Variable.

Report Variables 219

Printing Data Not Already in Fields

One reason you might need to use a Report Variable is to print data that isn’t in any
of the available fields in the database. For instance, let’s say your Teacher Panel has
a field for the Teacher’s sex. It’s a U1 field, taking the values F or M for Female or
Male. You’d like to print a series of letters, one per Teacher, wishing them a happy
new year, and you’d like each to start with Dear Ms. or Dear Mr. Well, you don’t
need a field to select with F4 in this case. Just create a Report Variable that looks at
the Sex field in the Teacher Panel and takes on a value of F or M depending on what
it sees in the Sex field.
Let’s say our Teacher Panel, which was Panel 2, now looks like this:

TEACHER PANEL

her 1ID

Last Name First Name

Sex i

To Class/Teacher Panel =

If the Sex field above is P2F4, and we’re setting Report Variable 1 to hold either
'Ms.' or 'Mr., then, Report Variable 1's formula could look like this:

if P2F4="F" then "Ms." else "Mr." endif

Provided P2F4 only holds F or M, this will work. The above formula sets Report
Variable 1 to either 'Ms.' or 'Mr.', depending on what it sees in P2F4.

Note: A way to make sure DataPerfect forces the
user to decide between For Min P2F4 is to
format it ::M and give it a field formula like
this:

if P2F4="F" or P2F4="M" then P2F4 else "" endif

This way the field formula forces either F,
M, or blank, while the field format prohibits
the blank, forcing the user to decide
between For M.

We want our Report Definition to reset Report Variable 1 each time it sees
a record, so it should be in the Edit Report Form screen's Report Body. If we set
Report Variable 1 in the First Page Header, it will only be set once (when DataPerfect
sees the first record in the report's index). Likewise, if we set Report Variable 1 in the
Other Page Header or Two Level Report Header, it will only be reset each time

220 Report Variables

DataPerfect sees the top of a page or the beginning of the a Two Level group. But,
again, we need Report Variable 1 to be reset whenever DataPerfect sees a new record
in the current index. So, while in the Report Body, we Ctrl-F7, 1, 4 to tell
DataPerfect we want to Store Value in Report Variable. After giving that Report
Variable a number (say, 1), we give it this formula:

if P2F4="F" then "Ms." else "Mr." endif

After exiting the Specify Formula Screen, we see this:

FIRST PAGE HEADER
——Empty-——

OTHER PAGE HEADER
——Empty-—-—
TWO-LEVEL REPORT HEADER
——Empty-—-—
REPORT BODY-
777777777777777 Store Value in Report Variable 1 -—-———————————————————

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

That extra blank line after the Store Value code is always there, so don’t bother trying
to delete it. It won’t print an extra line.

But that isn’t enough. All we've done so far is store a value in a Report
Variable. This assignment is just sitting in memory, doing nothing interesting. We
must now tell DataPerfect we want the report to print that Report Variable for each
record processed. We do that with DataPerfect's Print Report Variable option (Ctrl-
F7,1,5). When we Ctrl-F7, 1, 5, DataPerfect asks us for the number of the Report
Variable to print (in this case, 1) and the format of the field to be printed. When
asked for a format, put in what makes sense. You’re not affecting any field in any
panel. Rather, you're telling the report to make up a temporary field on the fly for the
purposes of printing this report. In this case we want an A3 field to accommodate the
three characters in 'Ms.' or 'Mr.". Answering the Print Report Variable prompts, our
Edit Report Form screen now looks like this:

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY.
777777777777777 Store Value in Report Variable 1 -————-———————————————

TWO-LEVEL FOOTER
——Empty-—-—
PAGE FOOTER
——Empty-——
FINAL FOOTER
——Empty-—-—

The cursor above is immediately to the right of the field just inserted. If you
move the cursor to the left, into the field itself, the screen changes, allowing you to
see that the field isn’t one selected with F4. Rather, it’s Report Variable 1 to be
printed in A3 format. The screen should change to look like this:

Report Variables 221

Report Variable 1

Field Format: A3

FIRST PAGE HEADER
——Empty-—-—

OTHER PAGE HEADER
——Empty-—-—
TWO-LEVEL REPORT HEADER
——Empty-—-—
REPORT BODY-
777777777777777 Store Value in Report Variable 1 -————————————————————

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

We continue defining our letter writing report by selecting the Last Name
field in the Teacher Panel (again, with F4), and adding text:

Report Variable 1

Field Format: A3
FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY.

777777777777777 Skip to Bottom of Page————————————————————————————————

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

After I selected the Last Name field above with F4, I cursored to it and
reformatted it to A15;;T (using F6) to remove trailing spaces that might come
between the Last Name and the comma. I also used Ctrl-F7, 4 to put in a Skip to
Bottom of Page code at the end of the Report Body, after the whole letter is typed in.

So, in general, what will the above report do? Each time it comes to a Teacher
Panel record in the report's index, it first checks to see what value is in that record’s
Sex field and stores Ms. in Report Variable 1 if it sees an F there, or Mr. if it sees an
M. Ithasn’t printed anything yet, however. Next, it prints Dear followed by whatever
is stored in Report Variable 1. Then it prints the Teacher’s Last Name. If there are
spaces after the Last Name in that A15 field, it removes them, and then prints a
comma. Then it prints the rest of the letter. When done with that letter, it skips to the
bottom of the page and starts the next page with the next record in the index, if more
records exist.

So, as you can see, a Report Variable stores a value for later use. In this case,
it was stored so it then could be printed. Just as common, a Report Variable is used

222 Report Variables

to store a value or a statement that will later be used to determine what records
should be processed, and what should by skipped. I'll cover that next.

Skipping Certain Records

What if you'd like to send letters to all female teachers in the database to see if they’d
be interested in forming a women’s group in the school to discuss various issues
related to women. Though there are more efficient ways to construct this report, let’s
do use a simple way that employs Report Variables.

First, we need a Report Variable to examine each record the Report Body
sees, with an eye to the value in its Sex field. We also need to use one of the options
found in the Iteration Control menu, accessed with Ctrl-F7, 9 in the Report Body or
Ctrl-F7, A in the First Page Header:

Report Iteration Control
1 - Skip Record if REPORT VARIABLE is False
2 — Stop [Sub]Report if REPORT VARIABLE is False
3 - Skip To Record At REPORT VARIABLE
4 - Choose Next Record Using LookUp
5 - Repeat Record if REPORT VARIABLE is True (not 0)

Selection: 0

Take a look at option 1: Skip Record if REPORT VARIABLE is False. If we
can come up with a Report Variable that's false for just those records we want to skip
(or equivalently, true for just those records we want to include), we’re set. But we
first must create such a Report Variable that will serve as the condition to be
evaluated for each record DataPerfect comes to. That is, simply choosing 1 from the
above menu won't help here because it's going to ask you what Report Variable it's
supposed to evaluate, and you haven't created one yet.

So we go the beginning of the Report Body and Ctrl-F7, 1, 4 to set Report
Variable 1. Given that we're going to use Report Variable alongside Iteration Control
Option 1 (Skip Record if REPORT VARIABLE is False), we need to come up with
a formula for Report Variable 1 that will be true for all and only those records we
want the report to consider for printing out letter. The easiest way to do this is like
this:

P2F4="F"

Again, we do that in the Specify Formula screen by first hitting F4 (which
puts us in the Teacher Panel), then cursoring to the Sex field (which is field 5 in this
case), and hitting F4 again. Then we type in the rest of the formula. This formula says
the value in the Sex field is F. That statement is true for all and only female Teachers
in the Teacher Panel database. Now we have an Edit Report Form screen like this:

Report Variables 223

FIRST PAGE HEADER
——Empty-—-—

OTHER PAGE HEADER
——Empty-—-—
TWO-LEVEL REPORT HEADER
——Empty-—-—
REPORT BODY-
777777777777777 Store Value in Report Variable 1 -—-——————-—————————————

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Next we want to tell the report to skip those records that make Report
Variable 1 false. Again, we do this with Ctrl-F7, 9, 1, which prompts us for the
number of the Report Variable it’s supposed to check. We tell it / and now have this
Edit Report Form screen:

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
777777777777777 Store Value in Report Variable 1 -————-———————————————
777777777777777 Skip Record if 0 (False) Is in Report Variable 1 --—-—-

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

This Edit Report Form screen says, for each record in the index, check to see
if the Sex field has F in it, and skip the record if not. Note that the precise wording
of the code that’s actually placed in the Edit Report Form screen is slightly different
than it was in the menu:

Iteration Control Menu:
Skip Record if REPORT VARIABLE is False

Edit Report Form screen:
Skip Record if 0 (False) Is in Report Variable 1

In DataPerfect lingo, they mean the same thing. A Report Variable is considered false
as long as it’s either a false statement or it’s a numerical value of 0. I discuss
DataPerfect's notion of truth in great length elsewhere (see A Note about
DataPerfect's Notion of Truthin my Iteration Control chapter). With this in mind,
I could have written the formula less elegantly, but just as correctly, as follows:

if P2F4="F" then 1 else 0 endif

If you understand the above formula is equivalent in DataPerfect to

P2F4="F"

224 Report Variables

you'll go along way in understanding DataPerfect's logic. For reasons that elude me,
many DataPerfect application developers prefer the less elegant formula above. To
each his own. They both work fine.

If you use the less elegant formula, then, for each record, Report Variable 1
will be a numerical value of either O or 1, instead of a statement that’s either true or
false. A Report Variable that’s a numerical value of anything other than 0 is
considered true by DataPerfect.

The rest of the Edit Report Form screen would be filled in after the two codes
we have in there now. If you put the text in before the two codes, DataPerfect won’t
examine the current record for its Sex field value until after already printing the
letter. We need DataPerfect to examine the Skip Record condition first.

As before, we would put in a Skip to Bottom of Page code in the Report Body,
immediately after all the text:

FIRST PAGE HEADER
——Empty-—-—

OTHER PAGE HEADER
——Empty-—-—
TWO-LEVEL REPORT HEADER
——Empty-—-—
REPORT BODY-
777777777777777 Store Value in Report Variable 1 -———————-—————————————
777777777777777 Skip Record if 0 (False) Is in Report Variable 1 --—-—-

777777777777777 Skip to Bottom of Page-———————————————————————————————

TWO-LEVEL FOOTER
——Empty-—-—
PAGE FOOTER
——Empty-—-—
FINAL FOOTER
——Empty-—-—

The above report will print letters only to females in the Teacher Panel database.

Self-Referencing Report Variables

Counters

Using Report Variables as counters usually involves using Report Variables that refer
to themselves, so I want to take this up now to clear up what might seem confusing.
Let's say you wanted a report that would tell you how many teachers in the database
are male and how many are female. To do this, you would need two Report
Variables: one that will count the males, and one the females.

In the First Page Header of this report you set each Report Variable to 0,
getting each ready to count. To set Report Variable 1 to 0 you Ctrl-F7, 1, 4 and tell
DataPerfect you're interested in Report Variable 1. When you see the Specify
Formula screen you simply type 0 and then exit with F7. That sets Report Variable
1 to O in the First Page Header, before the report even sees the first record in the

Report Variables 225

report's index. You do the same thing for Report Variable 2. Now the Edit Report
Form screen looks like this:
FIRST PAGE HEADER

777777777777777 Store Value in Report Variable 1 ------------——--—————— |Report Variables
777777777777777 Store Value in Report Variable 2 ———---------————————— |set to 0

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY:
——Empty--
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Now we need Report Variable 1 to add 1 to itself with each male record it
sees in the index, and Report Variable 2 with each female. This must take place in
the Report Body, since no other part of the Report Definition will see each and every
record in the database. By the time the report finishes the last record, Report Variable
1 will hold the total number of males, and Report Variable 2 the females.

To accomplish this, we must reset each variable in the Report Body. If, as
before, P2F4 is the Sex field, then we can set Report Variable 1 to this formula in the
Report Body:

if P2F4="M" then rvl+l else rvl endif

The above formula, when being stored in a Report Variable I the Report Body, says
this:

If the Sex field has M in it, then add 1 to Report
Variable 1, otherwise leave Report Variable 1 alone.

Note that Report Variable 1's formula refers to Report Variable 1. What it's doing is
referring to the value that is stored in Report Variable 1 at that moment, and then
deciding what the value of Report Variable 1 will be next. It's taking the value it is
at the moment and adding 1 to it if the current record has M in the Sex field, and then
making that the new value for Report Variable 1. If the Sex field doesn't have M in
it, this formula still stores a value in Report Variable 1, but the value it stores is what
it was before examining the Sex field's value. That is, it stores back into Report
Variable 1 the value it finds there, unchanged.

The reason I spend time on this is that I see some beginning developers
getting confused when they see a Report Variable's formula referencing the same
Report Variable. Just think of this as referencing the value that Report Variable
currently has. That's all.

Now, of course, Report Variable 2 will have this formula in the Report Body:

if P2F4="F" then rv2+1l else rv2 endif

That formula says

226 Report Variables

If the Sex field has F in it, then add 1 to Report
Variable 2, otherwise leave Report Variable 2 alore.

This Edit Report Form screen now looks like this:

FIRST PAGE HEADER
777777777777777 Store Value in Report Variable 1 :}RVS set to 0

777777777777777 Store Value in Report Variable 2 —-——-——--—-—————————————

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY-
777777777777777 Store Value in Report Variable 1 ---------------—--—-—— |RVs increment based
——————————————— Store Value in Report Variable 2 ------------------——- |on Sex field value

TWO-LEVEL FOOTER
——Empty——
PAGE FOOTER
——Empty——
FINAL FOOTER
——Empty——

Now all we have to do is print the results in the Final Footer, which is the
section that prints after all records in the index are processed. That would be done
with Ctrl-F7, 1, 5 twice in the Final Footer—once for Report Variable 1 and once for
Report Variable 2. Each time you tell DataPerfect an appropriate field format. If you
know there are more than 99 teachers in the database, but less than 1000, GZZ9
would make sense. So now our Edit Report Form screen looks like this:

FIRST PAGE HEADER
——————————————— Store Value in Report Variable 1 :}RVS set to 0

777777777777777 Store Value in Report Variable 2 -——-——---————————-c————

OTHER PAGE HEADER
——Empty—-
TWO-LEVEL REPORT HEADER
——Empty—-

REPORT BODY n
777777777777777 Store Value in Report Variable 1 ---------——-——-——————————— |RVs increment
777777777777777 Store Value in Report Variable 2 --—---------—-—--—————————— |based on Sex
field value

TWO-LEVEL FOOTER —
——Empty--

PAGE FOOTER
——Empty--

FINAL FOOTER -
Total female teachers: =i RVs printed
Total male teachers: =

Recycled Report Variables

There are basically two reasons you might want to recycle a Report Variable. One
would be because you're butting up against the 255 Report Variable limit per Report
Form. This would certainly be rare, though I've seen at least one DataPerfect
application developer come up against that limit frequently, as hard as that is to
believe. The other reason would be to keep the Report Form's assignment of Report
Variables easier to follow.

Here's what I mean by recycling Report Variables. Say you just prompted the
user for a value for Report Variable 1. Further, let's say it's to hold a value for the
Date field in the Transaction Panel. What you'd like the report to do is default Report

Report Variables 227

Variable 1 to today's date if the user leaves the prompt field blank and hits Enter.
The prompt for Report Variable 1 might look like this to the user:

Enter date for this Day Sheet (hit Enter for today's date):

To test to see if the user simply left the prompt field blank before hitting Enter, you
would typically use a new Report Variable, say Report Variable 2, with a formula
like this:

if rvl=0 then today else rvl endif

The report would then proceed to use Report Variable 2 instead of Report Variable
1 for the value of the Date field.

But using Report Variable 2 in the above example isn't necessary. We could
just as easily use Report Variable 1 again, assigning that formula to Report Variable
1 and not bother creating Report Variable 2. So Report Variable 1 would have the
following formula, referencing itself:

if rvl=0 then today else rvl endif

The First Page Header of this report, then, would look like this:

FIRST PAGE HEADER
777777777777777 Prompt for Value of Report Variable 1 :}Date field prompt

777777777777777 Store Value in Report Variable 1 ---------——-——-—————— |Convert RVl with
above formula

OTHER PAGE HEADER

——Empty--

By recycling Report Variable 1 here we keep our Date field value in the same Report
Variable, not having to remember what Report Variable we passed it to.

228 Report Variables

Subreports

This chapter is for both beginners and the experienced. If you're not using subreports,
you're not tapping the power within DataPerfect's report facility. Much of this chapter
will lose the beginner.

Introduction

This can be very simple in many respects, very complex in others. When I previously
outlined what a subreport is, [used a simple (and typical) report. It listed teachers and
their class assignments. Under each teacher's name was listed their class assignments,
one class per line. A subreport here is simply a Report Definition facility that allows
you to print a report that lists children records for each parent. This might be a report
that lists all classes taught by each teacher in a school, or all items purchased by each
customer in a business. Typically you use a subreport to show all records in a
subpanel that are attached to the current record.

Let's take a look at our Subreport Options menu, accessed with Ctrl-F7, 6 in
the Report Body:

Subreports & Record Creation

Include Subreport

Create Record Through Link

Create Record From Panel List

— Subreport Using Virtual Link
0 - Return to Edit

Selection: 0

BSw N
[

I'm interested here in options 1 and 4.

Option 1 - Include Subreport

This option depends on the existence of a link in the current panel, and will typically
be used with a panel link, not a data link. When you choose that option, you'll be
asked one thing: the link upon which to base the subreport. By choosing that link,
you've chosen the target panel, the index that will sort records in that subreport, and
the field list that will filter records upon entry into that subreport. All three of these
characteristics are part of the definition of the link you already defined when in Panel
Define mode. If you don't have a link that has just the characteristics you want for the
subreport, and still want to use option 1 instead of option 4, you'll need to exit Report
Definition mode and create such a link in Panel Define mode. Then you can re-enter
Report Definition mode and start creating a subreport again.

So if you're creating a Report Definition that prints a list of Transactions for
each Invoice, you'll base the report on the Invoice Panel and then create the

Subreports 229

appropriate subreport in the Report Body of the Main Report. If you want to use
option 1 in your Subreport Options menu, you'll need a panel link in the Invoice
Panel that takes you to the Transaction Panel. Now let's say the only panel link in that
panel takes you to the Transaction Panel using a Transaction Panel index that sorts
backwards by date. That is, you designed this application to allow the user to always
land on the most recent Transaction in the Transaction Panel when using the panel
link in the Invoice Panel.

But you want the report to list Transactions in order of occurrence, from first
to last. Well, if you still want to use option 1 in your Subreport Options menu, you'll
need to exit Report Definition mode and get into Panel Define mode in the Invoice
Panel and create a panel link that uses a Transaction Panel index that sorts
Transactions forward by date. If you don't want the user to ever penetrate that link
during data entry or while browsing records, you'll have to hide it by choosing option
5 in your Define Panel Link menu (Shift-F8):

Define Panel Link
Link to Panel:3 Field2 Index5 Field List to Build Key:1
1 - Edit Target Field/Target Index/Field List

2 - Define Related Records Window 5 - Display/Hide Link
3 - Create/Edit Window Field List 6 - Define Lookup List
4 - Delete Window 7 - Cascade Off
Window Off

Selection: 0

Subreports: Going From Version 2.2 to 2.3

A subreport that used to work fine under DataPerfect 2.2 may, under 2.3, seem to
produce its first printed line on the same line as the last line of its parent's Report
Body. For instance, consider a DataPerfect 2.2 report printout that used to look like
this:

MONTHLY STATEMENT Report Body of Main Report
11/30/96

Alex's Office Supplies
17 Elm St.
Anywhere, CA 90024

Jim Jacobson Acct 1234
234 Oak Ave.
Somewhere, CA 90212

Date Transaction Amount
11/21/96 Backup tape 27.00 |Report Body of Subreport
11/21/96 Copier paper 12.50
11/28/96 Manilla files 19.99
11/28/96 Printer toner 29.50

Under 2.3, the same Report Definition might print something like this:

Date Transaction Amount
11/21/96 Backup tape 2
11/21/96 Copier paper 12.50
11/28/96 Manilla files 19.99
11/28/96 Printer toner 29.50

230 Subreports

This is the one area of your DataPerfect 2.2 applications that had to be
slightly rewritten after upgrading to 2.3. What you see in the second printout above
is the result of an enhancement. Starting with version 2.3, DataPerfect subreports
don't automatically initialize with a carriage return and line feed. They did with
earlier versions of DataPerfect, but no longer with 2.3.

If you want the subreport to begin on the line following the last line printed
by its parent record's Report Body, you have to manually insert a carriage return by
hitting Enter in the Edit Report Form screen, just before the subreport. You won't
see anything happen when you hit Enter there, because the Edit Report Form screen
doesn't show that carriage return. The only way to tell if it's there is to position the
cursor in the parent Report Body, just before the subreport. Then hit the Del key. If
you just deleted a carriage return, you won't notice anything happen on the screen. If
you just attempted to delete the subreport itself, you'll be prompted as to whether or
not you really want to do that.

Here's what that report looks like, with a reference as to where to put the
cursor before hitting the Del key:

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY:
MONTHLY STATEMENT

Acct

Date Transaction Amount

- <== put cursor there and hit Del
SUBREPORT LINK/PANEL: 4 3
FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY-

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF SUBREPORT;

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

This change in subreport behavior with 2.3 is actually an enhancement. It
allows you to use subreports to produce reports whose subreports begin on the last
line of the Report Body that calls them. Such a report would look something like this:

Subreports 231

Jim Samuels Art Appreciation 101
Art History 112
Art History 113
Sally Adams Math 111

Math 201
etc.

Note that the subreport above begins printing on the same line here as its
parent record in the main report leaves off. You achieve that in 2.3 by just making
sure no hidden carriage return exists between the Report Body and its subreport.

The Edit Report Form screen that produces the above report could look no
different than the one that produces this one:

Jim Samuels
Art Appreciation 101
Art History 112
Art History 113
Sally Adams

Math 111
Math 201

The only difference could be the hidden carriage return.

Subreports as Subroutines

The above examples are typical ones, where the subreport is used to list items
attached to a parent record. But you greatly increase your possibilities here if you
consider a subreport to really be a subroutine. Let's explain.

Suppose you'd like a report that prints Invoices to not only list all
Transactions attached to an Invoice, but you'd also like it to show the total at the top
of each Invoice. That is, you'd like to see each Invoice look something like this:

Jim Alexander
1234 Elm St.
Anywhere, CA 90024

Customer No.: 1544

Invoice No. : 0134

Total Due : $345.00
01/02/96 Secretarial chair 145.00
02/05/96 Bookcase 100.00
02/08/96 Small File Cabinet 100.00

If you want the total to appear at the top of each Invoice, you'll have to compute it
before listing the items. DataPerfect makes it easy to put a total at the end of each
Invoice, but putting it in the beginning takes a little more thought.

Let's first see how to put a total at the end, since I said that's the easiest way
to do it. When you select (F4) a numerical field in the Final Footer of a report or
subreport, DataPerfect offers you some special options:

232 Subreports

Numeric Field Options in a Footer
1 Total (Sum)

Average

Maximum Value

Minimum Value

- Standard Deviation
0 - Field As Is From Current Record

Selection: 0

2
3
4
5

So, if you select the Amount field in the Transaction Panel in your subreport's Final
Footer, DataPerfect will show you the above intervening menu. If you choose option
1, DataPerfect will insert that field into your Report Form as usual, but it will now
print the total for those records in the subreport for that parent record (the total of
Transactions for that Invoice). A field chosen this way looks no different that one
chosen any other way with F4, so to tell the difference between them, cursor to the
field in the Final Footer (this sort of field only occurs in a Final Footer) and look at
the area just under the Help screen. You'll see something like this:

Path to field: P1F1

Amount

Total Field Value for entire report
Field Format: GZZ9.99::N

This tells you the field is printing the total for the Amount field (if that's what you
named it), as gathered for records (Transactions) in that subreport for that particular
parent record (Invoice).

Here's what such a report would look like, assuming the Invoice Panel is
Panel 1 and the Transaction Panel is Panel 2, and the panel link that takes you from
the Invoice Panel to the Transaction Panel is field 4:

FIRST PAGE HEADER -

——Empty—- Main Report
OTHER PAGE HEADER (Invoice Panel)
——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BODY
e Customer and Invoice
B info, which prints
i, o SEsaenas once per Invoice

Customer No.:
Invoice No. :

Subreport LINK/PANEL: 4 2 —
FIRST PAGE HEADER Subreport
——Empty—— (Transaction Panel)
OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER

Select Amount field
Total: =ZEEiss Choose Total option
END OF Subreport —

Main Report
TWO-LEVEL FOOTER (Invoice Panel)
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty-- —

Subreports 233

The above Report Form produces Invoices like this:

Jim Alexander
1234 Elm St.
Anywhere, CA 90024

Customer No.: 1544

Invoice No. : 0134
01/02/96 Secretarial chair 145.00
02/05/96 Bookcase 100.00
02/08/96 Small File Cabinet 100.00

Total: 345.00

In the early days of DataPerfect, the above procedure wasn't reliable. Many
of us still use a method we used to work around that problem. I still do. This
alternative method uses a counter. This is a Report Variable that counts the money
for each Invoice. Let's call it Report Variable 1. First, as with all counters, set it to 0
in the First Page Header of the subreport. Then, in the Report Body of the subreport
(the subreport associated with the Transaction Panel) I'll set Report Variable 1 to

rvl + P1F1
where P1F1 was selected with F4 (it's the Amount field in the Transaction Panel).
We would then print Report Variable 1 (Ctrl-F7, 1, 5) in the Final Footer of the
subreport.

This Report Form looks something like this:

234 Subreports

FIRST PAGE HEADER -

——Empty—- Main Report
OTHER PAGE HEADER (Invoice Panel)
——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BOD
: Customer and Invoice
g info, which prints
once per Invoice

Customer No.:
Invoice No. :

Subreport LINK/PANEL: 4 2 —

FIRST PAGE HEADER Subreport
777777777777777 Store Value in Report Variable 1 —-———--—-—--—-—-n——~ (Transaction Panel)

OTHER PAGE HEADER Set RV1 to 0

——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BODY-

77777777777777777777 Store Value in Report Variable 1 ---—-—--—--—---——--— |RV1: RV1+P1F1
Keeps Invoice total

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER

Total: =EEEEEE Print RV1
END OF Subreport —

Main Report
TWO-LEVEL FOOTER (Invoice Panel)
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty-- —

Printing Totals at the Top of the Invoice

[For an example of this, load UD.STR. Find Gets footer stuff in the header (Master Panel series) on
the Report List.]

The above Report Form produces the same Invoices the previous one does. Now let's
see how to get that Total information on the top of each Invoice instead of the
bottom. This is where my suggestion you think of a subreport as a subroutine starts
to make more sense.

To put the Total information at the top of each Invoice, we need the Report
Definition to compute that total before printing it and all the Transactions that go to
make it up in the subreport tied to the Transaction Panel. To accomplish this, we
need two parallel subreports—one that computes the total and the other that prints the
Transactions that contribute to that total.

Before outlining such a Report Definition for you, let's explain a phrase I just
used. I said we need two parallel subreports. These are to be contrasted with nested
subreports. Parallel subreports are subreports that occupy the same parent Report
Body; whereas, nested subreports are subreports where one is a subreport of the
other. Put another way, parallel subreports are subreports of the same report, and
nested subreports are such that the first one is a subreport of its parent report and the
second one is a subreport of the first subreport.

To exemplify this difference, think about a couple of different possible report
situations. Suppose you have an application with three panels that store records for

Subreports 235

these entities: Schools, Teachers, and Students. The School Panel is linked to the
Teacher Panel and is also linked to the Student Panel. From the School Panel you can
go through a panel link to see what Teachers work there, and you can go through a
different panel link in the School Panel to see what Students go there.

Suppose you want a report that prints all Teachers and Students connected
with each School, like this:

School 1

Teachers

Teacher 101
Teacher 102
Teacher 103
etc.

Students

Student 101
Student 102
Student 103
Student 104
etc.

School 2

Teachers
Teacher 201
Teacher 202
etc.

Students
Student 201
Student 202

Student 203
etc.

To create such a report we base the report on the School Panel and the create
a subreport to the Teacher Panel. After creating the Teacher Panel subreport, cursor
just past it, but remain in the Report Body of the Main Report (just before the Two
Level Footer of the Main Report). That's where you create the second parallel
subreport, tied to the Student Panel. This Report Definition looks like this:

236 Subreports

FIRST PAGE HEADER

——Empty—- Main Report
OTHER PAGE HEADER (School Panel)
——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BODY
= School Name field

Subreport LINK/PANEL: 4 2 —

FIRST PAGE HEADER Subreport
Teachers Teacher Panel

OTHER PAGE HEADER

——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BODY-
, st Teacher Name fields

s, EniEEEEEEEEEE
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF Subreport -

Report Body of Main

Report
Subreport LINK/PANEL: 5 3 —
FIRST PAGE HEADER Subreport
Students (Student Panel)
OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY-
, e Student Name fields

s, EniEEEEEEEEEE
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF Subreport -

Main Report:
TWO-LEVEL FOOTER School Panel.
——Empty--

PAGE FOOTER
——Empty--

FINAL FOOTER
——Empty-- -

Now suppose your application has a fourth panel that joins Teachers and
Students together. That is, each record in this Teacher/Student Panel has the name
of a Teacher and a name of a Student assigned to that Teacher. A panel link in the
Teacher Panel gives the user access to all and only records in the Teacher/Student
Panel tied to the currently displayed Teacher in the Teacher Panel. Likewise, a panel
link in the Student Panel gives the user access to all and only records in the
Teacher/Student Panel tied to the currently displayed Student in the Student Panel.

In such an application you can easily create a report that prints a list showing
Schools, with Teachers and their assigned Students. This report looks like this:

Subreports 237

School 1

Student
Student
Student
Student
etc.

Student
Student
Student
etc.

School 2

Teacher 111

Teacher 121

Teacher 131

111
112
113
114

121
122
123

And the Report Definition that produces the above report looks like this:

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

—Subreport

LINK/PANEL: 4 2

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

Subreport

LINK/PANEL: 5 3

FIRST PAGE HEADER

——Empty--

OTHER PAGE HEADER
——Empty--

TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY-

SE, smmmmmmmmainnn
TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

END OF Subreport

TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

The second subreport in the Report Definition above was placed in the Report Body
of the first subreport, not the Report Body of the Main Report. Thus, these are nested
subreports.

Now, we started this section talking about considering subreports to be
subroutines. I wanted to exemplify this with a report that prints the totals at the top
of each Invoice instead of the bottom. Let's get into that now.

Again, as mentioned earlier, we need two parallel subreports to accomplish
this. The first will compute the total for that particular Invoice and the second will

print the actual invoice.

238 Subreports

Main Report
(School Panel)

School Name field

Subreport
(Teacher Panel)

Teacher Name fields

Subreport

(Student Panel)
Placed in the Report
Body of Subreport
above, not in Report
Body of Main Report

Student Name fields

Main Report
(School Panel)

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

Subreport

LINK/PANEL: 4 2

FIRST PAGE HEADER

777777777777777 Store Value in Report Variable

OTHER PAGE HEADER

——Empty--
TWO-LEVEL REPORT HEADER

——Empty--
REPORT BODY:

777777777777777 Store Value in Report Variable

TWO-LEVEL FOOTER
——Empty--

PAGE FOOTER
——Empty--
FINAL FOOTER

END OF Subreport

Customer No.:
Invoice No.
Total Due

Subréport LINK/PANEL: 4 2

FIRST PAGE HEADER

——Empty--
OTHER PAGE HEADER

——Empty--
TWO-LEVEL REPORT HEADER

REPORT BODY-

TWO-LEVEL FOOTER

PAGE FOOTER
FINAL FOOTER

END OF Subreport

TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

Main Report
(Invoice Panel)

Parallel Subreport 1
(Transaction Panel)

This Subreport
computes the total

Set RV1 to 0 in 1st
Page Header to start
counting for this
Invoice. Set it to
RV1+P1F1l in Report
Body

RV1 now holds total
for this Invoice

Back to Main Report
Report Body, just
before inserting
Parallel Subreport 2
Print RV1

Parallel Subreport 2
(Transaction Panel)

This Subreport
prints the Invoice

Detail fields

Remainder of Main
Invoice Panel

Do you see why I call a subreport a subroutine? The first parallel subreport
is a subroutine that computes a Report Variable that will be used by the second
parallel subreport, and the second parallel subreport is a subroutine that sends data
to the printer. I'm trying to get you to not limit yourself by thinking of subreports as
simply sections of a Main Report that print child records. You can use a subreport to
go off and compute a Report Variable, delete or create some records in another panel,
etc., all before (or after) printing something.

Subreport Using Virtual Link

Let's take this a step further and take a look at a subreport option that was introduced
with version 2.3 of DataPerfect. That's option 4 in your subreports menu (Ctrl-F7,

6):

=W N

0

Subreports & Record Creation

Selection: 0

Include Subreport

Create Record Through Link

- Create Record From Panel List
— Subreport Using Virtual Link

- Return to Edit

Subreports 239

A Subreport Using Virtual Link is a subreport you create without basing it on
an existing link. In the process of creating this sort of subreport, you're asked for the
following, in this order:

° Target Panel
° Index
o Field List

Does that list look familiar? It should. Those are three of the four properties that
characterize a link. All that's missing is the Target Field. When you create a
Subreport Using Virtual Link, you're creating a temporary link and a subreport that
will use that link. The link will disappear after the subreport ends.

This means you don't need a link to create a subreport. I suggest you use this
option instead of option 1 (Include Subreport). This way, when considering whether
or not to remove what may appear to be an unnecessary panel link, you no longer
have to wonder if a subreport uses it.

When using Subreport Using Virtual Link instead of Include Subreport, you
no longer have to wonder if there is an appropriate link for the contemplated
subreport. Just create it on the fly when you create the Subreport using Subreport
Using Virtual Link.

When creating a Subreport Using Virtual Link, you may create a kind of field
list that can never be part of an existing link. Namely, you may create a field list that
contains one or more Report Variables. At first, it may not be all that obvious to you
as to why this is a powerful possibility. I'll bring this out with an example.

So, to review, Subreport Using Virtual Link option has the following
advantages over the Include Subreport option:

° It doesn't need an existing panel link.
o Its field list accepts Report Variables.

Let's go over some examples that expose the power of Subreport Using
Virtual Link. Suppose you have an application that keeps track of all Transactions
for a multi-doctor office. In this application there exist at least the following three
panels:

Panel 1 - Doctor Panel
Panel 2 - Patient Panel
Panel 3 - Case Panel

Panel 4 - Transaction Panel

Panel 1 has one record for each Doctor. Panel 2 has one record for each
Patient. Panel 3 has a record for each Case for each Patient (a Case would be, say, a
particular Patient's slip and fall in the shower in 1994, and then another record would
be created when they have an auto accident in 1996). Panel 4 is obvious. Here's our
panel hierarchy:

240 Subreports

Doctor Panel

Patient Panel

Case Panel

Transaction Panel

We want a Day Sheet report that will be based on the Doctor Panel and print
all Transactions in the Transaction Panel for each Doctor, where all such Transaction
Panel records have today's date in the Date field. Though there are other ways to
construct this Report Definition, let's see how to use the Subreport Using Virtual
Link to do it.

First, I'll load the Doctor Panel and hit Shift-F7 and hit Insert on Built-In
Short Reports. I now have a Main Report based on the Doctor Panel.

Second, I want to set Report Variable 1 to foday, which is the date I'm going
to use in the subreport in the Transaction Panel.

Third, I'm going to create a Subreport Using Virtual Link in the Report Body
of the Main Report. The three properties of this Subreport Using Virtual Link will
be the following:

Day Sheet Subreport Using Virtual Link

Target Panel Transaction Panel
Index Doctor Code, Date,
Field List Doctor Code, RV1

Even though I don't have a panel link in the Doctor Panel that leads to the
Transaction Panel, I can still create this subreport linkage. Also, even if I did have
such a panel link in the Doctor Panel, it probably doesn't have today on its field list.

Note: How would | put today on a panel link field
list? Well, starting with the September 1993
version of DataPerfect 2.3 you can put
computed fields (::C) on panel link field lists.
So if you have a hidden computed date field
that updates to today in that panel, you can
just put that field on the panel link's field list,
along with the Doctor Code field. This would
give you access to all records in the
Transaction Panel that have today's date in
their Date field.

Here's what we have so far for this Report Definition:

Subreports 241

FIRST PAGE HEADER -
777777777777777 Store Value in Report Variable 1 --—---———---—-———----———— |Main Report
(Doctor Panel)

OTHER PAGE HEADER
TWO-LEVEL REPORT HEADER Set RV1 to today
REPORT BODY-

Day Sheet
S Print RV1
Dr. IEsmsgmmssmmsy S Doctor Name fields
Subreport LINK/PANEL: 0 4 —
FIRST PAGE HEADER V/Link Subreport
Date Patient Name Description Amount (Transaction Panel)
777 Field List:
OTHER PAGE HEADER Doctor Code, RV1

TWO-LEVEL REPORT HEADER
REPORT BODY-

Detail fields

TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER
77 Totaling field

2 selected (F4, 1)

END OF Subreport —
Main Report

TWO-LEVEL FOOTER (Doctor Panel)
PAGE FOOTER
FINAL FOOTER —

The above Report Definition will print a series of Day Sheets, one per Doctor.
Because of the Page Eject code placed in the Final Footer of the Subreport Using
Virtual Link (Ctrl-F7, 3), each Doctor gets a Day Sheet starting on its own page.
Here's a brief example of a Day Sheet that the above Report Definition will print:

Day Sheet
03/05/96
Dr. Sally Adams

Date Patient Name Description Amount
03/05/96 Jim Johnson Physical Exam 100.00
03/05/96 Steve Gold Urinalysis 15.00
03/05/96 Pam Hinds Brief follow-up exam 50.00

Total 165.00

There's no reason to put the Date field in the details line, since such a report will print
only Transactions with the date at the top of the page (Report Variable 1). I just put
it in there for you to see that only those Transactions are being printed, in virtue of
Report Variable 1 being on the field list of the Subreport Using Virtual Link. I
suggest you always put a field like the Date field in such a report when first defining
and testing it. You need to make sure the correct records are being processed. After
all looks good, you can take that field out of the Report Definition.

The same Report Definition can be changed to allow the user to choose the
Date field value on which to process Transaction Panel records. We only need to
change the First Page Header:

242 Subreports

FIRST PAGE HEADER

777777777777777 Turn Print off-------------------------- - --—-————————— | Main Report
777777777777777 Turn File Off-------- - - - - - - —--—--—--——-—-—-————————————— |First Page Header
You just chose to print a series of Day Sheets, one per Doctor.

Please fill in the desired Date at the prompt and hit ENTER; Explanatory text for
otherwise, hit F1 now to cancel this procedure. the user to read

777777777777777 Prompt for Value of Report Variable 1 ————-———————————
777777777777777 Turn Print On-————--------———————————————— - ———

OTHER PAGE HEADER

In the above Report Definition, which only shows its First Page Header, the user is
allowed to choose, via the Prompt for Value of Report Variable 1, the Date on which
to run the report. So it's not committed to today's date.

Also note the use of four other codes:

Turn Print Off
Turn File Off
Turn Print On
Turn File On

Each of these four codes is accessed in the Select Report Field section of your Report
Options menu (Ctrl-F7, 1). Their function is straightforward. The first two stop the
report from sending data to the printer or disk file from that point on, until the report
runs into the other two codes. I suggest you always insert both versions of each code
(one that turns off the printer as well as one that turns off the file) even if, say, you
plan for that report to be used to print and never go to disk file. You never know
when you may need that print job to be temporarily routed to a disk file, to be printed
later, or with someone else's printer.

The Dummy Report

Note: It'll be very difficult to understand much of
this section if you don't understand the
issues discussed in my Ilteration Control
chapter. References to lIteration Control
codes appear throughout this section.

Though you may have occasionally used what I call dummy reports with versions of
DataPerfect prior to 2.3, it's very likely you'll use them extensively with version 2.3
after you read this section. A dummy report is a Report Definition that's based on a
panel whose records won't be processed, but whose Report Body will be used as an
arena for the placement of parallel subreports which will process records. These
parallel subreports will most likely be of the Subreport Using Virtual Link variety.
This will have the effect of running many different reports in a single Report
Definition.

The trick here is to keep in mind that DataPerfect sees the dummy report as
the Main Report, and will run all the parallel subreports again and again, once for
every record in the dummy report's panel. You don't want this. Rather, you want each
the subreport that's supposed to run, to run to completion, processing all the records
its Report Body is supposed to process, then print its Final Footer and then, when the
last subreport that's supposed to run does all this, the whole report stops. So you need

Subreports 243

to put a Stop If code at the end of the Report Body of the dummy report, after all the
subreports, so the entire process doesn't start over again with the next record in the
dummy report. This is easier demonstrated than explained, so let's do that.

When you start your Report Definition that involves a dummy report, place
a series of carriage returns in its Report Body, followed by codes that will stop the
report after but a single record:

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY:

Preliminary
carriage returns
inserted

777777777777777 Store Value in Report Variable 200 -————-———-——-————————
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 200 ——-——--- :JOnly one record
TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

The pair of codes that follow the carriage returns above consist of the Store
Value code setting Report Variable 200 to 0, followed by a Stop If code on Report
Variable 200. That effectively makes the report you see above run on precisely one
record in the panel on which it's based. That panel can be any panel that will always
have at least one record. The report will never access that record. For the sake of
discussion, I'll call that pair codes the stop routine.

Note: Asageneralrule, | use Report Variable 200
to stop a report. This way, when | see
Report Variable 200 on an Edit Report Form
screen, | know immediately why it’s there.

With the above setup, we now construct our various subreports in the Report
Body, above the stop routine. Again, the above report will run on one record in the
panel on which its based and then stop. But that means that the subreports we put in
the Report Body, above the stop routine, will run completely, on all their records. We
can now put a series of parallel subreports in that space, which will have the effect
of allowing the user to run a series of reports off a single Report Definition, and then
stopping.

If you've forgotten, a series of parallel subreports is to be contrasted with a
series of nested subreports. Two subreports are parallel when the second is not in the
Report Body of the first. That is, the second subreport begins sometime after the
Final Footer of the first subreport, both being within the Report Body of the main (in
this case, dummy) report. Whereas, two subreports are nested if the second is a
subreport of the first (i.e., it's in the Report Body of the first).

There are three caveats for defining dummy reports, however. First, if we
don't put the stop routine right after the final parallel subreport, the entire process will
start over again with each record in the dummy report's panel. This has the effect of

244 Subreports

running the entire series of subreports over and over again. This the most common
mistake developers make in attempting this technique, so put the stop codes in there
first.

Second, you must have at least one record in the dummy report's panel. If you
don't, it won't run at all. Instead, it'll display the No Data error message and stop.

Third, make sure that even if you have a lot of records in that panel, you don't
assign an Exception List Index to that report, such that that index excludes all records
in the panel. This will have the same effect as running the report on a panel with no
records. With these three caveats in mind, it makes no difference what panel you
choose for the dummy report, or what index is assigned to it.

I'll now layout a few examples of using dummy reports to your advantage.

Dummy Report Examples

A Report That Branches to Other Reports

[For example of a report that branches to other reports, load UD.STR.
Find Date Range Report that branches (in Master Panel series) on the Report List.]

Here we define a report that offers the user a menu of possible reports to run. The
user chooses one, and only that report runs. This allows you, the developer, to
consolidate your reports on the Report List or menus.

The main principle here, again, is using a dummy report as an arena in which
to place the real reports. We’ll use the Report Body of this dummy report to
construct a series of parallel subreports, where each such subreport is what I call a
real report. Let’s see how this is done.

First I choose any panel in which I know there will always be at least one
record, and then start my Report Definition process with Shift-F7. In the First Page
Header of this dummy report, I place a prompt and a menu:

FIRST PAGE HEADER =
777777777777777 Turn Print Off---——------------- Dummy Report:
777777777777777 Turn File Off-—-——-------"""""""""""""—— any panel

Choose the report you want to run:
User offered a menu

[1] Itemized Ledger while printing and
[2] Day Sheet any disk file is
[3] Monthly Performance Report turned off.

777777777777777 Prompt for Value of Report Variable 1 —-———————————————
777777777777777 Turn Print On-——————————————————— -

OTHER PAGE HEADER —

The above Prompt for Report Variable 1 would be formatted G9, and be something
like

Your choice?:

Now the report knows the user’s choice, which is stored in Report Variable
1. The next thing I do is put in a bunch of carriage returns in the Report Body of this
dummy report to remind me that that’s where the real reports will live. Then I insert

Subreports 245

a couple of codes that will guarantee this dummy report will stop running after one
record in the panel on which it’s based. Otherwise, the report the user selects will run
over and over again, once per record in the panel on which the dummy report is
based. Here’s what I now have after doing this:

FIRST PAGE HEADER
777777777777777 Turn Print Off---——-------------

Choose the report you want to run by typing its number and
hitting ENTER.

[1] Itemized Ledger

[2] Day Sheet

[3] Monthly Performance Report
777777777777777 Prompt for Value of Report Variable 1 —-————-———-———————-
777777777777777 Turn Print On-———----——-—-——————————————————————————————

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

Preliminary
carriage returns
inserted

777777777777777 Store Value in Report Variable 200 ———————————-————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 777777:Jstop routine
TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

In the end of the Report Body above, I set Report Variable 200 to O,
immediately following it with the Stop If code on Report Variable 200. This
effectively stops the dummy report after one record in its panel is processed. That
means its Report Body is run only once, which is exactly what we want. Don’t forget
that our real report is going to be a subreport in this Report Body, so we really do
want this particular Report Body to run only once.

Let’s put our real reports in the dummy report’s Report Body. Suppose our
first real report (Itemized Ledger) should be based on the Account Panel. Then go to
the beginning of the dummy report’s Report Body and create a Subreport Using
Virtual Link (Ctrl-F7, 6, 4), telling DataPerfect you want the Account Panel as its
target. Tell it what index you want this report to sort on, but make sure you do not
give it a field list (F10 when asked for a field list).

Note I'm using a Subreport Using Virtual Link here. The Subreports menu
(Ctrl-F7, 6) offers four possibilities:

Subreports & Record Creation

Include Subreport

Create Record Through Link

Create Record From Panel List
4 - Subreport Using Virtual Link
0 - Return to Edit

Selection: 0

W N
[

Option 4 offers me the most flexibility, allowing me to choose an index for this link,
as well as a field list, if any. By choosing no field list here, I'm essentially creating

246 Subreports

a subreport that, in effect, starts right from the Panel List. It would be just as if I
created this subreport as a main report from scratch by choosing the target panel on
the Panel List, hitting Shift-F7, and then hitting Insert on Built-In Short Reports.
What makes this just like creating a main report that starts from the Panel List is my
refraining from assigning it a field list. By doing that, I'm telling DataPerfect to
access the target panel without filtering its records.

If the Account Panel is Panel 8, then we now have something like this:

FIRST PAGE HEADER

Choose the report you want:

[1] Itemized Ledger
[2] Day Sheet
[3] Monthly Performance Report
777777777777777 Prompt for Value of Report Variable 1 ————-——-————————

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
SUBREPORT LINK/PANEL: 0 8 -
FIRST PAGE HEADER Subreport inserted
——Empty—— into dummy report's
OTHER PAGE HEADER Report Body
——Empty--

TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
——Empty--
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty-- -
END OF SUBREPORT; =

What’s left of the
dummy report’s
[This is where we're going to put the next subreport.] Report Body,
followed by its
various footers
777777777777777 Store Value in Report Variable 200 —————-—----—---———~
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 ————--
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty-- —

You can tell the above subreport is a Subreport Using Virtual Link by noting
its first line:

SUBREPORT LINK/PANEL: 0 8

The 0 tells you this is a Subreport Using Virtual Link. If that number was higher than
zero, it would be telling you the field number of the link being used to target Panel
8. To make sure you didn't assign this Subreport Using Virtual Link a field list, you
can just cursor to that line and look at the area just under the Report Definition help
screen. It should change to something like this:

Virtual Link Index/Field List:1 - 0

Subreports 247

The 1 and O tell you the Subreport Using Virtual Link is using index 1 with no field
list.

Okay, now let's put in one more Subreport Using Virtual Link (again, our
subreports are the real reports—that is, the reports the user chooses off the menu
presented in the First Page Header). The second report is the Day Sheet, so I assume
it runs on something like a Day Panel (a panel that holds a record for each day). It
really doesn't matter what panel it runs on for our purposes here. I just want to show
you how to put various real reports in the dummy report's Report Body, even though
each may run on a different panel.

Back to our second subreport, the Day Sheet. I want to insert a Subreport
Using Virtual Link in the Report Body of the dummy report, not the Report Body of
the other subreport. That is, I want these two subreports to be parallel subreports, not
nested subreports. So I cursor to what's left of the dummy report's Report Body, in
the space in my Report Definition where I put

[This is where we're going to put the next subreport.]

There I create a Subreport Using Virtual Link again, but this time I target the Day
Panel. Again, I choose the index I want to sort this subreport's records and avoid
creating a field list by hitting F10 when asked for one.

If the Day Panel is Panel 13, I now have something like this:

248 Subreports

FIRST PAGE HEADER -

Choose the report you want:

[1] Itemized Ledger
[2] Day Sheet
[3] Monthly Performance Report

OTHER PAGE HEADER
——Empty—-
TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY —
SUBREPORT LINK/PANEL: 0 8 =
FIRST PAGE HEADER Subreport 1
——Empty—-— inserted into
OTHER PAGE HEADER dummy report's
——Empty-—-— Report Body
TWO-LEVEL REPORT HEADER
——Empty—-
REPORT BODY
——Empty—-
TWO-LEVEL FOOTER
——Empty—-
PAGE FOOTER
——Empty—-—
FINAL FOOTER
——Empty—-
END OF SUBREPORT: —

[This space is here to make it clear where one subreport ends and Part of
the other begins. I can delete this, if I want to, by deleting dummy report's
carriage returns.] Report Body

=———————=SUBREPORT LINK/PANEL: 0 13 -
FIRST PAGE HEADER Subreport 2
—-Empty--— inserted into
OTHER PAGE HEADER dummy report's
——Empty—— Report Body
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
——Empty--
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF SUBREPORT: -

What’s left of the
dummy report’s
[This is where we're going to put the next subreport.] Report Body,
followed by its
various footers
777777777777777 Store Value in Report Variable 200 —-————-—--—-—-—————~
fffffffffffffff Stop [Sub]Report if 0 Is in Report Variable 200 —-———--
TWO-LEVEL FOOTER
——Empty—-
PAGE FOOTER
——Empty—-
FINAL FOOTER
——Empty—- —

If, say, the panel for subreport 3 is Panel 17, we continue this procedure and
get the following:

Subreports 249

FIRST PAGE HEADER

Choose the report you want:

[1] Itemized Ledger
[2] Day Sheet
[3] Monthly Performance Report

Prompt for Value of Report Variable

OTHER PAGE HEADER

——Empty--
TWO-LEVEL REPORT HEADER

——Empty--

SUBRE

PORT

REPORT BODY-

LINK/PANEL: O 8

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

END OF SUBREPORT:

SUBRE

PORT

LINK/PANEL: 0 13

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

END OF SUBREPORT

SUBRE

PORT

LINK/PANEL: 0 17

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

END OF SUBREPORT:

Store Value in Report Variable 200
[Sub]Report if 0 Is in Report Variable 200

Stop

TWO-LEVEL FOOTER

Subreport 1
inserted into
dummy report's
Report Body

Subreport 2
inserted into
dummy report's
Report Body

Subreport 3
inserted into
dummy report's
Report Body

What’s left of the
dummy report’s

——Empty—— ReportBody,

PAGE FOOTER followed by its
——Empty-- various footers.
FINAL FOOTER

——Empty--

As it stands now, the above report will run all three subreports once, and then
quit. But we want it to run only the subreport the user selected in the menu presented
in the First Page Header. To do that we need to add just a couple of codes to each
subreport's First Page Header.

