

A Quantitative Comparison between Raw Devices
and File Systems for implementing Oracle Databases

Oracle/HP White Paper

April 2004

 0

1. Introduction

The debate on whether to use a file system or raw devices for implementing databases still rages
among Oracle database administrators. Most database administrators are familiar with the UNIX file
system implementation, and prefer the ease of management of a file system as compared to a raw
implementation. In addition, all UNIX commands and tools for file manipulation can still be used with
a file system implementation. This is not the case for a raw database. Therefore, DBAs frequently
choose file systems for implementing databases.

However, there is considerable performance overhead when using a file system to implement a
database. The file locking inherent to UNIX file systems (files are exclusively accessed during write
operations) and double buffering (once in kernel space, once in user space) introduce significant
performance overhead. This paper attempts to quantify these overheads.

Our results indicate that database implementations using raw devices have the best performance, with
92% transactional throughput improvement over file-system based implementations (log option). We
believe that administrators will progressively migrate to raw databases as database management tools,
such as Oracle Enterprise Manager (OEM), continue to improve.

We used an OLTP workload for our evaluation. We report performance measurements of the Oracle
database using raw logical volumes and using file system and explore the effect of using asynchronous
and synchronous I/O operations for the raw device implementation. We also investigate various file
system optimizations to determine their effect on database performance. We also vary the number of
Oracle database writer processes and Oracle I/O slaves processes to get the best performance for a
given configuration. The experiments tend to cover all the different combinations possible when
implementing an Oracle database. The Oracle Stripe And Mirror Everything (SAME) methodology
was used for the database layout for all the tests.

2. Hardware configuration

2.1. Client configuration

We used 2 HP N-class servers, 1 client and 1 database server configured as followed:

 1

8 CPU 440Mhz
16 GB RAM
10 1 Gb Fibre Channel Host Bus Adapters
1 1Gb network card for client access
HP-UX 11i

2.2. Database server configurations

Oracle9i Database Release2
230 GB database
Raw based database
File system based database
Archiving was turned off
12GB