We insert the following codes in the First Page Header of Subreport 1:

Store Value in Report Variable 200

Stop

[Sub]Report if 0 Is in Report Variable 200

where the formula for the first code would be

rvl=1

This will stop execution of Subreport 1 unless the user chose 1 in the First Page
Header menu (which was stuffed into Report Variable 1). This doesn't result in the
entire report stopping, however. The Stop If code here only causes its particular
report (Subreport 1) to stop.

250 Subreports

Note: Again, | used Report Variable 200 to stop
something. This time | set it to

rv=1
instead of setting it to

0

Following this logic, I put the same two codes in the First Page Headers of
Subreports 2 and 3, but change the value of Report Variable 200 in each to

rvl=2
for Subreport 2, and
rvl=3

for Subreport 3.
Now our Report Definition looks like this:

Subreports 251

FIRST PAGE HEADER

Choose the repo

[1] Itemiz
[2] Day Sh
[3] Monthl

rt you want:

ed Ledger

eet

y Performance Report

Prompt for Value of Report Variable 1

Turn Print On———————— e

OTHER PAGE HEADER

——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

SUBRE

REPORT BODY-

PORT LINK/PANEL: O 8

FIRST PAGE HEADER
Store Value in Report Variable 200

Stop [Sub]Report if 0 Is in Report Variable

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

END OF SUBREPORT:

SUBRE

PORT LINK/PANEL: 0 13

FIRST PAGE HEADER

Store Value in Report Variable 200
Stop

OTHER PAGE HEADER

[Sub]lReport if 0 Is in Report Variable

TWO-LEVEL REPORT HEADER

REPORT BODY-

TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

SUBRE

END OF SUBREPORT

PORT LINK/PANEL: 0 17

FIRST PAGE HEADER

Store Value in Report Variable 200

Stop [Sub]Report if 0 Is in Report Variable

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

END OF SUBREPORT:

Store Value in Report Variable 200
Stop

TWO-LEVEL FOOTER

[Sub]Report if 0 Is in Report Variable

——Empty--
PAGE FOOTER

——Empty--

I would now put whatever I want in each subreport, as they are my real
reports. I leave the dummy report as is. The above report will execute the subreport

FINAL FOOTER
——Empty--

the user chooses, and no other.
Here are the major principles of such a Report Definition:

252 Subreports

I choose any panel that has at least one record in it, and base the
report on that panel. Likewise, I assign it an index that doesn't have
an Exception List on it that excludes all records in the panel. This will

Subreport
RV200 set

Subreport
RV200 set

Subreport
RV200 set

RV200 set

be the dummy panel, as its records will never be used.

I present the user with a menu of possible subreports to run, allowing
a single choice. I also use codes to make sure that menu doesn't print

or go to disk file.

In order for each subreport to act like a main report, I make each
subreport a Subreport Using Virtual Link without a field list. This
makes each such subreport act just like it started from the Panel List.

1
to

to

to

RV1=1

RV1=2

RV1=3

o In order to make only the chosen subreport run, in each subreport's
First Page Header I put a stop routine that examines what number the
user chose. It stops its particular subreport from running if the number
the user chose isn't the one assigned to that subreport, otherwise it
allows its subreport to run.

° To keep the report from causing the chosen subreport to run over and
over again, once for each record in the main (dummy) report's panel,
I put a stop routine in the main report's Report Body, just after the last
parallel subreport. This will make the main report run on only one of
its panel's records, but will cause the chosen subreport to run on all
of its panel's records.

Gathering Preliminary Information from
Various Panels Before Starting the "Real” Report

[For a report that offers a lookup in one subreport, before printing in another subreport, load
UD.STR. Find Date Range branching report that offers lookup for preliminary data on the Report
List .]

This is done with parallel subreports, as in the branching technique. Each parallel
subreport gathers the data needed and enters it into Report Variables. It may do this
via lookups, where what the user selects in the lookup is placed in a Report Variable.
Iteration Control enters into this in two ways. The lookup just described is
one. But after the user selects something via the lookup and the parallel subreport
stuffs one or more values in one or more Report Variables, that parallel subreport has
fulfilled its function, so must stop, not offering the lookup again. To accomplish the
latter, we do the usual: we insert two codes to stop the report after a single record.
Let's build this by starting with the generic dummy report:

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY-
}Preliminary

carriage returns
inserted

777777777777777 Store Value in Report Variable 200 —————-——--————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 777777:J0nly one record
TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Now we add our first parallel subreport:

Subreports 253

FIRST PAGE HEADER
——Empty-—— OTHER

PAGE HEADER

——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
SUBREPORT LINK/PANEL: 0 1 -
FIRST PAGE HEADER
——Empty—— Parallel Subreport 1
OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
777777777777777 User Chooses Next Record By LookUp-—--—--—-—-—-—-—-—-—--—--—--——— |Give user a lookup
777777777777777 Store Value in Report Variable 1 ---————-—--——-—-—--—-——-—— |Put choice in RVl
77777777777777 Store Value in Report Variable 200 -———————-—-————-—————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 ------ |Limit to one lookup
TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF SUBREPORT -

Carriage returns
where I'll place
more parallel
subreports

777777777777777 Store Value in Report Variable 200 -————-—————————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 ——-——--
TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

The above parallel subreport is a Subreport Using Virtual Link with no field
list. Because it lacks a field list, its lookup offers the user a lookup with full access
to its targeted panel's records. Whatever the user chooses from the lookup is stuffed
into Report Variable 1 (perhaps an Part Number). To do that, all you do here is Ctrl-
F7,1, 4, 1, Enter to begin the Report Variable 1 definition process the usual way.
Then F4, Tab to the Part Number field of that panel, and F4. This will stuff the Part
Number of the user-selected record into Report Variable 1 (that is, you set Report
Variable 1 to that selected field). Other fields can be stuffed into other Report
Variables if needed here. These Report Variables can then be used later by the
parallel subreport that actually prints.

Why do this? Well, consider a report that prompts the user for a Start Date
and End Date, then asks for a Part Number via a lookup like we mentioned above,
then asks the user for a state via another lookup, and finally prints a report that lists
all sales of the selected part in the selected state in the prompted-for date range.

Such a report would be a dummy report with three parallel subreports. In its
First Page Header, it would prompt for Start and End Dates, stuffing them into
Report Variables 1 and 2 respectively.

The First Parallel Subreport: Parts Panel

The first parallel subreport would be a Subreport Using Virtual Link that targets the
Parts Panel and has no field list. It would look just like the parallel subreport we just
created above. It would offer the user a lookup, stuff the user's choice into a Report
Variable, then stop. Again, it stops because of the Report Variable 200 stop routine

254 Subreports

that appears right after the Report Variable is set with the user's choice. This makes
sure the user sees that lookup only once.

The Second Parallel Subreport: States Panel

The second parallel subreport would be just like the first one, but would target the
States Panel. It would be a Subreport Using Virtual Link, again with no field list. It
would offer the user a lookup, stuff a Report Variable with the State Code the user
chooses, then stops because of another instance of the Report Variable 200 stop
routine.

The Third Parallel Subreport: The Printout
Now, as the report exits the second parallel subreport, preparing to enter the third
parallel subreport, the following four Report Variables are set:

Report Variable 1 holds the Start Date
Report Variable 2 holds the End Date
Report Variable 3 holds the Part Number
Report Variable 4 holds the State Code

The third parallel subreport prints the report. It targets the Transaction Panel
and uses an index with Part Number, State Code and Date, in that order. This
Subreport Using Virtual Link, however, has a field list:

RV3 (Part Number) and RV4 (State Code)

That field list is in the order you see above. In its First Page Header, it has a Skip To
Record at Report Variable 1 code, which will guaranty it starts with the first record
equal to or later than the date stored in Report Variable 1. There will also be a pair
of codes in its Report Body that will stop the report as soon as it comes to the first
record after the date stored in Report Variable 2.

Here's what we have:

Subreports 255

FIRST PAGE HEADER

777777777777777 Prompt for Value of Report Variable 1
777777777777777 Prompt for Value of Report Variable 2

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER
REPORT BODY-

SUBREPORT

LINK/PANEL: O 1

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

fffffffffffffff User

Chooses Next Record By LookUp-———————————-—

Dummy Report
Date range prompts

|parallel subreport
(Parts Panel)
(No field 1list)

Lookup of Parts
Put choice in RV3

1

777777777777777 Store Value in Report Variable 3
777777777777777 Store Value in Report Variable 200

777777777777777 Stop

[Sub]Report if 0 Is in Report Variable 200

TWO-LEVEL FOOTER

PAGE FOOTER
FINAL FOOTER

END OF SUBREPORT:

SUBREPORT

LINK/PANEL: 0 2

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

Limit to one lookup

Parallel Subreport 2
(States Panel)
(No field list)

REPORT BODY
777777777777777 User Chooses Next Record By LookUp-————--—-—--—————————
fffffffffffffff Store Value in Report Variable 4
777777777777777 Store Value in Report Variable 200
fffffffffffffff Stop [Sub]Report if 0 Is in Report Variable 200
TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER
END OF SUBREPORT; -
LINK/PANEL: 0 3 -
FIRST PAGE HEADER
777777777777777 Skip To Record at Report Variable 1

Lookup of States
Put choice in RV4

Limit to one lookup

SUBREPORT

Parallel Subreport 3
(Transaction Panel)

Date Description Amount (F/List: RV3,RV4)
Skip to Start Date
OTHER PAGE HEADER
(cont'd.) Page
Date Description Amount

TWO-LEVEL REPORT
REPORT BODY
777777777777777 Store Value in Report
fffffffffffffff Stop [Sub]Report if 0

HEADER

Variable 5
Is in Report Variable 5

RV5: P1F1 <= RV2
Stop if RV5 is false
Fields to print

TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER -
END OF SUBREPORT: -
777777777777777 Store Value in Report Variable 200
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200
TWO-LEVEL FOOTER -
PAGE FOOTER
FINAL FOOTER

(P1F1 is Date field)

Limit Dummy Report
to one record

This report will print only detail lines conforming to the Date Range entered
at the first two prompts, and the Part Number and State Code picked on the lookups.

Prompting the User with the Number of Hits

[For an example of this, load UD.STR.
On the Report List, find Showing the Number of Hits.]

Here we want a report to prompt the user for a search condition—like a date
range—and then tell the user how many records satisfy that search. The user then is
asked if he wants to continue on to print the results or not.

Let's first start with a typical report that prints out all Transactions that occur
in a date range in the Transaction Panel. It would look something like this, assuming
it's based on the Transaction Panel (this isn't the Report Definition that shows the
user the number of hits):

256 Subreports

Panel: Transaction Panel
Index: Date field
FIRST PAGE HEADER -

777777777777777 Prompt for Value of Report Variable 1 ---------------— |Prompt: Start Date
——————————————— Prompt for Value of Report Variable 2 --—-—----—-——----——- |Prompt: End Date
——————————————— Skip To Record at Report Variable 1 ------—---------—---— |Skip to Start Date
Transactions
e Print RVs to show
date range
Date Patient Name Description Amount
OTHER PAGE HEADER
Date Patient Name Description Amount

TWO-LEVEL REPORT HEADER
REPORT BODY

777777777777777 Store Value in Report Variable 3 ---———---——--—--——————— |RV3: PI1F1<=RV2
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 3 ----——--- |Stop if outside date
SR mmmiaimn Bmmiiann S Bhmse \range
TWO-LEVEL FOOTER (P1F1 is Date field)

PAGE FOOTER
FINAL FOOTER —

The above will prompt the user for Start and End Dates (Report Variables 1
and 2), print the date fields chosen in the First Page Header, and then skips to the first
record it sees with a Date field value equal to or greater than the Start Date. Report
Variable 3 is used to stop the report as soon as the Date field is found to contain a
date beyond the date range. Don't forget that this sort of Iteration Control won't work
unless the report is running on an index that sorts on the Date field.

Okay, now let's let the user choose to print the report only after being told
how many Transactions satisfy his chosen date range. To do this, we use a Dummy
Report again, basing it on any panel with at least one record. We count our
Transaction Panel hits in the first parallel Subreport Using Virtual Link, and print the
results with the second parallel Subreport Using Virtual Link. In between the two
parallel Subreports Using Virtual Link, still in the Report Body of the Dummy
Report, we show the user the number of hits and ask if he wants to continue on to the
print job:

Subreports 257

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

SUBREPORT LINK/PANEL: 0 4

FIRST PAGE HEADER

777777777777777 Prompt for Value of Report Variable
777777777777777 Prompt for Value of Report Variable
777777777777777 Skip To Record at Report Variable 1
777777777777777 Store Value in Report Variable 4
OTHER PAGE HEADER

]
A

TWO-LEVEL REPORT HEADER
REPORT BODY-

fffffffffffffff Store Value in Report Variable 3

fffffffffffffff Store Value in Report Variable 4
TWO-LEVEL FOOTER

[Sub]Report if 0 Is in Report Variable 3

PAGE FOOTER

FINAL FOOTER

END OF SUBREPORT

Number of Transactions in that date range:

fffffffffffffff Prompt for Value of Report Variable
—-Store Value in Report Variable 6

[Sub]Report if 0 Is in Report Variable 6

5

SUBREPORT LINK/PANEL: 0 4
FIRST PAGE HEADER
777777777777777 Turn Print On-—-——-—————-————————————
777777777777777 Turn File On-——————————————————————
fffffffffffffff Skip To Record at Report Variable 1
Transactions
SE 5D oto EE

Date Patient Name Description Amount
OTHER PAGE HEADER

Date Patient Name Description Amount
TWO-LEVEL REPORT HEADER

REPORT BODY-
777777777777777 Store Value in Report
fffffffffffffff Stop [Sub]Report if 0

Variable 3
Is in Report

Variable 3 -

~TWO-LEVEL FOOTER

PAGE FOOTER
FINAL FOOTER

END OF SUBREPORT:

777777777777777 Store Value in Report Variable 200

777777777777777 Stop [Sub]Report if 0

TWO-LEVEL FOOTER

Is in Report Variable 200

PAGE FOOTER

FINAL FOOTER

Between the two parallel subreports, still in the Dummy Report's Report

Body, there's a section that looks like this:

Number of Transactions in that date range:

777777777777777 Prompt for Value of Report Variable 5

—-Store Value in Report Variable 6
fffffffffffffff Stop [Sub]Report if 0 Is in Report

Here the report prints to screen Report Variable 3 (the number of hits that satisty the

Variable 6

Dummy Report
(any panel)
Turn printing off

Subreport 1
(Transaction Panel)

RV4 counter: 0

Stop as before
RV4: RV4+1

Dummy Report

Report Body

Print RV3, then ask
if user wants to
continue. See later
explanation.

Subreport 2
(Transaction Panel)
Turn printing on
The rest is as
before

Dummy Report again
Only one record

date range), and then produces what I call a continuation prompt:

Shall we continue?

Like before, it formats Report Variable 5 as a Ul field. Report Variable 6 then is

coded

258 Subreports

(Y/N) :

rv5="y"

This way the user may choose to not print the report (i.e., run Subreport 2) after
seeing the number of hits that will print. If the user answers anything other than Y to
that prompt, Report Variable 6 will end up false, stopping the second parallel
subreport (the one that prints).

Reports That Double-Sort Records

This is a common problem. For example, you need a report that prints records
alphabetically by Last Name within a date range. Say you're an attorney and want a
report that prints a list of all Cases with an Opening Date between two prompted-for
dates. Further, all this information is in a single panel. What index do you choose for
this?

Since more than one Client can have the same Last Name, you'll need the
First Name in indexes in that panel. And since two Clients can have the same Last
and First Names, you'll also have a Client ID Number in all indexes in that panel. If
you want records in this report to print alphabetically by Last Name, you'll need an
index that starts with these fields:

Last Name, First Name, Client ID Number

We need to do some sorting by Opening Date, so that field needs to be in there too.
This index looks like a good candidate for our report:

Last Name, First Name, Client ID Number, Opening Date

If you run the report on that index, records will indeed print alphabetically by Last
Name. Getting the report to print only records within the prompted-for date range
will require the use of Iteration Control option Skip If. Unfortunately, no other
Iteration Control option will work here. Let's discuss this.

Note that I can't use the Skip To option here, where I want to have the report
Skip To the earliest Opening Date based on the prompted-for date range. Why?
Because the Skip To option works on the primary sorting field of the current index,
and that's the Last Name field in this case. So the Skip If option is the only option
that will exclude records outside the prompted-for date range. If the Opening Date
field is P1F4, and Report Variables 1 and 2 hold the Start and End Dates respectively,
then here's what we have:

Subreports 259

Report Index:
Last Name, First Name, Client ID, Opening Date
FIRST PAGE HEADER J

777777777777777 Prompt for Value of Report Variable 1 —-———————————————

777777777777777 Prompt for Value of Report Variable 2 --—--———-—-------—--— |End Date
Page
Date:
Attorney: e
Client Opening
OTHER PAGE HEADER
(continued) Page
Date:
Attorney: T T
Client Opening

TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY-
777777777777777 Store Value in Report Variable 3 777777777777777777777:JSkip If

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

In the above Report Body, Report Variable 3 is given the formula

P1F4>=rvl and PlF4<=rv2

where, again, P1F4 is the Opening Date field.

This report works and accomplishes what we want. All records it prints will
fall within the prompted-for date range, and they'll print alphabetically by Last Name.
But this is a slow report to run on a large database. It examines each and every record
outside the prompted-for date range, while printing only those within that range. It
would be nice to be able to use the Skip To and Stop If codes here. Let's see how we
might make that happen.

The Report Records Panel

To do this, we create a special Report Records Panel. Our report will send copies of
records to that panel, to be sorted a second time before printing. Our Report Records
Panel can be used by other reports that need to double-sort records, and looks
something like this:

REPORT RECORDS PANEL
Report ID

D99/99/9999
G9999999999
N9999999999
A50
A50
A50
A50

260 Subreports

As other reports are created that need additional fields, you can add more fields to the
Report Records Panel. The fields can be extra large since the report that prints from
this panel can have its fields reformatted on the Edit Report Form screen to truncate
trailing spaces. Think of this panel as merely a receptacle for records copied to it for
further sorting before printing. Let's outline how to use this sort of panel:

FIRST PAGE HEADER Dummy Report

——Empty—- (any panel)

OTHER PAGE HEADER

——Empty—-

TWO-LEVEL REPORT HEADER

——Empty—-

REPORT BODY Subreport 1

SUBREPORT LINK/PANEL: 0 1 (Date index)

FIRST PAGE HEADER — (No field 1list)
777777777777777 Prompt for Value of Report Variable 1 --—-———-—-—-—-—--—--—-— |Start Date
777777777777777 Prompt for Value of Report Variable 2 --—--—-—-—-—----—--——--— |End Date
777777777777777 Store Value in Report Variable 3 ---————----—-—-—-——-——-———— |Report ID
777777777777777 Skip To Record at Report Variable 1 ---—--—--—--—---—-———- |Skip To RV1

OTHER PAGE HEADER -

——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BODY =
777777777777777 Store Value in Report Variable 4 ---———----—-—-——-———— |RV4: PI1F1<=RV2
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 4 --—--—--—- |Stop if RV4 false
————CREATE RECORD LINK/PANEL: 0 10

REPORT BODY- Create record in

——Empty—— Report Records Panel

AVE RECORD —

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF SUBREPORT;

Dummy Report
Report Body with
carriage returns
waiting for
Subreport 2

777777777777777 Store Value in Report Variable 200 -————-———-——————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 777777:J0nly one record

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

In the above Report Definition, I made the following changes over the
previous report:

° I created a Dummy Report (based on any panel that will always have
at least one record), and then created a subreport (Subreport 1) that
looks a lot like the prior report. This subreport will put copies of all
relevant records in the Report Records Panel (Panel 10).

o The index for Subreport 1 sorts on Opening Date instead of Last
Name. This allows me to use the Skip To code in its First Page
Header, which causes the subreport to go right to the first record in
the date range without inspecting earlier ones. This index also allows
me to use the Stop If code in the Report Body, causing the subreport
to stop as soon as it finds records beyond the date range.

Subreports 261

262 Subreports

I'added Report Variable 3, which is the Report ID value. I can use any
formula I want for that, as long as it produces a unique number every
time the user runs this report. I suggest just using my Moment
function, which produces a unique ten-digit number every second:

(86400*today) +now

Read up on this ad hoc function in the An Alternative Solution: Using
the Concepts of MOMENT and MODULO section of my the Fields:
Issues chapter.

I inserted a Create Record From Panel List in Subreport 1's Report
Body, but have yet to fill it in. That's where each record found in the
date range will be copied to the Report Records Panel. To fill out
each record, however, I'll need to stuff some Report Variables earlier
in the report. Let's do that now, and store those Report Variables in
the proper fields in the Report Records Panel:

FIRST PAGE HEADER

——Empty--

OTHER PAGE HEADER
——Empty--

TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY-

SUBRE

PORT LINK/PANEL: O 1

FIRST PAGE HEADER

Prompt for Value of Report Variable 1
Prompt for Value of Report Variable 2

Store Value in Report Variable 3 -——————-
Skip To Record at Report Variable 1 —-——-—-

OTHER PAGE HEADER

——Empty--
TWO-LEVEL REPORT HEADER

——Empty--
REPORT BODY

777777777777777 Store Value in Report
fffffffffffffff Stop [Sub]Report if 0
—--Store Value in Report
—-—-Store Value in Report
—--Store Value in Report

Variable 4 ————————
Is in Report Variable 4 —-———————
Variable
Variable
Variable

Grab Opening Date
Grab Last Name
Grab First Name

CREAT

Store Value in Report Variable
E RECORD LINK/PANEL: 0 10

Grab Client ID Num

REPORT BODY-
Report Variable 3
Report Variable 5
Report Variable 6 in Field 5
Report Variable 7 in Field 6
Report Variable 8 in Field 3

in Field 1 —————-
in Field 2 —————-—

— (Create in Panel 10)
Insert Report ID
Insert Opening Date
Insert Last Name
Insert First Name
Insert Client ID Num

SAVE RECORD

TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER

——Empty--
FINAL FOOTER

——Empty--
END OF SUBREPORT

Store Value in Report Variable 200 —————-
Stop [Sub]Report if 0 Is in Report Variable

TWO-LEVEL FOOTER

Dummy Report
Report Body with
carriage returns
waiting for
Subreport 2

——Empty--
PAGE FOOTER

——Empty--
FINAL FOOTER

——Empty--

Now, let's create Subreport 2, which will do the printing:

Subreports 263

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

SUBREPORT

REPORT BODY-

LINK/PANEL: O 1

FIRST PAGE HEADER

Prompt for Value of Report Variable 1
Prompt for Value of Report Variable 2
Store Value in Report Variable 3
Skip To Record at Report Variable 1

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-

Store Value in Report

Store Value in Report
Store Value in Report
Store Value in Report
Store Value in Report
CREATE RECORD LINK/PANEL:

Variable 4
[Sub]Report if 0
Variable 5
Variable 6
Variable 7
Variable 8

Is in Report Variable 4

0 10

REPORT BODY-
Report Variable 3 in Field 1 —-——————————————————
Report Variable 5 in Field 2 -————-—-——-—-—-———~
Report Variable 6 in Field 5 ———————————————————
Report Variable 7 in Field 6 ——————————-—-—-—-——~
Report Variable 8 in Field 3 —-——————————————————
AVE RECORD

TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER

END OF SUBREPORT:

SUBREPORT LINK/PANEL: 0 10
FIRST PAGE HEADER
Page :i
Date:
Attorney: B e
Client Opening
OTHER PAGE HEADER
(continued) Page ZZ
Date:
Attorney:
Client Opening

TWO-LEVEL REPORT HEADER

REPORT BODY-

~TWO-LEVEL FOOTER——

PAGE FOOTER

FINAL FOOTER

END OF SUBREPORT:

Store Value in Report Variable 200
[Sub]Report if 0 Is in Report Variable 200

Stop

TWO-LEVEL FOOTER

PAGE FOOTER

Note that Subreport 2 uses an index that begins with Report ID Number and
Last Name, in that order, and is created with a field list consisting of Report Variable
3. Report Variable 3, remember, is the Report ID Number for this report. This way
Subreport 2 prints only records just processed by Subreport 1 on this run, not a
previous run.

Of course our new Reports Records Panel will keep accumulating records
with every report run like this. You can have the same report delete all records in the

FINAL FOOTER

Report Records Panel it prints:

264 Subreports

Dummy Report

Subreport 1
(Cases Panel)
(Date index)
(No field list)
(Copies records to
Rpt Records Panel)

Subreport 2
(Rpt Records Panel)
(Index: Rpt ID,
Last Name, ...)
(F/List: RV3)
(Prints records)

Dummy Report limited
to one record

FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER
REPORT BODY-

Dummy Report

SUBREPORT LINK/PANEL: 0 1
FIRST PAGE HEADER Subreport 1
OTHER PAGE HEADER (Cases Panel)
TWO-LEVEL REPORT HEADER (Copies records to
REPORT BODY: Rpt Records Panel)
CREATE RECORD LINK/PANEL: 0 10

REPORT BODY-
AVE RECORD

TWO-LEVEL FOOTER
PAGE FOOTER

FINAL FOOTER

END OF SUBREPORT:

SUBRE

PORT LINK/PANEL: 0 10

FIRST PAGE HEADER
OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER

REPORT BODY-
TWO-LEVEL FOOTER

PAGE FOOTER

FINAL FOOTER
END OF SUBREPORT

SUBRE

PORT

LINK/PANEL: 0 10
FIRST PAGE HEADER

OTHER PAGE HEADER

TWO-LEVEL REPORT HEADER
REPORT BODY-

Subreport 2
(Rpt Records Panel)
(Prints Records)

Subreport 3
(Rpt Records Panel)
(Same index and
field list)

(Deletes records
from last run)

TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER
END OF SUBREPORT: —
777777777777777 Store Value in Report Variable 200
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200

Dummy Report limited
to one record

TWO-LEVEL FOOTER -
PAGE FOOTER
FINAL FOOTER

You could do that, but it makes more sense to just create a new report that
allows the application Supervisor to periodically clean out that panel. So forget about
putting in parallel Subreport 3 in the above report. Just let the records accumulate in
the Report Records Panel, and have the Supervisor run this report once a month:

Panel: Report Records Panel
Index: An index that has no Exception List
FIRST PAGE HEADER

You just chose to delete all records in the Report Records Warning message

ffffffffffffffff (See below for
explanation of
this)

777777777777777 Prompt for Value of Report Variable 1
777777777777777 Store Value in Report Variable 2
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 2

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY:

Deletes all records
in Rpt Records Panel
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Subreports 265

The above report is based on the Report Records Panel, and runs on any index
that has no Exception List so as to guaranty is sees all records in that panel. The
Prompt For Report Variable 1 code is our usual continuation prompt:

Shall we continue? (Y/N):

Report Variable 1 is formatted Ul and Report Variable 2 is coded with this formula:

rvl="y"

266 Subreports

Printer Control Issues

This chapter is for the experience DataPerfect application developer. I suggest
beginners take only a cursory look at it.

Open Filename in Report Variable

This Report Fields and Variables option (Ctrl-F7, 1, C) was introduced with
DataPerfect 2.3c. As of this writing, it's currently going through changes, but I'll
outline its implementation as of the 11/07/96 version of DataPerfect 2.3c.

The Open Filename report option allows the developer to direct disk file
output to a disk file whose filename is held by a Report Variable. To use this option,
a filename must first be placed in a Report Variable in one of four ways:

The definer puts the filename in the Report Variable directly, using
the Ctrl-F7, 1, 4 Specify Formula screen, surrounding it with quotes.
For instance,

"myfile.txt"

or

"d:\apps\myfile.txt"

The definer codes the Report Variable to yield a filename based on a
formula. For instance,

apply.format ["DYMD9999/99/99";today]".rpt"

If you run the report on November 21, 1996, that would yield this
filename:

19961121 .RPT

The definer has the Report Variable grab a filename found in an A or
U field.

The definer uses a Prompt For code to allow the user to enter their
own choice of filename. The Prompt For field must be formatted A
or U.

When DataPerfect sees the Open Filename code in a Report Definition, it
opens a file by that name, preparing it for report output. The default behavior of this
code is to append output to the opened file. To force DataPerfect to overwrite the

Printer Control Issues 267

file, precede the Open Filename code with the Turn File Off code, and follow it with
the Turn File On code (see the last example below for overwriting).
Each of these produces identical output, opening and appending to the file

named chosen by the user:

FIRST PAGE HEADER

Prompt for Value of Report Variable 1
Begin Writing to Filename in Report Variable 1 —-—-————-

OTHER PAGE HEADER

——Empty-—-—

TWO-LEVEL REPORT HEADER

——Empty-—-—

REPORT BODY-

TWO-LEVEL FOOTER

——Empty—-—
PAGE FOOTER

——Empty-——
FINAL FOOTER

——Empty-—-—

FIRST PAGE HEADER

Prompt for Value of Report Variable 1

OTHER PAGE HEADER

——Empty--

TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY

TWO-LEVEL FOOTER

Begin Writing to Filename in Report Variable 1 —-———-—-

——Empty-—-—
PAGE FOOTER

——Empty—-—
FINAL FOOTER

——Empty--

This one does almost the same thing, but starts writing to file starting with the
second record in the index (that is, it doesn't start writing until after the first record):

FIRST PAGE HEADER

Prompt for Value of Report Variable 1

OTHER PAGE HEADER

——Empty—-—

TWO-LEVEL REPORT HEADER

——Empty-—-—

REPORT BODY-

Begin Writing to Filename in Report Variable 1 —-—————-

TWO-LEVEL FOOTER
——Empty-——

PAGE FOOTER

——Empty-—-—
FINAL FOOTER

——Empty--

This one sends all records in the index to the user-chosen file, overwriting the

file it opens:

268 Printer Control Issues

FIRST PAGE HEADER
777777777777777 Prompt for Value of Report Variable 1 ————-———————————
777777777777777 Turn File Off----———-——-—-"--"""""""""""""“""“"""—
777777777777777 Begin Writing to Filename in Report Variable 1 —-—-————-
777777777777777 Turn File On—————————————————————————— - —————

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Further, if you assign the null string ("") to the Report Variable, that closes
the file and sets the value of that Report Variable to 0. If the Report Variable has
value improperly formatted for the Open Filename code (e.g., variable-length text or
numerical), DataPerfect will ignore the Open Filename code that references that
Report Variable and set that Report Variable to 0. If the Report Variable is properly
formatted for the Open Filename code, the file is opened and the Report Variable is
setto 1.

Overwrite Mode from the Report List

If the Open Filename code is used in Overwrite mode in a report that runs the from
Report List, and its output file already exists, when the user runs the report he'll be
asked if he wants to overwrite the existing file. If he answers N to the Y/N prompt,
the Report Variable is set to 0. If he answers Y, the file is opened and the Report
Variable is set to 1. This last feature allows you to abort the remainder of the report
if the use replies N, like this:

FIRST PAGE HEADER
777777777777777 Prompt for Value of Report Variable 1 —-———————————————
777777777777777 Turn File Off---——----------"--"""""-
777777777777777 Begin Writing to Filename in Report Variable 1 —-—————-
777777777777777 Stop [Sub]Report if O Is in Report Variable 1 —-—-——-——--—
777777777777777 Turn File On—————————————————————————— - —————

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

In the above Report Definition, the Stop If code will abort the report if, when
asked if he wants to overwrite an existing file, the user answered N. This is because
the Open Filename code changes Report Variable 1 to 0 after the user replies N to the
Overwrite prompt DataPerfect issues when it sees the file exists.

Printer Control Issues 269

Note: DataPerfect never warns of overwriting an
existing file if the report is run from a menu.
This only happens if run from the Report
List. When run from a menu, the user isn't
given a choice here (so as not to confuse
him). The file will simply be overwritten.

Overwrite Mode Caveat

Please be aware that this feature allows the overwriting of just about any file, so you
should use it cautiously. This is especially worrisome if this option receives its input
from a Prompt For code, allowing the user to choose just about any filename he
wants. In such cases you should consider following the Prompt For code with a pair
of codes that will stop the report if a dangerous filename was entered at the prompt.
For instance, you can follow a Prompt For code with a Store Value code like this.

cases substringlrvl;0;4]

case cv = "_EXE" of 0 endof
case cv = "_.CcoM" of 0 endof
case cv = "_BAT" of 0 endof
case cv = "_STR" of 0 endof
case cv = "_IND" of 0 endof
case cv = "_TXX" of 0 endof
case cv = "_DAT" of 0 endof
case rvl = "[some data file]" of 0 endof
case rvl = "[another data file]" of 0 endof
case rvl = "c:\" of 0 endof

default rvl
endcases

In the above Report Variable formula, the last CASE line keeps the user from
entering a string that begins with the root directory of drive C. The others are
obvious. Now we have this:

FIRST PAGE HEADER
777777777777777 Prompt for Value of Report Variable 1 ————————————————
—--Store Value in Report Variable 1 —-——————-———————-
—-Turn File Off--———--—-——-————————— - ———
—-Begin Writing to Filename in Report Variable 1 -
—-Stop [Sub]Report if 0 Is in Report Variable 1 —-
777777777777777 Turn File On—————————————————————————— - —————

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

The above Report Definition examines the user's choice of filename (Report
Variable 1). If the filename is on the illegal list found in the Store Value formula
above, Report Variable 1 is set to 0. This causes DataPerfect to ignore the Open
Filename code. The Stop If code then aborts the report. On the other hand, if the user
enters a filename that's not on the illegal list found in the Store Value formula above,

270 Printer Control Issues

Report Variable 1 retains the value entered by the user at the initial Prompt. The
Open Filename code then opens the user-chosen file, overwriting it if it exists.

Printer Control Panel

The concept of a Printer Control Panel is an interesting one. Here you want to be able
to plan ahead for all possible printers your enduser might use when running the
application you're building. The Printer Control Panel is simply a panel that contains
a record for each possible printer type—perhaps one for dot matrix printers, one for
HP compatible lasers, etc. A Printer Control Panel record will contain fields to
accommodate printer control strings for various printer needs. For instance, it will
usually contain a field for a printer control string that turns Bold on, a field for a
printer control string that turns Bold off, one that starts 12 characters per inch, and
one that returns to 10 characters per inch.

So there will be a record for dot matrix printers that shows which printer
control strings do all this, and another record for HP compatible laser printers that
shows an entirely different set of printer control strings for the same printer actions.
One field per printer control code, clearly labelled with panel text. Here's a very
simple Printer Control Panel:

PRINTER CONTROL PANEL
Printer ID#/Name: iii

Reset Printer
Bold On/Off
Underline On/Off
Italics On/Off
10, 12, 16.67 cpi

Each record in that panel will get a unique ID Number for identification purposes
later, and a Name, like Dot Matrix, HP Laser Compatible, or IBM Proprinter.

Now, what does this sort of panel get us? Well, if we can somehow tell a
report which of those Printer Control Panel records is the correct one (the one that
corresponds to the printer currently in use), we can access printer control strings
simply by selecting fields from the Printer Control Panel. When defining a report in
the Edit Report Form screen, if [want Bold On, or Italics Off, I simply hit F4 and,
in one way or another which I'll soon discuss, I select the correct field from the
Printer Control Panel. So when this report is run, if we somehow get the application
to know which of the Printer Control Panel records is the correct one, we know the
currently running report will be issuing the correct Bold On and Italics Off printer
control strings. Tell the application we now have a different Printer Control Panel
record active (we just replaced our dot matrix with a laser), and the same reports
issue printer control strings appropriate for that printer.

So let's talk about how to use the Printer Control Panel—that is, how to get
reports to see the correct Printer Control Panel record, and consequently issue the

Printer Control Issues 271

correct printer control codes. There are a few ways to accomplish this, each with its
strengths and weaknesses.

Direct Approach 1

Here we create a way to make the desired Printer Control Panel record be the first
one in some index in that panel. One way to do this is to use the ad hoc moment
function I discuss in An Alternative Solution: Using the Concepts of MOMENT and
MODULO in my Fields: Issues chapter. The current moment is defined as

(86400*today) tnow

which is the number of seconds since March 1, 1900. That number requires a 10-digit
field. What we need here is the negative of that value, so our index sorts backwards
based on that field. Our G-9999999999 field, then, will have the following formula:

- ((86400*today) +now)

Or we can give it the simpler equivalent formula:

(-86400*today) —now

This Reverse Moment field will be hidden, update on any change, and be positioned
as the first field in some index in the Printer Control Panel.

Now, any time the Supervisor goes into that panel and selects the record he
wants, he just hits F6 to cause the record to update the Reverse Moment field, and
then F10 to save it. Now that record will be at the head of the Printer Control Panel's
Reverse Moment index.

Next, put a hidden panel link in each and every panel, such that that link
targets the Printer Control Panel, using the Printer Control Panel's Reverse Moment
index without a field list. This way that hidden link always lands on the last Printer
Control Panel record put in Edit mode.

Finally, whenever you're in an Edit Report Form screen and want to select the
appropriate printer control string field in the Printer Control Panel, simply do this:

F4.
Tab to the hidden panel link we just created.
Down Arrow.

Tab to the desired Printer Control Panel's printer control string field.
F4.

This places the selected Printer Control Panel field in the Report Form, just like any
other field. The difference here is that that field will send the printer a printer control
string. And it will always issue the printer control string that's found in that Printer
Control Panel field for the last Printer Control Panel record that was in Edit mode.

But this is dangerous. This scheme assumes the user can not only get into the
Printer Control Panel, but can put it in Edit mode. All those fields with valuable

272 Printer Control Issues

printer control strings in them can now be edited carelessly by the user. These are the
sorts of fields you probably don't want the user to be able to edit. If you make them
all ::N fields, then whenever you, the definer, have to go into that panel and change
some of the printer control strings, you'll have to go into Define Mode and remove
the ::N modifier from the field in question, and then remember to put that ::N
modifier back after you're done editing the value in that field for some record. Or you
can use a special report for this, where that report is on a menu no user ever sees.

Direct Approach 2

To get around this complication, keep the user out of the Printer Control Panel
entirely, and remove the formula from the Reverse Moment field. Keep it a G-
9999999999::H field, however. Then create a report that offers the user a lookup of
possible Printer Control Panel records, sorted by Printer Name. Have that report's
First Page Header set Report Variable 1 to

(-86400*today) —now

Then have its Report Body offer the user a lookup of Printer Control Panel records.
Still in the Report Body, Store Report Variable 1 into the hidden Reverse Moment
field of the record the user selected, and then stop:

FIRST PAGE HEADER =

777777777777777 Store Value in Report Variable 1 ----————-—-—--—--—--———-— |RV1 set to
Negative Moment

OTHER PAGE HEADER -
——Empty--
TWO-LEVEL REPORT HEADER

——Empty—-

REPORT BODY -
777777777777777 User Chooses Next Record By LookUp-----------------—-— |User chooses
777777777777777 Store Report Variable 1 in Field 100 --------------—-- |Stuff -Momemt field
777777777777777 Store Value in Report Variable 200 ----------------——-— |Limit to one lookup
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 ------

TWO-LEVEL FOOTER -
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Now the user can choose the printer control record without having access to
the Printer Control Panel. After the user selects the appropriate Printer Control Panel
record to be used by reports, that's the record all those hidden panels links will see
during report processing (the links that have no field list, and are tied to the Reverse
Moment index in the Printer Control Panel).

Indirect Approach 1
This offers much more flexibility. I recommend it over either Direct Approach
outlined above. Here you use an intermediary panel to access the Printer Control

Panel during report definition. One way to do this is to use the User ID Panel. Don't
even bother reading this section unless you're familiar with the User ID facility

Printer Control Issues 273

274

introduced with DataPerfect 2.3's second official release (September 1993). See User
ID Panel in my Securing the Application for details on this.

Create a Printer ID field in the User ID Panel, where that field matches the
format of the Printer ID field in the Printer Control Panel. Let's say it's a G99 field.
On this new User ID Panel field, which we'll call P10F12, attach a data link that
targets the Printer Control Panel, using a Printer Control Panel index that begins with
the Printer ID field. Put only the Printer ID field on its field list. Now the
application's Supervisor, who, I assume, is the only one you're letting into the User
ID Panel, can easily assign each user a printer from the Printer Control Panel. You
might also consider formulating the Printer ID field in the User ID Panel to initialize
to some particular printer in the Printer Control Panel, just in case the Supervisor
forgets to assign a printer to each user.

Next, give the user a way to change his printer when he, say, changes work
stations. To do this, simply define a report that offers him a lookup of possible
printers from which to choose. This report will already know who the user is, since
he logged into the application with his User ID and Password, so it knows exactly
which User ID Panel record to alter. If you want, you can have it ask who the user is,
just to make sure no one else is attempting to change their default printer. We'll go
over the mechanics of this Printer Selection report in a minute. Let's move on to the
other aspects of this Indirect Approach to our problem.

So now we have a mechanism of assigning a printer from the Printer Control
Panel to each and every user of the database. Next we must figure out how to access
the appropriate Printer Control Panel record when inserting printer control strings in
an Edit Report Form screen. To do this we need those panel links we hid in each
panel (in the Direct Approaches outlined above), but we must change their target
panel. They now target the User ID Panel, and do so with the user's User ID field on
its field list (and only that field on its field list). But this means we need a hidden
User ID field in each of these panels. Such a field will have to be a computed field
with the formula

user.field[1]

In each panel, if we put that field on the field list of the hidden panel link that targets
the Printer Control Panel, that link will land on the current user's User ID Panel
record. Note that this hidden field must be computed (::C) because we need it to
update whenever the panel link is penetrated by our report.

With each panel having a hidden panel link that goes directly to the current
user's User ID Panel record, we can now, while in the Edit Report Form screen, grab
a printer control string from the current user's selected printer. We would do this:

Printer Control Issues

° F4.

o Tab to that panel's hidden panel link that takes us to the current user's
User ID Panel record.

° Down Arrow.

L Tab to the User ID Panel's data link that takes us to that user's
selected Printer Control Panel record.

° Tab to the desired Printer Control Panel's printer control string field.

° F4.

That puts the printer control string field in the Edit Report Form screen. This
is more cumbersome than either Direct Approach, but it provides each user with a
different Printer Control Panel record selection. Here's the report that allows the user
to change that selection without you giving them access to the User ID Panel:
[Destination: Screen Only] Printer Selection:

[Based on Printer Control Panel] Indirect Approach 1
FIRST PAGE HEADER

This routine will offer you a lookup of available printers.
After you highlight your choice and hit Enter, that printer
will be the one that works under your User ID until you run
this routine again.

777777777777777 Prompt for Value of Report Variable 1 —-———————————————
777777777777777 Store Value in Report Variable 1 ---——-------—--——-———— |See below for
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 1 --—--—---- |details

777777777777777 Prompt for Value of Report Variable 2 —-———————————————
777777777777777 Prompt for Value of Report Variable 3 —-————-———-————————
777777777777777 Store Value in Report Variable 4 ——————-———————————————
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 4 —-——————-

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY -
——————————————— User Chooses Next Record By LookUp---------—------—--—— |Lookup of printers
——————————————— Store Value in Report Variable 5 ---------------—--——-— |Put choice in RV5

SUBREPORT LINK/PANEL: 0 10 -

FIRST PAGE HEADER Virtual subreport to
——Empty—— User ID Panel
OTHER PAGE HEADER
——Empty-— Its field list has
TWO-LEVEL REPORT HEADER only RV2, which is
——Empty—— the user's User ID
REPORT BODY
777777777777777 Store Report Variable 5 in Field 12 -----——-—--—-—-—-—-——-—- |Store chosen Printer
ID in current user's
TWO-LEVEL FOOTER User ID record
——Empty—-—
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF SUBREPORT: —
777777777777777 Store Value in Report Variable 200 ---—-—----—----—-—--———— |Set RV200 to 0 so
fffffffffffffff Stop [Sub]Report if 0 Is in Report Variable 200 ------ |this stops after one
lookup

TWO-LEVEL FOOTER —

In the First Page Header above, after the user is told what's about to happen,
he's prompted for Report Variable 1 with a continuation prompt:

Shall we continue? (Y/N):

The Store Value in Report Variable 1 code that follows, has this formula:

Printer Control Issues 275

rvl="y"

The report then stops if Report Variable 1 is false, effectively stopping the report cold
if the user answers anything other than Y.

Next, still in the First Page Header, the user is prompted for his User ID and
Password. The first goes into Report Variable 2 and the second in Report Variable
3. The Store Value in Report Variable 4 code examines the user's answers here by
comparing them with what DataPerfect already knows about the current user from
his initial application logon procedure. That is, it compares Report Variables 2 and
3 with user.field[1] and user.field[2], respectively. If they match, the report
continues. If not, it stops. So the Store Value in Report Variable 4 code's formula
would look like this:

rv2=user.field[1l] and rv3=user.field[2]

The Stop code that immediately follows Report Variable 4 being set prevents a user
from changing another user's printer selection.

Indirect Approach 2

A slightly different twist to this gives the Supervisor control over the default value
found in the User ID Panel Printer ID field. If you look back at Indirect Approach 1,
I have you, the definer, determining the default Printer ID for records in the User ID
Panel. You put it in that field as its Initial Formula or Initial Value. Instead, you
might want the Supervisor of your application to determine this, taking you out of the
picture altogether, at least in terms of deciding what the default printer is going to be.

Here you have a separate panel, which we might call the System Control
Panel (as opposed to the Printer Control Panel). The System Control Panel must
have exactly one record, so to guarantee that, we'll put in a hidden G9 field (with no
formula, just blank) that sits as the only field in a single-field index in this panel.
There are other ways to do this, but this is a simple way to guarantee a panel has no
more than one record.

This System Control Panel may contain many things that apply to various
panels in the application, but in the case at hand, it has a very important field: the
Default Printer ID field. That field has the same format as the Printer ID field in the
User ID Panel and the Printer Control Panel (in our example, G99). And, as in the
User ID Panel, that field has a data link that targets the Printer Control Panel, using
a Printer Control Panel index that begins with the Printer ID field, while having only
the Printer ID field on its field list.

Now go back to the User ID Panel and put in a hidden panel link that targets
the System Control Panel. Since there's only one record in the System Control Panel,
this hidden panel link uses any index in the System Control Panel and has no field
list. It will always land on the single record in the System Control Panel.

Next, in the User ID Panel, reformulate the Initial Formula (or Initial Value)
of that panel's Printer ID field. Instead of hardcoding a particular Printer ID in there
(like we did in Indirect Approach 1), blank out any formula there and do this:

276 Printer Control Issues

F4.

Tab to the new hidden panel link.

Down Arrow.

Tab to the Default Printer ID field in the System Control Panel.
F4.

Save that formula with initialization on record creation.

Each record creation in the User ID Panel will now initialize the Printer ID
field to the value found in the System Control Panel's Default Printer ID field. This
gives the Supervisor control over the default printer for your application. You might
want to read Controlling Data Entry: The Basic Default Panelin my Securing Data
Entry. This is a version of the Basic Default Panel scheme discussed there, where
the Supervisor here is a special user being given control over initial values of fields
in selected panels.

What These Reports Look Like

Now that we have the Printer Control Panel set up, to be used with an Indirect or
Direct Method, reports will look something like this when you use the Printer Control
Panel to insert printer control strings:

FIRST PAGE HEADER
——Empty——
OTHER PAGE HEADER
——Empty——
TWO-LEVEL REPORT HEADER

——Empty——
REPORT BODY
Dear Fellow :=iiiiDataPerfect:iiziii: User,]Italics On/Off codes

I'm happy to announce publication of my new book on DataPerfect
application development. Here's a summary of what it contains:

TWO-LEVEL FOOTER
——Empty——
PAGE FOOTER
——Empty——
FINAL FOOTER
——Empty——

In the above Edit Report Form, note two selected fields surrounding the word
DataPerfect. Those fields were obtained in one of the ways described above,
depending on whether the application is set up with a Direct or Indirect Approach to
using the Printer Control Panel. The field on the left is the Italics On field in the
Printer Control Panel, and the one on the right, Italics Off.

Direct Report Variable Approach

There's another interesting approach to using the Printer Control Panel, but it will
involve a major rewrite of all reports that use it. Here you base all reports on the
Printer Control Panel. Each report starts by finding the appropriate Printer Control
Panel record and stuffing the values found in all its fields into Report Variables.
Then, when a printer control string is needed, you simply print the appropriate Report

Printer Control Issues 277

Variable instead of searching through links for the appropriate Printer Control Panel
field to select.

If the Printer Control Panel is set up with Direct Approach 1 or 2, this is
pretty straightforward. Just make sure the report is based on the index that has the
active Printer Control Panel record up front: the Reverse Moment field index. If you
make the report stop after processing just that single record, you can have the
intended report be a Virtual Subreport (Subreport Using Virtual Link), like this:

[Based on Printer Control Panel]
[Index: Reverse Moment field index]
FIRST PAGE HEADER

——Empty—-

OTHER PAGE HEADER

——Empty—-

TWO-LEVEL REPORT HEADER

——Empty——

REPORT BODY B
7777777777 Store Value in Report Variable 221 —--—-—-—-—-——--—-—-—-—————— |Stuff RVs with
——————————————— Store Value in Report Variable 223 ------------------- |printer control
777777777777777 Store Value in Report Variable 224 -------------——-——- |values found in
777777777777777 Store Value in Report Variable 225 -------------—--—-- |current Printer
777777777777777 Store Value in Report Variable 226 ----------------—-- |Control Panel record

777777777777777 Store Value in Report Variable 227 —-————-——--————————
777777777777777 Store Value in Report Variable 228 -————-————————————— -
SUBREPORT LINK/PANEL: 0 1

FIRST PAGE HEADER _]Virtual Subreport
—-—Empty--— |This is the real
OTHER PAGE HEADER report. In this case
——Empty-— it targets Panel 1.
TWO-LEVEL REPORT HEADER Has no field list.
——Empty--
REPORT BODY
Dear Fellow ZiiiziDataPerfectiZiiii: User, Print two RVs here
instead of selecting
I'm happy to announce publication of my new book on DataPerfect fields

application development. Here's a summary of what it contains:

TWO-LEVEL FOOTER
——Empty——

PAGE FOOTER
——Empty——

FINAL FOOTER
——Empty—— -
END OF SUBREPORT: -
777777777777777 Store Value in Report Variable 200 ------------------- |Stop after one
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 ------ |Printer Control
Panel record

TWO-LEVEL FOOTER -
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

In the above Edit Report Form screen, the First Page Header stuffs Report
Variables with all the values it can find in the current Printer Control Panel record,
one field per Report Variable. So Report Variable 221 might hold the Printer Reset
field, Report Variable 222 the Bold On field, 223 the Bold Off field, etc. Once you've
constructed this in one Edit Report Form screen, you can block and copy it to others
in the same application (you must use Alt-F4 for this, not Shell's screen capture; see
In Report Definition Mode in my The Clipboard chapter). You might even consider
creating a Shell macro to insert all that in a Edit Report Form screen. Once those
Report Variables store the printer control strings, you can then just Ctrl-F7, 1, 5 to
print the appropriate Report Variable, as shown above. This is a lot easier than going
through panel links to select the appropriate field in the Printer Control Panel.

278 Printer Control Issues

To remember what printer control string each Report Variable holds, you
might consider creating a Shell macro you can use to insert their mappings in the Edit
Report Form screen, so it looks like this:

[Based on Printer Control Panel]

[Index: Reverse Moment field index]
FIRST PAGE HEADER

——Empty—-
OTHER PAGE HEADER
——Empty—-
TWO-LEVEL REPORT HEADER
Printer Code RV RV map for printer
777777777777777777777777777777 control strings.
Reset Printer 221 This won't print
Bold On/Off 222/223 because it's in a
Underline On/Off 224/225 Two-Level section
Italics On/Off 226/227 when no Two-Level
10, 12, 16.67 cps 228/229/230 Report is active.
A good place for
notes.

REPORT BODY
777777777777777 Store Value in Report Variable 221 —-—————-—————————————
777777777777777 Store Value in Report Variable 223 -————-—————————————
777777777777777 Store Value in Report Variable 224 —-———-——————-————————
777777777777777 Store Value in Report Variable 225 -————-—————————————
777777777777777 Store Value in Report Variable 226 —-——————————————————
777777777777777 Store Value in Report Variable 227 —-———--——--————————
777777777777777 Store Value in Report Variable 228 —-————-—-————————————

SUBREPORT LINK/PANEL: 0 1
FIRST PAGE HEADER

——Empty--

OTHER PAGE HEADER
——Empty--

TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY-

Dear Fellow ZifEiDataPerfectiiiiiis User,

I'm happy to announce publication of my new book on DataPerfect
application development. Here's a summary of what it contains:

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--
END OF SUBREPORT;
777777777777777 Store Value in Report Variable 200 -————-—————————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 ————--

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Don't forget, however, that when using Ctrl-F7, 1, § to print a Report
Variable, you need to tell DataPerfect its field format. If you make all the Printer
Control Panel fields the same format, this isn't much of a problem (say, A10 for all
of them, to accommodate those that need a lot of characters). But if you want to
preserve space, you might consider using different field formats for the various
Printer Control Panel fields, using smaller fields for those that don't need many
characters. If you opt for the latter, you should insert each Report Variable's format
in the Report Variable map above.

Printer Control Issues 279

280

Indirect Report Variable Approach

We'll have to modify this Report Variable Approach somewhat if we're setting up our
Printer Control Panel with the Indirect Approach. In that case, our report can't rely
on the appropriate Printer Control Panel record being at the beginning of the report's
index. The report, which will still be based on the Printer Control Panel, must Skip
To the appropriate Printer Control Panel record, process the Virtual Subreport, and
then not go to the next Printer Control Panel record.

There are a couple ways to do this. I'll just outline the simplest. Put a hidden
computed field in the Printer Control Panel that updates to

user.field[1]

and a hidden panel link in that panel that has this hidden computed field as the only
field on its field list. Have the link target the User ID Panel. This hidden panel link
will now go from the current Printer Control Panel record to the current user's User
ID Panel record.

We now base the report on a different index: the Printer Control Panel index
that sorts by the Printer ID field (we were using the Reverse Moment field index
before). Next, in the First Page Header, we create a Report Variable whose formula
penetrates our new Printer Control Panel panel link in order to select the Printer ID
field in the User ID Panel. And now we have the report, still in the First Page Header,
Skip To the first record it sees in that active index that has this Report Variable as its
first field's value. That is, we have the report Skip To the Printer Control Panel record
that has the same Printer ID field value as found in the current user's User ID Panel
record's Printer ID field.

All that said, the only differences between this report and the prior report is
the index it's based on, and the First Page Header, which now looks like this:

[Based on Printer Control Panel]
[Index: Printer ID field]

FIRST PAGE HEADER
777777777777777 Store Value in Report Variable 1 -————-———————————————
777777777777777 Skip To Record at Report Variable 1 —-——————-———————————

OTHER PAGE HEADER

The above Store Value in Report Variable I code has a formula obtained by
hitting F4, Tabbing to our new hidden Printer Control Panel panel link, hitting
Down Arrow, Tabbing to Printer ID file in the User ID Panel, and hitting F4. That
assigns Report Variable 1 the current user's Printer ID value. The Skip To code
causes DataPerfect to start with the first record it sees in the current Printer Control
Panel index with the Printer ID value found in Report Variable 1. And, as before, the
Stop If code that follows the subreport (not shown above; see the prior Report
Definition) keeps the report from processing more than one Printer Control Panel
record.

Printer Control Issues

Formulas

This chapter is for both beginners and the experienced. The fully commented
complex formulas, however, will probably lose the beginner.

Introduction

There are two places where the developer can find a type of programming language
in DataPerfect. One is the .STE file, which you create when you run DPEXP.COM
on an .STR file. The second place, which is the topic of this chapter, is the Specify
Formula screen. This screen comes into play in three areas of an application: Report
Variables, Fields, and Searches. The principles for defining a formula in all three
places are the same.

Some quick notes on terms used in forming formulas. An operator is a
mathematical or logical symbol like the plus sign (+), the minus sign (-), the greater
than (>) or less than (<) signs. An operand is what an operator acts upon. For
instance, in

1+ 3>2

the + sign is an operator that's taking the operands 1 and 3. The > sign also is taking
two operands:

1+3
and

2

An expression is what you get when you combine an operator with the
appropriate number of operands. In

1+3>2

there are two expressions:

1+3
and

1+3>2

Formulas 281

A formula is what this chapter is all about. It's a series of expressions. What
counts, however, is that it’s a well-formed formula. We’ll cover this shortly.

Formula Error Messages: A Warning

Be forewarned about something. If you create or edit a formula in the Specify
Formula screen, and then exit with F7 or F10, DataPerfect will stop you with an error
message if it sees something wrong with the formula’s syntax (i.e., if it’s not well-
formed). But if you just entered the Specify Formula screen to browse the formula
without editing anything, DataPerfect won’t examine the formula’s syntax. So let’s
say you just finished creating or editing a formula in the Specify Formula screen and
then hit F7. You were then greeted with an error message, telling you something
about a syntax error. You then hit F7 again, ignoring the error for now, figuring
you’ll handle it later. DataPerfect now politely lets you exit the Specify Formula
screen without another error message.

Tomorrow you go back into that formula (in the Specify Formula screen) to
look for the error. You don’t see it right away, so hit F7, to handle it after lunch when
you have more time. But now DataPerfect doesn’t complain with an error message.
Perhaps the formula is okay after all. Right?

No. DataPerfect only issues formula syntax error messages when exiting a
Specify Formula screen after creating or editing a formula during that Specify
Formula session. If you come back to the ill-formed formula later, and want to see
that message again, signal DataPerfect you’re editing the formula (like entering and
deleting a bogus character). Then hit F7 to see the message again.

Legal Values and Well-Formed Formulas

A legal value can be a character string surrounded by quotes, like one of these
(parenthetical numbers in these examples aren't part of the formulas):

(1)

2) "DataPerfect is wonderful."
@

4) nom

Or it can be a numerical value:

5) 1
6) 21

But it cannot be one of these:

@) A

282 Formulas

(8) DataPerfect is wonderful.

Please note a few things about the above groups. Each formula in the first
group, (1)-(4), refers to a character string, as signified by the quotes. Each formula
in the second, (5) and (6), refers to numerical values. The third group, (7) and (8), is
a group of illegal formulas.

Also, it’s important to understand the difference between (3) and (4) on the
one hand, and (5) and (6) on the other. (3) and (4) refer to character strings, not
numerical values. That is, (3) and (4) aren’t categorically different from (1) and (2).
They just refer to strings of alphanumeric characters found between the quotes.

However, (5) and (6) are formulas that refer to things that can be added,
subtracted, etc. They don't refer to character strings. They're what the character
strings between the quotes in (3) and (4) refer to. In classical analytic philosophy
circles, this is called the Use-Mention distinction. In (3), the definer is using the
string

" 1 n
to mention the string

1

Whereas (5) is using the string

1

to mention the numerical value

1

A Report Variable can also be given a well-formed formula, like one of these:
(a) 1+1 =2

(b) 1+1=3

(©) if P1F1 > P1F2 then "Goodbye" else "Hello" endif

But the following are not well-formed:

(d) if P1IF1 > P1F2 then Goodbye else Hello endif
(e) if P1IF1 > P1F2 "then Goodbye else Hello endif™

Note that (b) is false even though well-formed. (d) is not well-formed because

Goodbye

and

Formulas 283

284

Hello

have no meaning in a DataPerfect formula. However,

"Goodbye"

and

"Hello"

do have meaning in a DataPerfect formula. The latter pair of expressions refer to
character strings, and are used properly in (c). In (e), these strings are used properly,
but too much of the formula is surrounded by double quotes, thus causing (e) to fail
to have a then complement to the if portion of the formula. Even the then itself, has
been changed to a character string. In traditional logic, an if-then statement is called
a conditional statement or proposition; the portion between the if and the then is
called the antecedent; and the portion that follows the then is called the consequent.
Note also that, in (c)-(e),

P1F1

and

P1F2

are obtained by hitting F4 in the Specify Formula screen and then Tabbing to either
field P1F1 or P1F2 and hitting F4 again. They are not obtained by merely typing

P1F1
or
P1F2

If I had done that, even (c) wouldn’t be well-formed. Simply typed in,

P1F1

has no meaning in DataPerfect formulas. If you do type that in there, upon exiting the
Specify Formula screen DataPerfect will tell you there's an unrecognized word in the
formula.

Formulas

About The Rest of This Chapter

I'm not covering all available DataPerfect functions and operators in this chapter.
Rather, I'd like to cover a few of them that I feel many find confusing.

String Identity

This section will save you a lot of grief. The identity operator works as expected
when it comes to numerical values. The following are all true:

i
+
N
ANV AN
NN

>

And all these are false:

1 =2
1 >2
2 > 1+1

Nothing odd about this so far. But these are true:

n abc n
"a"

n aB n
n Abc "

Now, that's odd. Well, both those statements are true because DataPerfect
considers an identity statement between two strings to be true just in case there's an
ordered case-insensitive match on all characters contained in the shortest operand.
So the first string identity statement above is true because, independent of case, the
shortest of the two operands (aB) begins the longest of two operands (abc). Don't
forget I said independent of case. And the second string identity statement is true
because, independent of case, the shortest operand (a) begins the longest (Abc).

What does this odd way of doing things get you? Say you want a formula that
tests whether or not the value in a field begins with p. Even though that field, which
we'll call P1F1, is an A25 field, the following formula will do:

P1Fl = "p"

That formula will be true for all and only records where the string in field P1F1
begins with p or P, no matter how long that actual string is.

But this can have some unintended results. If you were trying to use a formula
like

P1F1 = "sam"

Formulas 285

to find all records in that panel with Sam in field P1F1, you might not realize such
a formula will also be true for records with Samantha in that field. Again, that
formula will be true for any record with a string in field P1F1 that starts with sam.

Perfect Matches and the Identity Operator

So, what if you want a formula to test for a perfect match, not just strings that begin
with some string or another? Say you have a report that's supposed to process only
records where the value in a US field, P1F1, is precisely AB, not ABC, ABX, etc.
Well, let's say you set Report Variable 1 to

P1F1 = "AB"

in the beginning of this report's Report Body, and then insert a Skip If Report
Variable 1 Is False code right after it.

You should realize by now that that won't work. This report will process all
records where AB starts the string found in P1F1. That will include records with
ABC, ABX, etc, in that field.

To get a perfect match here, you can set Report Variable 1 to one of these:

(1) cat .t [P1F1;"#$%"] = "AB#S3"
(2) PIF1"4#35%" = "AB #5gm
where
#5%

is a string the user will never put in P1F1. I could have used any such string here.

In example (1), I use the CAT.T function to strip trailing spaces in the value
found in P1F1. So, let's say P1F1 is ABC. Then the CAT.T expression in (1) will
produce

#S$ABC
yielding this identity statement:
"ABC#$%" = "AB#5%"

Look carefully at the above string identity statement. Neither string begins the
other. So it's false. But if P1F1 was AB, then the CAT.T expression in (1) would
produce

AB#S%

yielding this identity statement:

"AB#$%" - "AB#$%"

286 Formulas

Now that's true.

Example (2) avoids the CAT.T function. To do that, however, I need to know
exactly how long field P1F1 is. In this case, P1F1 is a US field. If the user enters AB
in field P1F1, DataPerfect actually stores a five-character string: AB with three spaces
after it. So if you don't strip these spaces with the CAT.T function, you'll need to pad
the string identity expression on the right with enough spaces to total five, before the
dummy string. To make this more clear, suppose the user entered AB in field P1F1.
Then the lefthand expression in example (2) would produce

AB #3$%
not
AB#$%

So, in forming the righthand expression in (2), I must take this into account
and add three spaces following the two-character expression AB:

AB #5%
That's the reasoning behind expression (2) looking like this:
P1F111#$%" = "ABR #$%"

Prompting for a Report Variable
Now, the above discussion concerned forming Report Variables that test records for
a perfect match on a character string. Alternatively, a report might prompt the user
for Report Variable's value. If that's the case, the Report Variable will carry a field
format with it (don't forget that you must tell the report definition what field format
the Report Variable has). This changes things. Let's explain.

Let's say the report's First Page Header prompts the user for Report Variable
1, which is formatted US. Now I need a Report Variable 2 in the Report Body to test
each record with a formula like one of the following:

(1) PIF1"#$3" = RVI"433"
(2) cat.t[PIFL;"#$%"] = cat.t[RVL;"#$%"]

What's going on here that makes this so different from the previous cases that
didn't involve a Prompt For code? Well, since both P1F1 and Report Variable 1 have
the same field format, you must either use CAT.T on both of them, or neither of
them. Using CAT.T on only one of them, as we did before, fails. To see why it would
fail, let's first see what happens if we use (1) and (2) when the user enters AB for
Report Variable 1 and P1F1 is indeed AB. (1) and (2) will produce the following true
statements respectively:

(la) "AB #5%" = "AB #5%"
(2a) "AB#SS" = "ABHSS"

Formulas 287

288

But now consider the two possibilities of applying CAT.T to only one side
but not the other:

(3) cat .t [P1F1; "#3$%"] = RVI"#3%"
(4) PIF1"#S$%" = cat.t[RV1;"#35%"]

In the same situation, (3) and (4) produce the following false statements respectively:

(3a> "AB#s%" — "AB #s%"
(4a) "AB #5%" = "AB#S3"

On the other hand, if the user enters ABC for Report Variable 1, and P1F1 is
still AB, we get the following results, all of which are false:

(la) "AB #$%" = "ABC #53%"
(2a) "AB#$%" = "ABCH#$3"

(3a> "AB#s%" — "ABC #s%"
(4a) "AB #$%3" = "ABC#$%"

As you may have surmised by now, the only way (3) and (4) will ever be true
is when the value in P1F1 fills that field (it's five characters long) and the user enters
that precise five-character string for Report Variable 1. Otherwise, it will yield a false
statement. On the other and, (1) and (2) will always be true or false correctly.

So, instead of choosing between

(3) cat.t[PlF1;"#$%"] = RVI"#$%"
and

(4) PIF1"#$%" = cat.t[RV1; "#5%"]
we should choose between these:

(5) PIF1"#$3" = RVI"4S3"
(6) Cat.t[PlFl;"#$%"] = cat.t[RV1;ll#$%"]

Again, the difference here is that prompted-for Report Variables are
formatted. Before we entertained using prompted-for Report Variables, we were
dealing with unformatted Report Variables. This makes a big difference that has
confused many developers.

One final note. I made this discussion easy by choosing a U5 format. If I
wanted a perfect match on an AS field, I couldn't do it. DataPerfect has no way to
perform a case-sensitive test on a string with the identity operator.

Formulas

CASES Statements vs. IF-THEN Statements

Of all the formula manipulation questions I get, I think the most common involves
showing how to use CASES statements in place of IF-THEN statements. You'll feel
at ease with CASES statements after reading this.

You use a CASES or IF-THEN statement when you need conditional logic.
Let's say you're a loan broker and have an application that tracks the history of
various loans you manage. You want a field in the Loan Panel that displays
MATURED if the displayed loan matured. You format it U7::C (it's a computed field
so it's always current), and you assign it this formula:

if PIF1 >= today then "MATURED" else "" endif

Assuming P1F1 is the loan's Maturity Date, this is very straightforward. There's no
reason to use a CASES statement here. The conditions to be analyzed are very
simple.

But suppose you have more than just one condition to analyze. Say, in this
same panel, you want a different field showing you the day of the week the displayed
loan matures. Whether a loan matures on a Sunday or a Friday makes a big difference
in the way you run your business. You could use an IF-THEN statement, but it's not
as readable as a CASES statement. Here are both:

IF-THEN statement

if day.of.week[P1F1]=1 then "Monday" else
if day.of.week[P1F1]=2 then "Tuesday" else
if day.of.week[P1F1]=3 then "Wednesday" else
if day.of.week[P1lF1]=4 then "Thursday" else
if day.of.week[P1F1]=5 then "Friday" else
if day.of.week[P1F1]=6 then "Saturday" else
if day.of.week[P1F1]=7 then "Sunday" else
endif endif endif endif endif endif endif

CASES statement

day.of.week [P1F1] cases
case cv=1 of "Monday" endof
case cv=2 of "Tuesday" endof
case cv=3 of "Wednesday" endof
case cv=4 of "Thursday" endof
case cv=5 of "Friday" endof
case cv=6 of "Saturday" endof
case cv=7 of "Sunday" endof

endcases

A few points about CASES statements. First, as soon as a Case condition is
true, the statement logic terminates and grabs the consequent to the right of the of.
This is similar to the series of IF-THEN lines above, where the logic ends with the
first condition it finds true, and then grabs the consequent to the right of the then.

Second, if you want to reference the Case Variable in the CASES statement
header, all you need to use is the string cv. This is quite different from an [F-THEN

Formulas 289

290

statement, where you must reference that object over and over again, as we did
above. In both the CASES and the IF-THEN statements, we were continuously
referencing

day.of.week [P1F1]

But I only had to write that string (and select P1F1) once in the CASE statement.

Third, in a CASES statement, you don't need to use cv at all. A common
misunderstanding about CASES statements is that you must use cv on every Case
line, like I did above. Consider the following:

day.of.week [P1F1] cases
case PlFl<=today of "MATURED" endof

case cv=1 of "Monday" endof
case cv=2 of "Tuesday" endof
case cv=3 of "Wednesday" endof
case cv=4 of "Thursday" endof
case cv=5 of "Friday" endof
case cv=6 of "Saturday" endof
case cv=7 of "Sunday" endof
endcases

You might consider what day of the week the loan matures to be irrelevant
if it already matured. So here the user is told the loan has matured if it has, otherwise
they're told the day of the week it matures. Note that the first Case line does not use
the Case Variable.

In fact, though a Case Variable must be defined, I could write a CASES
statement that never references it. The logic of the CASES statement is still the same.
It stops as soon as it finds a true condition on the left of an of, and then yields the
consequent on the right. It cares not one bit if you ever reference the Case Variable.
So you can just make up a useless Case Variable header line, in order to make use of
the conditional logic in the subsequent lines. For instance, the following is a well-
formed CASES statement:

P1F1 cases

case P1F2 > P1F3 of "Goodbye" endof
case today < P1lF4 of "Hello" endof
case P1F4 = "Sally" of "Thanks" endof
default "Greetings"

endcases

About the above, note two things. First, the Case Variable in the Case Header
line is never referenced (that is, this CASES formula never uses the Case Variable
cv). Second, unlike the other CASES statements in this section, this one has a default
line. This expresses what the CASES statement will yield if none of its Case lines
yields a result. If no Case line yields a result and there's no default line, then the
CASES statement yields a blank if it's part of an alphanumeric field or Report
Variable, or 0 if it's part of a numerical field or Report Variable.

The beauty of the CASES statement, however, is availability of using the
Case Variable over and over again, line by line. It not only makes it easier to read
than its IF-THEN counterpart, but it makes it easier to change the formula later when

Formulas

you decide you were referencing the wrong field (or want to change it later for
whatever your reason). Whereas you'd have to change every occurrence of that field
in an IF-THEN formula, you'll only have to change one occurrence of that field in the
CASES statement, provided it's the Case Variable.

APPLY.FORMAT and CONVERT

Once you understand APPLY.FORMAT, you'll use it all the time. You'll also use
CONVERT, but nowhere near as often as APPLY FORMAT.

APPLY.FORMAT converts an entity into text. Contrary to what many
DataPerfect users think, the entity being converted by APPLY.FORMAT need not
be a numerical value. It can itself be another text string. Whereas you'll most often
use APPLY.FORMAT to convert numerical field's value to a text string (like a
G9999 formatted numerical value to an A4 formatted text string), you may
sometimes need to, say, convert an A field's contents to an upper case string (like an
A8 formatted string to a U8 formatted string). The entity being converted can be
referenced by a field name like P/F 1, or a report variable like RV 1, or some other
expression, like a CAT.T expression. What's important here is what the end result is:
a text string.

On the other hand, CONVERT converts an entity to a numerical value.
Again, like APPLY.FORMAT, the entity being converted by CONVERT can be
either text or numerical value. What's different is the result: a numerical value.

APPLY.FORMAT

Let's demonstrate these two functions with examples. Consider the following typical
use of APPLY.FORMAT, which also shows a common use of a CASE statement |
frequently use in panels:

(day.of.week [P1F1] cases
case cv = 1 of "Monday" endof
case cv = 2 of "Tuesday" endof
case cv = 3 of "Wednesday" endof
case cv = 4 of "Thursday" endof
case cv = 5 of "Friday" endof
case cv = 6 of "Saturday" endof
case cv = 7 of "Sunday" endof

endcases)

(month[P1F1] cases

case cv = 1 of "January" endof
case cv = 2 of "February" endof
case cv = 3 of "March" endof
case cv = 4 of "April" endof
case cv = 5 of "May" endof
case cv = 6 of "June" endof
case cv = 7 of "July" endof
case cv = 8 of "August" endof
case cv = 9 of "September" endof
case cv =10 of "October" endof
case cv =11 of "November" endof

Formulas 291

case cv =12 of "December" endof
endcases)

" n

apply.format ["GZ9;;S";day[P1F1]]

" n
14

apply.format ["N9999"; year [P1F1]]

That formula looks at a D99/99/99 or D99/99/9999 field (P1F1) and then
produces a fext string like

Monday, June 13, 1994

for an A29 field. This is tricky because it has numbers in it. At first, you might think
the lines

apply.format ["GZ9;;S";day[P1lF1]]
apply.format ["N9999";year [P1F1]]

could have been

day[P1lF1]
year [P1F1]

But the latter don't yield text strings. They yield numerical values. We convert these
numerical values to text strings with APPLY FORMAT.

The second APPLY.FORMAT line above (the year line) is pretty
straightforward. You simply put its numerical format in quotes, to its left, followed
by a semi-colon. That tells DataPerfect that you want its numerical value converted
to a text string in the format that would typically be displayed by an N9999 field.

But the first of these two lines (the day line) has something else interesting
in it. Notice I used a modifier (;;S) that's supposed to be used in reports (it's a Print
Mode Indicator, not a Display Modifier), but I use this entire formula in panels as
well as reports. As I mentioned in Sneaking Print Mode Indicators into Panel Fields
in my Reports: Fields chapter, though the DataPerfect manual fails to mention
this, you can also use Print Mode Indicators with the APPLY . FORMAT function in
panel field formulas. I used it here to strip the leading space of a GZ9 field.
Otherwise the formula would convert 01/01/94 to

Saturday, January 1, 1994
instead of the more desirable

Saturday, January 1, 1994

This trick comes in handy when you want to display text in a panel in a more
readable fashion than that in which it's stored in some other place. For instance, you
might want text right-aligned in the upper right corner of a panel:

John Doe
1234 Elm St., Apt. 2

292 Formulas

Pleasant Town, CA 99390
213/555-5678 213/555-3565

Each of the first two lines arise from formulas like these:

apply.format ["A30;;R";P1F2P12F1]

and

apply.format ["A30;;R";P1F12P2F2]

where P1F12P2F1 and P1F12P2F2 are A30 fields in another panel, selected via panel
link P1F12. The first holds the person's name and the second, his street address.
The third line arises from a formula like this:

if P1lF12P2F2="" then "" else
apply.format

(

"A40,‘ ;R";

cat.t
[
P2F12P2F3;
", "PQ2FI12P2F4;
""apply.format ["N99999"; P1F12P2F5]
]

]

endif

It looks first to see if there's a street address for this person (first line). If not,
the formula yields a blank, otherwise it yields a right-aligned A40 field. Note the use
of APPLY . FORMAT in the concatenation statement (CAT.T) in that formula.

CONVERT

Again, APPLY.FORMAT converts an entity into fext. Let's discuss CONVERT,
which converts an entity to a numerical value. A simple CONVERT example would
be

convert ["GZZ9";P1F1]

Here the definer wants to take the value found in P1F1 and turn it into to a numerical
value formatted as GZZ9. P1F1 might be a U3 field, thus holding numerical zext. But
it could also be a N999 field, and the user wants to convert it to a GZZ9 format.
Again, CONVERT allows you to convert the contents of any sort of field (text or
numerical) into a numerical value. It's not just for converting fext into numerical
value. A more involved use of CONVERT is discussed in the next section of this
chapter.

Formulas 293

SUBSTRING and SUBFIELD

294

SUBFIELD

I find the SUBFIELD function particularly useful when importing data, when that
data isn't in the format I'd like it to be in my database. For instance, consider dates in
a WordPerfect secondary merge document that look like this:

January 21, 1993

If you want a date like that to be placed in a D99/99/9999 field in your database
during an import, use the SUBFIELD function.

Just create a field large enough to hold the date text string you see above. An
A18 field will accommodate any such date rext string. That's the field that will grab
the incoming date text. Now we need a D99/99/9999 field that will hold the
converted date numerical value. Don't forget that a date field holds a numerical value
(the number of days since March 1, 1900) not a text string. The formula we use for
this date field is a nice one, in that it demonstrates many concepts all in one formula.
In constructing it, we'll consider our A18 field to be P1F1.

First, because we're changing a fext string to a numerical value, we need the
CONVERT function. So we start like this:

convert
[
"D99/99/9999";

]

Now we need to come up with the formula for the text string that needs converting,
and put it between the semi-colon and the second right-angle bracket.

Let's start with the month portion of the text string. For this we can use the
following CASES statement followed by a forward slash:

subfield[P1F1;" ";1] cases
case cv = "January" of "01" endof
case cv = "February" of "02" endof
case cv = "March" of "03" endof
case cv = "April" of "04" endof
case cv = "May" of "05" endof
case cv = "June" of "06" endof
case cv = "July" of "O07" endof
case cv = "August" of "08" endof
case cv = "September" of "09" endof
case cv = "October" of "10" endof
case cv = "November" of "11" endof
case cv = "December" of "12" endof

endcases

"/"

Let's discuss this. The CASES statement's header line is built on the
SUBFIELD function. It reads, in essence,

Formulas

Consider P1F1 a series of subgroups
delineated Dby the space, and take the
second subgroup.

The first argument in the SUBFIELD function is the field being considered. The
second, surrounded by quotes, is the mask or masks that delineates the subfields (the
space). The third tells us what subgroup is picked, counting from the left.

Two things about that second argument. First, it accepts multiple masks. Let's
say you wanted the SUBFIELD function to delineate subfields on more than one
mask. Say you wanted it to delineate subgroups based on either the space or the
comma, or both. Then, in our above example, the first line of the CASES statement
would look like

subfield[P1F1;" ,";1] cases

or

subfield[P1F1;", ";1] cases

Second, the mask used in this function is surrounded by quotes except for one
special situation: when you want the mask to be the End Of Line character (carriage
return). DataPerfect's author reserved the number O for that. So suppose P1F1 is a
variable-length text field with the following value:

Mary had a little lamb.
I like lambs.

In this case,

subfield[P1F1;0; 2]

yields
I like lambs.

Back to using only the space as the mask. The first P1F1 subgroup delineated
by the space is the month text string. Now, the next twelve lines say to use the
numerical text string in place of the alpha text string for that month. Note I
surrounded the numerical text string on each of these twelve lines with quotes. Don't
forget that, at this stage in the formula, we're simply changing one text string to
another text string. Later, the CONVERT function will convert this stuff to a
numerical value formatted as D99/99/9999. But we're still dealing with text strings
here. That is, we're still just putting text between the semi-colon and the second right-
angle bracket in this formula:

convert
[
"D99/99/9999";

]

Formulas 295

One last note about that CASES statement. I followed it with a quoted
forward slash. That's for the slash that separates the month from the day, in
expressions like

01/23/1993

If it wasn't surrounded by quotes, it would be evaluated as a division operator.
So far, we have the text version of

01/

in our formula partially completed as this:

convert
[
"D99/99/9999";
subfield[P1F1;" ";1] cases

case cv = "January" of "01" endof
case cv = "February" of "02" endof
case cv = "March" of "03" endof
case cv = "April" of "04" endof
case cv = "May" of "05" endof
case cv = "June" of "06" endof
case cv = "July" of "07" endof
case cv = "August" of "08" endof
case cv = "September" of "09" endof
case cv = "October" of "10" endof
case cv = "November" of "11" endof
case cv = "December" of "12" endof

endcases

"/"

]

Now, the day portion of the date. That's much simpler, because the day
portion of the string is already in numerical text format. The day portion of the
formula, followed by its forward slash, would look like this:

subfield[P1F1;" ,";2]
LA

That's read

Consider P1F1 a series of subgroups
delineated by the space or the comma, and
take the second subgroup.

In the string

January 23, 1993

there are three such groups, the second being

23

296 Formulas

Though we should use the or the comma part of that formula when we extract the
numerical month portion of the date, we don't need to. If we leave out the or the
comma part of this formula, and use

instead of

subfield[P1F1;"

subfield[P1F1;"

";2]

P i 2]

we would technically be extracting

instead of

23,

23

As it turns out, though, that would still work fine. The D99/99/9999 conversion
would have interpreted the former as a 23 and ignored the comma. But let's stick with
technically more correct

subfield[P1F1;"

P i 2]

Okay, now the year portion. That's simply

subfield[P1F1;"

";3]

Our completed formula would now be the following:

convert

[
"D99/99/9999";
subfield[P1F1;" ";1]

case cv="January"
case cv="February"
case cv="March"
case cv="April"
case cv="May"
case cv="June"
case cv="July"
case cv="August"
case cv="September"
case cv="October"
case cv="November"
case cv="December"

endcases

"/ll

subfield[P1F1;" ,";2]

"/"

subfield[P1F1;" ";3]

]

cases
Of "Ol"
Of "02"
Of "03"
Of "04"
Of "05"
Of "06"
Of "07"
Of "08"
Of "09"
Of "10"
Of "11"
Of "12"

endof
endof
endof
endof
endof
endof
endof
endof
endof
endof
endof
endof

rmonth
date as
text
—slash
—day
—slash
—year -

date as

tnumerical fnumerical

value

Formulas 297

298

SUBSTRING

That's how I would write that formula with the SUBFIELD function used for all parts
of the date string. In the case of the month portion of the date string, it looks like I
need to use the SUBFIELD instead of the SUBSTRING function because the months
were denoted by words of varying lengths. But since each month is uniquely
determined by its first three characters (actually, the first two will do, but that's less
readable in my opinion), I could have used the SUBSTRING function. Take a look
at the SUBSTRING function help screen:

substring[text;start; Inth]

Produces "1lnth" characters beginning at "start"
If start is 0, produces last "1lnth" characters

As you can see, the SUBSTRING function relies on counting characters from
a fixed position in a string. So I could have constructed the formula like this:

convert —
[
"D99/99/9999";
substring[P1lF1;1;3] cases — —
case cv="Jan" of "01" endof
case cv="Feb" of "02" endof
case cv="Mar" of "03" endof
case cv="Apr" of "04" endof
case cv="May" of "05" endof
case cv="Jun" of "06" endof Fmonth

case cv="Jul" of "07" endof date as date as
case cv="Aug" of "08" endof rnumerical fnumerical
case cv="Sep" of "09" endof text value

case cv="0Oct" of "10" endof
case cv="Nov" of "11" endof
case cv="Dec" of "12" endof

endcases —

m/n —slash
subfield[P1F1;" ,";2] —day
"/n —slash
substring[P1lF1;0;4] —year -

] _

Note also that I used SUBSTRING for the year as well the month in the above
formula, though I opted to retain my use of SUBFIELD for the day.

A String Identity Variation

Let's go a step further. Because of what I mentioned in String Identity in this chapter,
I can actually do away with the SUBSTRING and SUBFIELD functions in the month
part of this formula. Consider the following:

convert
[
"D99/99/9999";
P1F1 cases
case cv="Jan" of "O1" endof_l 1

Formulas

case cv="Feb" of "02" endof
case cv="Mar" of "03" endof
case cv="Apr" of "04" endof
case cv="May" of "05" endof
case cv="Jun" of "06" endof Fmonth

case cv="Jul" of "07" endof date as date as
case cv="Aug" of "08" endof rnumerical fnumerical
case cv="Sep" of "09" endof text value

case cv="0Oct" of "10" endof
case cv="Nov" of "11" endof
case cv="Dec" of "12" endof

endcases —

m/n —slash
subfield[P1F1;" ,";2] —day
m/n —slash
substring[P1lF1;0;4] —year -

] _

In the above formula, I can use the first three characters of a month name
because of two things. First, it only takes the first three characters to uniquely
identify a month name. Second, an identity statement is true just in case the shortest
string (the three-character month name string) begins the longer one (cv, or P1F1).
Re-read String Identity earlier in this chapter if this isn't clear.

CONTAINS

The CONTAINS function can be a little confusing unless you realize it's best thought
of as a match function (thanks to Paul Durban for describing the CONTAINS
function this way in my 1994 Atlanta seminar). The CONTAINS function is used to
test a fixed-length or variable-length text field for the presence of a character string.
For instance, you might want to define a report that prints all records with

Sally Adams
in variable-length text field P1F1, formatted A30A4. You might think this will work:

contains[P1F1;"Sally Adams"]

But that fails unless P1F1 is exactly eleven characters long (an Al1 field). That is,
the above formula is true only for a perfect match on the entire contents of P1F1. It
will be false, for instance, if P1F1 is an A20 field containing

Sally Adams 1is nice
Here's the formula that works:
contains[P1F1l;"*Sally Adams*"]

That too is true if the argument to the right of the semicolon is a perfect match on the
entire contents of P1F1. But with the wildcard characters in there (the asterisks), it
allows for text to precede or follow

Formulas 299

Sally Adams

This chart should clear all this up for you:

The CONTAINS Function Delineated

Formula

Truth Conditions

contains[P1lF1;"Sally Adams"]

sally adams completely fills P1lF1 (so
P1F1 must be 11 characters long).

contains[P1lF1l;"*Sally Adams"]

sally adams is at the end of the text
field P1F1 (not followed by anything,
even a space) .

contains[P1lF1;"Sally Adams*"]

sally adams is at the beginning of
text field P1F1.

contains[P1lF1;"*Sally Adams*"]

sally adams is anywhere in text field
P1F1.

Spaces and Carriage Returns in Formulas

Now, some comments on how I use spaces and carriage returns in developing the
above formula. I use them to make the formula more readable. In analyzing a
formula, DataPerfect ignores spaces and carriage returns outside quotes. So, for

instance,

apply.format ["G999";P1F1]

can just as well be written as

apply.format
["G999",;PLlF1
]

or
apply.format
[
"G999";P1F1
]
or
apply.format
[
"G999";
P1F1
]
or

300 Formulas

apply.format
[

"G999"
ElFl
]
Likewise,
P1F1="A"
is equivalent to
P1F1 ="
and
P1F1 - nam
and
P1F1
- .
but not
P1F1=" A"
or
P1F1="A "
or
P1F1=" A "

Troubleshooting Formulas

Problem
You have a field formula on a numerical field that occasionally causes the field to
update to a string of asterisks (****) instead of a number.

Solution

Your field formula is attempting to yield a number too big for the field format.
Increase the field format size.

Formulas 301

Problem
A field formula that uses a link to get its data doesn't update properly, even though
the link is defined properly.

Solution
The field list of the involved link must precede the link in the Edit Order for this field
formula to work.

Problem
When attempting a Search on a formula with a string identity, you get too many
matches.

Solution
Read Perfect Matches and the Identity Operator under String Identity above. You're
not understanding how string identities work.

Problem
When attempting a Search on a formula witha CONTAINS function, you get too few
matches.

Solution

Read the CONTAINS section above. You're not treating this function as a match
function.

302 Formulas

lteration Control

Beginners should peruse this chapter but not expect to grasp a lot of it. This is really
for the experienced DataPerfect application developer.

Introduction

To iterate is to do something repetitively. In the world of DataPerfect, Iteration
Control is a set of possible Report Definition options that, in general, determine
whether or not the current or next record will be processed or skipped. For instance,
you might want a report to produce an Itemized Ledger for one specific Account, and
do so by printing only services rendered (i.e., excluding payments) within a date
range. If all charges and payments are in the same Transaction Panel, such a report
must skip payments, as well as skip all records with dates outside the date range. This
involves using some sort of Iteration Control.

When in the Edit Report Form screen, you access the Iteration Control menu
with Ctrl-F7, A in the First Page Header, or Ctrl-F7, 9 in the Report Body. In either
location, the displayed menu is the same:

Report Iteration Control
1 - Skip Record if RV is False
2 - Stop [Sub]Report if RV is False
Skip To Record At RV
Choose Next Record Using LookUp
Repeat Record if RV is True (not 0)

o W
[

Selection: 0

With the exception of Iteration Control option 4 (Choose Next Record Using
LookUp), Iteration Control involves Report Variables, so you're going to need to
know how to store formulas in Report Variable to understand this section. Read up
on Report Variables in the DataPerfect manual or my Report Variables chapter if
that's new to you. Let's start with the first Iteration Control option.

Skip Record if RV is False

Before version 2.3, this was the only Iteration Control option DataPerfect application
developers had. Though you can use it in the First Page Header, you're almost always
going to be use it in the Report Body. When DataPerfect sees that code in the Report
Body, it uses the Report Variable referenced by that code to evaluate each record in
the report's index. It will skip any record that makes that Report Variable false. Or
better, in terms of figuring out how to construct the Report Variable's formula,
DataPerfect will include all and only records that make that Report Variable true,
skipping all others.

lteration Control 303

304

Let's say you want a report to print a letter to each female teacher in the
database, skipping all males. Assuming the Sex field in the Teacher Panel is P2F5,
we would probably want to work out a way to use that field with the Skip If code.
The Skip If code will work if we can come up with a Report Variable that will be true
of all and only Teacher Panel records that reference female teachers.

After calling the Specify Formula screen for Report Variable 1 with Ctrl-F7,
1, 4, 1, Enter, we can insert this formula:

P2F5="F"

P2F35, of course, was obtained using the F4 key and selecting the Sex field in the
Teacher Panel. Now that formula is true of each record that has an F in the Sex field,
and false of all others. This is the sort of Report Variable we want the Skip If code
to evaluate here. After saving that formula for Report Variable 1 by hitting F7 on the
Specify Formula screen, our Edit Report Form screen looks like this:

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY.
777777777777777 Store Value in Report Variable 1 -————--——————————————

TWO-LEVEL FOOTER
——Empty-—-—

Note that I put that Store Value code in the Report Body. That's the only logical place
to put it, since that's the only place in the Report Definition that processes or
evaluates each record in the index, one at a time.

Next, [Ctrl-F7, 9, 1 to insert the Skip If code:

FIRST PAGE HEADER
——Empty-—-—
OTHER PAGE HEADER
——Empty-—-—

TWO-LEVEL REPORT HEADER
——Empty-—-—

REPORT BODY-
777777777777777 Store Value in Report Variable 1 -————————————————————
777777777777777 Skip Record if 0 (False) Is in Report Variable 1 --—-—-

TWO-LEVEL FOOTER
——Empty-—-—

The above report will run the Report Body on all and only those Teacher
Panel records with an F' in the Sex field. So if I put some fields and text in that
Report Body, along with a Skip to Bottom of Page code (Ctrl-F7, 4) after all that, I
can print letters to all and only females in the database, starting with a new page for
each female:

lteration Control

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
777777777777777 Store Value in Report Variable 1 —-————-———————————————
777777777777777 Skip Record if 0 (False) Is in Report Variable 1 --——--

Dear Ms. Imiiigiimiimisisisn Rest of Report Body
(the actual letter)

[etc.]

TWO-LEVEL FOOTER
——Empty——

Each time the above report sees a female, it processes the rest of the Report
Body (everything that follows the Skip If code), including sending a Page Eject to the
printer. Each time it sees a male, it passes to the next record without processing the
rest of the Report Body.

The Skip If code is powerful, and we got along with it being our only Iteration
Control option for a long time. But it can be frustrating to use with large databases
in certain types of reports. Consider a database that holds records of all voters
registered in California. Among other things, it holds the date they first registered as
a voter in California. Consider a report that prompts the user for Start and End Dates,
and then proceeds to print a list of citizens whose First Time Registration Date in
California falls within that date range. Assume the database has all voters whose First
Time Registration Date is within the last forty years, and you want a list of those
whose First Time Registration Date is between June 22, 1995 and January 15, 1996.

If the only Iteration Control option you have for this is the Skip If code, that
report will physically examine each and every record in the database while printing
out information on a relatively small percentage of them. Don't forget that the Skip
If code doesn't limit how many records that report inspects. It only limits the number
it prints. What would be ideal is if we can get this report, when indexed by First
Time Registration Date, to cause DataPerfect to actually start with the first record in
the desired date range and stop as soon as it sees a record beyond that date range,
without having to examine all the records outside the desired date range.

Consider a different, slightly more complex, but common, report: one that
prompts for Account Number, Start Date, and End Date, and then generates a ledger
of transactions that fall within that date range for that Account. Limited only to using
the Skip If code (again, which is all we had before version 2.3), we were limited to
defining a report that did this:

* 1. Starting at the beginning of an Account Panel index, it inspects and,
using the Skip If code, it skips records until finding the one with the
chosen Account Number.

2. It drops to a subreport targeting the Transaction Panel.
* 3. It inspects and, using the Skip If code, skips all Transactions that
precede the Start Date.
4. It processes all Transactions that are within the date range.

lteration Control 305

* 5.
6.
* .
8.

It inspects and, using the Skip If code, skips all Transactions that
follow the End Date.

It returns to the Account Panel section of the report.

It inspects and, using the Skip If code, skips all Account Numbers
that follow the desired Account Number.

It ends.

The steps shown with asterisks (1, 3, 5, and 7) all slow the report terribly
when applied to large databases. But, if, instead of the Skip If code, we use version
2.3's Skip To Record At RV and Stop [Sub]Report if RV is False codes (which I'll
hitherto call Skip To and Stop If) in coordination with each other, we can define a
report that does this:

A.

B.
C.

Using the Skip To code, it goes directly to the first Account Panel
record with the chosen Account Number.

It drops to a subreport that targets the Transaction Panel.

Using the Skip To code, it goes directly to the first Transaction Panel
record with the chosen Start Date.

It processes all Transactions that are within the date range.

Using the Stop If code, it stops processing Transactions as soon as it
comes to one after the chosen End Date.

It returns to the Account Panel.

Using the Stop If code, it stops the entire report as soon as it's done
processing the chosen Account Panel record.

The above report skipped all the following time consuming steps of the other
report definition that relied completely on the old Skip If code:

* 3.
* 5.
* .

It inspects and, using the Skip If code, skips all Transactions that
precede the Start Date.

It inspects and, using the Skip If code, skips all Transactions that
follow the End Date.

It inspects and, using the Skip If code, skips all Account Numbers
that follow the desired Account Number.

Let's explain how to implement the Skip To and Stop If codes.

Skip To and Stop If

306

I find it easier to discuss Skip To and Stop If codes together, since that's how you'll
usually use them. Again, I use Skip To to refer to what DataPerfect calls Skip To

Record At RV,
is False.

and Stop If to refer to what DataPerfect calls Stop [Sub]Report if RV

Though the menu that gives you access to these Edit Report Form screen
codes (the Iteration Control menu) is found only in the First Page Header or the

lteration Control

Report Body, you can always move these codes to any place you want on the Edit
Report Form screen. This may come in handy in some rare cases, but you'll usually
be putting them in either the First Page Header or the Report Body. To Copy a code
from one location of an Edit Report Form screen to another (even to another Report
Definition in the same application), just position the cursor to its immediate left and
Block it with Alt-F4, Down Arrow, F10. To Move instead of Copy the code, use
Crtl-F4 instead of F10 after Blocking it. In either case, you Paste with Ctrl-F4 in the
new location.

The Variable Entity in Skip To Operations

Value vs. Statement
The Report Variable you use in defining Skip To code should hold a value of a field,
not a statement about a field. A value of a field might be, say, the Account Number

1009

or the field

P1F1

Whereas, a statement about a field might be

P1F1=1009

or

P2F1>=RV2

In the report that concerns us here (the Itemized Ledger report), such a Report
Variable will hold a numerical value: Account Number or Start Date. That is, we're
going to define one part of this report to Skip To the Account Number chosen (in the
Account Panel), then Skip To the Start Date chosen (in the Transaction Panel).

This contrasts with the other three Iteration Control options that also use
Report Variables (Skip If, Stop If, and Repeat If). Each of these three uses a Report
Variable that holds a statement, and consequently looks to see if that statement is true
of the current record. Because the Skip To option uses a Report Variable holding a
value, it looks to see if that value exists in the primary sorting field of the current
record.

The Primary Sorting Field

When using Skip To, the primary sorting field of the active index must be compatible
with the value assigned to the Report Variable in the Skip To definition. If the Skip
To code isn't in a subreport, then the primary sorting field is the first field in the main
report's index. If the Skip To code is in a subreport, then the primary sorting field is
the field in the subreport's index that immediately follows the matching fields in the
subreport's link field list.

lteration Control 307

308

So, in the latter case (where the Skip To code is in a subreport), let's say the
main report is based on the Account Panel. Further, the link that governs the
subreport targets the Transaction Panel, has a link field list consisting only of the
Account Number field, and uses Index 1 of the Transaction Panel. In this case, Index
1 of the Transaction Panel looks like this:

Account Number, Transaction Date, Transaction Number

The primary sorting field of that subreport is the field that immediately follows the
Account Number field in Index 1 of the Transaction Panel: Transaction Date.

Strategic Placement of the Skip To Code

Where you place the Skip To code is crucial. If you place it in the First Page Header,
DataPerfect goes immediately to the first record whose primary sorting field has a
value equal to or greater than the Report Variable assigned that Skip To code, and
processes all records in that index from that point forward. If you place it in the
Report Body, DataPerfect goes immediately to the first record whose primary sorting
field is equal to the Report Variable, and processes that perfect match repeatedly (as
opposed to processing all records in that index from that point forward). In the former
case (placing the Skip To code in the First Page Header), if DataPerfect fails to find
a perfect match, it settles for next record in the index (following the nonexistent
perfect match) and starts processing the index from there. In the latter case (placing
the Skip To code in the Report Body), if DataPerfect fails to find a perfect match, the
report (or subreport) stops. You'll usually put the Skip To code in the First Page
Header. As I outline our Itemized Ledger example here, I'll show how to successfully
use it in both the First Page Header and the Report Body.

The Internal Logic of the Skip To Code

Whether you put the Skip To code in the First Page Header or the Report Body,
DataPerfect processes it with the logic of a lookup type-to-search, jumping almost
instantaneously to the desired record, though in the Report Body case it aborts the
process if it doesn't see a perfect match. So a Skip To code in the First Page Header
is a little more like a lookup than a Skip To code in the Report Body, as lookups in
Browse mode don't abort just because they don't find a perfect match. But the way
DataPerfect moves to the desired record is just like a lookup. This contrasts with the
Skip If code, which acts more like a Search. Under the command of the Skip If code,
DataPerfect examines each and every record in the index on its way to the desired
record, like running the report with Search Conditions, or doing an F2 Search in
Browse mode. On the other hand, under the command of the Skip To code,
DataPerfect never sees the records on its way to the desired one (like performing a
lookup in Browse mode).

lteration Control

Combining the Skip To Code with the Stop If Code

Just as the Skip To code works in concert with a previously created Report Variable,
checking to see if that Report Variable's assignment exists in the current record's
primary sorting field, the Stop If code works in concert with a previously created
Report Variable, checking to see if its assignment is true or false.

Let's put these two codes into practice with our Itemized Ledger report. Look
at these two steps in our proposed report:

A. Using the Skip To code, it goes directly to the first Account Panel
record with the chosen Account Number.

G. Using the Stop If code, it stops the entire report as soon as it's done
processing the chosen Account Panel record.

Those are the two that concern the Account Panel. We want the report to
jump to the correct Account Panel record and stop as soon as it's done processing that
Account. To use a Skip To code here, we need to first create an Report Variable that
holds the Account Number the user is interested in. Though the User Chooses code
(Ctrl-F7, 4) is more effective here, I haven't talked about that yet. Let's use the
Prompt For code for this (Ctrl-F7, 6):

FIRST PAGE HEADER
——————————————— Prompt for Value of Report Variable 1 ****************:J Prompt for Acct Num

OTHER PAGE HEADER
——Empty——

Now we need to put in a Skip To code to get DataPerfect to skip to the
Account Panel record with the Account Number held by Report Variable 1 in its
Account Number field. We also want the report to abort if it doesn't find a perfect
match on this Report Variable. That is, we don't want DataPerfect to just settle for
the first Account Number it finds equal to or greater than the one the user stuffed into
Report Variable 1.

To do this, we go down our check list. First, is the Skip To code using a
Report Variable that holds a value of a field, not a statement about a field? Yes. It
holds an Account Number, like

1009

not a statement about the Account Number field, like

P1F1=1009

Second, is the Skip To code using a Report Variable whose value is compatible with
the primary sorting field of the active index? Yes, as long as the report's index (Initial
Report Definition Screen, Item 3) is one that has the Account Number field as its first
field. And third, is the Skip To code in the appropriate Report Form section? Let's
discuss this last concern.

lteration Control 309

310

Deciding where to put the Skip To code in this case has a few options. Here
we're attempting to make our report Skip To a perfect match on the Account Number
furnished by the user. The report prompts the user for this number in the First Page
Header. At first, you might consider putting the Skip To code in the Report Body
because it aborts if a perfect match isn't found; whereas, if we put it in the First Page
Header, DataPerfect will settle for the first Account Number its sees equal to or
greater than the chosen one. But putting the Skip To code in the Report Body causes
the report to run over and over again on that perfect match. So let's see how to work
around this, as long as we're using the Prompt For code to stuff our Report Variable.
Again, we could have used the User Chooses code instead of this pair of Prompt For
and Skip To codes. I discuss this later. This would have been a much better option
all around, but I want to use the Prompt For and Skip To codes here to expose some
subtleties.

If we put the Skip To code in the First Page Header, just after the Prompt For
code, then we should put a Stop If code in the Report Body to make sure the Report
Body fails to run if the match isn't perfect. This is done by first evaluating the record
to which the Skip To code directs DataPerfect. Since that record might be greater
than the chosen Account Number, we need to prevent that. Our Prompt For code
stuffs Report Variable 1, so we'll evaluate the current record in the Report Body with
a Store Value code for Report Variable 2, and then follow that with a Stop If code
(Ctrl-F7, 9, 2) on Report Variable 2:

FIRST PAGE HEADER
777777777777777 Prompt for Value of Report Variable 1 ----------—-———— |Prompt for Acct Num
777777777777777 Skip To Record at Report Variable 1 ---------—-----——- |Skip to Acct Num
OTHER PAGE HEADER
——Empty——
TWO-LEVEL REPORT HEADER
——Empty——

777777777777777 Store Value in Report Variable 2 —-————-———-————————————
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 2 ———————-

REPORT BODY
Put P1lF1=RV1 in RV2
Stop if P1F1 not RV1
[Rest of report goes here, including the subreport(s).]

TWO-LEVEL FOOTER
——Empty--

The above Report Definition stops if the Account Number (P1F1) DataPerfect
Skipped To isn't a perfect match on Report Variable 1.

A different approach would be to put the Skip To code in the Report Body.
But, again, though this easily solves the imperfect match problem posed by the First
Page Header approach, if we're not careful this will result the in the Report Body
processing the same record over and over again. That's simply the way the Skip To
code works in the Report Body. So we make sure the Report Body runs only on one
record:

lteration Control

FIRST PAGE HEADER
777777777777777 Prompt for Value of Report Variable 1 7777777777777777:JPrompt for Acct Num

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY-
777777777777777 Skip To Record at Report Variable 1 777777777777777777:J5kip to Acct Num

[Rest of report goes here, including the subreport(s).]

——————————————— Store Value in Report Variable 200 ------------------- |Store 0 in RV200
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 2 -------- |Stop if RV200 is 0

TWO-LEVEL FOOTER
——Empty--
In the above Report Form, the very end of the Report Body has a pair of codes that
stop the report before it goes on to process the Report Body again on the same perfect
match. The first code in this pair stores 0 in Report Variable 200, and the second
stops the report if it sees 0 in Report Variable 200 (that's the same as saying Report
Variable 200 is false). As mentioned elsewhere in this book, I like to use Report
Variable 200 for this purpose in any report, so whenever I see Report Variable 200
on a Edit Report Form screen, I know why it's there (to stop the report or subreport).

Also note that either of these two reports processes only one Account Panel
record. The first report stops after the first one is processed because its Stop If code
stops the report as soon as it sees an imperfect match on the chosen Account Number.
The second report stops after the perfect match is processed once.

We just finished these two steps:

A. Using the Skip To code, it goes directly to the first Account Panel
record with the chosen Account Number.

G. Using the Stop If code, it stops the entire report as soon as it's done
processing the chosen Account Panel record.

How we handle the Transaction Panel subreport will differ in logic from the
way we just handled the Account Panel main report. In this subreport we need the
report to Skip To the first record equal to or greater than the chosen Start Date. So
we do not want to limit this Skip To operation to a perfect match for the starting
record there. This is handled in a much simpler fashion: just put the Skip To code in
the subreport's First Page Header. That handles the Start Date. To get the subreport
to stop as soon as it leaves the date range (that is, as soon as it goes past the End
Date), we use the Store Value and Stop If codes, having the first code evaluate the
current record to see if it's still equal to or less than the End Date, and having the
second code stop the subreport if the first is false. Here's what we now have:

lteration Control 311

FIRST PAGE HEADER

777777777777777 Prompt for Value of Report Variable 1 -------------——— |Prompt: Acct Num
777777777777777 Prompt for Value of Report Variable 11 --------------- |Prompt: Start Date
777777777777777 Prompt for Value of Report Variable 12 ---—----—-—----— |Prompt: End Date
777777777777777 Skip To Record at Report Variable 1 ---------—-----——- |Skip to Acct Num

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY: J

Put P1lF1=RV1 in RV2
Stop if P1F1 not RV1

777777777777777 Store Value in Report Variable 2 —————-———————————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 2 —-——————-

SUBREPORT LINK/PANEL: 1 2
FIRST PAGE HEADER
777777777777777 Skip To Record at Report Variable 11 77777777777777777:J5kip to Start Date

ITEMIZED LEDGER

Date of Report: i Ctrl-F7, 1, 1 (Date)
Date Range: 2 S SEEEE R RV11l and RV12
Account Number: P2F1
Name : P2F2 and P2F3
Date Description Amount

OTHER PAGE HEADER
ITEMIZED LEDGER (continued) Page = Ctrl-F7, 1, 3 (Pg #)
Date of Report: ZEEziszs Ctrl-r7, 1, 1 (Date)
Date Range: SR D RV11l and RV12
Account Number: ZiZi: P2F1
Name : S S P2F2 and P2F3
Date Description Amount

TWO-LEVEL REPORT HEADER

——Empty--
REPORT BODY
——————————————— Store Value in Report Variable 13 --—---—---——-——-—————— |P2F4<=RV12 in RV13

Stop [Sub]lReport if 0 Is in Report Variable 13 -————-- Stop if P2F4 > RVI12
S e Serer P2F4, P2F5, and P2F6

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER

Total: =EEEIEEE]P2F6 Final Ftr Total
END OF SUBREPORT

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Let's talk about what I just did. The index in the subreport must have the Date
field (P2F4) as its primary sorting field. Otherwise, the Skip To in its First Page
Header won't work properly. So, assuming the link used to create this subreport has
Account Number as the only field on its field list, the index assigned this link must
begin with Account Number, followed by the Date field in the Transaction Panel.
That will make the Transaction Panel's Date field the primary sorting field in the
subreport.

Given the above caveat, the Skip To code in the subreport's First Page Header
will make the subreport skip to the first record it finds in the date range (equal to or
greater than the Start Date), and the two codes in the Report Body will stop the
subreport as soon as it sees a record outside that range (greater than the End Date).
Note that though we place the Skip To code in the First Page Header, we place the
Stop If code in the Report Body. Again, this is because the Stop If code must

312 lteration Control

continuously receive an updated Report Variable 13, which is the job of the Store
Value code just above it.

User Chooses Next Record By LookUp

We can make our report much easier for the user to run if we replace the Prompt For
code with a User Chooses code (I'll use User Chooses code to refer to DataPerfect's
User Chooses Next Record By Lookup code). The Prompt For code approach is only
going to work if the user knows exactly what Account Panel record they're looking
for. If the Account Number they feed that prompt is off at all, the report fails. It may
print the wrong report, or no report at all. On the other hand, the User Chooses code
presents the user with a lookup of records in the Account Panel, letting them browse
and choose the one they want. Using the User Chooses code actually replaces two
codes here: the Prompt For code and the Skip To code. That is, the User Chooses
code presents the user with a lookup of records in the current panel. The User
Chooses code positions the report on the record the user chooses, so no Skip To code
is needed here.
Here's how we'd do this with the current report project:

lteration Control 313

777777777777777 Prompt for Value of Report Variable 11 —-—————————-—————
777777777777777 Prompt for Value of Report Variable 12 —-———-————-—————

FIRST PAGE HEADER

Prompt: Start Date

Prompt: End Date
OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY-
777777777777777 User Chooses Next Record By LookUp********************:}User Chooses Acct

SUBREPORT LINK/PANEL: 1 2
FIRST PAGE HEADER
fffffffffffffff Skip To Record at Report Variable 11 ,,,,,,,,,,,,,,,,,:}Skip to Start Date

ITEMIZED LEDGER
& Ctrl-F7, 1, 1 (Date)
.. RV11l and RV12

P2F1

Date of Report:
Date Range:
Account Number:

Name : P2F2 and P2F3
Date Description Amount -
OTHER PAGE HEADER
ITEMIZED LEDGER (continued) Page i _-CtrlfF7, 1, 3 (Pg #)

g Ctrl-¥7, 1, 1 (Date)
- i RV11l and RV12

P2F1

P2F2 and P2F3

Date of Report:
Date Range:
Account Number:
Name:

Date Description Amount

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BODY
——————————————— Store Value in Report Variable 13 --—-----------——-——- |P2F4<=RV12 in RV13
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 13 ------- |Stop if P2F4 > RV12

P2F4, P2F5, and P2F6

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER

Total: i]P2F6 Final Ftr Total
END OF SUBREPORT:
777777777777777 Store Value in Report Variable 200 ———————————-————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 777777:JUsual Stop routine
TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

In the above report, note how much simpler the main report's First Page
Header and beginning of the Report Body is (just before the subreport). Also note the
two codes that follow the subreport, in the main report's Report Body. There, Report
Variable 200 is set to 0 and then the report stops, keeping the user from seeing the
lookup again. If you want this report to allow the user to print as many Itemized
Ledgers as he wants, for as many Accounts as he chooses from the lookup, you'd
make the following changes:

314 lteration Control

PAGE FOOTER
——Empty--
FINAL FOOTER

Total: =EEEIEE
777777777777777 Page Ejectj}CtrlF7, 3

END OF SUBREPORT:

Stop routine removed
TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

The Page Eject makes sure each Account's Itemized Ledger starts on a fresh page,
and removing the Stop routine allows the user to see the lookup again and again,
allowing him to print as many Itemized Ledgers as needed in one run of the report.
This process ends when the user hits F7.

When using the User Chooses code, you'll either put it in the First Page
Header or the Report Body. If you put it in the First Page Header, DataPerfect will
position the report on the record the user selects. Any fields selected in the First Page
Header will get their data from that particular record. The Report Body will process
all records in the report's index from the selected record to the end of the index.

On the other hand, if you put the User Chooses code in the Report Body,
DataPerfect will offer the user a new lookup after each selection is processed by the
Report Body, stopping only after the user selects the last record in the lookup
(DataPerfect will process that record and then quit the report or subreport that has the
User Chooses code), or the user hits F7. Let's go over each possible placement of the
User Chooses code.

Placing the User Chooses code in the First Page Header

I'see no way to make this attractive without combining it with other Iteration Control
codes. Think about this. When you put the User Chooses code in the First Page
Header, you're telling the report to skip to the record the user chooses, and then go
from there until it reaches the end of the index. This is a cross between putting the
Skip To code in the First Page Header and in the Report Body. Like a Skip To code
in the First Page Header, it works only once, repositioning the report to start at some
designated place in the index. Like a Skip To code in the Report Body, it works on
a perfect match. So it's really like the Skip To code, which is also almost always
going to need other Iteration Control options to be practical. Usually we're talking
about complementing either code with the Stop If code.

That said, you're still not going to put the User Chooses code in the First Page
Header all that much. Here's an example where it might come in handy, however:
Your client is an attorney using an application you wrote for him. He'd like to
occasionally print a list of all clients living in a particular city. You could define a
Two Level Report built on the Client Panel that sorts on the City field, but that
produces a report covering all cities in the Client Panel. Or you could define a report
that prompts for the City, using a Prompt For code in the First Page Header, but that
will require the user know exactly what City he's interested in, and exactly how to
spell it. If you'd like the user to be able to peruse the Cities in the Client Panel before

lteration Control 315

316

generating the list, you can put the User Chooses code in the First Page Header. Just
make sure the report's index sorts by City.

Configure the report to stop when it comes to the last occurrence of the
selected City. One way to do this is to place the value of the selected City field in a
Report Variable immediately after the User Chooses code in the First Page Header.
If the City field is P1F5, then, in the First Page Header, store the value P1F5 in
Report Variable 1. Now go to the Report Body and store

P1F5=rvl

in Report Variable 2, which makes Report Variable 2 true only if the current record

has the user-selected value in the City field. Next, use a Stop If code to stop the

report if Report Variable 2 is false. Now select the fields to print. This will stop the

report as soon as it sees a record with a City field value other than the selected one.
Here's what that Edit Report Form screen looks like:

[Report Index: City sort]

FIRST PAGE HEADER -
777777777777777 User Chooses Next Record By LookUp----—---—-—------—-— |User chooses by City
777777777777777 Store Value in Report Variable 1 ---------—-—-——-—————— |Put P1F5 in RV1

OTHER PAGE HEADER -

Clients living in Sy Page : Select P1F5
Ctrl-rF7, 1, 3 (Pg #)

777777777777777 Include Header Before Data-----—---—-—------------——————— |Ctrl-F7, 3

TWO-LEVEL REPORT HEADER

——Empty—--

REPORT BODY -
777777777777777 Store Value in Report Variable 2 ---————-—--—-—-——-——-—-——-—— |Put P1F5=RV1 in RV2
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 2 ----—-—----|Stop when next City

Srmesnsern e SEEEE Select Name fields
TWO-LEVEL FOOTER —
——Empty—-

The only code here that might not be obvious if you haven't used it before is
the Include Header code in the Other Page Header section. When placed after the
Other Page Header contents, it makes that Other Page Header show up on the first
page as well as all the other pages. Since I wanted the same header on every page, |
did it this way.

When running this report, as long as the user selects the first record in the
lookup that has desired value in the City field, all and only clients living in that city
will be processed by this report. It allows the user to peruse values in the City field
before deciding on the city desired. This is much more lenient than a Prompt For
code. He just needs to make sure that the record selected from the lookup is the first
record with that City field value. If so, all and only records with that value will be
printed. Note that this avoids forcing DataPerfect to search the entire database of
clients, from beginning to end, before ending the report. The report simply starts with
the first desired record and ends with the last.

lteration Control

Placing the User Chooses code in the Report Body

Say your attorney client wants a report that generates a list of selected clients,
including their addresses and phone numbers. He wants to be able to pick each client
from a lookup. He might want to use this list later to call these people, or send them
a note.

This time the User Chooses code should be in the Report Body. It's pretty
straightforward, and would look like this:

FIRST PAGE HEADER
Clients To Contact Later

OTHER PAGE HEADER
——Empty-—-—
TWO-LEVEL REPORT HEADER
——Empty-—-—
REPORT BODY-

TWO-LEVEL FOOTER

——Empty--

The above report offers the user a new lookup after each record is processed.
It stops offering lookups after the user hits F7 or selects the last record in the lookup.
This contrasts with the previous report, where the user is offered only one lookup
because the User Chooses code is in the First Page Header.

Single Record Report From Lookup off a Menu

There's one more place an option similar to the User Chooses code shows up, and it's
not on the Iteration Control menu. It shows up when attaching a report to a menu
item (assuming your application has menus). When you choose the Run Report
option on your Define Menu screen and select a report from the Report List, you're
then presented with an Initial Report Definition Screen that has a few options not
found on the Initial Report Definition Screen when creating or editing a Report
Definition on the Report List. They're at the bottom of the Initial Report Definition
Screen, following option 9:

A - Report Mode - Normal/Lookup Normal Report Mode
B - Password:
C - User Set-Up No

Note option A. It toggles between Normal Report Mode (the default) and
Single Record Report From Lookup. If the Report Definition is set for Single Record
Report From Lookup, the report will begin by offering the user a lookup. Each time
the user selects a record from the lookup, DataPerfect will run the report in its
entirety, processing only the selected record, and then offer the lookup again.

Don't confuse the behavior of Single Record Report From Lookup with that
of putting the User Chooses code in the Report Body. They're similar, but different.
A report set for Single Record Report From Lookup processes the entire report on
each record chosen by the user from the lookup; whereas, a report with the User

lteration Control 317

318

Chooses code in the Report Body processes only the Report Body on each record. So
the Single Record Report From Lookup report is going to produce a series of reports
(one per record chosen from the lookup), each with a First Page Header and Final
Footer. On the other hand, a report with the User Chooses code in the Report Body
will produce a single report that has one First Page Header and one Final Footer, but
with a Report Body that will be run once per record selected from the lookup.

How Report Lookups Display

How DataPerfect displays a report lookup when it sees the User Chooses code
depends on the version of DataPerfect you're using. Report lookups began with
DataPerfect 2.3, but changed a few times after its initial release.

The First Two DataPerfect 2.3 Releases

The 02/01/93 and 09/01/93 releases of DataPerfect 2.3 worked identically in terms
of record lookup display. DataPerfect displayed all and only the fields of the index
chosen in the Report Definition, leaving out those fields in the beginning of the index
that are involved in the link's field list if this is a subreport. So you had only one way
to control the way such a lookup displays: the index you assigned to that part of the
report.

The First DataPerfect 2.3b Release

Starting with the 08/19/94 version (2.3b), DataPerfect offered more control over how
a report lookup displays. If the first field in the report index that follows the linking
fields (if any) had a Lookup Definition on it (in its panel), the report lookup displayed
according to whatever it found in that Lookup Definition. If that Lookup Definition
had both a field list and an index, the report lookup used both. If that Lookup
Definition had only a field list, the report lookup used that field list, but used the
active index in that part of the Report Definition. If such a field had no Lookup
Definition, the report lookup displayed the way it did with the 1993 versions of
DataPerfect.

Later Versions of DataPerfect
Though the initial release of DataPerfect 2.3b offered more control over report
lookups, by allowing us to control them with our Lookup Definitions in the panel
itself, a serious problem arose. Suppose you wanted your report to display a lookup
based on an Exception List Index? Well, if the first field in that Exception List Index
had a Lookup Definition on it (or, if this is a subreport, the first field following the
linking fields had a Lookup Definition on it), and that Lookup Definition assigned
an index to the lookup, the report would use that index and not the Exception List
Index found in the Report Definition. This was terrible. Imagine defining a report
that's supposed to expose only records on an Exception List Index to the user, for
possible deletion by the report, and it ends up exposing all records in the panel for
this deletion routine!

The January 1995 version of 2.3b resolves this. Starting with that version, the
report lookup uses the lookup field list in the Lookup Definition of the first field that

lteration Control

follows the linking fields (if that field has a Lookup Definition on it), and ignores the
index assigned to that field's lookup. That is, the index found in the Report Definition
prevails, no matter what. If the report sees a Lookup Definition on the index's first
field that follows the linking fields, it uses the field list it finds there, otherwise it
uses only the fields it finds in the report index. Much, much better.

This means you might need to assign a lookup definition (at least a lookup
field list, anyway) to a hidden field to make this work. I discuss this in Reasons for
Assigning a Lookup to a Hidden Field in my Lookups chapter.

How to Work Around the August 1994 Version

If you have the August 1994 release of 2.3b, upgrade to a later release soon. Until
then, use these rules in designing your database applications (it makes use of the
Smart Lookups algorithm):

° Make sure any Exception List Index has a counterpart index that
matches it perfectly, except that its counterpart lacks an Exception
List Index.

° Make sure each Exception List Index counterpart is alower numbered

index than any of its sisters that have Exception Lists assigned.

So, if you have an Exception List Index that sorts by Last Name, First Name,
and Account Number, then make sure you also have a lower numbered index that
sorts by Last Name, First Name, and Account Number, and lacks an Exception List.

Now the final rule:

° If you put a User Chooses code in a report, and the index that lookup
will use is an Exception List Index, then make sure that a lookup
defined for the first field following the linking fields in that Exception
List Index has no index assigned to its Lookup Definition (unless, of
course, you actually want the Exception List Index assigned to the
field's Lookup Definition).

This final rule takes the Smart Lookups algorithm into consideration. If the
Exception List Index's first field following the linking fields lacks an index in its
Lookup Definition, the Smart Lookups algorithm will temporarily assign it the lowest
numbered index that activates that field during a Browse mode lookup. If every
Exception List Index is a higher numbered index than its counterpart that has no
Exception List, you're safe because you're assuring the Smart Lookups algorithm will
always choose an index without an Exception List. This way, Browse mode lookups
will grab the correct index. And because no index is assigned in the Lookup
Definition for that field, the report's User Chooses code will use the index assigned
it in the Report Definition. Again, this precaution is unnecessary with versions of
DataPerfect later than 1994.

lteration Control 319

Repeat If

320

The Repeat If code makes the report run the current record again if the selected
Report Variable is true or not 0. This can be tricky, however. Consider the following
report. You might think it will print two copies per record by storing 2 in Report
Variable 1 in the First Page Header, then decreasing it by 1 in the Report Body after
each record is printed:

FIRST PAGE HEADER
777777777777777 Store Value in Report Variable 1 —————————————————-o——]Put 2 in RV1

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

[printed stuff goes here]

777777777777777 Store Value in Report Variable 1 ---—————--—--—-—-—-—-—-—-———— |Put RV1-1 in RV1
777777777777777 Repeat Record if True Is In Report Variable 1 —-————-———

TWO-LEVEL FOOTER
——Empty--

But this doesn't work. It prints two copies of the first record, and then one of
each of the following records in the index. Why? Because Report Variable 1 is 0 after
the first record is printed twice, never to increase again. That is, after the first record
is printed twice, the Repeat If code is continuously encountering a false Report
Variable 1 (or an Report Variable 1 with a value of 0), so it never causes a repeat of
a record again. It causes a repeat only if Report Variable 1 is true (or nonzero).

To get a particular number of copies of each record, you can do something
like this:

FIRST PAGE HEADER
777777777777777 Prompt for Value of Report Variable 1 :}Coples per record

777777777777777 Stop [Sub]Report if 0 Is in Report Variable 1 -------- |Stop if entered 0
777777777777777 Store Value in Report Variable 2 ------—---——-——-—————— |Put RV1 in RV2

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

[printed stuff goes here]

——————————————— Store Value in Report Variable 3 ---------------——--——— |Put RV2//RV1 in RV3

777777777777777 Store Value in Report Variable 2 ------—---——-——-—————— |Put RV2+1l in RV2
777777777777777 Repeat Record if True Is In Report Variable 3 -------- |Repeat until RV3=0

TWO-LEVEL FOOTER
——Empty--

The above report prompts the user for the number of copies he wants to print
for each record. It stores that number in Report Variable 1. It then abruptly stops if
the user enters O for that prompt. If the report didn't stop (the use entered a number
higher than 0), Report Variable 1 is stored in Report Variable 2. After each record is
printed, Report Variable 2 increases by 1, and DataPerfect stores, in Report Variable
3, the remainder of dividing Report Variable 2 by Report Variable 1. That's what the
modulo operator does. Each record repeats until Report Variable 3 (the modulo
RV2//RV1)is 0.

lteration Control

For example, if the user enters 3 at the prompt, Report Variable 2 is set to 3.
After the first record is printed, Report Variable 2 increases to 4. Then 4//3 is
evaluated. It isn't O (it's 1), so the record is printed again. After the second printing,
Report Variable 2 increases to 5. Then 5//3 is evaluated. It's still not O (it's 2), so the
record is printed again. So far the report has printed that same record three times.
Now Report Variable 2 increases to 6. Then 6//3 is evaluated. Now it's 0, so the
report won't repeat that record. Three printings is all we get for that record.

Now the report goes to the next record. At that time, Report Variable 2 is 6.
The report prints that record and increase Report Variable 2 to 7. Then 7//3 is
evaluated. It isn't O (it's 1), so the record will be printed again. After the second
printing, Report Variable 2 increases to 8. Since 8//3 isn't O (it's 2), it prints a third
time. After the third printing, Report Variable 2 increases to 9. Since 9//3 is 0, the
report no longer repeats that record. It now goes to the next record and continues with
the same logic.

A Note about DataPerfect's Notion of Truth

Just what DataPerfect considers frue and what it doesn't might be confusing. This
confusion is compounded when you notice that what DataPerfect calls a code in the
Iteration Control menu doesn't always seem to match well with what it inserts in the
Edit Report Form screen. The three Iteration Control codes of concern here look like
this in the Iteration Control menu:

Skip Record if RV is False
Stop [Sub]Report if RV is False
Repeat Record if RV is True (not 0)

But, assuming we assign Report Variable 1 to each of the above, here's how
DataPerfect inserts them, respectively, into the Edit Report Form screen when
selected:

Skip Record if O (False) Is in Report Variable 1
Stop [Sub]Report if O Is in Report Variable 1
Repeat Record if True Is In Report Variable 1

Each of the above Iteration Control codes is examining the truth or falsehood
of a given Report Variable. The model I proposed before was that each of these types
of Report Variables examines the truth or falsehood of a Report Variable's statement
with respect to the current record, whereas the Skip To code examines the existence
of a Report Variable's value in the current record. But the above three Iteration
Control codes, as they're expressed in the Edit Report Form screen, are talking about
true or 0 being in an Report Variable.

So what's going on here? Just this. What a Report Variable stores is
considered frue under any of these conditions:

lteration Control 321

322

o It's a statement, and it's true.
o It a character string, and it isn't blank.
o It's a numerical value, and it isn't O.

Put another way, what a Report Variable stores is considered false under any of these
conditions:

o It's a statement, and it's false.
o It's a character string, and it's blank.
° It's a numerical value, and it's O.

This makes all the following Report Variables equivalent, at least in terms of
Iteration Control codes that might be evaluating them:

(1) P1F1 > P1F2

(2) if P1F1 > P1F2 then 1 else 0 endif
(3) if P1F1 > P1F2 then "A" else 0 endif
(4) if P1F1 > P1F2 then "A" else "" endif
(5) if P1F1 <= P1lF2 then O else 1 endif
(6) if P1F1 <= P1lF2 then "" else 1 endif
(7) if P1F1 <= P1F2 then "" else "A" endif

(1) is a statement, and says P1F1 is greater than P1F2. If this is tied to, say,
the Skip If code, then if the current record is such that P1F1 is not greater than P1F2,
that Report Body will skip it. (2), though formed as a statement, is really a value.
That value is either O or 1, depending on the current record. Again, if we're talking
about the Skip If code, if that value is 0, the Report Body skips the current record. If
it's 1, it processes that record. Statement (3) is similar to (2), only it yields the
character A (nonblank character string) or the numerical value 0, processing the
record if the Report Variable yields A. (4) is also similar to (2) and (3), only it yields
character A or the blank character string. (5), (6), and (7) share the reverse logic of
(2), (3), and (4), respectively.

The point of the above is that if, say, Report Variable 1 is being used by the
Skip If code to evaluate records in Panel 1, the same records will be printed no matter
which of the seven formulas above were used for Report Variable 1. In terms of the
Skip If code, formulas (2) through (7) are each equivalent to formula (1).

Here's a list of examples to clarify this rather confusing topic:

lteration Control

Report Variables and Truth Values

Report Variable Truth Reasoning
Contents Value
1 True Numerical value, not zero.
0 False Numerical value, zero.
-1 True Numerical value, not zero.
"1 True String, not blank. It's surrounded by quote marks, so it's
not a numerical value.
"o" True String, not blank. See above.
"A" True String, not blank. Surrounded by quote marks.
"1=2" True String, not blank. See above.
"This is False" True String, not blank. See above.
" False String, blank.
P1F1=P1F2 Depends on | Statement.
fields
if PIF1=P1F2 then 1 Depends on | Numerical value. Though it's a statement, we're
else 0 endif fields evaluating what it yields.
1=1 True Statement, true. An identity of two numerical values.
0=0 True Statement, true. See above.
1=2 False Statement, false. See above.
="t True Statement, true. An identity of two strings.
if 1=1 then "" else 0 endif | False String, blank. Though it's a statement, we're evaluating
what it yields.
if 1=2 then "" else 0 endif | False Numerical value, zero. See above.
if 1=1 then O else "" endif | False Numerical value, zero. See above.
if 1=2 then O else "" endif | False String, blank. See above.
if 1=1 then 1 else "" endif | True Numerical value, not zero. See above.
if 1=2 then 1 else "" endif | False String, blank. See above.
if 1=1 then "0" else "" True String, not blank. See above.
endif
if 1=2 then "0" else "" False String, blank. See above.
endif
if 1=1 then 1 else O endif | True Numerical value, not zero. See above.
if 1=2 then 1 else 0 endif False Numerical value, zero. See above.

lteration Control 323

The most typical two ways of formulating a Report Variable to be used with
a Skip If code, Stop If code, or a Repeat If code (again, these are the ones that use the
notion of truth during record processing) are to either create a statement that is true
for all and only the records desired, or a statement that yields the numerical value 1
for all and only the records desired, otherwise 0. So, for instance, if we want the Skip
If code to cause the report to process all and only records where the value in P1F1
equals the value in P1F2, then we would usually choose

P1F1=P1F2

or

if P1F1=P1F2 then 1 else 0 endif

The first is a statement that will either be true or false. The second is a value
that will be either 1 or 0. Put another way, for purposes of the three Iteration Control
codes of concern here, the first Report Variable holds either truth or falsehood, and
the second either 1 or 0. So, as you can now see, when I earlier said that

each of these three [Iteration Control
codes] uses a Report Variable that holds a
statement, and consequently looks to see if
that statement 1s true of the current
record

I wasn't telling the whole truth. To be more complete, I might have said that such an
Iteration Control code looks to see if the Report Variable holds a true statement, a
nonblank character string, or a nonzero numerical value. But you get what I mean.

Iteration Control Examples

324

Limiting a Report to One Record

[For an example of this, load UD.STR.
Find Printing just one record on the Report List.]

To limit a report to one record, use what I call a stop routine at the end of the Report
Body, setting Report Variable 200 to 0, immediately following it with a Stop if
Report Variable 200 is False code. Again, I always choose Report Variable 200 for
this only so I can easily remember why it's there.

lteration Control

FIRST PAGE HEADER
OTHER PAGE HEADER
TWO-LEVEL REPORT HEADER
REPORT BODY

[Selected fields, etc., here]

777777777777777 Store Value in Report Variable 200 —————--——-——-———————— RV200: 0
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 200 ——-——---

TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER

Limiting a Report to a Particular Number of Records

[For an example of this, load UD.STR.
Find Printing a particular number of records on the Report List.]

To limit a report to a particular number of records, prompt the user for the number
of records (Report Variable 1). Stop the report if the user enters 0. At the very end
of the Report Body, decrement Report Variable 1 by one with this formula:

rvl-1

The report prints records until Report Variable 1 is 0.

FIRST PAGE HEADER
777777777777777 Prompt for Value of Report Variable 1 --—-—-—----—--—-——-—= |RV1l: Num of records
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 1 —-—————--

OTHER PAGE HEADER
TWO-LEVEL REPORT HEADER
REPORT BODY

[Selected fields, etc., here]

777777777777777 Store Value in Report Variable 1 ---————--—--—-—-—-——-——-———— |RV1: RV1-1
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 1 —-——————-

TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER

A Report That Prints a Particular Number of Iterations per Record

[For an example of this, load UD.STR.
Find Printing a particular number of iterations per record on the Report List.]

As discussed in the Repeat If section previously, prompt the user for the number of
copies per record (Report Variable 1). Stop the report if the user enters 0. Then set
Report Variable 2 to Report Variable 1. After each record is printed, increase Report
Variable 2 by 1, and set Report Variable 3 to the remainder of Report Variable 2
divided by Report Variable 1, using modulo (RV2//RV1). Each record will now
repeat until Report Variable 3 is 0.

lteration Control 325

FIRST PAGE HEADER
777777777777777 Prompt for Value of Report Variable 1 :}RVl: Num of copies

777777777777777 Stop [Sub]Report if 0 Is in Report Variable 1 --—————--
777777777777777 Store Value in Report Variable 2 ---————----—--——-——-———— |RV2: RVl
OTHER PAGE HEADER
TWO-LEVEL REPORT HEADER
REPORT BODY-

[Selected fields, etc., here]

777777777777777 Store Value in Report Variable 2 ---————-———-—————————-— |RV2: RV2+1l
777777777777777 Store Value in Report Variable 3 ------—---—-———-——————— |RV3: RV2//RV1
777777777777777 Repeat Record if True Is In Report Variable 3 —-———————

TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER

A Date-Range Report

[For an example of this, load UD.STR.
Find Date Range Report (Master Panel series) on the Report List.]

Make the active index in that part of the report, which can be a subreport, one that
sorts forward on the relevant date field. In that part of the report, in its First Page
Header, prompt the user for the Start Date (Report Variable 100) and the End Date
(Report Variable 101). Then, in the same First Page Header, insert a Skip to Record
at Report Variable 100 code. As the first line of the Report Body of that part of the
report, set Report Variable 103 to

PlFl<=rvl101

where P1F1 is the relevant date field. Immediately after the above, but still in the
same Report Body, insert a Stop Report if Report Variable 103 is False code. All
other Report Body fields, text, etc., follow this code.

FIRST PAGE HEADER =
777777777777777 Prompt for Value of Report Variable 100 --------—--———— |RV100: Start Date
——————————————— Prompt for Value of Report Variable 101 ---———-—-—--—--—-—-— |RV101l: End Date

777777777777777 Skip To Record at Report Variable 100 -——-————————————-—

OTHER PAGE HEADER
TWO-LEVEL REPORT HEADER
REPORT BODY- -
777777777777777 Store Value in Report Variable 103 --———-—--—-——-——-——-———— |P1F1<=RV101

777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 103 —--———-- [P1IF1 is date field]

[Selected fields, etc., here]

TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER

A Report That Prints Monthly Statements
for All and Only Accounts with a Positive Balance

First off, it's best to do this with an Exception List Index that points only to Account

Panel records with a Balance field value over 0. If you elect to do that, you'd create
a hidden G9 field that updates to

if P1F1=0 then 1 else 0 endif

326 Iteration Control

on any change, where P1F1 is the Balance field. Your Exception List Index would
have that field alone on its Exception List. Read up on Exception List Indexes in
Exception Lists in my Indexes chapter.

That said, you can do this with Iteration Control options instead of an
Exception List Index. Run that part of the report, which may be a subreport, with an
index that sorts forward by Balance, where the Balance field is the primary sorting
field at that point in the report. In the First Page Header of that part of the report, set
Report Variable 1 to 0.01, followed by a Skip To Report Variable 1 code. This will
make the report start with the first record it sees with a Balance field value of one
penny or greater. You don't need a Stop If code for this report.

777777777777777 Store Value in Report Variable 1 —-————-———-————————————

FIRST PAGE HEADER
RV1: 0.01
777777777777777 Skip To Record at Report Variable 1 —-———-——-—————————-—

OTHER PAGE HEADER
TWO-LEVEL REPORT HEADER
REPORT BODY-

[Selected fields, etc., here]

TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER

Getting a Report to Continue after the
Last Record in the Lookup Is Selected

[For an example of this, load UD.STR.
Find Report Lookup that doesn't end when choosing last record on the Report List.]

The User Chooses code stops offering the user a lookup after they select the last
record in the lookup. It sees that as the last record in the index, so its job is done.
This might not be what you want, since you might want a particular report to allow
the user to go up and down the various records in the lookup, selecting them without
worrying that selecting the last one will end the lookup cycle. If you want the lookup
to keep displaying, even after the user selects the last record, to end only when they
hit F7, F1, or ESC, you can usually accomplish this by setting a Report Variable to
the value of the primary sorting field, right after the lookup, and then have the report
go to that Report Variable with a Skip To code.

FIRST PAGE HEADER
OTHER PAGE HEADER
TWO-LEVEL REPORT HEADER
REPORT BODY-

[Selected fields, etc., here]

777777777777777 Store Value in Report Variable 1 ---------——-——--—————— |RV1: primary sorting
777777777777777 Skip To Record at Report Variable 1 —---------------——-—- |field

TWO-LEVEL FOOTER
PAGE FOOTER
FINAL FOOTER

Here Report Variable 1 takes the value of the primary sorting field of the
user-selected record. If, say, the lookup sorted Client Panel records by Last Name,
Report Variable 1 would end up holding the Last Name of the Client the user just

lteration Control 327

selected in the lookup. The report will then Skip To that Last Name in the next
lookup. Conveniently, if there's no more than one Client with this Last Name, this
actually results in the highlight bar landing on the next record in the lookup display.
In most report definitions, this will be enough to keep the report from stopping after
the last record in the index is selected.

This technique has a slight side effect. Consider the Last Name lookup case
above. If there's more than one record with the Last Name the user just chose, the
highlight bar will Skip To the first occurrence of that Last Name in the lookup, not
the next one. So if the user chose Sally Adams, but there's more than one Adams in
the lookup display, the highlight bar will return to the first Adams in the display, not
the one that follows Sally Adams. I consider this a minor price to pay in order to keep
the lookup displaying after the last record is selected.

Troubleshooting lteration Control

328

Problem
Your report seems to be processing the same record repeatedly, never dealing with
other records in the index.

Solution

You probably put a Skip To code in the Report Body instead of the First Page
Header. Read Strategic Placement of the Skip To Code in the Skip To and Stop If
section above.

Problem
Your Skip To code doesn't work. It just doesn't ever go the right record, whether you
place it in the First Page Header or the Report Body.

Solution
Either the record doesn't exist in the current index, or the Report Variable being used
for the Skip To code is incompatible with the current index.

Problem

Your User Chooses code keeps offering the user a lookup with negative numbers in
the first column. You know that's the field you're sorting on, and need it to sort that
way. You find no way to control the lookup field list for that User Chooses code.

Solution

Because that negative number field is hidden, you never thought to assign it a
Lookup Definition. Give it a Lookup Definition that has at least a lookup field list.
See How Report Lookups Display in User Chooses Next Record By LookUp above.

lteration Control

Export/import

This is for both beginners and the experienced. Exporting and importing becomes
useful very early in the life of an application.

Reasons for Exporting or Importing Data

There will definitely come a time when you’ll need to export data out of a
DataPerfect application. Exporting data from an application involves sending data
from that application to a disk file, placing it in a format that can later be imported
by that or some other application. Importing data into an application is similar to
retrieving a document into a word processor. Data comes into the application and is
then converted into a format it can read. DataPerfect can't read data in a file of
exported data—even data exported by DataPerfect itself. For DataPerfect to read that
data, it must be imported into a DataPerfect application.

So the reasons for importing data into a DataPerfect database are pretty
obvious. One of the most common reasons is that the data might have originated
from an application written with a different database management system. That
system reads and writes data files DataPerfect can't read, so the data was exported to
a file that, though DataPerfect still can't read it, DataPerfect can at least import it into
a format it can read.

But why export data from a DataPerfect application? Why not leave it in the
database for browsing and reporting? Here are the most common reasons:

Passing Data to Another Application

This is usually the first reason people usually think of for exporting data from a
DataPerfect application. You want to import that data into another application, which
may or may not be a DataPerfect application.

Merging Data with a Word Processing Document
Here you want to export some or all of the application’s data to a disk file that can
be used as a secondary merge file by your favorite word processor.

Altering an Application’s Structure

There are many times you’ll need to export data from a DataPerfect application in
order to change the structure of the database (e.g., add or reformat a field). Most of
the time, this will require removing data from at least one panel in order to make
these changes. Before deleting all data in a panel, of course, you’ll want to export it
to a safe place for later import into the newer application.

Export/Import 329

Maintaining an Application

By this, I mean something different from altering an application’s structure. This
refers to running maintenance routines to optimize its data files, and to clean
potential corruption from a database. I discuss this in The Big Clean: Cleaning the
Entire Application in my Application Maintenance Issues chapter.

WordPerfect Merge Files

DataPerfect has always supported exporting to and importing from a WordPerfect
Merge file. It currently supports WordPerfect Merge files in WordPerfect4.2, 5.x and
6.x format. Before DataPerfect 2.3, this was the primary way users exported data
from of a DataPerfect application, when that data was to be imported into the same
or other DataPerfect application later. With DataPerfect 2.3 came the Transaction
Log, which does all this much faster and more conveniently. The Built-In Short
Reports WordPerfect Merge export, however, is more useful than the Transaction
Log in circumstances I outline later. The Built-In Short Reports WordPerfect Merge
report exports data from a single panel to a disk file that's in WordPerfect Merge
format.

The Setup

To access the Built-In Short Reports WordPerfect Merge report facility, you must be
in Browse mode in the panel whose data you want to export. Shift-F7 to call the
Report List. Highlight Built-In Short Reports and hit Enter. Here's the screen that
confronts you:

BUILT-IN REPORT/EXPORT

Destination: Create Disk File
1 - Printer On/Off
2 - Disk File On/Off
Filename: SCRATCH.REP

3 - Index Number 1

4 - Search Conditions No Search

5 - Sort Direction Forward

6 - Disk File Mode WP/DOS WordPerfect

7 - Print Margins Top Bottom Left Text Lines
6 0 0 54

8 — Report/Export Format: WordPerfect Merge (Can be imported)

Fields to be Included: All Real Fields (Including Hidden)
9 - Lookup Fields
A - All Display Fields
B - All Real Fields

Selection: (Press Shift-F7 to begin the report) 0

Use 2 to give the export file a name. Make sure the index seen by 3 has no
Exception List on it, and sorts the way you want (if sort order is important in this
case, as when using the export file as a secondary merge file from within
WordPerfect). Use 4 if you want to limit the export to a subset of records that can be
defined by a formula, template, or range. 5 allows you to further control the sort order

330 Export/Import

if that's important. 6 should be set for WordPerfect. 7 is irrelevant. 8 should be set for
WordPerfect Merge. And last, the export should be set for All Real Fields if this is
to be used to export all data out of that panel's data file.

The Nature of the Export File, Including Some Caveats

Text Editors and Carriage Returns

Running this report (hitting Shift-F7 again) creates a file that can later be imported
into the same or similar panel, or can be used as a secondary merge document from
within WordPerfect. The data from each field in the resulting file will terminate with
an ASCII 18 (1) and a linefeed. Each record will terminate with an ASCII 5 (%) and
a linefeed. The file will be in pure WordPerfect 4.2 format, so each line (a single
field’s data) will terminate with a linefeed but no carriage return.

This latter point can be deceiving. If after creating such a WordPerfect Merge
file, you load it in a text editor, you’ll see each field’s data on a single line
terminating with a 't’, and each record terminating with a '#' (some editors, like
WordPerfect Corporation's Editor display these as *R and *E, respectively). Whether
afile has linefeeds with carriage returns or linefeeds without carriage returns, it looks
the same in a text editor. But most text editors, will, on saving the file, insert a
carriage return before each linefeed that isn't preceded by a carriage return already.
WordPerfect Corporation's Editor even does this as you move the cursor up and
down the screen. If field data terminates with carriage returns as well as linefeeds,
DataPerfect will not import that file properly as a WordPerfect Merge file.

So be careful if you inspect or edit the resulting WordPerfect Merge file
export in a text editor. If that text editor supports loading files in Binary mode,
choose that instead of Text mode. Binary mode doesn't insert a carriage return, even
when you hit the Enter key, unless you consciously insert it as an ASCII character
(ASCII 13) or as a control character ("M). If your text editor of choice is
WordPerfect Corporation's Editor, load the file with the /B switch, like this:

ed.exe mydata.exp /b

Alternatively, on loading the same file in what WordPerfect Corporation's
Editor calls DOS mode (what I'm calling Text mode), don't move the cursor until you
hit Ctrl-FS5, 2. That puts the editor in Binary mode. With this editor you should see
BIN on the lower left corner of the screen if you're in Binary mode. Now you can
safely edit that file.

Edit Order
The fields you find in a Built-In Short Reports WordPerfect Merge export file will
be ordered according to the Edit Order that existed during the export of that panel's
data. As you find later, importing a WordPerfect Merge file into a panel, unless done
under the direction of an Import List, is done in the order found in the import file, and
that order will be assumed to be the Edit Order of the current panel.

So this means that the first field's data you see in each record in the export file
will be taken from the first real field in the Edit Order of the panel from which the

Export/Import 331

data was exported. The second field's data in each record in the export file will be
from the second real field in the Edit Order of that panel, etc. On importing that file
back into the same panel, there's no problem, as long as you didn't change the Edit
Order some time after performing the export. But if you did change the Edit Order,
you can run into problems during the import. Be aware that moving a field in a panel
with Block (Alt-F4) and Move (Ctrl-F4) will change the Edit Order of that panel,
placing the moved field to the end of the Edit Order. Using Transaction Logs gets
around this problem, which I discuss later.

Troublesome ASCII Characters
Not all ASCII characters were created equal, and DataPerfect discriminates with
respect to them. You'll have no problem importing a WordPerfect Merge file if it's
confined to ASCII characters 32 to 127. That will cover all alphanumeric characters,
including all possible punctuation. However, if your import file has characters below
ASCII 32 or above ASCII 127, you may find some records may not import, or the
import will abort midstream.

If you really want ASCII characters outside the 32-127 range to import, you
can do that by first surrounding them with ASCII 225 (B) characters. For instance,
consider the following field data from a record in a teacher's math exam database:

x < (y + z)!

That operator you see, after the x is ASCII 243. The ASCII character at the end, of
course, is the merge field delimiter (ASCII 18). Because of the occurrence of ASCII
243, attempts to import a record with that line as a field's data won't succeed.

But you can successfully import that field's complete record if you surround
that ASCII character with a pair of ASCII 225 characters, like this:

12 B<B (21 + 34)1

In fact, that's exactly what DataPerfect does when it exports such ASCII characters
already found in a DataPerfect database. It surrounds each one with a pair of ASCII
characters so they can be later imported without problem.

If you're not sure if your import file has any such characters, and you know
how many records are in that file, just make sure the total number of records that
imported is correct. DataPerfect shows you an import record count during the import.
If they all got in, you probably didn't loose any data.

Importing a WordPerfect Merge File

If you're about to import a WordPerfect Merge file, it's probably one you just created
with Built-In Short Reports facility discussed above. If so, and you didn't mess with
the Edit Order of the panel whose data that export file holds, importing the data back
in is easy. First, load the panel in question, which is probably empty of data at this
point. You probably deleted all its data in order to do some work on it, like adding
a field.

332 Export/Import

Note: Adding a field won't affect that panel's Edit
Order; whereas, moving or deleting a field
will.

Call the Import screen with Ctrl-F5:

IMPORT

1 - Import Filename
SCRATCH.REP

Import Type WordPerfect Merge
2 - WordPerfect Merge
3 - DOS Delimited Text
4 - Duplicate Records Action

Copy All Duplicates

5 - Copy Duplicate Records to Filename
6 - Search Conditions No Search
7 - Create/Edit Import List

Do Import
8 — Import Without Disk Space Checking
9 - Import With Disk Space Checking

Selection: 0

Use 1 to name the file to import. Note that if you just ran an export with Built-In
Short Reports WordPerfect Merge, the name you gave the export file is already filled
in for you. Use 2 to make this a WordPerfect Merge file import. 4 determines what
DataPerfect will do with duplicates during import. 5 lets you create the file
DataPerfect will use to copy duplicates if 4 was set for that option. 6 lets you limit
just what records will be imported from the import file. 7 lets you create an Import
List to govern the import process. An Import List essentially maps the fields in the
import file to those in the panel. You'll need to create an Import List if the Edit Order
of the current panel differs from that in the import file, or if you choose something
other than Copy All Duplicates for option 5. Choose 8 instead of 9 if you know you
have enough disk space to perform the entire import. It's a lot faster than 9. Item 4 is
the most difficult one here to understand, so I'll spend time on it.

Duplicate Records Action

Duplicate Records Action (item 4) tells DataPerfect what to do with records in the
import file it finds to be duplicates. A duplicate will be any record that has fields that
match those of another record with respect to some index field list in that panel. You
have three options here, which are presented to you when you hit 4:

1 - copy it to the duplicate record file,

2 - ignore it, or
3 - replace/merge the record in the database with it.

Export/Import 333

Copy All Duplicates

This is the default. You'll almost never use anything else. This tells DataPerfect to
copy any duplicate it finds to the file specified in option 5. During the Import, you'll
see a message at the top of the screen telling you how many records got in the panel,
and how many didn't because they were considered duplicates. You can peruse the
duplicates in the file specified by option 5.

Ignore Records Duplicated in Index n

If you choose this, DataPerfect will prompt you for the index to use for the
comparison testing. Only the fields seen in that index field list will be compared.
Records that turn out to be duplicates won't be imported, and there will be no record
of which ones didn't get in. You must also set up an Import List for this option to be
used.

Replace/Merge Records Duplicated in Index n

Like choice 2, if you choose this, DataPerfect will prompt you for the index to use
for the comparison testing. Only the fields seen in that index field list will be
compared. The difference here is that each time a duplicate is found, the values found
in the duplicate about to be imported will replace those found in the record already
in the panel. You must also set up an Import List for this option to be used. This
option allows you to replace existing records with newer ones, instead of having the
newer ones getting dumped into a duplicates file. Just make sure the import file has
the newer data, otherwise you'll end up replacing newer data with older data.

What Happens During a WordPerfect Merge File Import

Data is fed to fields in Edit Order or Import List order.

This should be obvious by now. Unless an Import List governs the import, data in the
import file will stream into the database in the order found in the import file, and will
fill real fields in the panel in the order found in the panel's Edit Order. If an Import
List governs the import, data will still stream into the database in the order found in
the import file, but will fill real fields in the panel in the order found in the Import
List.

Formulas update.

All fields not receiving data will have their formulas update, whether those formulas
are set to update on any change or on record creation. All fields that have formulas
that update on any change, whether or not they receive data, will update.

This last point can be deceiving, however. Many times, if a formula that
updates on any change relies on other fields in the panel, you'll find it didn't update
properly during an import if the formula is rather complex. You'll notice that, after
the import, loading such a record and then hitting F6 will update the field properly.
So you know the formula is okay. Trying the import again won't change this.
Changing the Edit Order of the field in the panel sometimes helps, but sometimes
not. Watch out for such fields by running a sample import of just a few records first,

334 Export/Import

seeing whether or not the formulas that are supposed to update on any change during
an import really did.

To do a sample import, copy the entire application to another directory and
start the import there. After a few records, hit F1 to Cancel the import. Now browse
the records that got in. Check for fields with formulas that update on any change. Hit
F6 to see if they change. If they don't, all is probably well, so you can return to the
original directory and do the whole import.

If you simply can't change the formula or the Edit Order before the import to
accommodate this problem, you'll have to run a report after the import. Have that
report store a value in some field in that panel. Each time it does that, it will put the
record into Edit mode. This will successfully update the formulas that failed to
update on import.

Totaling may trigger.

If DataPerfect detects a Keep A Total on any field in the current panel, before the
import takes place DataPerfect will tell you it sees such code in the panel and will ask
you if you want to trigger the totalling. If you say / for Yes, all Keep A Total
operations in that panel will trigger during import.

How you answer this question depends on a few things. For instance, if, after
exporting the data to this export file, you deleted all data in that panel and told
DataPerfect not to undo totals, you don't want to trigger those totals now during
import. When deleting all data from a panel with Alt-FS5, 1, the default is O (don't
undo totalling). Likewise, when importing data to a panel that has at least one Keep
A Total, the default is also 0 (don't trigger totaling). You probably want to trigger
totaling if this is an empty database and are importing data from another application.
In such a case, all the rules that govern Keep A Total operations apply (parent records
that need to be created in order to receive the totals in the foreign panels will be
created, etc.).

Exporting and Importing Transaction Logs

Transaction Logs were introduced with DataPerfect 2.3. When you can use a
Transaction Log instead of a Built-In Short Reports WordPerfect Merge file, do it.
They're faster and more convenient.

To export data to a Transaction Log, choose Export Data Files to Log from
the System and Recovery Operations menu (Shift-F9, A). There, DataPerfect allows
you to Export All Data Files to Log or Export Selected Data Files to Log. The first
exports all data from all panels to a single file. This is a big difference from the
Built-In Short Reports WordPerfect Merge export, which can be done only on a one
panel at a time. The second choice allows you to pick a single panel from which to
export data to a single file. If you want more than one panel's data in the same log
file, but don't want all panels' data, you can simply run the Transaction Log export
again, choosing Export Selected Data Files to Log again, choosing a different panel
this time, telling DataPerfect to append. If DataPerfect sees a log file by the same
name, it always asks if you want to overwrite or append it.

Export/Import 335

Unlike the Built-In Short Reports WordPerfect Merge export, DataPerfect
doesn't use an index when performing a Transaction Log export. It's a physical dump
of all data in a single panel, or the entire database. This makes it faster than the
Built-In Short Reports export.

Unlike the Built-In Short Reports WordPerfect Merge export file, the
Transaction Log file contains references to the panel number and field number for
each piece of data. This means you don't have to worry about Edit Order when
importing a Transaction Log, nor do you need the proper panel loaded when
importing a Transaction Log. The import process (Shift-F9, 8) will take care of all
that for you.

Unlike importing a WordPerfect Merge file with the Import menu, importing
a Transaction Log doesn't offer you a chance to decide what happens with duplicates
during import. When importing a Transaction Log, all duplicate records are sent to
a file named DP{LOG}.PRB.

Duplicates may show up in DP{LOG}.PRB more often than you would
expect. The reason for this is that, as mentioned already, DataPerfect's Transaction
Log export facility performs a physical dump of all data in the selected panel or
database. Again, this amounts to not using an index to do the export. If there are
duplicates in the panel before the export takes place, they'll end up in the log file.
This contrasts with how the Built-In Short Reports WordPerfect Merge process
works, which uses an index to do its exporting. Because it uses an index, no
duplicates will end up in the merge file since an index never sees duplicates. For a
more detailed discussion on the problem of duplicates in a panel, see Removing
Duplicates in a Panel in my Application Maintenance Issues chapter.

Importing a Transaction Log also differs from importing a WordPerfect
Merge file with respect to what it does with data as it fills the panel's fields. There are
two significant differences here. First, a Transaction Log import doesn't trigger any
formulas or Keep A Total codes. Second, it resets all auto-incrementing fields to their
next highest value, no matter what they were set at before the import.

Strategies: Merge File vs. Transaction Log

Let's outline strategies that help you decide between exporting data with the Built-In
Short Reports facility and exporting data with the Transaction Log facility. Here
we're concerned with exporting data from a DataPerfect application that will later be
imported into the same DataPerfect application.

Deleting and Creating Fields

® If you don't need fields to update their formulas or Keep A Total codes to
trigger, export and import your data to and from a Transaction Log. When the
database is empty, create new fields first, then delete what you want to delete. This
way the fields you create don't take on the field numbers abandoned by the deleted
fields. Otherwise your Transaction Log import will place data from the deleted fields
in the new ones.

336 Export/Import

® If you need fields to update their formulas, but don't need Keep A Total
codes to trigger, and you have a lot of fields in that panel, it still might be more
useful to export and import your data to and from a Transaction Log. This way you
don't have to worry about designing an Import List that will skip the deleted fields'
data.

But since the field formulas won't update on import this way, you need to run
a simple report afterwards. That report simply inserts some value in a single field that
updates on any change, and does so for every record. This will trigger all fields in the
panel to update, as long as they're coded to update on any change. The format of this
report would simply be to set Report Variable 1 to, say, 1, in the First Page Header,
and then Store Report Variable 1 in some field in that panel that updates on any
change. Though Report Variable 1 holds a numerical value, the field you choose to
Store Report Variable 1 in need not be numerical. The simple act of attempting to
Store Report Variable 1 in any field of any format will throw the panel into Edit
mode, causing all fields with formulas that update on any change to update.

However, this won't update the fields that didn't receive data from the
Transaction Log, where those fields had formulas that were supposed to update on
creation. For those, you'll have to make that report update them with a Report
Variable that uses the same formula the field does.

® If you need Keep A Total codes to trigger, you're almost always better off
exporting and importing to and from a WordPerfect Merge file. This can be done,
however, with a Transaction Log. If you elect to use the Transaction Log method,
you'll need to run a report later—one that updates all totals. This will probably be
much slower than the WordPerfect Merge file method, even if you have to set up an
Import List to govern the merge file import.

Moving Fields Without Deleting or Adding Fields

This is still easier with the Transaction Log method, since you don't need to worry
about Edit Order. But, since no fields are being deleted or added, you could use the
WordPerfect Merge file method without needing an Import List. You should certainly
consider this if you need field formulas to update, or Keep A Total codes to trigger.

If you elect to use the WordPerfect Merge method, you'll need to make sure
the Edit Order matches the import field order. Don't forget that moving a field with
Ctrl-F4 always places it at the end of the Edit Order. One way to handle this is to
place it at the end of the Edit Order before doing the export. Then when you can
move it later, it won't change its position in the Edit Order.

DOS Delimited Text

This is where you deal with exporting or importing data between a DataPerfect
application and an application created by a different database management system.
As of this writing, no other database management system reads DataPerfect data files,
though some will import data in WordPerfect Merge format.

Export/Import 337

When someone speaks of DOS Delimited data, they're speaking of data laid
out in a DOS text file with one record per line, terminating with a designated ASCII
character, and fields delimited by a specific ASCII character. DataPerfect lets you
export data to this format as well as import from it, though this can be done only one
panel at a time.

Exporting to DOS Delimited Format

To export data from the current panel, Shift-F7 in Browse mode to call the Report
List, and press Enter on Built-In Short Reports. You get the following familiar

screen:
BUILT-IN REPORT/EXPORT
Destination: Create Disk File
1 - Printer On/Off
2 - Disk File On/Off
Filename: SCRATCH.REP
3 - Index Number 1
4 - Search Conditions No Search
5 - Sort Direction Forward
6 - Disk File Mode WP/DOS WordPerfect
7 - Print Margins Top Bottom Left Text Lines
6 0 0 54
8 — Report/Export Format: WordPerfect Merge (Can be imported)
Fields to be Included: All Real Fields (Including Hidden)
9 - Lookup Fields
A - All Display Fields
B - All Real Fields
Selection: (Press Shift-F7 to begin the report) 0

The item above to attend to first is item 8 (Report/Export Format). It defaults to
whatever it was set at the last time that screen was loaded in that application. If this
is the first time, you see Report/Export Format set for WordPerfect Merge. Hit 8 to
get other choices:

BUILT-IN REPORT FORMAT SELECTION

1 - Columns, Single Line
(All destinations OK; disk file both WORDPERFECT and DOS)

2 — Columns, Text Wrapped
(A1l destinations OK; disk file both WORDPERFECT and DOS)

3 - List
(All destinations OK; disk file DOS text only)

4 - WordPerfect List
(WordPerfect disk file destination only)

5 - WordPerfect Merge (Can be imported)
(WordPerfect disk file destination only)

6 - Export DOS Delimited Text (Can be imported)
(DOS text/comma delimited disk file destination only)

Selection: 0

338 Export/Import

What interests us here is choice 6 (Export DOS Delimited Text). When you choose
this option, you get the following menu:

BUILT-IN REPORT/EXPORT

Destination: Append to Disk File
1 - Printer On/Off
2 - Disk File On/Off
Filename: SCRATCH.REP

3 - Index Number 1
4 - Search Conditions No Search
5 - Sort Direction Forward
6 - Disk File Mode WP/DOS DOS Text
7 - Print Margins Top Bottom Left Text Lines
6 0 0 54
8 - Report/Export Format: Export DOS Delimited Text
Field Delimiter: | Record Delimiter: ~<CR><LF>
Fields to be Included: All Real Fields (Including Hidden)

9 - Lookup Fields
A - All Display Fields
B - All Real Fields

Selection: (Press Shift-F7 to begin the report) 0

Note the defaults in option 8, where fields are delimited by the pipe symbol
(1), and records by tilde (~), carriage return and linefeed. DataPerfect defaults to these
delimiters because they rarely appear in data. Exporting data with this setup would
produce a file of records like this:

Adams|Sally|123 Elm St.|Los Angeles|CA|90024~
Josephson|Abe | 34556 Oak Avenue|Santa Monica|CA|90403~
Conrad|J.R.|1121 Yale Blvd. |Somewhere|CA|92345~

Though the fields from which the above data was taken were fixed-length
fields (A, U, and N fields), the export process strips them of trailing spaces. If you
need fixed length-fields in your export file, you'll need to do the export with a report
you manually create. Such a report, mirroring the other export, would look something
like this (I'll just show just the first three fields here, due to space limitations on the

page):

FIRST PAGE HEADER
——Empty--

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Just make sure the above report prints to a DOS Text file. It creates a fixed-length
export file that has records like this:

Export/Import 339

Adams [Sally |123 Elm St.
Josephson |Abe [34556 Oak Avenue
Conrad |J.R. 1121 Yale Blvd.

340 Export/Import

Let's return to the DOS Delimited export. DataPerfect supports exporting to
and importing from a special DOS Delimited format: Comma Delimited format. To
export to Comma Delimited format, insert comma for the field delimiter and space
for the record delimiter. This produces a menu screen like this:

BUILT-IN REPORT/EXPORT

Destination: Append to Disk File
1 - Printer On/Off
2 - Disk File On/Off
Filename: SCRATCH.REP

3 - Index Number 1

4 - Search Conditions No Search

5 - Sort Direction Forward

6 - Disk File Mode WP/DOS DOS Text

7 - Print Margins Top Bottom Left Text Lines
6 0 0 54

8 - Report/Export Format: Export DOS Delimited Text
Field Delimiter: , Record Delimiter: <CR><LF>
Fields to be Included: All Real Fields (Including Hidden)
9 - Lookup Fields
A - All Display Fields
B - All Real Fields

Selection: (Press Shift-F7 to begin the report) 0

If we export the same data with the above setup, DataPerfect gives us this:

"Adams","Sally","123 Elm St.","Los Angeles","CA","90024"
"Josephson", "Abe", "34556 Oak Avenue","Santa Monica","CA","90403"
"Conrad","J.R.","1121 Yale Blvd.", "Somewhere", "CA", "92345"

The above is in classic Comma Delimited format. You might wonder what
will happen to character strings that, in the panel, contain quotes. In creating a
Comma Delimited file, DataPerfect will convert all such quotes to

\ n
and all back slashes to
N\

So, consider the following phrase found in an A60 field:

I see the name "Ralph" used in file c:\docs\myfile.

When DataPerfect exports that string to Comma Delimited format, it ends up like this
in the export file:

"I see the name \"Ralph\" used in file c:\\docs\\myfile."

Also, DataPerfect replaces each carriage return in a variable-length text field's
data with

Export/Import 341

\n

So, consider this data found in an AS0AS field:

This is the first sentence.

Here's the second sentence.

There are exactly two carriage returns in the above data, both following the first
sentence, yielding a blank line between the two sentences. When Comma Delimited
format is used, DataPerfect exports that data like this

"This is the first sentence.\n\nHere's the second sentence."

Importing From DOS Delimited Format

To import from DOS Delimited format, just tell the Ctrl-F5 Import menu that
comma is the field delimiter and space is the record delimiter, using option 3. This
gives you this screen:

IMPORT

1 - Import Filename
SCRATCH.REP

Import Type DOS Delimited Text
2 - WordPerfect Merge
3 - DOS Delimited Text
Field Delimiter: , Record Delimiter: <CR><LF>
4 - Duplicate Records Action
Copy All Duplicates
5 - Copy Duplicate Records to Filename

6 — Search Conditions No Search
7 - Create/Edit Import List
Do Import

8 — Import Without Disk Space Checking
9 - Import With Disk Space Checking

Selection: 0

342 Export/Import

The Clipboard

This chapter is for both beginners and the experienced.

Introduction

DataPerfect offers the definer an internal clipboard facility that allows him Block,
Copy, Cut and Paste various database entities. The DataPerfect clipboard is not a
screen capture facility like that offered by Shell 3.x or 4.x, DESQview, Windows,
0OS/2, to name a few. The difference here is very important

DataPerfect's internal clipboard facility allows the definer to Block text and
fields by simply hitting Alt-F4 to begin the Blocking operation, followed with using
the Arrow keys to paint the Block. When the Block is completely painted, the definer
may use F10 to Copy the Block's contents to DataPerfect's internal clipboard, or
Ctrl-F4 to Cut it to the clipboard. In either case, following up with Ctrl-F4 will
Paste it at the new cursor position.

This is very different from using screen capture. A screen capture facility
operates on screen entities, not application entities. I'll make this difference more
clear in the following sections, and also point out when it's actually better to use
screen capture, even when DataPerfect's clipboard can perform the same operation
faster.

In Define Panel Mode

In Define Panel mode, DataPerfect's clipboard allows the definer to Block (Alt-F4),
Copy (F10), Cut (Ctrl-F4) or Paste (F10) any panel entity, or bunch of entities. All
these may be the objects of such clipboard operations:

Text

Bold and Underline codes
Fields

Links

When you Cut a field from one position on the screen and Paste it to another
position in the same panel, its field number, name, format, and any formula attached
to it, are preserved. However, its Edit Order position is not preserved. As soon as it's
Cut, DataPerfect assigns it the end position in the Edit Order. Also, when you Cut a
field this way, DataPerfect warns you that you may delete an index if that field
participates in one. I've never seen such an index deleted by a Cut and Paste operation
unless, of course, you fail to immediately Paste the field to its new position. If you

The Clipboard 343

don't, you essentially delete the field. That will definitely delete any index in which
it participated.

However, if you Cut a field from one position on the screen and Paste it to a
different panel, only its field format is preserved. It loses its field name and any
formula attached to it. And, of course, since you just deleted that field from the
source panel, any index in which it participated is now deleted.

If you Copy (instead of Cut) a field from one position on the screen to another
position (in any panel), only its field format is preserved. It loses its field name and
any formula attached to it. Indexes are always preserved in a Copy operation.

Using Screen Capture

If, instead of using DataPerfect's clipboard, you attempt to screen capture Define
Panel entities, you'll only end up capturing the characters you see on the screen.
That's fine if all you want to do is capture text and put it somewhere else. But if you
attempt to capture a field or any Bold and Underline codes, you won't be capturing
anything significant. That is, all you'll be capturing are the onscreen characters you
see, not fields or display codes like Bold or Underline. When you attempt to screen
capture a field in Define Panel mode, at best, you'll just get a series of ASCII
characters, not a unified field.

In a Specify Formula Screen

In the Specify Formula screen, DataPerfect's clipboard allows you to Block, Copy,
Cut and Paste any Specify Formula screen entity (text, as well as field codes like
P1F1).

Pasting a portion of the Specify Formula screen to another Specify Formula
screen in the same panel should work with no special considerations to take into
account, other than the format of the field to which it's being Pasted. I mention the
latter consideration because you might be, say, Pasting a formula that yields a
character string into a Specify Formula screen for a numerical field. For instance, a
you might have the following formula in an AS field:

if P1F1=0 then "Hello" else "" endif

If you Block and Copy that formula, and then Paste it into the Specify Formula screen
for a G999 field, DataPerfect will allow it, but it won't make much sense. That
formula will always produce a zero for that field.

Or, again on the field format issue, you need to be careful that the format of
the field to which you're Pasting the formula is large enough to accommodate all
possible outputs of the formula. The following formula might be attached to an A7

field:
cases P1F1
case cv=0 of "Hello" endof
case cv=1 of "Goodbye" endof
default "

344 The Clipboard

endcases

But Pasting it into the Specify Formula screen of an A5 field won't work well, as it
won't ever display more than the first five letters of Goodbye.

Pasting a portion of the Specify Formula screen to another Specify Formula
screen in a different panel requires more thinking than when targeting a field in the
same panel. Every field code in the original formula will be invalid in the target field,
so you'll have to reselect all fields in the formula in its new home. For instance, take
the above formula again. P1F1, when in a formula in Panel 1, is no problem. It refers
directly to the Field 1 in Panel 1. But that field code in a field formula in Panel 2 is
nonsense. It refers to nothing. DataPerfect will let you Block and Copy P1F1 from
the Specify Formula screen in Panel 1, and Paste it into the Specify Formula screen
associated with Field 1 of Panel 2, but it won't do anything because the formula won't
find P1F1 while sitting in Panel 2. To get the formula to see P1F1 while in Panel 2,
you'll need to create a link to Panel 1, and replace any field code in that formula
referring to field P1F1 with one obtained by selecting P1F1 after penetrating the link
(F4 in the Specify Formula screen, Tab to the link, Down Arrow to penetrate the
link, Tab to the field and hit F4). This will give you something like

P2F15P1F1

instead of

P1F1

where the link used is P2F15. P2F15 would either be a panel link, identified by
DataPerfect as Field 15 in Panel 2, or a data link attached to Field 15 in Panel 2.

Using Screen Capture

If, instead of using DataPerfect's clipboard, you attempt to screen capture Specify
Formula screen entities, you'll do fine with all but field codes. That is, all the
alphanumeric (and other ASCII) characters will Block, Copy and Paste fine, but the
field codes, like PIF1 won't transfer as field codes. Rather, they'll transfer as
alphanumeric strings. For instance, if you screen capture the field code P1F1, you'll
be capturing four alphanumeric entities, not a field code. In a Specify Formula
screen, a field code is a single entity. Note that when you place the cursor on field
code P1F1, hitting Right Arrow moves the cursor to the right of P1F1, not just to the
right of the P.

In Report Definition Mode

DataPerfect's clipboard allows you to Block, Copy, Cut and Paste an entire section
of a Report Definition at one time. That is, it allows you to Block all that exists in a
First Page Header section, or all that exists in an Other Page Header section , or all
that exists in a Two-Level Header section, etc. It won't allow you to paint the Block
beyond the borders of a single Report Definition section. This allow you to quickly

The Clipboard 345

Paste all or some of the text, fields, Report Variables, and Report Options from one
section to another in the same Report Definition, or to another Report Definition in
the same application. However, heed similar caveats here:

First, if you Paste some or all of the Specify Formula screen of a Report
Variable into the Specify Formula screen of a different Report Variable, and the
target Report Variable will later be printed (Ctrl-F7, 1, 5), remember that a printed
Report Variable has a field format. Make sure the formula's output is compatible with
the target Report Variable's format.

Second, be painfully aware of any Report Definition entities in the clipboard
that may reference specific panel entities. In a Report Definition, such entities would
be selected fields in the Edit Report Form screen (what you get when you F4 to select
a field in, say, the First Page Header or Report Body) and selected fields in Report
Variable formulas (what you get when you F4 to select a field in a Specify Formula
screen).

Along these lines, don't think that just because you're Pasting within the same
report that you're safe here. You may be Pasting between sections in that report that
are tied to different panels (as is typically the case when Pasting between a main
report and one of its subreports). For instance, consider the following Report
Definition:

FIRST PAGE HEADER -
—-Empty-- Main report:
OTHER PAGE HEADER Client Panel
I

TWO-LEVEL REPORT HEADER

——Empty--
REPORT BODY:

Date Transaction Amount

SUBREPORT LINK/PANEL: 4 3 -
FIRST PAGE HEADER Subreport:
Transaction Panel

OTHER PAGE HEADER
Date Transaction Amount

(continued)
TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY.

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER

END OF SUBREPORT —

TWO-LEVEL FOOTER Main report:
——Empty-— Client Panel
PAGE FOOTER
——Empty--

FINAL FOOTER
——Empty-- —

Note the Final Footer of the subreport. The field that follows

346 The Clipboard

Thanks for your patronage,

is supposed to point to the First Name field. But if that field was Blocked and Copied
from the Report Body of the main report, it won't work. It must be reselected with F4
in that Final Footer.

If you aren't careful to reselect fields in this sort of situation, running that
report will dump the entire application out to DOS! And if you're stumped as to why
this is happening, and decide to cursor to each such field and hit Alt-F3 to see what
it points to, it will show you the original field it pointed it to. For instance, hitting
Alt-F3 on the field in the Final Footer above, even if Blocked and Copied from the
Report Body of the main report, will still show, incorrectly, that that report field
points to the desired panel field. You'll only realize it's incorrect when you take a
look at the field string noted by DataPerfect when the cursor sits on the field in the
Edit Report Form screen. If that field was taken from a part of the Report Definition
that's based on Panel 1, and it now sits in a section that's based on Panel 2, then this
should tip you off that something's not right:

Column 1
Type the text to be included in the report. To include a data field,
press Select (F4), move to the field (possibly through links,) and again
press Select. While the cursor is on a report field mark, you can press
F6 to edit the report format. To include variable fields, prompts or
special control instructions, press Report Options (Ctrl-F7).

Path to field: P1F1

Field Format: G999
FIRST PAGE HEADER

Note the Path to field line above. That field is in Panel 1, but if the Report
Form section in which its field codes sits is tied to Panel 2, you're in trouble. To
reference that field while in a Report Form section tied to Panel 2, you'll need to
delete the field and then reselect it with F4. This may involve going through a link
to get it if a similar field doesn't exist in Panel 2. When you do that, the display
should look more like this:

Column 1
Type the text to be included in the report. To include a data field,
press Select (F4), move to the field (possibly through links,) and again
press Select. While the cursor is on a report field mark, you can press
F6 to edit the report format. To include variable fields, prompts or
special control instructions, press Report Options (Ctrl-F7).

Path to field: P2F15P1F1

Field Format: G999
FIRST PAGE HEADER

In the above, the Path to field line now references
P2F15P1F1
not

P1F1

The Clipboard 347

Hitting Alt-F3 on that field in the Report Definition will still show you Field 1 of
Panel 1, but the Path to field statement above is telling you the Report Definition is
using link P1F15 to grab it.

Field Formulas and Help Screens: A Caveat

Some DataPerfect application developers like to put copies of field formulas in Help
screens during debugging stages of development. They Block and Copy a
complicated formula from the field's Specify Formula screen and Paste it in that
field's Help screen. This way they can see the formula of a field without going into
the Specify Formula screen. A useful practice, indeed, but don't use DataPerfect's
clipboard for this.

First of all, doing this isn't going to Paste a Specify Formula screen field code
(like P1F1) to the Help screen. But more importantly, there's a bug still deep in
DataPerfect code that sometimes trashes the .STR file when you Paste strings from
the Specify Formula screen to the Help screen, or vice versa. It has yet to be pinned
down. But, since you can't get the Specify Formula screen field codes this way
anyway, just use screen capture instead of DataPerfect's clipboard. It's slower to use,
but will avoid both problems mentioned.

348 The Clipboard

Securing the Application

Here I target both the beginner and the experienced, though the beginner will find

much of this rather confusing.

Application Passwords

The most basic way to secure an application from user abuse is to use what
DataPerfect has provided since its initial release: application passwords. These are
accessed with Shift-F9, 5 while in Browse mode, letting you define rights based on
application password access to the database when it's initially loaded.

Here are the four possible levels given to a user via the application password

facility:

Definer

Supervisor
Read/Write
Read-Only

For some odd reason, though, the Reference manual never exhaustively delineates
what each application password grants or denies you. Here they are, from the most
powerful to the least. Each password level grants its owner all the rights next to its
name here, and all the rights next to the names below it:

Rights Granted by Application Passwords

Level

Rights Granted

Definer

Create or change application passwords.
Enter Define Panel mode.

Enter Define Index mode.

Select User ID Panel.

Define the application banner.

Supervisor

Mass deletes with Alt-F5

Recover indexes.

Start and stop a Transaction Log.
Export data to a Transaction Log.
Import a Transaction Log.

Read/Write

Create, Edit, and Delete records as
permitted by menu access restrictions.

Read Only

Browse records.

And here's an outline of just when DataPerfect prompts the user for an
application password (as opposed to their User ID Password, which I discuss later).

Securing the Application 349

The user actions on the right cause DataPerfect to prompt for an application
password, given the state of the application security on the left:

When DataPerfect Prompts for Application Passwords

Application Security Status

User Action Causing Prompt

Application passwords defined.
User ID Panel selected.

Leaving User ID or User Password blank.
Define Panel (Alt-F8).
Define Index (Ctrl-F8).

System and Recovery Options (Shift-F9).

Application passwords defined.
User ID Panel not selected.

When loading the application.
Define Panel (Alt-F8).
Define Index (Ctrl-F8).

System and Recovery Options (Shift-F9).

Application passwords not defined.

Never. What did you think I'd say?

Menus

With version 2.3 came DataPerfect's menu facility. This gives the definer much more
control over how the user will manipulate the database. With only application
passwords defined, and no menus defined, whatever rights are assigned via the
application passwords on entry into the application, carry forward to all panels on the
Panel List. So if the user has Read Only rights on entry into the application, they can't
create, edit or delete any records in any panel in the application. Likewise, if they
have Read/Write rights, they can create, edit or delete any record in any panel on the
Panel List.

But suppose you want the user to have Read/Write rights in the Transaction
Panel of your application, Read Only rights in the Auto Parts Panel and Create Only
(No Delete or Edit) rights in the Invoice Panel. Until version 2.3, this sort of security
wasn't possible with native DataPerfect, though some of it was possible with the
DPMouse© third-party utility (see the entire DPMouse© manual on the provided
diskette). This sort of security is possible with DataPerfect 2.3's menu facility.

The Define Menu Screen
To call DataPerfect's menu facility, load the Panel List (or load a menu, if you

already have a menu on this application). From there, hit Alt-F8 to get the Define
Menu screen:

350 Securing the Application

Define Menu
Options 1-7 Create New Menu Entries.
1 - Go to Panel (Definer Keyword)

2 - Go to Panel (User Selects Record)

— Submenu
— Launch Shell Macro
- Edit an Existing Entry

WP o owaJo
|

3 - Run Report Delete an Existing Entry
4 - Go to Panel List - Create/Edit Menu Text
5 - Go to Report List — Move the Menu Prompt
Selection: 0

01 18 35 52 69 86

02 19 36 53 70 87

03 20 37 54 71 88

04 21 38 55 72 89

05 22 39 56 73 90

06 23 40 57 74 91

07 24 41 58 75 92

08 25 42 59 76 93

09 26 43 60 77 94

10 27 44 61 78 95

11 28 45 62 79 96

12 29 46 63 80 97

13 30 47 64 81 98

14 31 48 65 82 929

15 32 49 66 83

16 33 50 67 84

17 34 51 68 85

Let's go over the options you see above.
Create/Edit Menu Text

Let's start with option A (Create/Edit Menu Text). Hitting A gives you this screen:

This is a sample menu form. You may delete it entirely, change its form,
or press the Ins key (for replace mode) and fill it in.

MENU

SELECTION:

Here's where you create the menu itself, as the user will see it. If this is the first time
you got this screen for this application, this is the initial menu of the application. All
other menus will be, directly or indirectly, submenus off this menu.

This is a simple text editor that supports all the character keys, along with
Enter, Delete, Backspace, and Insert. After editing it to look the way you want (you
can always change it later via option A), hit F7. At that point, your screen may look
like this, with a movable Menu Prompt somewhere on the screen:

Securing the Application 351

H Auto Parts Database 1.0 “

Main Menu

Enter Customer Panel
Enter Auto Parts Panel
Print Day Sheet

End of Month Submenu

Selection:
(movable Menu Prompt)

That movable little block is the Menu Prompt. Use the cursor keys to put it
where you want (in this case, to the right of the string Selection:). Then hit F7 or F10
to save and exit the screen.

That simple menu doesn't do any thing yet. Now we must code it so that when
the user hits 1 he lands in the Customer Panel, when he hits 2, he lands in the Auto
Parts Panel; when he hits 3, he prints a Day Sheet; and when he hits 4, he sees yet
another menu, this one offering him options for to perform at the end of the month.

Move the Menu Prompt

Option B just lets you move the Menu Prompt without having to go through editing
the Menu Text first. If you choose option A instead, but then don't edit the Menu
Text screen, hitting F7 or F10 won't prompt you to move the Menu Prompt.

Go to Panel

As you can see, there are two Go to Panel options (1 and 2). The first allows the
definer to designate a Keyword that will control entry into the designated panel, the
second allows the user to do this after choosing that menu item. A menu item that
takes you to a panel acts just like a panel link, and the menu item's Keyword acts like
the first field in a panel link's field list.

For example, if the definer defined menu item 1 above to go to the Customer
Panel with the Keyword Adams, then every time the user chose menu item 1 on the
main menu, he'd land in the Customer Panel with access only to Customers with the
Last Name Adams. This, of course, would be true if the menu item was assigned a
Customer Panel index that begins with the Last Name field. Most of the time you
won't assign a Keyword to a Go to Panel option, which means you're giving the user
full access to all records in its target panel.

When you choose Go to Panel from the Define Menu screen, DataPerfect first
asks you what menu item this is supposed to attach to, then it presents you with the
Panel List from which to choose the target panel. Next it offers you one of two
possible menus, depending on whether you chose the Definer Keyword (1) or User
Selects Record (2):

352 Securing the Application

Go to Panel (Definer Keyword)

Panel: TEST .NEW

1 - Panel Access Rights: Read/Write

2 - Access Report List? Yes

3 - Restrict Modification to First Level No

4 - Edit Password 6 — Choose Index 0

5 - Edit Key Word 7 - Subset No
Selection: 0
Go to Panel (User Selects Record)

Panel: TEST.NEW

1 - Panel Access Rights: Read/Write

2 - Access Report List? Yes

3 - Restrict Modification to First Level No

4 - Edit Password

5 - Choose Index 0 6 - Subset No
Selection: 0

They're identical Go to Panel options menus, except the first one includes the Edit
Key Word option. Let's go over these options one at a time.

Panel Access Rights
This determines what the user can do in the target panel. It toggles between the
following four options:

Read/Write
No Delete
Create OK — No Edit/Delete
Read-Only

They determine what the user can do in the target panel, and, if Restrict Modification
to First Level is set to No, whatever you set for Panel Access Rights carries forth to
all panels the user can access directly or indirectly from the target panel. If Restrict
Modification to First Level is set to Yes, then Panel Access Rights applies only to the
target panel, because Restrict Modification to First Level will force the user into
Read Only mode in panels accessed from the target panel.

Access Report List
This is straightforward. If set to Yes, the user has access to the Report List while in
Browse mode in the target panel. This is dangerous. A user with access to the Report
List can create a report that prints out data from any panel in the database. It also lets
the user create a report that deletes any data anywhere in the database. I suggest this
is always set to No.

Restrict Modification to First Level

As mentioned already, if set to Yes, it overrides Panel Access Rights when the user
penetrates a link in the target panel. From that point on, the user is in Read Only
mode, until they return to the target panel.

Edit Password

This lets you place a password on entry in the target panel. If you do, DataPerfect
prompts the user for a password when choosing to enter this panel from this menu
item.

Securing the Application 353

Edit Key Word
We already discussed this. It only shows up on the Go to Panel (Definer Keyword)
option.

Choose Index

This is straightforward. Choosing that option allows you to tie entry into the target
panel to the index of your choice. Otherwise, the user will enter that panel under the
control of the lowest numbered index for that panel. This option is especially
important if you choose Go to Panel (Definer Keyword) and do indeed define a
Keyword for entry into the target panel, or choose Go to Panel (User Selects Record).
In either case, the Keyword facility is activated, so the index is important. The index
must be one whose first field is compatible with the Keyword.

Subset

This is important only if panel entry is, again, governed by a Keyword. If so, and
Subsetis set to Yes, then DataPerfect will honor subsets beginning with the Keyword.
For instance, if panel entry here is governed by Go to Panel (User Selects Record),
and the user enters Adams for the Keyword, then they'll have access to Adams,
Adamson, etc.

Run Report

When you choose Run Report from the Define Menu screen, DataPerfect first asks
you what menu item this is supposed to attach to, then it presents you with the Report
List from which to choose a report. When you highlight a report and hit Enter, you're
presented with the following slightly modified Initial Report Definition Screen:

REPORT: Day Sheet

Destination: Create Disk File
1 - Printer On/Off
2 - Disk File On/Off
Filename: SCRATCH.REP

3 - Index Number 1

4 - Search Conditions No Search

5 - Sort Direction Forward

6 - Disk File Mode WP/DOS DOS Text

7 - Print Margins Top Bottom Left Text Lines
6 0 0 54

o)
|

Edit Report Form
Edit Report Name

)
|

A - Report Mode - Normal/Lookup Normal Report Mode
B - Password:
C - User Set-Up No

Selection: 0

The above Initial Report Definition Screen differs slightly from that found if
you accessed the same report on the Report List when hitting Shift-F7. It's the same
report (that is, the Edit Report Form screen is identical), but has options A, B, and
C at the bottom. Hitting A toggles between Normal Report Mode (the default) and
Single Record Report From Lookup.

354 Securing the Application

Normal Report Mode

This results in the report running just like it does when run from the Report List.
Single Record Report From Lookup mode causes the report to first offer the user a
lookup of records in the report's index. Once the user selects a record from that
lookup by hitting Enter, the report runs to completion on that single record and the
presents the user with another lookup where they may choose another record or hit
F7 to terminate the report. I discuss this further, especially the way it differs from
using the User Chooses Next Record From Lookup code, in the Single Record
Report from Lookup off a Menu section of my Iteration Control chapter.

Password
This lets you setup a password for this report. If you do, DataPerfect prompts the user
for a password when choosing to run this report from this menu item.

User Set-Up

This defaults to No. If toggled to Yes, then, upon choosing this report from this menu
item, DataPerfect will initially present this abbreviated Initial Report Definition
Screen to the user, instead of immediately running the report:

REPORT: Some Report

Destination: Screen Only
1 - Printer On/Off
2 - Disk File On/Off

3 - Index Number 1

4 - Search Conditions No Search

5 - Sort Direction Forward

6 - Disk File Mode WP/DOS No Disk File

7 - Print Margins Top Bottom Left Text Lines
6 0 0 54

Selection: (Press Shift-F7 to begin the report) 0

The above intervening menu lets the user change any of the key elements you
see above before running the report. DataPerfect won't save any changes the user
makes.

Run Report Option Caveats

Menu Reports as Copies

As you can see, you, the definer, can make changes to a Report Definition that's
attached to a menu item. When first attaching it to the menu item, you have full
access to all the Initial Report Definition Screen options of that report, including
option 8 (Edit Report Form). And you can later gain access to that Initial Report
Definition Screen by going back into Define Menu mode (Alt-F8) and choosing

Securing the Application 355

Define Menu's option 8 (Edit an Existing Entry), then choosing the menu item to
which that report is attached.

So you can make changes to the report you attach to a menu item, just as
though you were accessing it from the Report List. Be aware of something crucial
here. That report you assigned to that menu item is a copy of the one you selected
from the Report List. It's not the same report. This has consequences.

When you edit the Menu version of that report, you don't affect its Report List
version. Likewise, when you alter the Report List version of that report, you don't
affect its Menu version. To update the Menu with the new version of the report you
just changed on the Report List, you must go back to that menu in Define Menu
mode, delete the old version from that menu item, and then assign the new version
to that menu item. Keep this in mind when, after working hard on revising an old
report on the Report List, it still seems to run the way it used to when run from a
menu.

Menu Report Bug Alert

There's a very important DataPerfect bug here that may occasionally bite you. If you
tell DataPerfect to attach a report to a menu item and then cancel with F1, you may
corrupt your .STR so that it's unfixable with DPEXP.COM. That is, in Define Menu
mode, if you hit 3 to attach a report to a menu item, and then choose a menu item
number, you see the Report List from which to choose a report. If, while the Report
List is on the screen, you decided to cancel this operation with F1, you may later find
your .STR is corrupt. The corruption may not show up right away. If it's there,
however, running DPEXP will expose it. The symptom will be that DPEXP never
completes. If this happens, the .STR is not fixable.

So, if, while attaching a report to a menu item, you decide to cancel the
operation, don't hit F1 with the Report List displayed. Rather, complete the
attachment with some report (any will do, even Built-In Short Reports). Then delete
the menu item with 9 from the Define Menu later.

Go to Panel List

Option 4 (Go to Panel List) is straightforward and dangerous. Assigning that to a
menu item gives the user full access to all panels in the database. I can't imagine ever
giving any user this sort of access. Most developers assign this option to menu item
99, never displaying that option on the menu itself, while assigning it a password
(DataPerfect allows this access to be password protected, as you find out when you
attach it to a menu item). That way the developer can gain access to the Panel List
when needed. Don't forget that the Panel List doesn't display when the application is
loaded, as long as it has a menu. So this is the way most developers give themselves
access to the Panel List when a menu exits.

There's another way for the developer to get to the Panel List in an application
with a menu, but that only applies to applications that employ the User ID Panel
facility. I discuss this later, in The User ID Panel vis a vis Application Passwords
in the User ID Panel section of this chapter.

356 Securing the Application

Go to Report List

Like option 4, option 5 (Go to Report List) is straightforward and dangerous. This
option, if assigned to a menu item, gives the user full access to the DataPerfect report
facility, allowing him to write reports that print all data in sensitive panels, or, worse,
delete all data in any or all panels of the database. Many developers assign this option
to menu item 98, never displaying that option on the menu itself, while assigning it
a password (DataPerfect allows this access to be password protected, as you find out
when you attach it to a menu item). That way the developer can gain access to the
Report List when needed. Otherwise, you, the developer, can just rely on menu item
99 granting you access to the Panel List (see above section). From there you load a
panel and hit Shift-F7.

Submenu

Option 6 (Submenu) is straightforward. It lets you create an entire system of menus
that branch off other menus, starting with the main menu. When you assign this
option to a menu item, you get a fresh menu to define with all the same possible
options. However, when you later decide to return to edit a submenu, hitting Alt-F8
always brings up the main menu, no matter what menu was displayed when you hit
Alt-F8. So you must begin the Edit an Existing Entry process (option 8) in the main
menu. From there you tell DataPerfect which of that menu's submenus to edit.

Launch Shell Macro

With option 7 (Launch Shell Macro), you can have a menu item do things that reports
can't. Reports, of course, are the only automated processes a user can call from a
menu, other than Shell macros. Any macro that can be run with Shell 3.x or 4.x with
DataPerfect loaded can be used here. Such a macro might, for instance, run a
particular DataPerfect report that offers the user a lookup of records from which to
choose, where that report creates a WordPerfect Merge file from the user's choices.
That same macro can then load WordPerfect and complete the merge from there,
printing a series of letters.

Edit an Existing Entry

Option 8 (Edit an Existing Entry) is straightforward. After hitting 8, DataPerfect
prompts you for the menu item to edit. For instance, if the menu item is a Run Report
option, then you get that report's Initial Report Definition Screen (see the Run Report
Option Caveats section above for important notes about this). If the menu item is a
Go to Panel option, you get the Go to Panel options menu for entry into that panel.

Securing the Application 357

Delete an Existing Entry

Option 9 (Delete an Existing Entry) is straight forward. When you hit 9 from a
Define Menu screen, DataPerfect prompts you for the item to delete.

User ID Panel

The User ID Panel facility, which was introduced with DataPerfect 2.3's second
release (September 1993), offers another layer of database security to your
application. It allows for 16 million unique User ID/Password combinations per
database. With the User ID facility activated in a particular application, the user is
prompted for his User ID and Password before being allowed into the database.
Activating this optional User ID Panel facility offers two significant benefits:

° A way to track exactly who's entering data in any record at any
moment in time
° Controlled access, based on assigned User IDs and User Passwords

Here's how the User ID facility works. First, you'll need a panel to serve as
your User ID Panel. It must have at least three fields. Fields 1 and 2 must be A or U
fields, up to 25 characters each. Field 3 must be a G or N field, up to two digits in
length. When I say Fields 1, 2, and 3, I'm referring to their Field Numbers, not their
Edit Order positions. Field Numbers are exposed in Browse or Define Panel mode
by hitting Alt-F3 twice. Hitting Alt-F3 once more shows Edit Order. You'll probably
want this panel to be a newly created panel. You can name it anything you want, but
you might as well name it the User ID Panel. Also, though DataPerfect will allow you
to do otherwise, index 1 of this panel should consist solely of Field 1 (more on this
last point in a later section, Tracking User Activity).

After you create your User ID Panel, you must tell DataPerfect that it's the
one it should consider your User ID Panel. That is, naming it the User ID Panel isn't
enough. Like I said, you can actually name it anything you want. At this stage you
must select it as the User ID Panel with Shift-F9, B. This will present you with the
Panel List, where you must highlight the User ID Panel and hit Enter. After you
select your User ID Panel from the Panel List, there's no indication on any screen that
any panel at all has been selected as the User ID Panel. The only way to find out if
one has been selected is to load the application and see watch to see if it asks you for
your User ID and Password.

Once selected, DataPerfect will consider that the User ID Panel's Field 1 to
be the User ID field, Field 2 to be the Password field, and Field 3 to be the Access
Level field. All other fields are up to the Definer in terms of significance in the
database. Again, when I say Field 1, I'm referring to its field number, not Edit Order
position.

Selecting this panel as the User ID Panel has major consequences. Every user
entry into the database itself will now be controlled by the User ID facility. If the
User ID Panel is selected, and both Definer and Supervisor application passwords

358 Securing the Application

defined (see the next section, User ID Panel Caveats, for more on the need for
application passwords being defined), then when the user attempts to load the
application, DataPerfect will ask him just who they are. This is done with a series of
two prompts, one asking for his User ID and the other asking for his Password. After
the user fills in both prompts, DataPerfect looks to see if there's a User ID Panel
record with that precise combination. That is, say John enters John as his User ID and
SECRET as his Password. Then DataPerfect will look to see if there's a User ID Panel
record with John in Field 1 and SECRET in Field 2. If no such User ID Panel record
exists, John is sent back to DOS.

If there is such a User ID Panel record, two important things happen. First,
DataPerfect sets up a scheme to track the movements and actions of each user
currently accessing the database. To do this, DataPerfect stores in memory the user's
User ID. With that value in memory, which is the value found in Field 1 of the user's
User ID Panel record, DataPerfect makes it possible to globally access all fields in
that user's User ID Panel record. DataPerfect allows this access with the
USER.FIELD[n] function. Second, DataPerfect sets up a scheme that allows for
controlled access to the database. DataPerfect does this by activating the Access
Level found in Field 3 of the user's User ID Panel record. Before spelling out each
of these events in more detail, I must emphasize a few caveats.

User ID Panel Caveats

Three caveats. First, though the User ID Panel facility can be activated with Shift-
F9, B without any Definer or Supervisor application passwords assigned to the
application (Shift-F9, 5), it shouldn't be used that way. I'll explain this later. For now,
make sure both Definer and Supervisor application passwords are defined for any
application for which you want to activate the User ID facility. You don't need to
have Definer and Supervisor application passwords defined for the application before
selecting your User ID Panel. Just make sure you define them at some point before
letting users use the application (assuming you want the application protected by the
User ID Panel facility).

Second, when you export an .STR file DPEXP.COM, you create an .STE file
that lacks application passwords. This is done to protect the application from users
seeing application passwords in a stray .STE file on their hard drive (after, say, you
did some maintenance on their application in their office and didn't delete an .STE
you created with DPEXP.COM). So when you then create a new .STR by importing
the new .STE with DPIMP.COM, the newly created .STR will have no application
passwords defined anymore. Also, this newly created .STR won't have the User ID
Panel selected. So, after a DPEXP/DPIMP session, make sure you redefine your
application passwords and reselect your User ID Panel.

Third, as mentioned earlier, and explained soon, the first index of the User
ID Panel must consist solely of the User ID field.

Securing the Application 359

Tracking User Activity: the USER.FIELD[n] Function

If the User ID Panel facility is active, DataPerfect knows who's in the database. No
matter what panel a user is in, or what report he's running, DataPerfect knows not
only what his User ID and Password are (which he gave during the initial two
prompts), but DataPerfect also indirectly knows the value found in each field of his
User ID Panel record. I don't just mean the values found in the first three fields (User
ID, Password, and Access Level fields) of the user's User ID Panel record, but, rather,
the values found in all the fields in that record. These values follow the user around
wherever he goes in the database, and they can be accessed with the USER.FIELD[n]
function.

DataPerfect, via the USER.FIELD|[n] function, has direct access to the user's
User ID because it's sitting in memory, as mentioned before. DataPerfect, via the
USER.FIELD[n] function, has indirect access to the other fields in the user's User
ID Panel record by using the User ID value as a key field in a dynamically created
virtual link to the User ID Panel. It's essentially acting like there's a link in the current
panel that targets the User ID Panel, with the User ID value as its sole field list
component. Using an index that starts with the User ID field, DataPerfect then has
access to all fields in the User ID Panel, not just the User ID field (Field 1).

Given the way the USER .FIELD[n] function works, the first index of the User
ID Panel must consist solely of the User ID field. This will allow DataPerfect, when
called to do so by the USER.FIELD[n] function in a formula, to create a virtual link
and access all the User ID Panel fields, using the User ID stored in memory to form
the virtual link field list. The Reference manual doesn't talk about the User ID Panel
facility (the manual wasn't updated with the second, September 1993 version of
DataPerfect). But even the README that references the User ID Panel facility fails
to mention the necessity of User ID Panel index 1 consisting solely of the User ID
field.

The developer can access those User ID Panel fields in any formula in any
field or Report Variable by using the USER.FIELD[n] function, where 7 is the field
number of concern in the User ID Panel. So USER.FIELD[1] returns the current
user's User ID, USER.FIELD|[2] returns his Password, and USER.FIELD[3] returns
his Access Level. And USER.FIELD|[4] returns the value found in Field 4 of his User
ID Panel record, USER.FIELD|[5] returns the value found in Field 5, etc. Fields 4
through 125 (you're only allowed 125 fields in a panel) are left up to the developer
for their significance in the database. Fields 1 through 3, of course, are rigidly
defined.

The USER.FIELD[n] function, then, can be used to access user-specific data.
For instance, you might want, in your Transaction Panel, an A25::N field to display
show who created the current record by giving it

user.field[1]

as its field formula, to update on record creation. That would display the User ID of
the user who created the record. You might also want a second A25::N field to

360 Securing the Application

display the User ID of the user who most recently edited the current record. Again,
you'd use

user.field[1]

but this time you'd have it update on any change.

Alternatively, you might want only certain users to run certain reports. One
way to do this is to have a special field in the User ID Panel set up for this purpose.
Say it's Field 4, and has the format G9. You have a special report that's to be run only
by users with certain qualifications. Assuming the Supervisor of the application has
access to the User ID Panel, he can enter the number 1 in Field 4 of the appropriate
users' User ID Panel records, otherwise leaving other users' User ID Panel records
with a 0 in Field 4. Now you have the sensitive report abort if it sees the current
user's USER.FIELD[4] isn't equal to 1. Assuming you already know about reports
and Iteration Control options, such a Report Definition would involve setting, say,
Report Variable 1 to

user.field[4]=1

in the report's First Page Header, followed immediately by a Stop if Report Variable
1 is False code. Such a device would cause the report to stop as soon as it started, if
the current user's Field 4 isn't equal to 1.

More on using the USER.FIELD[n] function later. The point to get right now
is that, when the User ID Panel facility is active, any formula can access the value of
any field in the current user's User ID Panel record by using the USER.FIELD[n]
function. Also, a secondary consequence of DataPerfect storing the user's User ID in
memory is that, if the Transaction Log facility is active, each entry in that log will
contain the User ID of the user responsible for that entry. This way the Supervisor
can see just who created, edited or deleted this or that record.

Controlling User Access

Whereas the first thing DataPerfect does when it finds out who the current user is, is
to store their User ID in memory, making data in their User ID Panel record globally
available to the application, the second thing it does is guide the user's entry into the
database itself. Again, if DataPerfect doesn't see a User ID Panel record with the
current user's User ID and Password in Fields 1 and 2 respectively, he's kicked back
to DOS. But if it does see such a User ID Panel record, one of two events takes place.
If amenu exists, DataPerfect executes the menu item on the initial menu that matches
the value found in the Access Level field (Field 3) of that user's User ID Panel
record. If no menu exists, DataPerfect places the user in the panel whose panel
number corresponds to the value found in the Access Level field of that user's User
ID Panel record.

When the application has menus, coupled with an active User ID Panel
facility, the user never sees the initial menu. For instance, let's say the initial menu
in the application has menu items 1 through 25 defined by the developer. Well, if the

Securing the Application 361

value in Access Level field of the current user's ID Panel record is 5, then, assuming
that user answered the User ID and Password prompts properly, DataPerfect will
immediately execute the initial menu's item 5 without the user ever seeing the initial
menu. So the User ID Panel facility puts the current user into a submenu off the
initial menu.

You've already seen what security options are available to the definer when
framing that initial menu. All those you read about in the Menus section above apply
equally well to the initial access menu. As you can now see, you can hold the user's
hand with the User ID Panel facility in concert with the application's initial menu, by
having the initial menu branch to various submenu paths, each with different levels
of security. What will determine which initial path the user falls into is the value
found in the Access Level field of his User ID Panel record.

Okay, before I get into more detail on the User ID Panel facility, let me show
you an example of how to set up the initial menu so it works with the User ID Panel
facility, holding the users' hands as they initially enter the database. That may not be
all that clear at this point to you. Here's a summary of how to do this:

° Create your initial menu, which I call the application's Access Menu.
This must be the initial menu of the application.
° Configure the Access Menu in a way that provides different paths into

the database. This usually means you define a submenu for each item
on the Access Menu. Each submenu has certain rights, corresponding
to the Access Menu option chosen. The Access Menu option chosen
will be the user's Access level, as found in their User ID Panel
record's Access Level field (again, that's Field 3). Take a look at this
example of a simple Access Menu I wrote for a client:

ACCESS MENU
[1] Read/Write and User ID Panel access
[2] Read/Write without User ID Panel access
[3] Read Only with Read-Only report generation
[4] Read Only with no report generation

[98] Reports
[99] Panels

The user never sees this menu. Each of the first four menu items calls
a submenu with options for that particular Access level. Access to the
Panel and Report List are there too, but the definer is the only one
who ever gets to use those menu items (he's the only one who ever
sees this menu)

L Create and select the User ID Panel. The User ID Panel for the above
application looks like this:

362 Securing the Application

USER ID PANEL

User ID
User Password

Access Level

Access Levels explained

Full Access.
Full Access, excluding the
Browse Only, excluding the

Level 1
Level 2
Level 3

(Owner) :

(Manager) :
(Operator) :
Can run reports that don't
Browse Only, excluding the

Level 4 (Browser):

User ID Panel.
User ID Panel.
alter data.

User ID Panel.

No reports.

As you can see, I give only the Owner of this application rights to
access the User ID Panel.

° Create a User ID Panel record for the application's Owner. Otherwise
they won't be able to get into the application you ship to them. Tell
them their User ID and Password, of course. They can change that
later.

° Define both Definer and Supervisor application passwords.

° Create appropriate submenus, each called by a different Access Menu

option. Each submenu will have different rights, corresponding to the
Access level scheme implied by the Access Menu.

Don't feel you must be limited to the scheme outlined in the User ID Panel
and Access Menu I just showed you. You can have many more Access Menu options,
with varying rights. Perhaps you want to have a different access path for each of 50
workers at the job site. If so, you'll need at least 50 menu items in the Access Menu.

In the example I gave you above, each access path (at least Levels 3 and 4,
anyway), might be used by more than one person. For instance, secretaries might be
divided into Level 3 and Level 4 users on this scheme; Level 2 will be assigned only
to the Day Manager and the Night Manager; and Level 1 assigned only to one person,
the Owner. In this case, the Owner would be the one who assigns Access Level
values to the various people in the company, doing this by editing Field 3 of each
person's User ID Panel record. Note that on this scheme, only Level 1 (the Owner)
has access to the User ID Panel.

[For an example of the above technique, load UD3.STR. When asked for a User ID, use JOE. When
asked for a Password, use COMMON. Note the menu you land on. Now exit the application and re-
enter, using SUE for the User ID and SPECIAL for the Password. Note you land on a different
menu.]

The User ID Panel vis a vis Application Passwords

Now, remember I said that if the User ID Panel facility is active, and both Definer
and Supervisor application passwords are defined, no one can get into the database
without answering the User ID and Password prompts properly. Two important
points come to mind around this, however.

Securing the Application 363

First, what happens if the User ID Panel facility is active but either the
Definer or the Supervisor application password isn't defined? Well, the user will still
be prompted for his User ID and Password. And if he answers appropriately, he'll still
be dropped into the submenu that corresponds with his Access Level. But if he fails
to answer properly, either by entering a User ID and Password that don't correspond
to a User ID Panel record, or by just hitting Enter at either prompt, leaving one or
both blank, DataPerfect will place him in the initial menu instead of a submenu! This
gives him a choice as to which submenu to access, which could spell disaster if this
is a user who should only have limited rights (like Read Only).

Second, if the User ID Panel facility is active and both application passwords
are defined, then, again, nobody gets into the database without properly answering
the User ID and Password prompts. If they answer improperly, they're kicked out to
DOS. That's what we want.

But what if the Supervisor has edited all the User ID Panel records and
doesn't remember any of them. He calls you, telling you he can't get into the database.
How do you, the definer, get in? Well, as long as both Definer and Supervisor
application passwords are defined, the User ID facility offers the definer a backdoor
into the database. (Don't forget that anybody can get in without those application
passwords defined, so this issue only arises when they're both defined, which they
should be.) With both Definer and Supervisor application passwords defined, you
just hit Enter for either or both User ID and Password prompts (leaving one or both
blank). DataPerfect will then prompt you for an application password (only Definer
or Supervisor passwords will work at this point). After you give DataPerfect your
Definer application password, DataPerfect drops you into the initial Access Menu.
If you enter the Supervisor application password instead, you'll find yourself in the
initial Access Menu as well, but you'll only get into the database with Supervisor
privileges (you won't be able to enter Define Panel mode, for instance).

So again, without both application passwords defined, anyone can get into the
Access Menu by simply hitting Enter for their User ID and Password. With both the
Definer and Supervisor application passwords defined, only the definer or Supervisor
can get into the application.

[For an example of this point, load UD2.STR. When asked for a User ID, just hit Enter. When asked
for a Password, just hit Enter. Note you land on the hidden initial menu the user is never supposed
to see. That's because I didn't define Definer and Supervisor application passwords for this
application. Now exit the application and load UD3.STR. Again, just hit Enter when asked for User
ID and Password. Note that you're now prompted for a password. That's an application password
prompt. The Definer password is PASSWORD. Use that as the password, and you'll land on the
hidden initial menu. .]

User-Stamping Records
Suppose you'd like to stamp every record entered in a given panel with the User ID
of the user that created the record, and have another field that shows who last edited

it. The following A45::N field formula, if set to update on creation, would show
when a record was created, and by whom:

364 Securing the Application

cat.t]|
apply.format["T99:99:99"; now];
" "apply.format["D99/99/9999";today];
" "user.field[1]

]

The same formula, set to update on any change, would show who last edited the
record, and when. I arrived at the size of the field (45 characters) by adding the space
occupied by the following three fields, plus the two spaces between them:

Format Formula Size

T99:99:99 NOwW 8 characters
D99/99/9999 | TODAY 10 characters
A25 USER.FIELD[1] 25 characters

Controlling Access to Data Accessed from a Menu

Suppose you'd like to keep the wrong pair of eyes from seeing the contents of a
particular Read Only panel (perhaps it's a panel with information you, the developer,
filled in for the Supervisor—like application maintenance notes). Use the
USER .FIELD[n] function for this. Say you reserve User ID Panel Field 4, formatted
(9, for assigning a user the right to see data in, say, Panel 10. You can do this by
giving the user a 1 in field 4 if they're allowed to view Panel 10 data, and a O if not.
Then create a special hidden G9 field in Panel 10, where that field updates to 1 on
record creation. Next, create an index in Panel 10 that has this new field as its first
field.

Now grant Read Only access to that panel via a menu option tied to a User
ID Panel Field 4. This is done by choosing the first Go To Panel option from the
Define Menu menu below:

Define Menu
Options 1-7 Create New Menu Entries.
1 - Go to Panel (Definer Keyword)

2 - Go to Panel (User Selects Record)
Run Report

Go to Panel List

Go to Report List

Selection: 0

Submenu

Launch Shell Macro

Edit an Existing Entry
Delete an Existing Entry
Create/Edit Menu Text
Move the Menu Prompt

WP o owJo

3
4
5

When you choose 1, and tell DataPerfect which menu item and panel it involves, you
get the following menu:

Go to Panel (Definer Keyword)

Panel:

1 - Panel Access Rights: Read/Write

2 - Access Report List? Yes

3 - Restrict Modification to First Level No

4 - Edit Password 6 - Choose Index 0

5 - Edit Key Word 7 - Subset No
Selection: 0

Note option 5 (Edit Keyword). Choosing that option gives you the following prompt:

Securing the Application 365

Select a field from the User ID panel for the keyword (Y/N)?

Choosing Y presents you with the User ID Panel, where you select Field 4 with F4.
That will be the Keyword for this menu option's entry into Panel 10.

What you just did is assign a Keyword to a Go To Panel menu item. Such a
menu item will work just like a panel link with a single field on its field list. The
Keyword on the Go To Panel menu item is equivalent to a panel link's single-field
field list. So when the user chooses that Go To Panel menu item, he'll enter its target
panel just as if he went through a panel link with that Keyword as its single-field
field list.

If you assign this menu option Read Only access to Panel 10, then any attempt
to enter Panel 10 with this option will turn the user away if they don't have a 1 in
their User ID Panel record's Field 4. Why? Because every record created in Panel 10
has a 1 in the first field of the index assigned to our new menu option. If the user has
anything other than a 1 in their User ID Panel record's Field 4, they don't see any
record in Panel 10 when they choose this menu item. That's because this menu item
looks at the current user's User ID Panel record's Field 4 and uses that as the
Keyword to gain entry into Panel 10.

Controlled Panel Link Access to Subrecords

Similarly, the USER.FIELD[n] function can be placed on the field list of panel link
that accesses Panel 10 described above, assigning the same index to that link. But
how do we get that panel link to allow only certain users access to Panel 10 records,
the way we did with the Go To Panel menu item that used a Keyword?

Well, don't forget that, as of DataPerfect 2.3's second release (September
1993), you can put computed fields on panel link field lists. There's no reason you
can't use the USER.FIELD[n] function in such computed fields. In the panel that has
the panel link (the panel link that accesses Panel 10), we'll put a hidden computed G9
field that updates to USER.FIELD[4]. We then put only that field on the field list of
our panel link. Now our panel link gives access only to Panel 10 records that have the
same value in their special field that is found in the current user's User ID Panel
record's Field 4. But since all Panel 10 records have 1 in that field, this effectively
gives the current user access to Panel 10 records only if the current user's User ID
Panel's Field 4 is 1.

Note that wrong users (those with value O in their User ID Panel record's
Field 4) won't even be able to view records in the subpanel via an F8 dependent
record Browse mode lookup at the panel link this way, because no subrecords exist
with value O in the special field. Further, if there's a Read Only flag on the Go To
Panel menu item that takes you to the panel with the panel link, then access to all of
its subpanels (Panel 10, for instance) will be Read Only too.

As you'll later see, this is all much easier with DPMouse©, which allows the
developer to keep users out of any field or panel link very simply, independent of any

366 Securing the Application

rights assigned via a Go To Panel menu item. DPMouse© can be used to keep this
or that user out of this or that field or panel link, using the USER.FIELD[n] function
in a much more straightforward way (see DPMouse® and Field Protection and Using
DPMouse®© To Conditionally Close A Panel Link in my Securing Data Entry
chapter).

Data Link Subgroup Lookups and the USER.FIELD[n] Function

The USER.FIELD[n] function offers the Data Link Subgroup Lookup a particularly
powerful security option (I discuss the Data Link Subgroup Lookup in Data Link
Subgroup Lookups in my Links chapter). Here are the two panels from the Software
Store application discussed in my Links chapter (in the Data Link Subgroup
Lookups section):

Item Panel

Transaction Panel

Suppose we want to restrict access to certain Items based on a value found in
the user's User ID Panel record. Let's use User ID Panel Field 4 again for this,
formatted G9. Our simple scheme for this will be that the user can see the special
Items if the user has 1 in that field, otherwise they can't.

To accomplish this, we put a special G9 field in the Item Panel. Let's call it
the Special Item field. Only the Supervisor will have access to that panel. For each
item in the Item Panel, the Supervisor will create a record with a 1 in the Special Item
G9 field. For every item that all users may access, the Supervisor will create yet
another record, but this one will have a 0 in the Special Item G9 field; otherwise it's
identical to it's sister record with a 1 in that field. So an item that all may access has
two records in the Item Panel (one with a 0 in Special Item G9 field, and one with a
1 in that field), and an item that only VIPs may access has only one record in the Item
Panel (with a 1 in the Special Item G9 field).

Now we put a hidden G9::C field in the Transaction Panel, coded with the
following simple formula:

user.field[4]

Next we put the Item Panel's Special Item G9 field at the head of least one of the Item
Panel indexes, where it's followed by Category and Item fields. That index will be

Securing the Application 367

used by the data link in the Transaction Panel. That data link will have a field list
consisting of the hidden G9::C field (the one that holds the current user's User ID
Panel Field 4 value), followed by the Category field and the Item field.

During Create or Edit mode, a lookup on the Item field in the Transaction
Panel will display Items in the targeted Item Panel consistent with the current user's
User ID Panel Field 4 value. If that value is 0, they see only nonspecial items in the
Item Panel to choose from. If it's 1, they see all items in the Item Panel to choose
from. You'll need to read Data Link Subgroup Lookups in my Links chapter if this
isn't clear.

[For an example of the above technique, load UD2.STR or UD3.STR. When prompted for User ID,
use JOE. When prompted for Password, use COMMON. Note what Items Joe is allowed to pick from
while in Create or Edit mode. Then exit the application and re-enter under the User ID SUE and
Password SPECIAL. Note that Sue has more of a selection. The difference between UD2.STR and
UD3.STR is discussed at the end of the prior section called The User ID Panel vis a vis Application
Passwords.)

A Note on Deselecting the User ID Panel

It's not all that obvious how to deselect the User ID Panel. To do this, Shift-F9, B,
followed by either F1, F7, or F10. Then reload the application to make sure you're
not prompted for your User ID and Password. There's no onscreen notice that the
User ID Panel facility is active or inactive.

Troubleshooting Menus

Problem
You just made many changes to a report, but when you run it from its menu
assignment, it still looks just like the old report.

Solution
Either you made changes to a report assigned to a different menu item, or you made
changes to a report on the Report List and forgot to replace the menu report with it.

Problem

You made some changes to your client's application and shipped it to them. They call
you up, only to inform you that users occasionally find themselves in the Access
Menu instead of their controlled submenu.

Solution

You probably ran DPEXP and DPIMP on that .STR before sending it to the client.
If so, you forgot to define both Definer and Supervisor passwords. Application
passwords aren't exported by DPEXP.

368 Securing the Application

Problem

You made some changes to your client's application and shipped it to them. They call
you up, only to inform you that users no longer are prompted for their User ID and
Password.

Solution

Again, you probably ran DPEXP and DPIMP on that .STR before sending it to the
client. This time you forgot to reselect the User ID Panel. That selection isn't
exported by DPEXP.

Securing the Application 369

370 Securing Data Entry

Securing Data Entry

This chapter is mainly for the experienced DataPerfect application developer.
Beginners should peruse it, but not expect to grasp a lot of it.

Preventing Inadvertent Editing

The simplest way to guard against inadvertent editing of a record with DataPerfect
is to call up the Panel Options menu while in Panel Define mode (Alt-F8 to get to
Panel Define mode and Alt-F8 again to get the Panel Options menu:

Panel Option
1 - Edit Filename 5
2 - Change Color 6
3 - Auto-Save (Y/N) 7
4 - Auto-Display Record (Y/N) 8

Browse Change => Auto-Edit

Display each record during Lookup.

Selection: 0

Change Edit Order

Edit Panel Name

Recompute Field Offsets
Auto-Edit/Auto-Create/Menu

Note the line just under option 4:

Browse Change => Auto-Edit

That line is the default value for that menu's option 8. Hitting option 8 toggles
between the following three possibilities:

Browse Change => Auto-Edit
Browse Change => Auto-Create
Browse Change => Menu

What this is doing here is determining how DataPerfect will respond to the
user who, while in Browse mode, hits a key that would normally insert a character
in a field if they were in Create or Edit mode. The first option is the default. With that
active, DataPerfect will automatically put the user into Edit mode with the touch of
acharacter key. With the second option active, they'll go right into Create mode when
they do this. And with the third mode active, DataPerfect will present them with the
following menu after they hit a character key (or a series of character keys) and hit
Enter:

Not
You have changed a field in this record.

Do you want t
1 - Create a New Record
2 - Edit the Displayed Record
0 - Cancel the Change
Selection: 0

Securing Data Entry 371

The DPMouse®© Alternative

DPMouse© offers a better solution to preventing inadvertent editing. If DPMouse©
is loaded with its X run-time flag, and the display is in Browse mode, hitting a key
that would alter the value of a field produces the following popup:

Warning!
You may not make changes to this
record while in BROWSE mode.

(F6) Edit This Record
(F9) Create New Record
press ESC or F1 to Cancel

I prefer this over the way native DataPerfect works in this situation because
this popup appears as soon as the user hits a character key, instead of waiting for
them to hit Enter. It also keeps them in the Fé6 is Edit and F9 is Create way of
thinking. The developer can override the X flag in any given panel by placing an
ASCII 240 symbol (=) in the upper left corner of the panel. As long as that symbol
is displayed (either via panel text or, say, a computed field) the application responds
in the native DataPerfect manner when the user inadvertently edits a field in that
panel in Browse mode.

Keeping a Saved Field from Being Edited

[Refer to UD.STR for this.
Find the Keeping Saved Field From Being Edited panel.
Notice that the Customer ID field won't change after saving its data.]

Here you want the user to be able to create a record, but after saving it, you want him
not to be able to alter a particular field's value. For instance, this may be a key field,
like an account number. Perhaps you wanted him to be able to choose an account
number on record creation, but not alter it after it's saved.

This sort of protection is on the field level, not the record level. If you wanted
to keep the user from editing a saved record, you could control entry into that panel
by having the user get there via a menu item that has Create OK - No Edit/Delete as
its Panel Access Rights. But you're interested here in protecting a field from editing,
not a record. This can be done as follows.

Say the field you want to protect is P1F1. Create a new hidden field, say
P1F2. Give it the same format as P1F1. Code P1F1 to update to P1F2 on any change.
Code P1F2 to update to P1F1 on create.

372 Securing Data Entry

Protecting P1F1 From Being Edited After Save

Field | Format Formula | Update Condition
P1F1 same as P1lF2, but editable | P1F2 on any change
P1F2 same as P1F1, but hidden P1F2 on creation

When the user goes into Create mode, both P1F1 and P1F2 are blank. When
he places a value in P1F1, P1F2 stores it because he's still in Create mode. On Save,
P1F1 updates to the value in P1F2, which is the value the user put in P1F1. In Edit
mode, P1F1 will look at P1F2 for its value and ignores anything the user puts in
P1F1 itself. P1F2 will never change from user input after creation because it's hidden,
so P1F1 never will.

As you'll find out later, DPMouse© makes this much easier. With
DPMouse®© installed, the user can't edit a field in a saved record if an ASCII 250 (-)
displays next to that field. So you can just put that character right next to the field,
or have a computed field display it under certain conditions (perhaps depending on
the value in a specific field in the user's User ID record). This is much easier than
under native DataPerfect, because it doesn't require an additional field (hidden P1F2,
above).

Field and Record Protection

Controlling Data Entry: The Pick List Field

Consider a typical way the data link is used: to turn a common data entry field—a
field into which a user can manually enter data—into what I call a pick list field. Here
we attach a data link to the field to get the user to select the field's value from a
lookup display of records in a foreign (linked) panel during Edit or Create mode.

Now, though the user is confined to picking records from the linked panel,
suppose you also want to keep him from tampering with those records. For instance,
consider an application that tracks purchases in an auto parts store. In its Transaction
Panel, you might want a Part Number field, formatted G9999, with a data link linking
it to the Parts Panel. Of course you'd link it via the Part Number field in each of the
two panels:

Customer Panel
|

Parts Panel

1
Transaction Panel

Securing Data Entry 373

In the above diagram, the Down Arrow represents a panel link and the Up Arrow
represents a data link.

Now, suppose you consider the Parts Panel records to be too important for
anyone other than the application's Supervisor to touch. Let's discuss how to keep
someone out of a panel in such a situation, preventing them from not only modifying
records there, but also from creating them.

Closing Off a Data Link to Protect a Pick List Panel

DataPerfect 2.3 offers the definer the ability to keep the user from creating records
in the linked panel after penetrating that data link. You do this by assigning the No
Create option to the data-linked field while in Define Panel mode (Alt-F8). To do
that in Define Panel mode, cursor to the field in data-linked field and hit FS. Toggle
4 until you see the

Do not allow user to create related record if not found

message in the menu, just under option 4:

Define Data Link for Field
Link to Panel:3 Fieldl Indexl Field List to Build Key:1
1 - Edit Target Field/Target Index/Field List

2 - Remove Data Link 5 - Prompt-Create
3 - Auto-Create 6 - Check During Data Entry Off
4 - No Access 7 - Cascade Off

Do not allow user to create related record if not found.
Selection: 0

If you want to protect the linked panel further, toggle 4 until you see the
No Access

message just under option 4:

2 - Remove Data Link
3 - Auto-Create
4 - No-Create
No Access
Selection: 0—m

The No Access status prevents the user from even landing the linked panel via the
data link.

Now we have a way to keep the user from accessing the Parts Panel via a data
link. But, even if we take the added precaution of never displaying a panel link that
takes the user to the Parts Panel, he still can access that panel from the Panel List. So
let's see how to keep him out of that as well.

Closing off Access to the Panel List

Until version 2.3, DataPerfect application developers had to rely solely on
DPMouse© (it was called DataMate then) to keep the user out of the Panel List,

374 Securing Data Entry

using DPMouse's N command line switch. DataPerfect 2.3 offers two ways to keep
the user out of the Panel List.

The /Z Command Line Switch

DataPerfect 2.3 introduced a command line switch that behaves similarly to the
DPMouse®© switch: /Z=n. It works a little differently than DPMouse's switch,
however. If the .STR file for our Auto Parts application is AP.STR, then loading it
with

dp app /z=1

will start the application by placing the user directly into Panel 1 (or, if a menu has
been defined, it will automatically select menu item 1), skirting the Panel List. It will
take the user back to DOS when he exits that panel (or menu) with F7, again skirting
the Panel List. The user never sees the Panel List this way.

Of course if you use the /Z=n switch you'll need to design your application
so that the user never need access the Panel List. This would amount to making sure
that, for each panel you want the user to be able to access, there's some path to that
panel via menus or links.

Menus

DataPerfect 2.3 introduced a much more important alternative to the /Z command
line switch: menus. With a menu defined for an application, the user doesn't see the
Panel List upon loading the application. And as long as the definer never gives the
user access to the Panel List from the initial menu or any of its submenus, the user
will never see the Panel List. I discuss the DataPerfect 2.3 menu facility in Menus in
my Securing the Application chapter.

Controlling Data Entry: Initial Formula or Value

Besides the data link, another fundamental way DataPerfect allows you to develop
an application with a certain level of data entry consistency is to let you attach an
Initial Formula or Initial Value to a field. To do this with a panel displayed, you can
either be in Browse mode or Define mode (Alt-F8). With the cursor on the field in
question, Shift-F8. You'll get one of the following menu screens:

Options for Alphanumeric and Text Field

Lookup Field List

Initial Formula

Initial Value

Initialize at Create/Save/Change

Range Check

Validation Time (Edit/Save)
Define Search Field List
Exit

BSwW N
LI B |
o Jou

Selection: 0

Field Options for Computed Field

1 - Lookup Field List
2 - Define Field Formula
0 - Exit

The formula value will be computed whenever displayed or accessed.
Selection: 0

Securing Data Entry 375

The first menu screen above is what you get if you're on a real field. The
second one, when you're on a computed field. As mentioned elsewhere, a real field
is any field that isn't computed (::C). It's called real because it stores its data on disk,
in either its panel's data file or, if it's a variable-length text field, the .TXX file.
Computed fields don't store data anywhere. They're just screen entities that display
data on the fly.

For our purposes, of course, we're concerned with the first menu screen above
because we're attempting to control consistency of data entry. They can't do this in
a computed field. So your choices in the first menu screen are 2 and 3:

2 — Initial Formula
3 - Initial Value

After defining the formula or value, F7 back to the above menu and toggle
the update conditions for this field by hitting 4 (Initialize at Create/Save/Change)
enough times until the following displays at the bottom of the Field Options Menu
screen:

Automatically computed when record is created.

That's easy enough. We all frequently use this feature in developing our
DataPerfect applications. But suppose we want the user to be able to change the way
afield will initialize, without letting the user touch that field's formula with Shift-F8,
2. Let's discuss how to do this with a default panel.

Controlling Data Entry: The Basic Default Panel

[Refer to UD.STR for this.

Find the Default Schemes, Hidden Panel, & Undelete series.
Load the Master Panel.

Penetrate the panel link to the Client Panel.

Then penetrate the panel link to the Transaction Panel.
Examine the behavior of the Date field.]

In the billing application I use to run my practice, I don't want the user to be able to
manually enter the date of a transaction each time he enters a record in the
Transaction Panel. Rather, immediately after loading the application, I have the user
set the Working Date for all transactions he might create in the Transaction Panel
during this data entry session. After he does this (I'll show you how to set this up in
afew moments), then, anytime he's in Create mode in the Transaction Panel, he finds
the Date field has the user-defined Working Date already inserted. The Date field in
the Transaction Panel is a non-updatable field (::N), so the user can't enter a value in
1t.

With this scheme, the user never touches the Date field in the Transaction
Panel. It's assumed all Transaction Panel records he creates in this data entry session
will have the same date. If he wants to change the Working Date during this data
entry session, he must somehow go back to the panel that allows him to set it
(perhaps via a menu option), and edit the Working Date field there. All in all, this

376 Securing Data Entry

tends to severely limit the potential for typing in an incorrect date in the all important
Transaction Panel, while speeding up data entry.

You might build this concept into a much simpler application by designing
the first panel the user sees like this:

MASTER PANEL

Working Date: 02/04/1993 D99/99/9999
=—»> THIS IS NOT TODAY'S DATE! <«— A33::C
To Clients: Panel Link

Upon initial entry into the application, at the level of the Master Panel, the
user sees the above displayed record. Note the bolded computed comment just below
the Working Date, telling the user that the Working Date isn't current. If the Working
Date is current, the bolded computed comment field will be blank. If the user desires,
he can reset the Working Date by simply editing the Working Date field.

The Working Date comes into play in the Transaction Panel, deeper in the
following fairly generic panel hierarchy:

Master Panel

Client Panel

Transaction Panel

Atthe level of the Transaction Panel, the Transaction Date field will initialize
to the value found in the Working Date field in the Master Panel. It does this using
ahidden panel link in the Transaction Panel. This protects that date field from sloppy
data entry. I prefer this Transaction Date field in the Transaction Panel be non-
updatable (::N), but you might consider letting it be editable. In any event, it
initializes to the value found in the Master Panel's Working Date field.

This gives the user control over the initial value of a field without allowing
them to touch that field's formula, even if that field is non-updatable.

Controlling Data Entry: The Complex Default Panel

[Refer to UD.STR for this.

Find the Default Schemes, Hidden Panel, & Undelete series.

Load the Master Panel.

Penetrate the panel link to the Client Panel.

Then penetrate the panel link to the Transaction Panel.

Examine the behavior of the Code, Description and Amount fields.]

Securing Data Entry 377

Suppose the business for which you're designing a DataPerfect application is such
that each client or customer typically enters into the same set of transactions on each
visit, and you'd like this application to remember the default transactions for each
client. This is a little more complicated than the Working Date scheme mentioned
above because it involves having more than one default transaction per client, each
to be automatically created in the right order. Let's explain with an example.

I suppose an accountant might want to set up a billing application which
allows for different default transactions per client. For instance, because I only see
my accountant once a year, he might want his billing application to remember that
I typically incur three specific charges:

1. Annual Tax Consultation, 30 minutes
2. Preparation of Annual Tax Forms
3. Preparation of Annual Profit/Loss Statement

Alternatively, I assume other clients burden him with more significant
requests, like getting financial advise quarterly. So my accountant might want his
billing application to remember that, for instance, Joe Investor typically incurs the
following charges:

1. Quarterly Consultation, 60 minutes
2. Preparation of Quarterly Profit/Loss Statement
3. Preparation of Quarterly Portfolio Analysis

The object here is to get the Transaction Panel for the above application to do
the following for each client, in this order:

o With no records with today's date, hitting F9 will initialize to the
client's first default Transaction.

° Hitting F9 again will save the first default Transaction and initialize
to the second default Transaction for that client.

° Hitting F9 a third time will save the second default Transaction and

initialize to the third default Transaction.
° Hitting F10 or F7 will save the third default Transaction (though
hitting F7 will also exit the Transaction Panel).

Briefly put, if the accountant merely wants to enter Steve Smith's three default
Transactions, and he knows he hasn't entered any Transactions for Mr. Smith with
today's date, [want him to be able to simply tap F9 three times, then F7. That's it. No
thinking and no room for sloppy data entry. Now on to his next client's data input.

That's what [want the accountancy application to do. Now let's see how to set
this up. We start with the generic panel hierarchy again:

Master Panel

378 Securing Data Entry

Client Panel

Transaction Panel

To deal with multiple default transactions per client, we need a Default
Transactions Panel, which we'll set up as a subpanel under the Client Panel. I could
place the fields for default transactions in the Client Panel itself, instead of as fields
of a subpanel of the Client Panel, but want to keep this data from cluttering the Client
Panel. Either way, the logic I express here will equally apply. It might look
something like this, with formats displayed here in place of fields:

DEFAULT TRANSACTIONS PANEL

Client No. Client Name

G9999::N A30::C

Code Description Charge
1. Ul0 A30 GZZ2Z9.99
2. Ul0 A30 GZ2Z2Z9.99
3. Ul0 A30 GZZ2Z9.99
4. U1l0 A30 GZ2Z2Z9.99

The above allows for up to four Default Transactions per client, and would
fall in the panel hierarchy something like this:

Master Panel

I

Client Panel

I

Default Transactions
Panel

I

Transaction Panel

The user fills in the Default Transactions as a subrecord of the Client Panel.
Later, when it comes time to enter Transactions for this client, the user goes directly
from the Client Panel to the Transaction Panel to do that. The only reason they'd ever
go back to that Client's Default Transaction Panel would be to edit those defaults for
future Transactions. If this is all set up correctly, data entry in the Transaction Panel
will grab the defaults from that Client's Default Transaction Panel's record, probably
using a hidden panel link for this.

Two questions come to mind:

1. How do we get the Transaction Panel to start over with Default
Transaction #1 with each new date, and never repeat a Default
Transaction on any given date? That is, how do we get the

Securing Data Entry 379

Transaction Panel to know what's already been entered for that date
and grab Default Transactions accordingly?

2. How do we get the Transactions Panel to grab these Default
Transactions in the correct order?

To solve question 1, we need to add a field to the Transaction Panel: the
Transaction Number field. This will be the number of the Transaction Panel record
for a given Client on a given Date. Assuming no Client will have more than 99
transactions on a given date, we can format this field G99::N. Our Transaction Panel
might look something like this:

TRANSACTION PANEL

Client No. Client Name

G9999::N A30

Date Tr# TrCode Description Charge
D99/99/9999 G99::N U5 A30 GZzz29.99

Next, we need an index in the Transaction Panel that sorts records in reverse
order with respect to the record's Transaction Number for that date. To do that, we
add a Negative Transaction Number field to the panel. If the Transaction Number
field is P4F2, then the Negative Transaction Number field would be formatted
G-99::H, and formulated to update on any change to

-P2F2
We can now create the following two indexes for the Transaction Panel:

Forward Transaction Number Index:

Client No., Transaction Date, Transaction No.

Reverse Transaction Number Index:

Client No., Transaction Date, Negative Transaction No.

The Transaction Panel will have a recursive panel link (see The Recursive
Panel Link in my Links chapter) that uses the Reverse Transaction Number index,
and have the following field list:

Client Number, Transaction Date

Such arecursive panel link will have access to all and only those Transaction
Panel records with the Client Number and Transaction Date of the currently
displayed Transaction Panel record, and will access those records in reverse
Transaction Number order (landing on the highest Transaction Number for that
Client on that Date).

380 Securing Data Entry

We now design a field formula for the Transaction Number field in the
Transaction Panel. This formula will use the Transaction Panel recursive panel link,
by looking through that link and adding 1 to the Transaction Number it sees there.
If the Transaction Number field is P4F2 and the recursive Transaction Panel panel
link is P4F4, then the formula for the Transaction Number field would be

P4F4P4F2 + 1

to update on creation. Now our Transaction Number field increments conditionally,
starting over with 01 for each Client-Day.

Now question 2: How do we get the Transaction Panel to grab these Default
Transactions in the correct order? To do this, we need the relevant field or fields in
the Transaction Panel to initialize based on a routine that first looks at the
Transaction Number, which will have just incremented to the proper number. Then,
based on the Transaction Number it sees, it makes its decision as to which Default
Transaction to grab in the Default Transactions Panel.

First, we need a new hidden panel link in the Transaction Panel. Let's say it's
P4F5. It will access the Default Panel record for that particular Client Number. That's
easy enough. Just make sure you have a Default Panel index that has only the Client
Number field in it (you only want one set of defaults per Client Number). Then
assign that index to this new hidden Transaction Panel panel link, and put only the
Client Number field on that panel link's field list. This panel link takes the user to the
current Client's single record in the Default Transactions Panel.

Now, take another look at our Default Transactions Panel:

DEFAULT TRANSACTIONS PANEL

Client No. Client Name

G9999::N A30::C

Code Description Charge
1. P3F1l A30 GZZ2Z9.99
2. P3F2 A30 GZ2Z2Z9.99
3. P3F3 A30 GZZ2Z9.99
4. P3F4 A30 GZ2Z2Z9.99

A CASES statement easily updates the Code field in the Transaction Panel:

P4F2 cases
case cv=1l of P4F5P3F1l endof
case cv=2 of P4F5P3F2 endof
case cv=3 of P4F5P3F3 endof
case cv=4 of P4F5P3F4 endof
endcases

The above CASES statement would update the Code field in the Transaction Panel
on any change. Again, P4F2 is the Transaction Number field, and P4FS5 is the new
hidden panel link that accesses the Default Transactions Panel from the Transaction
Panel.

Securing Data Entry 381

Now our Transaction Panel will initialize an ordered series of default records
as spelled out in the associated Default Transactions Panel for that Client, and it will
do so with respect to that particular Client-Day.

Like our more basic default panel schema, this schema effectively allows the
user to alter the output of a field-initializing formula without requiring the user touch
that field's formula with Shift-F8, 2, even if that field is non-updatable. But this
schema also allows the user to create multiple defaults per client, and to determine
the order these defaults initialize.

Controlling Data Entry with ZipKey©

If you plan on creating an application that requires frequent data entry of Zip Codes,
do yourself a favor. Forget about creating a separate panel of Zip Codes that other
panels access via a data link. That approach works, but it's a tremendous waste of
time, upkeep, and disk space.

Instead, take a serious look at the shareware copy of ZipKey© I included on
your diskette (ZIPKEY.ZIP). ZipKey© is a TSR that allows your end user to simply
type in a Zip Code and hit a definer-configured hotkey. What ZipKey© does as this
point depends on what you, the definer, configured it to do. I have it configured to
do this if the user enters a Zip Code in the City field (not the Zip Code field) and then
hits F11 (a key DataPerfect doesn't use):

° ZipKey© examines and then erases the Zip Code the user just typed.
° ZipKeyO© types in the appropriate City name.
° ZipKey© Tabs to the next field and fills in the appropriate two-

character State Code.
° ZipKey© Tabs to the next field and fills in the Zip Code.

You can configure it to do all that differently (e.g., different field order, or
insert the entire State instead of the State Code, etc.). It's very configurable. You save
its configuration to a file, so you can have different configurations for different
applications, or one for your DataPerfect applications and one for, say, your word
processor.

I use the same configuration with all my DataPerfect applications, so I just
make sure I configure address fields the same way in every panel to conform to the
four-step pattern you see above. That is, [always create a fixed-length City field first
that doesn't have an ::E (Auto Entry) modifier, followed by a U2 State Code field that
doesn't have an ::E modifier, followed by a N99999-9999 Zip Code field. When
ZipKey© finishes the above four steps, the user's cursor sits in the N99999-9999 Zip
Code field's sixth digit slot, waiting for the user to fill in the right four digits if he
knows them.

ZipKey© does all this with a compressed database of Zip Codes that you can
have shipped to you as often as you need to be current. I get a copy of the latest
database once a year for $25 each time. I can imagine some mailing list applications
might need this updated more often. Because the ZipKey© database is compressed,
it takes less space than the same database would be as a DataPerfect data file. And,

382 Securing Data Entry

instead of importing that latest group of tens of thousands of Zip Codes into a
DataPerfect panel each year, I'd much rather pay ZipKey's author a nominal fee for
a file I simply copy to my hard drive and be done with it.

Pyramidal Design as a Data Integrity Strategy

How you design your panel hierarchy can greatly determine how the user will enter
data. The following is the axial structure of the panel hierarchy of the billing
application I use to run my practice, upon which I place other secondary panels as
limbs:

Doctor Panel

I

Account Panel

I

Case Panel

I

Transaction Panel

With the above panel hierarchy, I make sure the user picks the appropriate
Doctor, then the appropriate Account, and finally the appropriate Case for that
Account, all before entering even one Transaction for that patient. This way the user
must make a conscious decision about which Doctor, Account, and Case the
subsequent Transactions apply to. This schema also makes the user aware of certain
information about that Account and Case before entering the Transaction Panel (like
whether or not the patient is a minor, or hasn't given supplied some required personal
information for their file).

I could have—as I had originally planned—allowed the user to initially enter
the application via the Transaction Panel. Through the use of data-linked fields in the
Transaction Panel, the user would choose the appropriate Doctor, Account, and Case
for each Transaction entered. And once the first Transaction is entered for that Case,
the user could repeatedly use F4 to keep filling in the Doctor, Account, and Case
fields for subsequent Transactions during that session for that Case.

But this fails to keep the user in a certain logical flow that I feel is needed in
this type of office setting. A lot of data is entered in the formation of a new Account,
or anew Case for an existing Account. Most of that information is found in multiple
subpanel extensions, attached to the Account Panel and the Case Panel:

Doctor Panel

Account Panel

Securing Data Entry 383

Case Panel

— —

Transaction Panel

Also, if I set this application up so the user would routinely enter the database
via the Transaction Panel, an unavoidable confusion would arise when a data link
targets a panel that contains one or more panel links. Suppose the user is sitting in the
Transaction Panel in Browse mode and sees a data link on the Case Number field. If
he penetrates that data link with Down Arrow, he finds himself in the Case Panel
with many panel links to tempt his curiosity or careless fingers. If he then hits Down
Arrow on the panel link leading to the Transaction Panel, he'll find himself back in
that panel; perhaps without realizing he's on a different linkage depth than he was on
when he began this panel-hopping journey in the Transaction Panel.

There are ways around this, without forcing the user to enter the panel
hierarchy at the top of the pyramid. One way is to put the No Access option on these
Transaction Panel data links. That effectively keeps the user out of higher panels
when in the Transaction Panel. But this means they won't be able to create a new
Account or Case while entering data in the Transaction Panel. Rather, they'll have to
enter the panel hierarchy from above to create a new Account or Case. This means
they have one menu option that allows them to create and Account, one that allows
them to create a Case, and another that allows them to create Transactions.

Also, this No Access data link workaround prevents the user from taking a
look at relevant information about the person's Account or Case before entering a
Transaction. Alternatively, requiring the user enter the application at the top of the
pyramid forces him to see relevant information before entering a Transaction. And
when the user finally lands in the Transaction Panel, DataPerfect automatically fills
in the Doctor, Account, and Case fields. At that level of the hierarchy, these fields are
non-updatable (::N), leaving no room for sloppy data entry there.

So, what I call the pyramidal panel hierarchy revolves around an axial
structure that favors the panel link over the data link for data entry. This isn't to say
that I don't use data links for data entry in that structure. Rather, I favor forcing the
user to choose the parent while in the parent panel whenever design considerations
allow it.

In general, the pyramidal hierarchy is especially suited to database situations
where the user will, each session, typically enter multiple child records for a given
parent—perhaps many transactions for a client, or songs on a record—and for
situations where the user needs to see certain critical information before selecting the
appropriate parent record.

384 Securing Data Entry

Consider my billing application again. While still under treatment for an
injury, a patient may, after getting off the phone with his ex-wife, fall down some
stairs. Now, after the first treatment for the new injury, he has two Cases with
positive balances. Next week he sends me a check. If I want to apply it to his oldest
balance—or perhaps his smallest balance, or whatever—I want to see which Cases
have balances and pick one from a lookup. After picking the appropriate Case, I can
then see if there's anything I should know before penetrating a panel link to the
Transaction Panel. Let's say the Case Panel memo field tells me his ex-wife is paying
for this Case. Now I know not to apply this check to that Case and pick the other one
with a positive balance. We're clearly better off handling this sort of scenario with a
pyramidal panel hierarchy.

The Hidden Panel

Through the use of what I call hidden panels, the pyramidal panel hierarchy schema
allows for further protection against aberrant record creation. I consider a panel
hidden if the application design prevents the user from ever seeing it. Before
outlining how to hide a panel, let's go over why you'd want to do that at all.

In the my billing application I have a hidden Day Panel that fits in the panel
hierarchy like this:

Doctor Panel

Account Panel

Case Panel

Day Panel

Transaction Panel

The Day Panel holds totals in each Doctor-Account-Case-Day record, receiving those
totals through the Keep A Total facility when records are entered in the Transaction
Panel. That is, each record in the Day Panel shows the balance for a given Day for
a given Case. So, on any given Day, a Case has an Account balance, a Case balance,
and a Day balance, and all three can be different. The Account balance is the
accumulated balance from all Transactions for all its Cases. The Case balance is the
accumulated balance from all Transactions for that particular Case. And the Day
balance is the balance from all Transactions that took place that Day for that Case.

I want the Day Panel in the panel hierarchy for various reasons, though the
two major ones are the following:

1. It makes it easy to create reports that filter or group records by date.

Securing Data Entry 385

2. It allows for, in the Transaction Panel, a dynamic computed field
display of a particular day's total for a given Case.

Flowing from 1 above, I put many special panel links in the Day Panel—panel links
I use in report definitions. Next to each link is panel text reminding me how reports
use the link, like the following:

This panel link sees only payments in the
Transaction Panel, based on Exception List
Index 4

Regarding point 2, when the user enters a couple records in the Transaction
Panel for a particular patient, he can see the real-time total of that Day's charges
displayed in a computed field in the Transaction Panel without having to exit that
panel to see that information in the panel holding the actual total (the Day Panel).
This serves as a sort of calculator for the front desk at check-writing time, showing
areal-time display of what the patient owes for today's services. Also displayed in the
Transaction panel (via computed fields) are the totals for the Account and the Case.

Here's an abbreviated version of the Transaction Panel in that application:

TRANSACTION PANEL Acc 300.00
Cse 120.00
Jane Doe Day 60.00

Acct 4300 Case 002

Date Day Tr Description Charge Payment
06/13/1996 Thu 1 Office Visit 60.00

The record above is a single Transaction for Jane Doe. Note that her Account,
Case, and Day balances display in the upper right corner. Those three fields are all
computed fields, taking their values from the Account Panel, Case Panel, and Day
panel, respectively. After each Save in this panel, the user gets to see those three
figures dynamically update without having to exit back to any of those three linked
panels.

[Refer to UD.STR for this.

Find the Default Schemes, Hidden Panel, & Undelete series.
Load the Master Panel.

Penetrate the panel link to the Client Panel.

Then penetrate the panel link to the Transaction Panel.

Note the fields in the upper right corner of the Transaction Panel.]

Though there are plenty of reasons the user will frequently be in the Account
and Case Panels, there's really no good reason for the user to be in the Day Panel, or
to even know it exists. So I hide it by making sure no link or menu option gives the
user access to it. Also, don't forget that if the appropriate Day Panel record, into
which DataPerfect is to carry the total, doesn't exist, DataPerfect automatically
creates that record to receive the total (see When There's No Parent Record in my
Keep A Total chapter if this confuses you).

386 Securing Data Entry

Controlling Record Creation with Indexes

One thing that may come up from time to time is needing to limit a particular panel
to a single record, or a single record per parent record. In the case of limiting a panel
to a single record, this usually arises when you need a panel to hold a record of
system information or parameters, or perhaps application notes for you, the definer.
One of the simplest ways to limit a panel to a single record is to hide a G9 field and
then create an index that has only that single field on its field list. Now any attempt
to create more than one record will be greeted with the

This record is not unique. At least one index key was
found to be duplicated in the index(es).

error message because that hidden G9 field will be 0 in every record creation.

A more common reason for limiting a panel's records is to limit it to one
subrecord per parent record. Here you typically have what some call an extension
panel that should have only one subrecord in it. For instance, consider again the
billing application I use in my practice, which has the following series of panels that
compose its axial hierarchy:

Doctor Panel

I

Account Panel

I

Case Panel

I

Transaction Panel

I need some setup information for each of the top three panels. For instance,
I have a subrecord for each Doctor in the Doctor Panel, where the user places the
Doctor's home and office phones, tax identification number, etc. Likewise, the
Account and Case Panels have setup subpanels as well:

Doctor Panel

I

Dr Setup Panel

Account Panel

I

Acct Setup Panel

Case Panel

I

I Case Setup PanelI

Securing Data Entry 387

Transaction Panel

Each of these three added subpanels is to be limited to one record per parent
record—that is, one Doctor Setup Panel record per Doctor, one Account Setup Panel
record per Account, and one Case Setup Panel record per Case. To do this, we can
just make sure that at least one index in each subpanel perfectly matches the most
limiting index of its parent panel.

For instance, if the Doctor Panel has an index consisting of merely the Doctor
Code field, then there should be exactly the same index in the Doctor Setup Panel.
If the Account Panel has an index consisting of the Doctor Code and Account
Number fields (or maybe just the Account Number field), then there should be such
an index in the Account Setup Panel. Likewise, if there's an index in the Case Panel
consisting of Doctor Code, Account Number, and Case Number fields (or just
Account Number and Case Number fields), there should be such an index in the Case
Setup Panel. Whatever makes a record unique in the parent panel should be applied
to the subpanel here. This will limit the subpanel to one record per parent record.

Controlling Record Creation with the ::M Field

Here we don't want the user to be able to create a record unless certain information
is true or filled out. Perhaps we don't want him to be able to save the record he's
attempting to create if his User ID is the wrong value, or he hasn't filled out certain
fields in the panel properly. Don't forget that DataPerfect already offers you a way to
make sure certain fields are filled out before saving a record. The ::M display
modifier will keep the record from being saved if the field it's attached to is a blank
text field or a numerical field with a value of zero. But suppose you don't want the
record saved if certain fields aren't filled in properly.

One way to handle this, other than with reports which I discuss later in this
chapter, is to use a ::M field. Place this field next to the field in question. Let's say
we want the Payment Method field filled out if the Payment Amount field has a value
other than zero in it. We don't really care about the Payment Method field if the
Transaction is a Charge and not a Payment. We might have a panel like this:

TRANSACTION PANEL

Acct Description Charge Payment

Payment Method 4%

Here, the Payment Method field has a data link that offers the user a choice of
CASH, CHECK, VISA, AMEX, etc., during Create or Edit mode. We don't care if
there's a value in that field if this Transaction is a Charge, but do care if it's a
Payment.

388 Securing Data Entry

We'll put our special ::M field to the immediate right of the Payment Method
field. Let's use this layout:

Field | Format Name
P1F1 | G99999 Account
P1F2 | A20 Description

P1F3 | G-2229.99 | Charge

P1F4 | G-22Z29.99 | Payment

P1F5 | US Payment Method

P1F6 | Al::MN Special ::M field

And here's the field formula for the Special ::M field, to update on any change:

P1F4 cases

case cv =0 of "<ASCII 255>" endof
case cv <> 0 and P1lF5 <> "" of "<ASCII 255>" endof
default ""
endcases

Of course, the first line above is testing the Payment field. The second line
says that if the Payment field is zero, then the ::M field will be filled with the
invisible character ASCII 255, thus allowing the record to be saved. By

"<ASCII 255>"

in the formula above, I mean enclosing in quotes the character you get by holding
down the Alt key while tapping 2, S, 5 on the Number Pad, in that order (don't use
the white number keys across the top of your keyboard), then releasing the Alt key.
This produces an invisible character, but a character nonetheless. In virtue of the third
line, if the Payment field is other than zero and the Payment Method field is filled in,
we allow the record to be saved by the same logic. And finally, in virtue of the fourth
line, if the Payment field is zero and the Payment Method field is blank (this is the
only remaining possibility), the ::M field is left blank, keeping the record from being
saved.

So, the user never sees anything in the Special ::M field, but sometimes it's
filled in and sometimes not. When it's filled in, it's filled in with the invisible ASCII
255 character. We wouldn't need to use the ASCII 255 character if we could hide an
::M field, but DataPerfect doesn't allow that. If we could hide it (::HM or ::MH), we
could simplify the formula like this:

P1F4 cases

case cv =0 of "A" endof
case cv <> 0 and PI1F5 <> "" of "A" endof
default ""
endcases

or use a G9 field like this:

Securing Data Entry 389

P1F4 cases

case cv = 0 of 1 endof
case cv <> 0 and P1F5 <> "" of 1 endof
default 0
endcases

But this isn't an option available to us.

In the scheme we have in place now, when the user enters something in the
Payment field, leaves the Payment Method field blank, and then hits F10 to save,
they're met with an error message:

You must enter a value in this field before saving.

This puts the cursor in the ::MN field, where the user can't edit it (because it's an ::N
field). Thought it does place the user right next to the field that needs to be filled in
(the Payment Method field), it can still be kind of confusing. But it won't let them
save the record without entering a value in the Payment Method field. Personally, I
feel this is better done with a report that holds the user's hand. Read on for that.

DPMouse® and Field Protection

DPMouse© also offers special protection to an individual field. If DPMouse© sees
an ASCII 249 () next to a field, it won't let the user's cursor land on that field. If it
sees an ASCII 250 (+), it will let the cursor land on the field, but won't let the user
edit the field if the displayed record was previously saved.

DPMouse®©'s ASCII 249 code is especially powerful. It forces the user's
cursor to skip past a designated field. Why not just format such a field as non-
updatable (::N)? Well, you may have a field you want the user to avoid, given the
value present in another field. Let's consider my billing application. It has both Debit
and Credit fields in the same Transaction Panel. Depending on what type of
transaction code the user enters in the Transaction Code field, DPMouse©, courtesy
of its ASCII 249 code and a couple of strategically positioned computed fields,
blocks either the Debit field or the Credit field from the cursor. I now don't worry
about the user placing a value in the Debit field when a payment code is entered in
the Transaction Code field.

Using DPMouse®© To Conditionally Close A Panel Link

DPMouse© allows the developer to control access through a panel link in a way
that's impossible with DataPerfect alone. A common scenario might be one where
you don't want the user to create a record in a subpanel until certain information in
a different subpanel is filled out first. For instance, one part of my office application
can be diagrammed as follows:

Doctor Panel

Account Panel

390 Securing Data Entry

Patient Info Acct Setup
Panel Panel

Case Panel

I'don't want the user to be able to penetrate the panel link that takes him from
the Account Panel to the Case Panel without first filling out critical information in
both the Patient Information Panel and the Account Setup Panel. The Case Panel
needs to grab certain important information in those two higher panels, and needs to
do this on record creation.

With DPMouse© installed, I merely place a properly formulated A1::C field
next to the panel link I want to conditionally protect from penetration. That Al::C
field will display the ASCII 249 character (*) under certain conditions. In this case it
displays the ASCII 249 character when key fields in certain subpanels aren't filled
out. If DPMouse© sees that character abutting a field, whether as panel text or
displayed field data, it will keep the cursor out of the field (both DataPerfect and
DPMouse®© treat a panel link as a field).

Using DataPerfect 2.3's Menu Facility
To Prevent Creation of Records via a Link

Whereas DPMouse© offers a very versatile way to prevent a user from creating a
record on the other side of a panel link, DataPerfect 2.3 offers a menu facility to do
this in a more general and, consequently, less versatile way.

When designing a DataPerfect menu (see Menus in my Securing The
Application chapter), the definer can, with respect to a menu item that loads a
particular panel, keep the user from modifying records through any of that panel's
links. DataPerfect calls this menu option the Restrict Modification to First Level
option. Choosing this protection for a menu item that loads a panel keeps the user
from modifying and creating any records via the links in that panel, whether those
links be data links or panel links. Very sweeping, but not very versatile like the our
DPMouse®© counterpart to this, which allows us to conditionally and selectively close
off panel links.

Controlling Record Deletions with DPMouse®©

DPMouse© offers the developer more flexibility in forming delete protection
schemes than native DataPerfect. With DPMouse®© installed with its P runtime flag
active, the developer can not only keep all records from being deleted in a particular
panel, but can also keep records from being deleted in a particular panel under certain
conditions, even if the user enters that panel via a menu item that allows for
deletions. For instance, with DPMouse© installed, a computed field placed in the
upper left corner of a panel can keep a record from being deleted if it displays either
ASCII 174 («) or 175 (»). The first warns the user they can't delete the current record

Securing Data Entry 391

because it contains critical data, and the second warns the user they can't delete it
because it has subrecords with critical data.

How you formulate this computed field determines which ASCII character
displays, and under what conditions. So you might have the first one display for users
with certain values in a particular User ID Panel field, and the second one display for
everyone when it sees the current record has a subrecord. Such a field formula might
look something this:

if P1F10P2F1 <> "" then "»"
else if user.field[5] = 1 then ""
else "«"

endif endif

The first line checks to see if the current record has any subrecords. It does
this by penetrating the panel link P1F10, seeing if the first field of Panel 2 (P2F1) is
blank. If it is, the computed field displays ASCII 175 (»). This causes DPMouse© to
block the deletion and display a message about the current record having a subrecord
with critical data.

If the current record does not have a subrecord, the second line looks at the
value in the user's User ID Panel field 5. Assuming a 1 there allows for deletions in
the current panel, and a 0 doesn't, if the second line sees a 1 there, the computed field
displays nothing, allowing the deletion because it fails to trigger the DPMouse©
delete protection mechanism.

Finally, if the current record doesn't have a subrecord and the user's User ID
Panel field 5 isn't 1, the third line results in the computed field displaying ASCII 174
(«), which causes DPMouse© to block the deletion while displaying a message about
the current record containing critical data.

I discuss the User ID Panel facility in the User ID Panel section of my
Securing the Application chapter.

Controlling Data Entry with Reports

This technique becomes important when you want to hold the user's hand in a
sensitive panel. This may be a panel that has data you only want him to Browse when
in the panel, but you'd like some way for him to create and edit records there in a
controlled fashion. Or it may be a panel you don't want certain users to Browse, but
in which you want them to be able to create a record without seeing the resulting
completed record (certain fields that update automatically contain sensitive data, for
instance). Reports work nicely here. Let's explain.

392 Securing Data Entry

Reports That Control Record Deletions

This is a big issue, as you can imagine. Some applications typically don't, by
convention, allow for any deleting of records. This would be typical of an accounting
application, where you might prefer the user enter a record on a later date that
counters the earlier record, as opposed to going back in time and deleting the older
record. This is especially important in applications that have some sort of closeout
procedure that locks figures in at the end of the day or month. Such an application is
obviously going to make heavy use of DataPerfect's No Delete option in the menu
system.

But you may have a need that falls somewhere in between the extremes of
allowing unlimited delete rights and allowing none. Perhaps you'd like to allow only
the Supervisor and Owner of the application to delete records. All others in the
database won't be allowed to delete records. Again, you can simply give the
Supervisor and Owner this sort of access to the database via a submenu off the
Access Menu (I discuss the notion of an Access Menu in Controlling User Access
in the User ID Panel section of my Securing the Application chapter).

But let's say you'd like a little more control over deletions. That is, you'd like
to give the Supervisor and Owner of the application the right to delete records, but
you don't want that to be easy for them to do. You want them to really think about it
before they do it. Yes, DataPerfect temporarily interrupts an attempted record
deletion during Browse mode with the Confirm Deletion (Y/N) message, but you
want more of an obstacle than that. You want the obstacle to be more painful and
informative.

A typical way to do this is to have the Supervisor and the Owner enter the
database with a submenu path that, like other users, denies them Delete privileges.
But unlike the submenu paths taken by other users of the database, their paths offer
reports that delete records. Such a Delete Report uses the Delete Record code in the
Report Body of the Edit Report Form (Ctrl-F7, A). Either of the following reports
asks the user for a record to delete (via a lookup), and then deletes that record and
stops. That is, each of these reports deletes only one record:

FIRST PAGE HEADER -

777777777777777 User Chooses Next Record By LookUp———————————————————- Delete Report 1:
——————————————— Store 1 in Report Variable 200 ———-—-————————————————— One delete.
OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY-
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 200 —-—-——---
777777777777777 Store 0 in Report Variable 200 -—————-—-—-—————————————
777777777777777 Delete Record-——
TWO-LEVEL FOOTER
——Empty--

PAGE FOOTER
——Empty--

FINAL FOOTER
——Empty--

Securing Data Entry 393

FIRST PAGE HEADER

Store 1 in Report Variable 200
OTHER PAGE HEADER

——Empty--
TWO-LEVEL REPORT HEADER

——Empty--
REPORT BODY:

Stop [Sub]Report if 0 Is in Report Variable 200

777777777777777 User Chooses Next Record By LookUp

Store 0 in Report Variable 200
Delete Record--—-———-———————————————————————————————————

TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER

——Empty--
FINAL FOOTER

——Empty--

Delete Report 2:
One delete.

Whereas each of the above reports stops after deleting one record because
Report Variable 200 is reset to O after the first delete, the following allows for

unlimited deletes:

FIRST PAGE HEADER

——Empty--

OTHER PAGE HEADER
——Empty--

TWO-LEVEL REPORT HEADER
——Empty--

REPORT BODY-

TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER

——Empty--
FINAL FOOTER

——Empty--

Delete Report 3:
Unlimited deletes.

And here's another possibility. If you do this, it's probably a mistake in your
report definition. Starting with the record the user chooses, it deletes that record and

all that follow it in the active index:

FIRST PAGE HEADER

Chooses Next Record By LookUp
OTHER PAGE HEADER

——Empty--
TWO-LEVEL REPORT HEADER

——Empty--
REPORT BODY

TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER

——Empty--

FINAL FOOTER
——Empty--

Delete Report 4:
Probably a
mistake.

I wouldn't settle for Delete Reports 1, 2, or 3, however. You really should put
in some explanatory and warning text in the First Page Header, like this:

394 Securing Data Entry

FIRST PAGE HEADER -

Warning: This routine deletes records permanently from the database! Delete Report 3a:
Please exercise caution when running it. It will present you with a Unlimited deletes
lookup of possible records to delete. For each one you want to delete, with explanatory
highlight it and hit Enter. text & a way out.
777777777777777 Prompt for Value of Report Variable 1 —-————-——-—-—-——— See below for
777777777777777 Store Value in Report Variable 1 —-————-——————————————— explanation of
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 1 —-——————- this part.

OTHER PAGE HEADER

——Empty--

TWO-LEVEL REPORT HEADER

——Empty--

REPORT BODY
777777777777777 User Chooses Next Record By LookUp-——————————————————— Unlimited deletes
777777777777777 Delete Record-—— by lookup.

TWO-LEVEL FOOTER

——Empty—-

PAGE FOOTER

——Empty—-

FINAL FOOTER

——Empty—- —

Make sure you run the above report with Screen Only as its Destination (in
the Initial Report Definition Screen).

In its First Page Header, the Prompt for Value of Report Variable 1 is
formatted U1, and has the following prompt:

Shall we continue with this routine? (Y/N):

When you type in the prompt above, hit the spacebar enough times before the first
word so the prompt lines up with the text above it, like this:

Warning: This routine deletes records permanently from the database!
Please exercise caution when running it. It will present you with a
lookup of possible records to delete. For each one you want to delete,
highlight it and hit Enter.

Shall we continue with this routine? (Y/N):

Run the report to be sure the text is lined up with the prompt.

The next line in the First Page Header examines the user input for Report
Variable 1 and changes Report Variable 1's value to O if they didn't answer with a Y.
Here's the formula for the Store Value for Report Variable 1 code:

if rvl <> "Y" then 0 else 1 endif

This allows the subsequent Stop [Sub]Report if 0 Is in Report Variable I code to stop
the report cold if the user entered anything other than Y for Report Variable 1.

Providing an Undelete

All that said, I urge you to consider not letting users physically delete records.
Instead, I suggest you consider letting them mark records as deleted. This way,
mistakes can be corrected very easily, in that it allows the user to unmark a "deleted"
record. This provides your application with an undelete mechanism. Let's explain.

In any panel in which you want to offer the user an undelete option, create a
Delete field. Format it U1, and give it a field formula like this:

Securing Data Entry 395

if P1F1<>"" then "D" else "" endif

where P1F1 is the Delete field itself. This formula makes sure that if the user enters
anything other than a space in that field, DataPerfect will update it to D.

Immediately next to the U1 Delete field, create an AS::C field, and give it the
following field formula:

if P1F1<>"" then "eleted" else "" endif

With those two fields next to each other, if the user puts any character other than the
space in P1F1, he sees

Deleted

displayed on his screen. When he erases the character in P1F1, the word Deleted
disappears from his screen.

Lookups and the Undelete Scheme

Now, let's take this undelete scheme a step further. I suggest that in any panel in
which this scheme is active, you also create another field—a hidden A7::C field (i.e.,
A7::CH). If, again, the Delete field (the U1 field that displays D or nothing at all) is
P1F1, then use the following field formula for P1F3 (our new A7::CH field):

If PIF1<>"" then "Deleted" else "" endif

Put that hidden field on every lookup field list in that panel. I'd make it the last field
on each lookup field list. Now every lookup performed in that panel will clearly show
which records are marked for deletion.

Totaling and the Undelete Scheme

Further, say you want this undelete scheme set up in a panel that totals to another
panel, and you want totals updated when the user marks a record in that panel for
deletion. That is, you want the totals to immediately update without having to wait
for the Supervisor to run the Delete Report at the end of the day. Here's a way to
handle this.

Say you have a Transaction Panel that includes the following fields:

396 Securing Data Entry

Transaction Panel
Field Name | Format Comment
Delete field 1 P1F1 Ul Displays D or blank
Delete field 2 P1F2 A5::C Displays eleted or blank
Hidden delete field | P1F3 A7::CH For lookups
Amount field P1F4 G-7272729.99 | Data entr

Further, that Amount field totals to a field in the Customer Panel. Well, with
this undelete scheme, don't put the Keep A Total on P1F4. Instead, have a hidden G-
7779.99 field, P1F5, total to the Customer Panel. Give P1F5 the following field
formula, to update on any change:

if P1F1="" then P1lF4 else 0 endif

When the user puts a character in P1F1 (thusly marking the record for
deletion), hidden P1F5 goes to 0. Since hidden P1F5 is the field with the Keep A
Total, the total updates. If the user then decides to undelete by removing the character
from P1F1, hidden P1F5 reverts back to the value found in P1F4. Again, the total
updates.

Undelete Scheme With Totaling

Field Name Format Comment
Delete field 1 | P1lF1 Ul Displays D or blank.
Delete field 2 | P1lF2 A5::C Displays eleted or blank.
Hidden delete P1F3 A7::CH For lookups.
field
Amount field P1lF4 G-272729.99 Data entry.

No Keep A Total.
Hidden amount P1F5 G-22729.99 Updates to P1lF4 on any
field change.

Has the Keep A Total.

Physically Deleting the Record

The record, of course, isn't deleted simply by saving it with D in P1F1. If you need
to offer the user a way to physically delete records marked for deletion, create a
special Delete Report like Delete Report 3a above, but assign it an Exception List
Index that excludes all records with P1F1 blank. That would be an index with a
single field on its Exception List: P1F1. That index now holds only records that are
marked for deletion. Again, you'd only want the Supervisor (or someone you trust
with deleting records) to run this report, probably at the end of each day, so make
sure you only put it on their menu.

Securing Data Entry 397

You can improve on this sort of report by making it append to a disk file, all
the record deleted each time, with a date and time stamp header. This way the
Supervisor has a history of what he deleted from the database, should that become
critical at some point. The improved report would look something like this:

Warning:

FIRST PAGE HEADER

This routine deletes records permanently from the database!

Please exercise caution when running it.

It will present you with a

lookup of possible records to delete.

For each one you want to delete,

highlight it an

d hit Enter.

Prompt for Value of Report Variable 1

Store Value in Report Variable 1
Stop

[Sub]Report if 0 Is in Report Variable 1
Turn Print On-——-—----——-——————————

Delete Report 5:

Delete Report 3a
surrounded by
Turn Print/File
On/Off codes.

Put USER.FIELD[1]

Date: in RV2 and then
Time: print it on 3rd
User ID line here as
User ID.

OTHER PAGE HEADER

——Empty—-

TWO-LEVEL REPORT HEADER

——Empty—-

REPORT BODY
Chooses Next Record By LookUp-———————————————————

Print records
deleted.

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty-- -

To get the above report to print the list of newly deleted records, while
simultaneously appending relevant fields in them to a disk file, you need to
manipulate the Initial Report Definition Screen by first hitting 2 to define the Disk
File to append to, and then hitting 1 enough times so it shows both a destination
printer port and Append to Disk File. Also note that because this report no longer
prints to Screen Only (as Delete Report 3a did), we need those Turn Print/File On/Off
codes in the First Page Header. The Initial Report Definition Screen should look
something like this:

REPORT: Delete Report
Destination: Printer LPT1 Append to Disk File Simultaneously
1 - Printer On/Off print and append
2 - Disk File On/Off to disk file
Filename: DELETE.RPT
3 - Index Number 6 Exception List
Index
4 - Search Conditions No Search
5 - Sort Direction Forward
6 - Disk File Mode WP/DOS DOS Text DOS Text selected
7 - Print Margins Top Bottom Left Text Lines
6 0 5 54 Left Margin for
8 - Edit Report Form hole punches
9 - Edit Report Name -

So the above report offers its user a lookup of only records marked for
deletion. Each time the user highlights a record and hits Enter, DataPerfect sends
relevant fields from that record to the printer and a disk file, and then deletes the

398 Securing Data Entry

record. Any record the user fails to select this way remains in the database, marked
for deletion. Unless the user then unmarks that record's Delete field (essentially
undeleting it), it will again show up in the report lookup when this Delete Report is
run.

Reports That Control Record Creation

Here's an example of a report that holds the user's hand during record creation, not
letting them see the record that's actually created:

[Destination: Screen Only] CreateRecord Report 1
FIRST PAGE HEADER =
This routine will create a new account. Please make sure you've Warning text.

cleared creation of this new account with your supervisor.
You'll need the client's Social Security Number for this routine.

777777777777777 Prompt for Value of Report Variable 1 —-——————————————— —

——————————————— Store Value in Report Variable 1 —————————————-ommmm Check to see

777777777777777 Stop [Sub]Report if 0 Is in Report Variable 1 ———————-— if we should
continue. See

777777777777777 Prompt for Value of Report Variable 2 ———————————————— details below.

777777777777777 Prompt for Value of Report Variable 3 —-———-———-————————
OTHER PAGE HEADER -
——Empty--

TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY-
=———————=CREATE RECORD LINK/PANEL: 0 1

REPORT BODY- Create exactly one
777777777777777 Store Report Variable 2 in Field 5 ——————————————————- new record in
777777777777777 Store Report Variable 3 in Field 6 ——————————————————— Panel 1. See below

for more details.
AVE RECORD
777777777777777 Store Value in Report Variable 200 -————-———-——————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 ——-——--

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER

——Empty-—-—

Starting at the top of the above Report Definition, the Destination obviously
needs to Screen Only in the Initial Report Definition Screen. Otherwise the warning
text will go to the printer (you can, of course, surround the warning text with Turn
Print/File On/Off codes instead of using the Screen Only Destination).

The Prompt for Value of Report Variable 1 code is formatted U1 and has the
following prompt:

Shall we continue? (Y/N):
The following formula is then used in the Store Value in Report Variable 1 code:

if rvl <> "Y" then 0 else 1 endif

That allows the Stop [Sub]Report if O Is in Report Variable 1 code to stop the report
cold if the user answered anything other than Y to the prompt.
In the Report Body I used Ctrl-F7, 6 to call the Subreport Menu:

Securing Data Entry 399

Subreports & Record Creation

Include Subreport

Create Record Through Link

Create Record From Panel List
4 - Subreport Using Virtual Link
0 - Return to Edit

Selection: 0

w N =
[

I chose option 3 above. That gave me the CREATE RECORD portion of the Report
Body. The 0 on the CREATE RECORD line signifies this record creation isn't using
a link to get the panel in which the record will be created. That is, it's using the Panel
List to get to that panel. The 1 on that line signifies the target panel for this record
creation is Panel 1.

So what's all this, just after the CREATE RECORD portion of the Report
Body, still within the Report Body?:
SAVE RECORD

777777777777777 Store Value in Report Variable 200 -——————————————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 200 —--—-—-

TWO-LEVEL FOOTER

Here, Report Variable 200 is being set to 0, and the report is being stopped
immediately after. If I don't do something like this, the report will attempt the
CREATE RECORD again and again, once per record found in the panel on which
the report is based. The two codes you see above, at the very end of the Report Body,
cause the report to stop after one record is processed in the panel on which the report
is based.

Also note that it's irrelevant which panel we use to base this report on, as long
as it has at least one record. That's because the CREATE RECORD portion of its
Report Body is using the Panel List to find the panel in which to create the new
record. So the report can start anywhere in the database to do this.

You might want to consider even more protection here, by altering the above
the report so it sends records the user creates to a disk file, providing the Supervisor
arunning record of record creations that's a lot easier to read than a Transaction Log.

Take a look at this. It's the same report, but with a different Destination in the
Initial Report Definition Screen, the User ID being stored in Report Variable 4, and
fields being sent to the disk file. Also note that I have to surround the warning text
in the First Page Header by Turn Print/File On/Off codes, otherwise that text will be
sent to the printer and/or file (I always turn both printer and file on and off, just in
case I later decide to switch from one to the other, or use both).

400 Securing Data Entry

[Destination: Append to Disk File] CreateRecord Report 2
FIRST PAGE HEADER }

Turn Print/File
777777777777777 Turn File Off-—-——--------""""""""""- - ——— off.
This routine will create a new account. Please make sure you've

cleared creation of this new account with your supervisor.
You'll need the client's Social Security Number for this routine.

777777777777777 Prompt for Value of Report Variable 1 —-———————————————
777777777777777 Store Value in Report Variable 1 —-——-——-—-—————————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 1 —-—————--

777777777777777 Prompt for Value of Report Variable 2 —-———————————————

777777777777777 Prompt for Value of Report Variable 3 —-————-———————————

777777777777777 TUrn Print On—————————— = Turn Print/File

——————————————— Turn File On——————————————— back on.

——————————————— Store Value in Report Variable 4 ———————————————————— Put USER.FIELD[1]
in RV4.

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY
CREATE RECORD LINK/PANEL: 0 1
REPORT BODY
777777777777777 Store Report Variable 2 in Field 5 ———————--—-—-—-———~
777777777777777 Store Report Variable 3 in Field 6 ———————————————————

AVE RECORD:
S Date, Time, & RV4.
Record fields.
Blank line.

777777777777777 Store Value in Report Variable 200 —————-—————-————————
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 200 —-—-——---

TWO-LEVEL FOOTER
——Empty-——
PAGE FOOTER
——Empty-—-—
FINAL FOOTER

——Empty--

The above report works like the previous one, but it appends to a disk file a copy of
each record created, including who created it, and when.

Reports That Control Editing

Perhaps you need even more security in a particular panel. You not only want to hold
the user's hand during record creation, but also editing of existing records. Again, the
reason may be the same in both cases: you don't want the user in the panel when they
edit. That is, you don't want them to see the record itself. Or you feel the editing
process needs certain guiding text to keep the user from making a silly mistake.
Here's an example:

Securing Data Entry 401

[Destination: Screen Only]
FIRST PAGE HEADER

This routine will allow you to change the last name of a client.

Please make sure you've cleared this with your supervisor.

777777777777777 Prompt for Value of Report Variable 1 —-————-——-—-—-—-
777777777777777 Store Value in Report Variable 1 —-————-—-——-——————————
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 1 —-——————-
fffffffffffffff User Chooses Next Record By LookUp-————————————————————

This client's last name 1is =ZEizisiiziizizaas,
What should it be now?
You may hit F1 or ESC if you don't want to change it.

777777777777777 Prompt for Value of Report Variable 2 —-—————————————-

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER

——Empty--
REPORT BODY

77777777777777 Store Report Variable 2 in Field 3 -———————-———————————

That client's last name is now

777777777777777 Store Value in Repdrﬁ Variable 200 ————————————————
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 200----—---

TWO-LEVEL FOOTER

——Empty--
PAGE FOOTER

——Empty--
FINAL FOOTER

——Empty--

EditRecord Report 1

Just like
CreateRecord
Report 1

Offers a lookup.
Then shows user's
choice.

Prompts
"Your choice?:"

Put new LastName
in LastName field.
Show new LastName.
Stop after one
record processed

| by setting RvV200
to 0.

The above report offers the user a lookup of clients sorted by Last Name
(assuming you tie it to an index beginning with Last Name, of course). When they
choose a client, they're shown the Last Name of that client and asked what it should
be now. After they type in the new Last Name and hit Enter, the report updates it and
stops. Only one record is allowed to be processed this way with each run of the

report. That is, they only see the lookup once.

And, as we've done before, we can change this report into one that appends

each edit to a disk file:

402 Securing Data Entry

[Destination: Append to Disk File] EditRecord Report 2
FIRST PAGE HEADER

777777777777777 Turn Print Off---——------------ Just like
777777777777777 Turn File Off-—-——--------"""""""""""— - ——— CreateRecord
This routine will allow you to change the last name of a client. Report 2.

Please make sure you've cleared this with your supervisor.

777777777777777 Prompt for Value of Report Variable 1 —-———————————————
777777777777777 Store Value in Report Variable 1 —-————-—-—————————————
777777777777777 Stop [Sub]Report if 0 Is in Report Variable 1 —-—————--
777777777777777 User Chooses Next Record By LookUp-—-——-———————————————

This client's last name is i
What should it be now?
You may hit F1 or ESC if you don't want to change it.

777777777777777 Prompt for Value of Report Variable 2 —-————-———-————————

OTHER PAGE HEADER
——Empty--
TWO-LEVEL REPORT HEADER
——Empty--
REPORT BODY-
777777777777777 Store Report Variable 2 in Field 3 ———————————————————

That client's last name is now IZiiiZiziziziazis,

777777777777777 Turn Print On-————— e Turn Print/File
—————————————— Turn File On———————————————— - back on.
——————————————— Store Value in Report Variable 4 ————————————————————— RV4=USER.FIELD[1].

Date, Time, RV4.
Fields in record.
Blank line.

777777777777777 Store Value in Report Variable 200 —————-—————-————————
777777777777777 Stop [Sub]lReport if 0 Is in Report Variable 200 —-—-——---

TWO-LEVEL FOOTER
——Empty--
PAGE FOOTER
——Empty--
FINAL FOOTER
——Empty--

Hiding Data Entry

[Load UD.STR for this section.
Find the Hiding Data Entry panel.]

Suppose you have a need to allow the user to enter data in a particular field but you
want the result of the data entry to be hidden after saved. Further, you don't want
other viewing users to see the data on the screen while it's being entered. That is, you
don't want their keystrokes to echo on the screen for all to see. This is typically done
in password fields in computer applications in general, where all that echoes to the
screen is a series of asterisks.

Let's make this simple and say you want to do this with an A3 field. First off,
that field is going to be hidden, which means we'll have to provide the user with a
different field in which to enter his data.

Actually, what we need is a series of three Al::E fields, where each moves
the cursor to the next after the user enters data in it (the ::E display modifier,
remember, moves the cursor this way). These three Al::E fields must be right next
to each other, giving the appearance of a single A3 field. Next we'll need yet another
series of three Al fields, though these will be hidden.

So far, we have this:

Securing Data Entry 403

[Three A1::E fields
[Three A1::H fields
o One A3::H field

The three Al::H fields will grab the data entered by the user in the three
Al::E fields. The A3::H field will concatenate the three Al::H fields. We need to
make sure that, as the user enters data in each Al::E field, its corresponding Al::H
field grabs that data before the A1l::E field changes it to an asterisk.

The trick here is the formulas we assign to the A1::E and Al::H fields, and
the Edit Order in which we place the fields. Let's give all these fields names, so we
can reference them easily here with formulas:

Format Name
Al::E P1F1
Al::E P1F2
Al::E P1F3
Al::H P1F11
Al::H P1F12
Al::H P1F13
A3::H P1F21

Here's a combination of formulas and Edit Order that works:

Order | Format | Name | Formula Trigger

1 Al::H P1F11 if PIF1<>"*" then P1F1l else "" endif any change
2 Al::H P1F12 | if P1F2<>"*" then PlF2 else "" endif any change
3 Al::H P1F13 if PIF3<>"*" then P1F3 else "" endif any change
4 Al::E P1F1 if PIF11<>"" then "*" else PIF1l endif | any change
5 Al::E P1F2 if PIF12<>"" then "*" else PIF2 endif | any change
6 Al::E P1F3 if PIF13<>"" then "*" else PIF3 endif | any change
7 A3::H P1F21 cat.c[P1F11;P1F12;P1F13] creation

The Edit Order above is only a relative Edit Order. That is, PIF11 doesn't need to be
number one in that Edit Order. It just needs to come before P1F12, and so on. What's
important here is that the Al::H fields precede the Al::E fields in the Edit Order.

One important note about this scheme. It only works in Create mode, not Edit
mode. After the above record is saved, the A3::H field will never change. So you'll
need to use this scheme under the control of a Go To Panel menu item that has Panel
Access Rights set to Create OK - No Edit/Delete.

404 Securing Data Entry

To get around this Create Only problem, we can use my Moment function
(see An Alternative Solution: Using the Concepts of MOMENT and MODULQO in my
Fields: Issues chapter for more on the moment function). In UD.STR's Hiding
Data Entry Panel, take alook at how differently Password Field 1 and Password Field
2 behave during Edit mode. Password Field 2's field formula turns on the value found
in the Moment field; whereas Password Field 1's field formula doesn't:

Password Field 1

If (86400*today)+now=P21F12 then P21F10
else cat.c[P21F5;P21F6;P21F7;P21F13;P21F14;P21F15] endif

Automatically computed at any change and when record is saved.

Password Field 2
cat.c[P21F5;P21F6;P21F7;P21F13;P21F14;P21F15]

Automatically computed when record is created.

Password Field 1 looks at the Moment field to see if the current moment is
the same as the moment found in the Moment field. As soon as one second has
passed after hitting F6 (Edit) or F9 (Create), these two values will be different, so the
ELSE clause rules during data entry. This causes the CAT.C statement to be inserted
into Password Field 1. That statement grabs values found in the Intermediary fields.
At that moment, the Intermediary fields hold the true Password constituents.

On Save, the Moment field updates one more time, to match the current
moment, and the Intermediary fields blank out. When that happens, the IF clause
rules, which returns Password Field 1 back to the value it had before the Moment
field updated a second time, effectively ignoring the newly blanked out Intermediary
fields.

This is complicated. Play with that UD.STR's Hiding Data Entry Panel a
while to convince yourself that Password Field 1 works fine in Edit, whereas
Password Field 2 doesn't. Then read over this discussion again.

Securing Data Entry 405

406 Application Maintenance Utilities

Application Maintenance Utilities

This chapter is for both beginners and the experienced.

DPExport and DPImport

DPExport and DPImport (DPEXP.COM and DPIMP.COM) usually are used
together. DPExport, when applied to an .STR, will produce a text file of the .STR's
contents in readable English. This text file will have the same filename as the .STR,
except its extension will be .STE. Just how to read an .STE file is laid out pretty well
in the Reference Manual, so I won't get into that here.

After creating an .STE with DPExport, DPImport can be used to create a new
.STR from the .STE file. So why do any of this?

One reason for creating an .STE from your .STR is to hunt down possible
corruption that appears in your application. Say you see some odd looking low ASCII
characters in Help screens where you know you never put any. You might create an
.STE with DPExport and then load the .STE in a text editor and search for these
characters and delete them. After running DPImport on the new .STE, they shouldn't
appear in the application anymore.

Another reason for running DPExport on your .STR, and DPImport on the
subsequent .STE, is to let that process clean up any corruption that may have crept
into the .STE during an extensive development session. Running DPExport and
DPImport like this is a good practice after every such session.

A third reason for running DPExport and DPImport like this would be to
make some changes to the application that would be easier done in the .STE file than
when the .STR is loaded in DataPerfect. For instance, you might want to globally
change some text string that appears in many Help screens. You can just load the
.STE file in a text editor and do this, though I'd make sure you confirm each Replace.

.STE Editing Caveats

Please heed a couple caveats when editing an .STE file. When editing the .STE file
with a text editor, turn off word wrap first. In WordPerfect Corporation's Editor 3.x,
you do this with Shift-F1, E, W, T, N, Enter, F7, F7, F7. When editing an .STE file
with a word processor, save it in generic word processor format, not DOS text or
standard ASCII text. Saving a word processor document in generic word processor
format won't replace soft returns with hard returns. So a paragraph, for instance, is
saved as one long line. Saving a word processor document in DOS text or ASCII text
format puts a hard return at the end of each line in a paragraph. The latter will ruin
the .STE file.

Editing an .STE file isn't for the faint of heart. You can blow away much of
your application this way. Simply changing a field's format to one that's incompatible

Application Maintenance Utilities 407

with its panel can trash an entire panel. Don't forget that your text editor or word
processor doesn't know you're editing an application's heart and soul, so it's not going
to give you error messages when, say, changing a field format to one that's too big
for its panel. Do this sort of thing in DataPerfect if you're not sure what you're doing,
and leave DPExport and DPImp for simply cleaning up an .STR file that may be
corrupt, or as a followup to a lot of development. I don't remember the last time I
actually edited an .STE manually with a text editor or word processor.

DPImport Caveats

Be aware that when you run DPImport, it deletes your application's .IND file before
it starts the actual .STE conversion to an .STR. This is for your own good, just in
case any changes you made to the .STE file are now incompatible with the existing
IND file. By deleting the exiting .IND file, DPImport is forcing you to regenerate
indexes after loading the new .STR. If you don't want to regenerate indexes (you have
a lot of data and this will take many hours, or even days, for instance), there are ways
around this. But you must know when this isn't safe. Read my sections on When It's
Okay to Overwrite an .STR and Cleaning the .STR Without Re-indexing before
attempting this. They're in this chapter.

Importing Reports

One more thing many developers don't know you can do with DPExport and
DPImport. You can take selected reports from the REPORTS: section of an .STE file
and import just those reports into an existing .STR without having to import the
entire .STE, and without having to regenerate indexes. To do this, create a text file
that begins with the string

REPORTS:

all by itself on the first line (flush left).

Now put in the reports you took from the REPORTS: section of the .STE file.
These reports follow the above line with a blank line between them and REPORTS:.
Make sure there's a blank line at the end of the last report. Give the new text file a
name like REPORTS.STE when you save it. Take all the precautions I already
discussed when editing an .STE (no word wrap, etc.).

Now run DPImport. Tell it to import the new REPORTS.STE. It will ask you
which .STR to import these reports into. When done, you'll find the new reports at
the end of the Report List.

408 Application Maintenance Utilities

DPDiagnostics

This utility (DPDIAG.EXE) is indispensable for any serious DataPerfect application
developer. It should be used after any development session that involves any of the
following:

Altering a field format.

Altering an index

Creating or deleting a field

Creating or deleting an index

Altering a link definition

Deleting a link

Editing your .STE and then running DPIMP on it

What DPDiagnostics does is analyze your .STR to make sure that there's no
conflict between related entities. For instance, you may have initially created a link
that used a particular index and later deleted that index thinking it was unnecessary.
Likewise, you may have initially created a field formula that accessed another field
in the same panel and later deleted that other field, or deleted or altered the link that
formula used to grab that other field if it was in a different panel. DataPerfect doesn't
tell you when doing such things will cause a problem like this. The best way to detect
this sort of error is to run DPDiagnostics on that .STR from time to time.

If you run DPDIAG from the command prompt, you get this help screen:

USAGE: dpdiag [database] [options]

/f-outputname Specify output filename (no spaces)

/I-# Specify the maximum field count for index optimization
Validation

/1 List only the panel number and panel name

/n Do not create an output file

e) Suppress all optimization messages

/a-# DPPrint printer port, 1=LPT1, 2=LPT2, 3=COM1l, 4=COM2

/w Suppress all warning messages

I'suggest you initially run it with none of the startup options that suppress its
output, just to see what it does. So if your .STR is MYAPP.STR, just do this at a
command prompt:

dpdiag myapp

Its output will be to MYAPP.FIX unless you use the /F option to specify a different
output filename. You'll find the information in the output file easy to understand. The
output is divided up into Optimization Messages, Warning Messages, and Error
Messages.

Application Maintenance Utilities 409

Optimization Messages

Iignore these, so I always use the /O switch above. DPDiagnostics is usually trying
here to show you where an index either contains so many fields that it may slow
down your application, or it's not being used by a lookup, link, menu, or report.
Regarding the former, this is a judgment call. Regarding the latter, you must realize
that DPDiagnostics doesn't take into account the Smart Lookups algorithm version
2.3 introduced. See Smart Lookups in my Lookups chapter if you don't know what
they are.

Warning Messages

DPDiagnostics says Warning messages "indicate less serious problems that may keep
your database from functioning smoothly and efficiently." You usually can suppress
these. Here are the ones I see most often in my applications:

Mismatching field formats between a list field

and its counterpart index field.

When this message is given as a Warning and not an Error, it usually involves a
mismatch between G and H fields that are of the same size. This is of no
consequence. More serious mismatches are reported as Errors.

Link's Index in Destination Panel

contains an Exception List.

I'use Exception List Indexes with panel links often. There's nothing wrong with this.
DPDiagnostics just wants you to be aware that your panel link here is giving the user
limited access to its target panel.

Exception List on Index contains
more than one field.
Again, I do this frequently. There's nothing wrong with it.

Error Messages

DPDiagnostics says Error messages "indicate problems that may damage the
database." Take them seriously. Here's a list of Error messages I extracted from
DPDIAG.EXE. When you get one of these messages, DPDiagnostics will reference
the panel, field, etc., involved:

Report index does not exist in panel

Destination Panel does not exist. Error within Subreport Return Code
Report Variable to be printed does not exist

Error within Skip if RV is False Code

Error within Skip [Sub]Report if RV is False Code

Error within Skip To Record At RV Code

Error within Store Report Variable in Field Code

410 Application Maintenance Utilities

Error within Store Report Variable in Field Code

Field does not exist in panel

Error with the field to be printed

Error in Store Value in Report Variable Code

Illegal Formula

Mismatching field formats between a list field and its counterpart
index field

Field(s) shown below for Index do NOT exist

Field(s) shown below for Index Exception List do NOT exist
Destination Panel for Menu Option does NOT exist
Destination Index for Menu Option does NOT exist

DPOrder

DPOrder (DPO.EXE) allows the developer to change the order of Reports on the
Report List, or Panels on the Panel List. Though it provides a wonderful service to
DataPerfect application developers, it doesn't always work as planned. Most
problems I've seen as a sysop of the DataPerfect forum on CompuServe are these:

DPOrder fails to complete because

of out-of-memory problems.

This should have no dangerous consequences as long as you backed up before
running it. You might try to increase your conventional memory using the usual
methods (unload TSRs, optimize with a memory manager, etc.) and try again.
Alternatively, if all you're trying to do is reorder your reports on the Report List, you
can do that with STE Manager© (see STE Manager® in this chapter) or follow the
approach of fellow DataPerfect application developer, Mark Nepon:

o With a copy of the .STR, delete all but the first panel from the Panel
List.

o Now load it with DPOrder and reorder your reports. This probably
won't give you the out-of-memory error.

o DPEXP this new .STR.

o Load the newly created .STE in a text editor.

o Save its reports section to a file named REPORTS.STE. That section
starts with REPORTS: and goes to the end of the file.

° DPEXP the original .STR and delete the REPORTS: section of its
.STE and retrieve the REPORTS.STE you previously created in its
place. Save this .STE.

o In the original .STR, delete all its reports from the Report List.

o Exit DataPerfect and DPIMP the new .STE.

Application Maintenance Utilities 411

After an apparently successful DPOrder operation,

412 Application Maintenance Utilities

the application now has problems with some of its links.

Though I haven't seen this myself, I've heard of it happening. In all these cases,
DPOrder was used to reorder panels. Apparently DPOrder sometimes fails to keep
certain relational properties of acomplex application intact when you use it to reorder
panels. I've never heard of this happening when using it only to reorder reports.
Unless you have a very simple application, I suggest you not use DPOrder on panels.

STE Manager®©

This is one of the more interesting utilities available for .STR files. It's currently free
copyrighted shareware owned and developed by fellow DataPerfect application
developer, Bob Butler. I included a copy of it and its documentation on your diskette.

STE Manager©, in its basic operation, allows you to do this. First, running
STE-MGR.COM on an .STR file produces a Transaction Log with the same name
as the .STR file, but with the {L} extension. So it creates a new file MYAPP.{L}
from MYAPP.STR. To see just what this .{L} file looks like, go ahead and copy one
of your .STR files to your STE-MGR directory and run STE-MGR.COM there. Then
choose that .STR copy from the .STR list STR-MGR presents you. Don't choose the
MANAGER.STR from that list—that's the special .STR that ships with STE
Manager®©.

After hitting Enter on your .STR file, STE-MGR.COM processes it, showing
you its progress on the screen, like this:

LOG EXPORT OF .STE DATA
PANEL: —
PANEL: Panels named here as they appear on the Panel List
PANEL: —
MAIN MENU
SUB MENU
REPORT: —
REPORT : Reports named as they appear on this submenu
REPORT: -
SUB MENU
REPORT: —
REPORT : Reports named as they appear on this submenu
REPORT: -
SUB MENU
REPORT: —
REPORT:
REPORT:
REPORT: Reports named as they appear on this submenu
REPORT:
REPORT:
REPORT: -
SUB MENU
REPORT: —
REPORT: Reports named as they appear on this submenu
REPORT: -
SUB MENU
REPORT: —
REPORT:
REPORT: Reports named as they appear on this submenu
REPORT:
REPORT: -

Application Maintenance Utilities 413

REPORT: —
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT:
REPORT: -

Reports named as they appear on the Report List

Now that you have a Transaction Log of your .STR file, you Import that
Transaction Log into the STE Manager© database, MANAGER.STR. That is, you
run DataPerfect and load MANAGER.STR, then Shift-F9, 8 to Import the new
Transaction Log. Again, that Transaction Log's filename is the same as the .STR it
was derived from, except for its {L} extension.

After importing this odd Transaction Log, the elements of your .STR file are
now in the MANAGER.STR database. With it loaded in MANAGER.STR, you can
manipulate most aspects of your .STR file. For instance, you can change the position
a report occupies on the Report List or copy it from a menu back to the Report List.
Once you're done changing the structure of the imported database, STE Manager©
lets you then create an .STE that reflects those changes.

Here's the STE Manager© Main Menu (MANAGER.STR):

Main Menu

User's Manual...... 1
Table Of Contents
Print Table List

Program Manager....2
Program Header
Panel List

Help Builder....... 3
Panel List
Field Description

View Documentation
DP 2.3 Errors
Edit Help Sections
Print Manual

Field List
Keep A Total
Indexes
Menus

Menu Options

Menu Layout
Reports
Create Builder

Reports
Utilities.......... Reports............ Structure
Bug Book STE Reports Panel List....... 99
Transaction Logs Reference Manual Report List...... 98
DP Diag Import Help Builder Menu Help........ 97
Printer Control Utility Reports READ ME.......... 96

Selection [0]

When you choose 5§ above (Reports), you get a submenu that looks just like
the above menu, with the Reports box somewhat raised. Here's the relevant portion
of that menu:

414 Application Maintenance Utilities

Menu Options
Reports
—— | Reports
¥7 STE Reports....... 1 Stru
Reference Manual..2 Pane
Help Builder...... 3 Repo
Utility Reports...4 Menu
READ
Selection [0]

Choosing 1 from that submenu calls the STE Reports menu:

View Documentation Field List Menu Layout
DP 2.3 Errors KATs Reports & Options
Edit Help Sections Indexes

Pri

STE REPORTS

Produce .STE file Including Reports, Menus................ 1
L——| Produce .STE file Excluding Reports, Menus................ 2 —
Produce .STE file Including Reports, Excluding Menus...... 3
Uti| Produce .STE file Excluding Reports, Including Menus...... 4 LF7
Bug| Produce "Reports Only" .STE file for selected reports..... 5

Tra| Produce "Reports Only" .STE file Including Menu reports...6

Selection [0]

The above six STE REPORTS selections offer you a way to produce different
types of .STE files. The first four will each produce an .STE file that, when imported
with DPImport, will produce a new .STR. The final two Reports Only choices
produce .STE files that can be imported with DPImport into an existing .STR, even
if its data files have data. Doing that will put the reports in the Reports Only .STE at
the end of the existing Report List.

As I mentioned before, among other interesting things, STE Manager© lets
you copy or move reports between their menu assignments and the Report List. Let's
say, when developing a DataPerfect application, you like to delete all the reports on
your Report List after assigning them to menu items (don't forget that assigning a
Report List report to a menu item just creates a copy of the original Report List
report). Some developers like to do this just to keep the Report List empty for future
reports, or because they like to give the user access to the Report List (I advise
against this), but don't want them to have access to certain Report Definitions.

Well, suppose, later, you want to copy one of those menu item reports back
to the Report List. With that application's .STR/Log file loaded in STE Manager©
as a database, you'll find a record for each report in the STE Manager© Report Panel,
with each record showing that report's menu assignment (if any) and its numerical
position on the Report List (if any). If it isn't in the Report List, it won't have a
number in that field. Just put an appropriate number in that field and the report will
end up on the Report List when you have STE Manager© create a new .STE file for
that application.

Application Maintenance Utilities 415

There's a lot more you can do with STE Manager©. Be careful, however.
Unlike DataPerfect, it won't let you know when you put in a illegal value for this or
that application entity. You need to really understand DataPerfect to use this utility.

416 Application Maintenance Utilities

Application Maintenance Issues

This chapter is for the experienced DataPerfect application developer only. Some of
the techniques talked about here require a strong stomach.

Upgrading a Client to a New Version of DataPerfect

If your client is running a DataPerfect application under DataPerfect 2.2 or 2.3,
upgrading their application to 2.3's current version is simply a matter of running the
same application under the new DataPerfect program files (DP.EXE and DP.SYS).
No export/import of the .STR or data is necessary. Make sure you always use the
DPEXP.COM and DPIMP.COM that go with the new version of DP.EXE.

This isn't true, however, if the application is running under DataPerfect 2.0
or 2.1. Databases created with 2.0 or 2.1 are not compatible with 2.3, though all their
data can be safely imported into the same application run under the new version of
DataPerfect. In such cases, follow these steps, backing up the database first (this
process will take quite a while on a large database):

Load the application with the new version of DataPerfect.

Do not create, edit or delete any record in the database.

Export all data in the database to a Transaction Log (Shift-F9, A, 1).
Delete all data in the database (Alt-F5, 4).

Exit the application.

Exit DataPerfect.

Run DPEXP on the .STR file.

Run DPIMP on the .STE file created above.

Run the new version of DataPerfect.

Load the .STR file created above and choose 1 (Create a New Index
File with New Indexes for All Data Files) from the menu.

° Import the Transaction Log you created above (Shift-F9, 8).

The database is now upgraded to the current version of DataPerfect 2.3.

Compatibility Between Different Versions of DataPerfect

AsIsaid above, you should convert a database that's been running under DataPerfect
2.0 or 2.1 with the steps outlined above. But other issues arise that involve
compatibility between different versions of DataPerfect. For instance, suppose you
get the latest version of DataPerfect 2.3c. Until now, your client's application has
been running under DataPerfect 2.3b.

Application Maintenance Issues 417

As I mentioned above, all you need to do now is overwrite the old
DataPerfect program and utility files with the new ones, and load the application. No
export/import of the data or the .STR is necessary in this case.

But there are caveats here you must be aware of here. The most important one
is to not run different versions of DataPerfect on the same network, even if they share
the same version number. If they have different date stamps, they can be different
enough to cause problems on a network when accessing the same database
simultaneously.

That said, it still may come in handy to use older version of DataPerfect when
developing an application. Say you're working with an .STR that needs some field
formulas changed. The .STR is so complex that any attempt to edit a formula in the
Specify Formula screen causes an Error 104, signifying DataPerfect is too low in free
workspace for that formula edit operation to complete.

In such a case, it's perfectly fine to load the .STR with an earlier version of
DataPerfect, starting with the September 1993 version. That's the version of
DataPerfect 2.3 that introduced the User ID Panel facility. If your application has
menus but no User ID Panel active, you can go back as far as the initial release of
DataPerfect 2.3 (February 1993). But if the User ID Panel facility was used in your
application, the February 1993 version won't load the .STR. In either case, you'll be
working with a version of DataPerfect that has more workspace available. Though
the menu facility and the User ID Panel facility both decreased DataPerfect 2.3's
available workspace, the August 1994 version (the initial release of DataPerfect 2.3b)
decreased it even more.

By loading the application with an earlier version of DataPerfect 2.3, you may
often find that a field formula that couldn't be edited without causing an Error 104
will now let you edit it. When done editing the formula, load the application under
the current version of DataPerfect 2.3 and continue your development.

When It's Okay to Overwrite an .STR

418

Suppose you did some work on your client's .STR tonight, outside the presence of its
current data. You're pretty sure it now does exactly what your client wants. Well,
here's a really simple question that inevitably arises: Can you just overwrite your
client's old .STR tomorrow with the new one without regenerating indexes? The
official answer has always been the same:

Never. You must always regenerate indexes
after overwriting an old .STR with a new
one.

The official answer has always been false, but it's certainly the safest way to
handle this tomorrow in the client's office. The more accurate answer is this:

Sometimes you may overwrite an old .STR
with a new one. It Jjust depends on the
circumstances.

Application Maintenance Issues

Let's outline those circumstances for you.

If you're working on a copy of the .STR your client is currently using, you
may overwrite the old .STR with the new one if, since the last time indexes were
regenerated with the old .STR, no index was created or deleted with the old .STR.
Further, all real fields in the new .STR are exactly the same as those in the old .STR.
That is, in working on the new .STR, you didn't add, delete, or alter a real field (that
includes changing its field type or length). The general rule is that you must not
change the .STR in such a way that its relationship to the data files is altered. If, for
instance, all you did was add or change a few reports and create a new menu, or even
add a ::C field to display something interesting, you haven't done anything to the
.STR that would cause a change in either the .IND file or the application's various
data files.

What's the rationale behind having to regenerate indexes if, with the old
.STR, you created or deleted an index since the last index regeneration? This has to
do with the way DataPerfect stores index blocks in the .STR. To refresh your
memory, here's that graphical representation I gave you in The .STR File and Index
Regeneration of my Indexes chapter. It represents three incarnations of a changing
STR:

Old Index Block Pool | 1 2 3 4 5 6 7

New Index Block
Pool
Indexes Just Regenerated
Old Index Block Pool | 1 2 3 4 6 7
New Index Block 8 9
Pool

Old Index Block Pool | 1 2 3 4 6 7 8 9

New Index Block
Pool

Indexes Regenerated Again

Again, think of the above index blocks as physical places in the .STR where
the .STR hooks into the .IND file. My analogy in the Indexes chapter was that the
.STR file is a hand and the .IND file a glove, and these index blocks are hand fingers
that fit and move glove fingers. The gloved hand then manipulates data files.

Our developer cleans up his .STR by running DPEXP and DPIMP on it. He
loads it to make sure it's working as planned, regenerating indexes in the process.

Application Maintenance Issues 419

Now he installs it at his client site. What he installs, then, is the first .STR above (that
represented by the first graph).

After a few weeks of successful operation, the client calls with an
enhancement request. They need a new report that sorts differently than the ones
available. The developer goes to work on this, using a copy of the same .STR he
initially installed above. To enhance the application the way the client wants, the
developer won't need to alter the format of a field, or delete or create a field, but he
must create two new indexes. He does. In this process he notices an index he never
needed, so he deletes it. Now his .STR is in the state represented by the second graph.
After finishing the enhancements and testing them, he runs DPEXP and DPIMP on
the new .STR and loads it, regenerating indexes in the process. All looks fine, so he
installs it at the client site. What he installs is the third .STR above.

Does the developer need to regenerate indexes after overwriting the old .STR
with the new one? Yes. The .IND file the first .STR worked with, which is still at the
client site, expects an .STR with index blocks physically arranged the way you see
in the first graph. But the .STR that's attempting to hook into that .IND has its index
blocks physically arranged the way you see in the third graph. The .STR hand won't
fitthe .IND glove. You overwrite the old .STR with the new one, and then regenerate
indexes. All is well now. And, again, their .STR now has index blocks exactly where
your copy of that .STR has them. Both look like you see in the third graph.

Note that in the second .STR, two indexes were created and one deleted. The
index regeneration produced the third .STR. You might wonder, however, if it was
the creation of the new indexes that cause the problem that requires index
regeneration at the client site. Not true. If all that was done was that one index was
deleted, you would still end up with an .STR that's incompatible with your client's
IND file:

Old Index Block Pool | 1 2 3 4 5 6 7

New Index Block
Pool

Client's .STR

Old Index Block Pool | 1 2 3 4 6 7

New Index Block
Pool

Developer's .STR

1 Index Deleted
Indexes Regenerated

In the above example, the old .IND file expects all seven index blocks the way they
were in the first graph. So the .IND glove has an unfilled finger.
If all you did was create two indexes and not delete any, you get this:

420 Application Maintenance Issues

Old Index Block Pool | 1 2 3 4 5 6 7

New Index Block
Pool

Client's .STR

Old Index Block Pool | 1 2 3 4 5 6 7 8 9

New Index Block
Pool

Developer's .STR

2 Indexes Created
Indexes Regenerated

Again, a mismatch exists between the .IND that worked with the first .STR and the
new .STR. There are too many fingers on the new .STR for that .IND glove.

That covers when you can't overwrite an .STR with a new one without
regenerating indexes, relative to when indexes were last regenerated. Butissues other
than when indexes were last regenerated push you into index regeneration after
overwriting an .STR with a new one. Even if no indexes were created or removed
since the last index regeneration at your client's site, you'll still need to regenerate
indexes after overwriting his .STR with a new one if you created, deleted or modified
areal field. In fact, if you did create, delete or modify a real field, you'll need to do
more than just regenerate your client's indexes. You must do at least this:

° With your client's old .STR still in place, load his application and, in
each panel you added, deleted or modified a real field, export that
panel's data to a Transaction Log (Shift-F9, A, 2). One Transaction
Log per affected panel.

° Remove all data in each such panel (Alt-F5, 1), followed by exiting
application and deleting each such panel's data file from DOS.

° Copy over his .STR with your new one.
° Load the application and import each Transaction Log.
° Regenerate indexes for all panels.

Alternatively, export and import all data in the database this way:

Application Maintenance Issues 421

o With your client's old .STR still in place, load his application and
export all data (the entire database) to a single Transaction Log

(Shift-F9, A, 1).

° Exit the application and delete all the application's data files,
including its .IND and .TXX files.

° Overwrite the old .STR with the new one.

o Load the application and have DataPerfect create new .TXX and .IND
files.

° Import the Transaction Log.

Though it can be time consuming with large databases, the latter method is
better than the former one. It regenerates indexes without fear of being stopped due
to duplicates. Read on for a discussion of the duplicates problem later in this chapter
(Removing Duplicates in a Panel).

One final point about overwriting a client's .STR with a new one. When you
made your changes to this .STR, you probably exported and imported it at least once,
using DPEXP and DPIMP. This is good practice. But if you did, you must be sure to
do the following, which can all be done with the new .STR before or after
overwriting the old one:

° Reset all auto-incrementing fields.
o Re-select the User ID Panel, if active.
° Re-create all application passwords, if present.

Removing Duplicates in a Panel

As odd as it may seem, a DataPerfect database will occasionally have duplicates
(duplicate entries for the same record in at least one index). I've never seen this have
any consequence in real time running of the application, even when duplicates are
found in panels that carry totals to other panels. Just about the only way you'll ever
find out you have duplicates in your database is when you regenerate indexes. You'll
never see them in lookups or reports, or anything else that uses an index.

If there are duplicates in an index, then, when you regenerate indexes in that
panel, DataPerfect will stop when it comes to a duplicate record, warning you of its
existence. DataPerfect will suggest that you need to redefine the indicated index so
this doesn't happen. If you know there's nothing wrong with that index's definition,
don't bother redefining it. That won't help.

Anyway, each time you see this error message while reindexing, reindexing
stops and waits for you to hit Enter. This can be very time consuming if you have a
lot of indexes in a particular panel, and that panel has a lot of records. DataPerfect
is going to stop for every duplicate it finds in every index in which it occurs in that
panel, which usually means every index in that panel.

If you elect to just hit F1 at this point (instead of hitting Enter), you just
trashed your .IND file and will now have to regenerate all over again. So do yourself
a favor and backup before attempting index regeneration on any panel at all. Better

422 Application Maintenance Issues

yet, instead of regenerating indexes the usual way (Shift-F9, 1), use one of the
methods I describe below for removing duplicates in a database, even if you have no
reason to suspect you have any duplicates. These methods automatically regenerate
indexes during processing, while giving you the added bonus of making sure you
have no duplicates when done. Simple index regeneration doesn't remove duplicates.

How Duplicates Are Created

Before I show you how to clean your database of duplicates, let's explain how this
can happen in the first place. When you tell DataPerfect to delete a record, a few
things must take place for the deletion to complete:

1. DataPerfect deletes the physical record from the data file and updates
that panel's indexes.

2. DataPerfect then packs the data file by copying an existing record into
the space created by Step 1 and updating pointers in that panel's
indexes.

3. DataPerfect then deletes the original copy of the record that it just
copied in Step 2.

Graphically, here's how this looks:

1 2 3 5 6 7

Step 1
Record 4 physically deleted

1 2 3 7 5 6 7

Step 2
Record 7 physically copied to fill hole

1 2 3 7 5 6

Step 3
Original Record 7 is physically deleted

Most database programs don't automatically pack a data file. Traditionally,
they have you run an external program (usually called PACK.EXE) to fill the holes
created in that data file by Step 1. DataPerfect likes to keep data files compact, so it
packs them on the fly.

Well, the problem is the split second that exists between Steps 2 and 3.
During that moment there are two copies of the record that will fill the newly created
space. If you turn off your computer at that moment, crash, or simply fall prey to a
transient computer or DOS glitch, you have accurate indexes in that panel, but also
have a duplicate copy of a record. You'll never know it exists until you attempt to

Application Maintenance Issues 423

regenerate that panel's indexes. When DataPerfect comes to that record, you'll get an
error message that tells you to fix this or that index. In fact, there's nothing wrong
with your indexes. They've been working fine for years in that panel. You just have
some duplicate records that need to be purged somehow.

Removing Duplicates in a Single Panel

Okay, here's how to remove duplicates in a single panel, which is also the way I
recommend you perform index regeneration:

1. Backup up the database.

Load the application and export that panel's data to a Transaction Log
(Shift-F9, A, 2).

3. Delete the data from that panel with Alt-F5, 1 and then exit the
application and delete that panel's data file from DOS.

4, Delete or rename DP{LOG }.PRB if it exists.

5. Load the application.

6. Load the problem panel. When told The index shows that records are
present in the data file, but the file is not found, choose option 2:
Delete the Index(es) if you have deleted the file.

7. Import the Transaction Log.

8. All duplicates, if any, will be thrown into a file called DP{LOG}.PRB
for your perusal. None will land in the database.

Let me mention something important about Step 3. If you don't Alt-F5, 1
first, any variable-length data in that panel will still reside in the . TXX file. Alt-F5,
1 cleans that .TXX data up. Deleting the panel's data file from DOS, of course,
doesn't. On the other hand, if you don't follow Alt-F5, 1 with a DOS delete of the
panel's data file, the duplicates will still be in that panel's supposedly empty data file.
They're still there even though you don't see them when you load the application, and
then load that panel. The .STR doesn't see them because the indexes for that panel
don't see them. Likewise, Alt-F5, 1 fails to delete these duplicates because it uses that
panel's indexes to see what's there. Because the indexes don't see the duplicates, Alt-
F5, 1 doesn't delete them.

Removing Duplicates in the Entire Database

1. Backup up the database.

2. Load the application and export all data to a single Transaction Log
(Shift-F9, A, 1).

3. Delete all data in the database (Alt-F5, 4).

4, From DQOS, delete or rename DP{LOG}.PRB if it exists.

4a. Export and import your .STR with DPEXP and DPIMP.

Load the application and tell DataPerfect to create a new .IND.
Load a panel.
Import the Transaction Log (Shift-F9, 8).

Nowm

424 Application Maintenance Issues

8. All duplicates, if any, will be thrown into a file called DP{LOG}.PRB
for your perusal. None will land in the database.

Note Step 3. Unlike Alt-F5, 1, which deletes a single panel's data without
removing duplicates, Alt-FS, 4 deletes all data in the database and leaves no
duplicates in data files. It doesn't leave duplicates because, unlike its Alt-FS, 1
counterpart, Alt-F5, 4 doesn't use indexes to delete the records. It actually physically
deletes (from DOS) the data files, the .IND file, and . TXX file, and then recreates the
IND and .TXX files.

And lastly, Step 4a isn't really necessary. But you might as well take
advantage of the fact that you don't have any data in the database and clean your
.STR. As you should know by now, however, if you perform this step you must be
sure to do the following at some point before your client loads the application:

o Reset all auto-incrementing fields.
o Re-select the User ID Panel, if active.
o Re-create all application passwords, if present.

Cleaning the .STR Without Re-indexing

You may occasionally feel the need to clean your client's .STR. Perhaps you suspect
corruption has crept into it. Whatever your reason, you'd like to be able to export and
import it with DPEXP and DPIMP without having to regenerate all indexes. If you
run DPIMP on the .STR in the same directory as the .IND file, DPIMP will delete the
IND file before importing the .STE.

If you haven't created or deleted an index definition since the last time
indexes were regenerated with this .STR, you may clean an .STR without index
regeneration this way:

° Copy the .STR to a dedicated directory.
o Run DPEXP and DPIMP on the .STR in that new directory.

o Still in the new directory, load the application and have DataPerfect
create a new . TXX and .IND

o Still in the new directory, load a panel and have DataPerfect create
new indexes for all panels (Shift-F9, 1, 2)

o Still in the new directory, reselect the User ID Panel and redefine
application passwords.

o Copy the .STR back to the original directory, overwriting the old one.

Again, you can do this without problem only if you have not created or
deleted an index definition since the last time indexes were regenerated with this
.STR. Otherwise don't even think about doing the above.

Application Maintenance Issues 425

The Big Clean: Cleaning the Entire Application

Consider doing what I call the Big Clean once a year on major applications:

1. Backup the entire database to two different media.
2. Export all data in the database to a single Transaction Log (Shift-F9,
A, D).

3. Exit the application and delete all data files, the .TXX file, and the
IND file. Leave the Transaction Log and the .STR alone.

4. Export and import the .STR with DPEXP and DPIMP.

5. Load the application and have DataPerfect create the .TXX and .IND

files.
6. Import the Transaction Log (Shift-F9, 8).
7. Reselect the User ID Panel and redefine application passwords.

The above procedure does all the following:

Cleans the .STR.

Tightens the .TXX file.

Removes any duplicate records in the database.

Regenerates indexes without worrying about duplicates interfering.
Resets auto-incrementing fields to the next highest number, no matter
what they're set at just before the import.

Fixing a Corrupt .TXX File

Every version of DataPerfect prior to 2.3b (date stamped 08/19/94) contains a bug
that eventually bites databases the make heavy use of the variable-length text fields.
This usually shows up as low ASCII characters showing up in these fields, like
ASCII 1 (©) or 2 (®). When it gets really bad, the corruption will show up as data
from one record appearing in another record, even in fields that aren't variable-length.
When the database gets to this point of corruption, all can be lost.

The developer or user can get a false sense of security by simply editing away
such corruption by either deleting the corrupt record or putting it in Edit mode and
using the Del or Backspace key to delete the corrupt characters. Though this appears
to work, it actually just spreads the corruption to other records. This sort of
corruption can't be deleted or edited away with any version of DataPerfect earlier
than 2.3b.

Here's what to do:

1. Backup the database.

2. Export all data in the database to a single Transaction Log (Shift-F9,
A,).

426 Application Maintenance Issues

Exit the application and delete all data files, the .TXX file, and the
IND file. Leave the Transaction Log and the .STR alone.

Export and import the .STR with DPEXP and DPIMP.

Load the application with the current version of DataPerfect, and
never use a version earlier than 2.3b again. Have DataPerfect create
the .TXX and .IND files.

Reselect the User ID Panel and redefine application passwords.
You now can take one of a few different paths here:

Alternative 7a

Import the newly created Transaction Log into the database and edit
your variable-length text fields as much as needed from within the
database itself. Editing those corrupt fields with DataPerfect 2.3b or
later won't cause more corruption, or spread existing corruption.
Editing those fields with an earlier version will.

Alternative 7b

Exit the application and load the Transaction Log into a text editor.
The Transaction Log is a simple text file containing no embedded
nulls or other binary information, so any standard text editor will do.
Each line ends with the DOS text file conventional <CR><LF>. (This
isn't true of WPMerge files. See The Nature of the Export File,
Including Some Caveats in my Export/Import chapter for a
discussion of that.)

Once the Transaction Log is loaded in your text editor, you have a
couple of options. The important characters to delete from the
Transaction Log are the control characters (ASCII 0-31). When
DataPerfect produces a Transaction Log, it converts these characters
from their single-character control versions to three-character alpha
strings that begin with the double-quote and backslash characters like
this:

AA is converted to "\A
AB is converted to "\B

A simple way to deal with this is to simply do a Search and Replace
on

"\

Replacing it with nothing. Of course that will leave the terminating
A, B, etc., in the Transaction Log. Alternatively, you can do a more
complete job with a Search and Replace on each of the thirty-two
control conversion combinations. The thirty-two strings to Search and
Replace are as follows:

Application Maintenance Issues 427

ASCII Transaction Log
Decimal Value Text Conversion
0 "\@
1-26 "\A through "\Z
27 "\ [
28 "\\
29 "\1]
3 O n \ A
31 "_
° Load the application (again, with a version of DataPerfect no earlier
2.3b).
° Import the clean Transaction Log (Shift-F9, 8).
° With the database loaded, manually edit, in Edit mode, data in

variable-length text fields that need editing.

Crippling Applications

This section deals with how to handle sending out applications for evaluation
purposes. Put another way, it involves how to cripple a DataPerfect application in a
strategic way. In this situation, you also want to be able to ship the client an
uncrippled .STR and nothing else, and have them overwrite their crippled one with
the new one, without have to regenerate indexes or reset auto-incrementing fields.

Date Crippling

One way to do this is with a key report you code to stop working after a particular
date. When the client pays you, you ship them an .STR with an uncrippled report,
telling them to overwrite the old .STR with the new one.

Another way to do this with a key date field that. For instance, a date field in
a Transaction Panel. If, say, you want field P1F1 to not accept dates beyond January
15, 1997, you could use a field formula like this:

if P1F1 <= date[15;1;1997] then P1F1
else 0 endif

When the client pays you, ship them an .STR with no formula on that field.

428 Application Maintenance Issues

Record-Number Crippling

Here you put a range on a field. When the client pays you, ship them an .STR without
the range on that field. If you want to put the range on an auto-incrementing field, do
it before you format it as auto-incrementing (it won't work the other way around). |
still suggest staying away from auto-incrementing fields, however. In this situation,
it interferes with a smooth installation of the uncrippled .STR because you'll have to
reset all the auto-incrementing fields in the new .STR. See The Recursive Linkin my
Links chapter for reason to avoid auto-incrementing fields.

Password-Protected Zip File

Here you send a crippled .STR along with a zipped good .STR (an .STR file
compressed with PKZIP©). The zipped good .STR is password-protected. You give
them the password when they pay, and have them overwrite the old .STR, provided
you didn't include any auto-incrementing fields in either .STR, and you never made
changes to either .STR that would require index regeneration (read the previous
section on When It's Okay to Overwrite an .STR if unsure of this).

As of this writing, to create a password-protected zip file of all files in the
c:\myapp directory, using private as the password, you do this:

pkzip myapp c:\myapp*.* -sprivate

The zip file myapp.zip will now reside in the current directory and can only be
unzipped this way:

pkunzip myapp —-sprivate

Try it. It's a nice feature of PKZip®©.

Application Maintenance Issues 429

430 Epilogue

Epilogue

As of this writing, DataPerfect is a DOS character-based database manager in a
Windows graphics world, with no manufacturer supporting it. So where does this
leave the DataPerfect application developer?

Support Avenues

Though ©Novell, Inc. owns DataPerfect, they don't support it. This is one of the
conditions of their gracious release of DataPerfect to the public as free copyrighted
shareware. Under that agreement, Lew Bastian, is allowed to continue to fix and
enhance DataPerfect as he sees fit. Though it has no telephone support at this time,
a community of very helpful DataPerfect application developers volunteer support
for DataPerfect through two online channels: CompuServe© and the Internet.

CompuServe Support

Peer support of DataPerfect on CompuServe has been around for many years and, as
of this writing, is very active. Currently, DataPerfect's home on CompuServe is
Section 11 of WordPerfect Users Forum (GO WPUSERS). I've been a sysop in that
forum since about 1991, mainly responsible for managing its DataPerfect section.
The DataPerfect message section (Section 11) of WordPerfect Users Forum is
complemented by a library section as well (Library 11), where users can find many
files related to DataPerfect application development. This library always includes the
latest version of DataPerfect, including its various utilities and runtime executables.
This is also a good place to find many user-contributed files.

Internet Support

There are two ways to access Internet support for DataPerfect: the DataPerfect Users
Discussion Group Home Page and the DATAPERF LISTSERV.

DataPerfect Users Discussion Group Home Page
Fellow DataPerfect application developer, John Cabrera, currently manages the
DataPerfect Users Discussion Group Home Page:

http://members.aol.com/compusofl/

John's page offers a wealth of information about DataPerfect, along with links to
allow easy downloading of various DataPerfect-related files, including its latest
version. If you have any problems accessing this page, let Web Master John Cabrera
know. He can be reached directly via his Internet address:

Epilogue 431

compusofl@aol.com

DATAPERF LISTSERV

Web Master John Cabrera manages the DATAPERF LISTSERV. A LISTSERV is
amailing list dedicated to a particular group of users—in this case, DataPerfect users.
Subscribers to that group all help each other out. It's free to subscribe. You can
subscribe to it via John's Web page, or just send an Internet eMail message to

listproc@listproc.wsu.edu

Place the following in its message body:

subscribe dataperf YourFirstName YourLastName

That should be the first and only line of the message. You'll then be subscribed to the
group and will receive, in your eMail box, all messages posted to that group since the
last time you checked eMail box. To reply or compose a message to the group,
address messages to this address:

dataperf@listproc.wsu.edu

Note that that's not the same address you send your subscription request to.

The DataPerfect Users Cooperative

There's a movement afoot to provide DataPerfect application developers the tools to
port their existing DOS applications to various Windows environments, and to
provide these developers tools that will allow them to develop new applications in
these environments the way they're used to doing in DataPerfect. As of this writing,
this movement is called the DataPerfect Users Cooperative, rallying most of its
support from the CompuServe forum and LISTSERV mentioned above. It has
already elected a five-person board of directors. This organization is in its infancy,
changing rapidly. If you're interested in joining, or at least getting more information
on it, contact James Trybalski via eMail at

103000.3437@compuserve.com
Please keep abreast of this development by subscribing to the DATAPERF

LISTSERYV and, if a CompuServe member, grabbing messages in Section 11 of
WPUSERS forum.

432 Epilogue

Index

IND file
introduction 28
.STE editing caveats 407
STR file
and index regeneration 98
cleaning the .STR without re-
indexing 425
index block and 98, 99, 419-421
introduction 27
when it's okay to overwrite 418
.TMP files 29
TXX file
fixing a corrupt 426
introduction 28
::C field 15, 18, 22, 24, 31, 36, 38, 39,
41-44, 46,47, 49, 52, 67,
88, 100, 103-105, 112,
113, 141, 142, 144, 155,
156, 241, 274, 280, 289,
366, 372, 373, 376, 386,
390-392
::E field 39
::H field 39
::Iand ::J fields 21, 25, 39, 57, 133-137,
143, 422, 425, 426, 428,

429
::M field 40
controlling record creation with
388

::N field 38, 42, 43, 47, 58, 85

;;1-9 (Truncate Leading and Trailing
Blanks and Leave n Space
199

;;B (Truncate Both Leading and Trailing
Blanks) 199

;;C (Center Characters) 200, 201

;;D (Delete All Blanks) 199

;;E (Delete Zero Subfields from the End)
199

;;L (Left Adjust Characters) 200, 201

;N (New Occurrence of Field) 200, 205

examples 205
;;P (Postal Bar Code) 200
;;Q (Enclose Alphanumeric Fields in
Double Quotes) 200
;;R (Right Adjust Characters) 200
;39 (Suppress Leading Blanks) 198
;;T (Truncate Trailing Blanks) 198
/Z command line switch 375
A field 32
Access Report List, menu facility 353
Acknowledgments xi
application files
Big Clean: Cleaning the Entire
Application 426
cleaning the .STR without re-
indexing 425
crippling applications 428
removing duplicates in a panel
422
when it's okay to overwrite an
STR 418
application maintenance
.STE editing caveats 407
Big Clean: Cleaning the Entire
Application 426
cleaning the .STR without re-
indexing 425
compatibility between different
versions of DataPerfect
417
crippling applications 428
DPDiagnostics 409
DPExport 407
DPImport 407
DPImport caveats 408
DPOrder 411
error messages, DPDiagnostics
410
exporting and importing
transaction logs 335
importing reports 408

Index 433

optimization messages,
DPDiagnostics 410
removing duplicates in a panel
422
STE Manager 413
upgrading a client to a new
version of DataPerfect
417
warning messages,
DPDiagnostics 410
when it's okay to overwrite an
STR 418
application password
introduction 349
rights granted 349
User ID Panel vis a vis
application passwords
363
when DataPerfect prompts for
application passwords
350
APPLY.FORMAT function
explanation 291
Auto-Display Record 18
Auto-Edit, Auto-Create Menu 19
auto-enter field 39
auto-incrementing field
conditional incrementation 133,
137
reasons for avoiding 135
Auto-Save 18
backward-referring computed fields 44
backward-referring non-updatable fields
47
Basic Default Panel 376
Big Clean: Cleaning the Entire
Application 426
Browse mode 15
Browse mode lookups 16
carriage returns and spaces in formulas
300
cascade update
vs. Keep A Total 155
case variable 289
CASES statements vs. I[F-THEN
statements 289

434 Index

caveats
.STE editing 407
clipboard 346, 348
compatibility between different
versions of DataPerfect
417
data link 125, 129
DPImport 408
dummy reports 244
exception list indexes 101
formula error messages 282
Keep A Total 151
merge file 331
Open Filename in Report
Variable 270
regarding two-digit years 55
Run Report option 355
time fields and uniqueness 57
two-digit years 55
User ID Panel 359
center output 200
chapters, outline 2
Choose Index, menu facility 354
choosing between ::C and ::N fields 41
choosing between G fields and N fields
49
cleaning the .STR without re-indexing
425
clipboard
a caveat regarding field formulas
and help screens 348
in a Specify Formula screen 344
in Define Panel mode 343
in Report Definition mode 345
introduction 343
vs. screen capture 343
closing off a data link 374
closing off access to the panel list 374
/Z. command line switch 375
menu facility 375
color, panel, change 18
Comma Delimited format 341
comma delimited output
;;Q (Enclose Alphanumeric
Fields in Double Quotes)
200

compatibility between different versions
of DataPerfect 417
Complex Default Panel 377
CompuServe support 431
computed field
and DataPerfect's work space 49
backward-referring 44
Conditional Page Eject, report option
216
CONTAINS function
explanation 299
controlling data entry with reports
editing 401
providing an undelete 395
record creation 399
record deletions 393
controlling record creation with the ::M
field 388
controlling record deletions with
DPMouse 391
CONVERT function
explanation 291
Cooperative, DataPerfect Users 432
corrupt .TXX file, fixing 426
counter
report variable 225
create
controlling record creation with
indexes 387
controlling record creation with
the ::M field 388
Create Record From Panel List,
report option 215, 218
Create Secondary Merge Report,
report option 215
data link 118
exception list 21
field 11
index 12
Keep A Total 148
menu text 351
panel link 113
panel text 10
reports that control record
creation 399
Create mode 15

Create Record From Panel List, report
option 215, 218
Create Secondary Merge Report, report
option 215
Create/Edit Menu Text, menu facility
351
crippling applications 428
data link
caveat 129
choosing between the panel link
and 128
closing off 374
create 118
data link options caveats 125
define 118
introduction 117
options 122
data link options
Auto-Create 123
caveats 125
Check During Data Entry Off
123
Edit Target Field/Target
Index/Field List 122
No Create, No Access 123
Prompt-Create 123
Remove Data Link 122
Data Link Subgroup Lookup
and the USER.FIELD function
367
explanation 72
DATAPERF LISTSERV 431, 432
DataPerfect Users Cooperative 432
DataPerfect Users Discussion Group
Home Page 431
date field
and the year 2000 problem 55
as a special numerical field 54
international dates 56
report option 211
two-digit vs. four-digit years 55
when not to use for dates 51
define
data link 118
field 11
index 12, 20

Index 435

Keep A Total 148
link 20
panel link 113
DEFINE FIELD Options 21, 25
Define Initial Formula or Define
Field Formula 22
Define Search Field List 25
Initial Value 25
Initialize at Create/Save/Change
23
Keep A Total 26
Lookup Field List 22
Range Check 25
Remove Last Total 26
Validation Time 25
Define Menu screen, menu facility 350
Define Panel Option
Auto-Edit, Auto-Create Menu 19
Auto-Save 18
Change Color 18
Change Edit Order 19
Edit Filename 17
Edit Panel Name 17
Recompute Field Offsets 19
delete
controlling record deletions with
DPMouse 391
Delete an Existing Entry, menu
facility 358
Delete Record, report option 218
field, notes on 66
index 21
reports that control record
deletions 393
Delete an Existing Entry, menu facility
358
disk file mode 160
Open Filename in Report
Variable 267
Turn File On or Off, report
option 212
display
sneaking print mode indicators
into panel fields 202
display modifier 14

436 Index

Do Report in Subgroups, report option
215
DOS delimited text 337
Comma Delimited format 341
DPDiagnostics (DPDIAG.EXE) 409
error messages 410
optimization messages 410
warning messages 410
DPExport (DPEXP.COM) 407
DPImport (DPIMP.COM) 407
caveats 408
DPMouse
and field protection 390
controlling record deletions with
391
using to conditionally close a
panel link 390
DPOrder (DPO.EXE) 411
dummy report example
a report that branches to other
reports 245
gathering preliminary
information from various
panels 253
prompting the user with the
number of hits 256
report that double-sorts records
259
duplicates, removing from panel 422
edit
exception list 21
field format 11
index field list 21
panel text 10
Edit an Existing Entry, menu facility 357
Edit Key Word, menu facility 354
Edit mode 15
Edit Order, change 19
Edit Password, menu facility 353
Edit Report Form 164
Edit Report Form Screen
knowing your place 174
Edit Report Form Screen sections
delineated 166
Final Footer 170
First Page Header 166

Other Page Header 167 field
Page Footer 170
Report Body 168
The Report Algorithm 170
Two-Level Report Footer 170
Two-Level Report Header 167
elapsed time
calculating across the 24-hour
barrier 58
the simple case 58
using MOMENT and MODULO
61
Eliminate Line if Blank, report option
213
Epilogue 431
error messages, DPDiagnostics 410
exception list
aiding computed fields in parent
panel 103
aiding lookups with 101
dividing data file record access
with 105
exception list index bug in
version 2.2 107
lowest numbered index: a caveat
101
speeding reports with 102
what it is 99

;;T field 172, 173, 189, 198-202,
222

auto-incrementing 3, 22, 40, 94,
97, 133, 336, 429

choosing between ::C and ::N
fields 41

choosing between G fields and N
fields 49

code 32

create 11

deleting, notes on 66

display modifier 14, 15, 292,
388, 403

DPMouse and field protection
390

edit format 11

fundamentals 31

index field list 13, 20, 21, 41, 46,
90-93, 99, 104, 114, 194,
333,334

name 32

sneaking print mode indicators
into panel fields 202

truncate 172, 198, 199, 203, 261

type 32

variable-length text 3, 28, 31, 32,
203-205, 341, 376

export, import
Comma Delimited format 341
DOS delimited Text 337
reasons for exporting or
importing data 329
transaction log 335
WordPerfect Merge files 330
expression 281
APPLY .FORMAT function 3,
52,53, 75,202, 203,
291-293, 300, 301
CASES vs. IF-THEN 289
identity operator 47, 285, 286,
288, 302
perfect matches and the identity
operator 286
USER.FIELD function 49, 142
F field 35

Field Offsets, Recompute 19
Fields: Introduction 31
Fields: Issues 41
file
IND 28-30, 89, 90, 98, 99, 408,
419, 420, 422, 425-427
.STR 19, 27-30, 89, 90, 98, 99,
135, 137, 281, 348, 359,
375, 408, 413, 414, 417,
419, 429
TMP 29
TIXX4,8,9,27-31, 33, 270,
376, 422, 424-427
application files 27
Big Clean: Cleaning the Entire
Application 426
cleaning the .STR without re-
indexing 425

Index 437

crippling applications 428
fixing a corrupt .TXX file 426
program 27
removing duplicates in a panel
422
specifications 30
when it's okay to overwrite an
STR 418
File, Turn On or Off, report option 212
Files and Specifications 27
application files 27
program files 27
specifications 30
flat-file DBMS vs. relational DBMS 109
footer
final 166, 170, 171, 178, 190,
215,217, 218, 227,
232-234, 242-244, 318,
346, 347
Include After Last Record, report
option 218
Number of Records in Report
218
Number of Records on Page,
report option 218
format
alphanumeric field 12, 22, 32,
290
choosing between ::C and ::N
fields 41
choosing between G fields and N
fields 49
D field 35, 51, 53, 54, 97
date field 2, 15, 35-38, 42, 43,
51-57,59, 61, 64,78, 87,
94,97, 98, 103-105, 144,
152-154, 227, 228, 241,
242,256, 257, 259, 260,
294, 312, 326, 376, 377,
428
field 14
field type 32
G field 34, 35, 49, 52,97, 114,
198
H field 14, 34, 35, 48, 50, 51, 65,
94, 97, 104-106, 144,

438 Index

153-155, 197, 273, 404,
410

N field 15, 24, 33, 34, 39, 41, 49,
50, 52, 114, 143, 151,
205, 273, 339, 358, 360,
364, 390

numeric field 22, 33, 34, 199

time field 37, 38, 56-61, 64, 169

variable-length text field 8, 28,
30, 32, 33, 200, 203, 269,
295, 299, 424, 426-428

formula

a caveat regarding field formulas
and help screens 348

CASES statements vs. I[F-THEN
statements 289

elapsed time 57-60, 62-64

error messages: a warning 282

expression 281

IF-THEN statements vs. CASES
statements 289

Initial Formula, controlling data
with 375

introduction 281

legal value 282

note about DataPerfect's notion
of truth 321

operand 281

operator 281

perfect matches and the identity
operator 286

screen capture, using in Specify
Formula screen 345

spaces and carriage returns in
300

Specify Formula Screen 22, 23,
32,102, 134, 141, 145,
211, 219, 221, 223, 225,
267, 281, 282, 284, 304,
344-346, 348, 418

troubleshooting 301

well-formed formula 282

function

CONTAINS 2, 26, 93, 104, 109,
117, 138, 140, 156, 197,
199, 240, 271, 277-279,

299, 300, 302, 336, 384,
392,410, 426
CONVERT 52, 53, 55, 63, 166,
203,212, 291-298, 341,
417
SUBFIELD 3, 70, 294, 295, 298
Go to Panel List, menu facility 356
Go to Panel, menu facility 352
Go to Report List, menu facility 357
H field
in reports 50
header
Include Before First Record,
report option 216
Skip if Start of Two Level, report
option 216
Two Level Report 220
help screens, a caveat 348
hidden field 39
Hidden Panel 385
hiding data entry 403
identity operator
perfect matches 286
IF-THEN statements vs. CASES
statements 289
import, export
Comma Delimited format 341
DOS delimited Text 337
reasons for exporting or
importing data 329
transaction log 335
WordPerfect Merge files 330
importing reports 408
Include After Last Record, report option
218
Include Before First Record, report
option 216
Include Subreport, report option 229
incrementation
absolute 24, 134, 136-140
absolute incrementation using a
recursive panel link 134
absolute incrementation using
recursive links on a
Network 137

conditional incrementation using
a recursive panel link 133
reasons for avoiding auto-
incrementing fields 135
index
Choose Index, menu facility 354
cleaning the .STR without re-
indexing 425
controlling record creation with
indexes 387
define 12, 20
delete 21
exception list 20, 21, 48-50, 64,
78-80, 88, 89, 94, 99-107,
116, 163, 167, 170-174,
245, 252, 265, 266, 318,
319, 326, 327, 330, 386,
397, 398, 410, 411
how indexes sort 90
introduction 89
number 159, 162, 163, 189, 330,
338, 339, 341, 354, 355,
398
picking fields for the index field
list 92
primary sorting field 78, 86, 87,
193, 194, 196, 259,
307-309, 312, 327
primary sorting field and the Skip
To iteration code 307
reports that double-sort records
259
reverse index 94
reverse sorting by number 94
sorting backwards 94
uniqueness 92
index number, report 163
index regeneration
.STR File and 98
cleaning the .STR without re-
indexing 425
indicator
display mode indicator 38, 173,
185
print mode 51, 189, 198-200,
202-205, 292

Index 439

print mode indicator 3, 51, 172,
173, 198-204, 292
Initial Report Definition Screen
Edit Report Form 164
Index Number 163
Search Conditions 163
Sort Direction 163
Initial Value 25
Initialize at Create/Save/Change 23
international dates 56
Internet support 431
Introduction 1
iteration control
combining Skip To with Stop If
309
how report lookups display 318
introduction 303
note about DataPerfect's notion
of truth 321
Repeat If 307, 320, 324, 325
Repeat If, explanation 320
Single Record Report From
Lookup off a Menu 317
Skip If 3, 179, 209, 216, 259,
286, 304-308, 322, 324,
410
Skip If, explanation 303
Skip To 182, 209, 214, 222, 223,
225, 255-261, 263, 264,
280, 303-315, 321,
326-328, 410
Skip To, explanation 306
skipping records, introduction
223
Stop If 244, 246, 250, 260, 261,
269, 270, 280, 306, 307,
309-312, 315, 316, 324,
327,328, 361
Stop If, explanation 306
troubleshooting 328
User Chooses Next Record By
LookUp 84, 87, 254, 256,
273,275, 313, 314, 316,
317,327, 328, 355,
393-395, 398, 402, 403

440 Index

User Chooses Next Record By
LookUp, explanation 313
iteration control example
date-range report 326
getting report to continue after
last record in lookup
selected 327
limiting a report to a particular
number of records 325
limiting a report to one record
324
monthly statements for accounts
with positive balance 326
report that prints particular
number of iterations per
record 325
Iteration Control, report option 215
Keep A Total
caveat 42, 151
defining 148
introduction 147
using it to update records in
foreign panels 151
vs. cascade update 155
without a parent record to receive
the total 150
keeping a saved field from being edited
372
with DPMouse© 390
Labels, report option 216
Launch Shell Macro, menu facility 357
left-align output 200
legal value 282
link
action, panel link 116
cascade update/delete 46, 121,
122, 125, 130, 131, 143,
144, 146
caveat regarding data links 129
choosing between the panel link
and the data link 128
controlled panel link access to
subrecords 366
controlling the data link's
Create/Edit mode lookup
display 118

data link 20, 40, 41, 72-74, 111,
115-132, 142, 143, 145,
149, 190, 229, 274-276,
345, 367, 368, 373-375,
382, 384, 388

data link options 122

data link, create 118

define 20

field list, panel link 114

flat-file DBMS vs. relational
DBMS 109

index, panel link 114, 116

link index 77-80, 111, 113, 114,
143, 247

many-to-many 110, 111

many-to-one 110

one-to-many 110

one-to-one 110

options menus 120

panel link 20, 24, 40, 41, 43-46,
52,70-72,75-79, 81-86,
88, 94, 95, 97, 98,
103-107, 111-122, 125,
128-130, 132-134,
136-145, 149, 156, 175,
188-190, 193, 229, 230,
233, 236, 237, 240, 241,
272,274-2717, 280, 293,
345, 352, 366, 367, 374,
376, 377, 379-381,
384-386, 390-392, 410

panel link options 120

panel link, create 113

panel link, making safer 141

pyramidal design as a data
integrity strategy 383

recursive 3, 24, 40, 57, 85, 133,
134, 136-140, 145, 380,
381, 429

the two types of DataPerfect
links 111

troubleshooting 143

using DPMouse to conditionally
close a panel link 390

virtual 137, 140, 141, 175, 188,
189, 217, 229, 239-243,

246-248, 252, 254, 255,
257,278, 360, 400
virtual link vs. Subreport Using
Virtual Link 140
link options menus 120
linkage
many-to-many 110, 111
many-to-one 110
one-to-many 110
one-to-one 110
lookup
Browse mode 16
Data Link Subgroup Lookup 72,
73, 125-127, 145, 367,
368
field list 21-23, 25, 42, 69-72,
74-76, 79, 81-87, 96, 318,
319, 328, 375, 396
fundamentals 69
hidden field, on a 83
making lookups look better
(Browse mode) 74
non-updatable field, on a 85
saving a lookup definition, a note
about 85
Smart Lookup Algorithm 79, 80
Smart Lookups 2, 72, 75, 77, 81,
85-87, 95-97, 145, 319,
410
strategy in defining a Browse
mode lookup 81
subfield lookups 70
troubleshooting 86
mainenance
Big Clean: Cleaning the Entire
Application 426
cleaning the .STR without re-
indexing 425
compatibility between different
versions of DataPerfect
417
crippling applications 428
removing duplicates in a panel
422

Index 441

upgrading a client to a new
version of DataPerfect
417
when it's okay to overwrite an
STR 418
maintenance
.STE editing caveats 407
application 2, 4, 99, 136, 330,
336, 365, 407, 417
DPDiagnostics 409
DPExport 407
DPImport 407
DPImport caveats 408
DPOrder 411
error messages, DPDiagnostics
410
exporting and importing
transaction logs 335
importing reports 408
optimization messages,
DPDiagnostics 410
STE Manager 413
warning messages,
DPDiagnostics 410
many-to-many 110, 111
many-to-one 110
menu facility
Access Report List 353
caveats regarding Run Report
option 355
Choose Index 354
controlling access to data
accessed from a menu
365
create/edit menu text 351
Define Menu screen 350
Delete an Existing Entry 358
Edit an Existing Entry 357
Edit Key Word 354
Edit Password 353
Go to Panel 352
Go to Panel List 356
Go to Report List 357
introduction 350
Launch Shell Macro 357
move menu prompt 352

442 |Index

Normal Report Mode 355
Panel Access Rights 353
Password option for reports 355
Restrict Modification to First
Level 353
Run Report 354
Submenu 357
Subset 354
troubleshooting 368
User Set-Up option for reports
355
using to prevent creation via link
391
merge
Create Secondary Merge Report,
report option 215
WordPerfect Merge files 330
merge file vs. transaction log, strategies
336
moment function
special use in reports 64
Move the Menu Prompt, menu facility
352
Must Be Updated fields (::M) 40
controlling record creation with
388
Number of Records in Report, report
option 218
Number of Records in Section, report
option 218
Number of Records on Page, report
option 218
numeric field
choosing between G fields and N
fields 49
one-to-many 110
one-to-one 110
Open Filename in Report Variable,
report option 212, 267
operand 281
operator 281
MODULO 61, 63, 154, 262, 272,
320, 325, 405
perfect matches and the identity
operator 286

optimization messages, DPDiagnostics

410

Other Page Header

Include Before First Record,
report option 216

Skip if Start of Two Level, report
option 216

overwriting an .STR 418
Page Eject vs. Skip to Bottom of Page

214

Page Eject, report option 214
Page Number, Set, report option 211

panel

Basic Default Panel 376

clipboard, using in Define Panel
mode 343

closing off access to the panel list
374

Complex Default Panel 377

creating panel text 10

Go to Panel List, menu facility
356

Go to Panel, menu facility 352

Hidden 385

hiding data entry 403

moving 11

Panel Access Rights, menu
facility 353

Printer Control Panel 271

removing duplicates in 422

Report Records Panel 260

screen capture, using in Panel
Define mode 344

sizing 11

sneaking print mode indicators
into panel fields 202

text, creating 10

Panel Access Rights, menu facility 353
panel filename, edit 17
panel link

a note about a panel link's index
116

absolute incrementation using a
recursive panel link 134

absolute incrementation using
recursive panel links on a
network 137
action 116
choosing between the data link
and 128
conditional incrementation using
a recursive panel link 133
controlled panel link access to
subrecords 366
create 113
define 113
field list 114
index 114
making safer 141
options 120
recursive 133
using DPMouse to conditionally
close 390
virtual link vs. Subreport Using
Virtual Link 140
panel link options
Cascade Off, Cascade Update,
Cascade Update/Delete
121
Create/Edit Window Field List
121
Define Lookup List 121
Define Related Records Window
121
Delete Window 121
Display/Hide Link 121
Edit Target Field/Target
Index/Field List 121
panel name, edit 17
Panel Option
Auto-Display Record 18
panel text, creating 10
password
application 349, 350, 356, 358,
359, 363, 364, 368, 422,
425-427
application, introduction 349
assigning a password to a report
on a menu 355
definer 364

Index 443

Edit Password, menu facility 353
hiding data entry while entering
403
password-protected Zip file 429
rights granted by application
passwords 349
User ID Panel vis a vis
application passwords
363
perfect matches and the identity operator
286
pick list field 373
closing off a data link to protect a
pick list panel 374
preventing inadvertent editing 371
with DPMouse© 372
primary sorting field
with Skip To iteration control
code 307
print margins 160
print mode indicator
sneaking print mode indicators
into panel fields 202
print mode indicators that alter field
output spacing 198
;;1-9 (Truncate Leading and
Trailing Blanks and
Leave n Space 199
;;B (Truncate Both Leading and
Trailing Blanks) 199
;;E (Delete Zero Subfields from
the End) 199
;39 (Suppress Leading Blanks)
198
;;T (Truncate Trailing Blanks)
198
print mode indicators that don't alter
field output spacing 199
;;C (Center Characters) 200
;;D (Delete All Blanks) 199
;;L (Left Adjust Characters) 200
;N (New Occurrence of Field)
200
;;P (Postal Bar Code) 200

444 Index

;;Q (Enclose Alphanumeric
Fields in Double Quotes)
200
;;R (Right Adjust Characters)
200
Print Report Variable, report option 211
Print, Turn On or Off, report option 212
printer control
Open Filename in Report
Variable, report option
267
Open Filename in Report
Variable, report variable
212
Printer Control Panel 271
Printer Control Panel 271
Printer Control, report option 212
program files 27
runtime 27, 391, 431
Prompt for Report Variable, report
option 214
protection
/Z command line switch 375
Basic Default Panel 376
closing off a data link 374
closing off access to the panel list
374
Complex Default Panel 377
controlled panel link access to
subrecords 366
controlling access to data
accessed from a menu
365
controlling data entry of Zip
Codes with ZipKey© 382
controlling record creation with
indexes 387
controlling record creation with
the ::M field 388
controlling record deletions with
DPMouse 391
controlling user access 361
crippling applications 428
DPMouse xiii, 4, 107, 142, 143,
350, 366, 367, 372-375,
390-392

DPMouse and field protection
390
Hidden Panel 385
initial formula 21-23, 25, 276,
375,376
Initial Formula or Value 375
keeping a saved field from being
edited 372
keeping subpanel data current 43
making panel links safer 141
password-protected Zip file 429
pick list field 373
preventing inadvertent editing
371
pyramidal design as a data
integrity strategy 383
tracking user activity with the
USER.FIELD function
360
User ID Panel vis a vis
application passwords
363
user-stamping records 364
using DPMouse to conditionally
close a panel link 390
using menu facility to prevent
creation via link 391
ZipKey©, controlling data entry
with 382
pyramidal design as a data integrity
strategy 383
Ralph Alvy 1
range check 25
real field 41
Record Number, report option 218
recursive link
absolute incrementation using a
recursive panel link 134
absolute incrementation using
recursive links on a
network 137
conditional incrementation using
a recursive panel link 133
recycled report variable 227
regeneration, index 2, 98, 419-425, 429
.STR File and 98

cleaning the .STR without re-
indexing 425
relational DBMS vs. flat-file DBMS 109
remove last total 26
removing duplicates in a panel 422
Repeat If
explanation 320
report
;;1-9 (Truncate Leading and
Trailing Blanks and
Leave n Spaces) 199
;;B (Truncate Both Leading and
Trailing Blanks) 199
;;C (Center Characters) 200
;;D (Delete All Blanks) 199
;;E (Delete Zero Subfields from
the End) 199
;;L (Left Adjust Characters) 200
;N (New Occurrence of Field)
200
;;P (Postal Bar Code) 200
;;Q (Enclose Alphanumeric
Fields in Double Quotes)
200
;;R (Right Adjust Characters)
200
;35 (Suppress Leading Blanks)
198
;3T (Truncate Trailing Blanks)
198
Access Report List, menu facility
353
algorithm 170
branching to other reports 245
caveats regarding Run Report
option on a menu 355
clipoard, using in Report
Definition mode 345
date-range report 326
destination 159
disk file mode 160
dummy report 175, 243-246, 248,
252-254, 256, 257, 261
Edit Report Form 164
Edit Report Form Screen sections
delineated 166

Index 445

finding what panel a report is
based on 162

gathering preliminary
information from various
panels 253

general theory in creating 171

getting report to continue after
last record in lookup
selected 327

Go to Report List, menu facility
357

importing reports 408

index number 163

Initial Report Definition Screen
158

introduction to reports 157

iteration control 3, 84, 163, 167,
172-174, 182, 209, 215,
223,224, 243, 253, 257,
259, 303, 305-307, 315,
317,321, 322, 324, 327,
355, 361

knowing your place in the Edit
Report Form 174

labels, printing 9-12, 16, 162,
166, 209, 216, 217

limiting a report to a particular
number of records 325

limiting a report to one record
324

monthly statements for accounts
with a positive balance
326

name 159

note about DataPerfect's notion
of truth 321

Open Filename in Report
Variable, report option
267

primary sorting field 193

print margins 160

print mode indicators that alter
field output spacing 198

print mode indicators that don't
alter field output spacing
199

Index

Printer Control Panel 271

printing totals at the top of the
invoice 235

prompting the user with the
number of hits 256

Repeat If, explanation 320

report variables and truth values
323

reports that control editing 401

reports that control record
creation 399

reports that control record
deletions 393

Run Report, menu facility 354

search conditions 163

Skip If, explanation 303

Skip to Bottom of Page 182, 209,
214,222, 225, 304, 305

Skip To, explanation 306

sort direction 163

Stop If, explanation 306

subgroup report 51, 72, 73,
125-127, 145, 182-184,
187, 193-196, 199, 209,
215, 295, 296, 367, 368

subreport 48, 87, 103, 112, 140,
141, 158, 174, 175,
187-196, 217, 218,
229-236, 238-257, 259,
261-265, 275, 278, 280,
305-308, 310-312, 314,
315, 318, 326, 327, 346,
399, 400, 410

subreport that depends on
existing link 229

subreport, introduction 229

subreports as subroutines 232

subreports: going from version
2.2t02.3230

that branches to other reports 245

that double-sorts records 259

that prints a particular number of
iterations per record 325

Two Level 29, 220, 315

Two-Level Reports in Subreports
192

variable-length text fields in 203
virtual link vs. Subreport Using
Virtual Link 140

report field

;;1-9 (Truncate Leading and
Trailing Blanks and
Leave n Spaces 199

;;B (Truncate Both Leading and
Trailing Blanks) 199

;;C (Center Characters) 200

;;D (Delete All Blanks) 199

;;E (Delete Zero Subfields from
the End) 199

;;L (Left Adjust Characters) 200

;N (New Occurrence of Field)
200

;;P (Postal Bar Code) 200

;;Q (Enclose Alphanumeric
Fields in Double Quotes)
200

;;R (Right Adjust Characters)
200

;39 (Suppress Leading Blanks)
198

;3T (Truncate Trailing Blanks)
198

bar coded Zip Code ouput 200

F field 197

print mode indicator 198

Eliminate Line if Blank 213

Include After Last Record 218

Include Before First Record 216

Iteration Control 215

Labels 216

Number of Records in Report
218

Number of Records in Section
218

Number of Records on Page 218

Open Filename in Report
Variable 212

Page Eject 214

Page Number, Select 211

Page Number, Set 211

Print Report Variable 211

Printer Control 212

Prompt for Report Variable 214

Record Number 218

Select Report Field 211

Skip if Start of Two Level 216

Skip to Bottom of Page 214

Store Value in Report Variable
211

Subreports 217

Time, Select 211

Turn File On or Off 212

Turn Print On or Off 212

Two-Level Report 215

print mode indicators that alter report options menus 209
field output spacing 198 Report Records Panel 260
print mode indicators that don't report structure

alter field output spacing
199

variable-length text fields in
reports 203

Zip Code output, bar code 200

report option

Conditional Page Eject 216

Create Record From Panel List
215,218

Create Secondary Merge Report
215

Date, Select 211

Delete Record 218

Do Report in Subgroups 215

Subgroup Reports in Subreports
194
Subreport 184

report variable

counter 225

introduction 219

Open Filename in Report
Variable, report option
212,267

Print Report Variable, report
option 211

printing data not already in fields
220

Index 447

Prompt for Report Variable,
report option 214
recycled 227
self-referencing 225
Store Value in Report Variable,
report option 211
truth value 323
Report Variable, Open Filename in,
report option 212
Report Variable, Print, report option 211
Report Variable, Prompt for, report
option 214
report, general structure
Basic Report 177
primary sorting field 193
Subgroup Report 183
Subreport 184
Two-Level Reports 181
Two-Level Reports in Subreports
192
requirements
application files 27
Restrict Modification to First Level,
menu facility 353
right-align output 200, 201, 203, 293
Run Report, menu facility 354
caveats 355
screen capture
in Panel Define mode 344
in Specify Formula screen 345
vs. clipboard 343
search conditions, report 163
search field list 25
Select Report Field, report option 211
self-referencing report variable 225

Single Record Report From Lookup off a

Menu 317
Skip If
explanation 303
Skip if Start of Two Level, report option
216
Skip To
combining Skip To with Stop If
309
explanation 306
internal logic of 308

448 Index

strategic placement of 308
Skip to Bottom of Page vs. Page Eject
214
Skip to Bottom of Page, report option
214
skipping records, introduction 223
Smart Lookup Algorithm 79, 80
sort direction, report 163
sorting backwards 94
by date 97
by number 94
spaces and carriage returns in formulas
300
statement
CASES vs. IF-THEN 289
moment function 64, 65, 262,
272, 405
string identity operator 105,
285-287, 298, 299, 302
SUBSTRING function 294, 298
STE Manager 413
Stop If
combining Skip To with Stop If
309
explanation 306
Store Value in Report Variable, report
option 211
strategy in defining a Browse mode
lookup 81
SUBFIELD function
explanation 294
subfield lookups 70
Submenu, menu facility 357
subpanel, keeping data current 43
backward-referring computed
fields 44
backward-referring non-
updatable fields 47
cascade update 46
subreport
as subroutines 232
going from version 2.2 to 2.3 230
introduction 229
parallel 235, 236, 238, 239,
243-245, 248, 253-255,
257-259, 265

Subreport Using Virtual Link,
introduction 239
that depends on existing link 229
Using Virtual Link 140, 141,
175, 188, 189, 217, 229,
239-243, 246-248, 252,
254, 255, 257, 278, 400
virtual link vs. Subreport Using
Virtual Link 140
subreport that depends on existing link
229
Subreport Using Virtual Link
vs. virtual link 140
Subreport Using Virtual Link,
introduction 239
Subreports, report option 217
subroutines
subreports as 232
Subset, menu facility 354
SUBSTRING function
explanation 294
support, DataPerfect 431
T field 37
time field
calculating elapsed time across
the 24-hour barrier 58
computing elapsed time: the
simple case 58
report option 211
using MOMENT and MODULO
61
using to guarantee uniqueness 57
totaling
caveat 42, 151
implementing a Keep A Total
148
Keep a Total 2, 3, 21, 25, 26,
41-43,92, 112, 128,
144-156, 218, 335-337,
385, 386, 397, 414
Keep A Total, introduction 147
printing totals at the top of the
invoice 235
when there's no parent record to
receive the total 150

tracking user activity with the
USER.FIELD function
360
user-stamping records 364
transaction log
exporting and importing with 335
transaction log vs. merge file: strategies
336
troubleshooting formulas 301
troubleshooting iteration control 328
troubleshooting links 143
troubleshooting lookups 86
troubleshooting menus 368
truncate
;;1-9 (Truncate Leading and
Trailing Blanks and
Leave n Spaces) 199
;;B (Truncate Both Leading and
Trailing Blanks) 199
;;E (Delete Zero Subfields from
the End) 199
;39 (Suppress Leading Blanks)
198
;;T (Truncate Trailing Blanks)
198
truth
note about DataPerfect's notion
of truth 321
report variables and truth values
323
TSR
ZipKey© 382
Two Level Report
Skip if Start of Two Level, report
option 216
two-digit vs. four-digit years 55
U field 32
update
cascade update 3, 46, 92, 121,
122, 125, 130, 131,
143-146, 156
upgrading a Client to a new version of
DataPerfect 417
Use-Mention distinction 283
User Chooses Next Record By LookUp
explanation 313

Index 449

getting report to continue after
last record in lookup
selected 327

how report lookups display 318

placing in the First Page Header
315

placing in the Report Body 317

User ID Panel

caveats 359

controlled panel link access to
subrecords 366

controlling access to data
accessed from a menu
365

controlling user access 361

Data Link Subgroup Lookup and
the USER.FIELD
function 367

deselecting 368

introduction 358

tracking user activity with the
USER.FIELD function
360

USER.FIELD function 360

user-stamping records 364

vis a vis application passwords
363

USER.FIELD function

and the Data Link Subgroup
Lookup 367

controlled panel link access to
subrecords 366

controlling access to data
accessed from a menu
365

tracking user activity with 360

user-stamping records with 364

user-stamping records 364

utility

DPDiagnostics 409
DPExport 407
DPImport 407
DPOrder 411

STE Manager 413
ZipKey© 382

validation time 25

450

Index

variable-length text field
;;N (New Occurrence of Field)
200, 205
in reports 203
warning messages, DPDiagnostics 410
warnings
formula error messages 282
well-formed formula 282
WordPerfect Merge files 330
the nature of the export file,
including some caveats
331
what happens during a
WordPerfect Merge file
import 334
WordPerfect Users Forum 431
work space
computed fields 49
year 2000 problem 55
Zip Code
controlling data entry with
ZipKey© 382
Zip Code output, bar codes 200
ZipKey© 382

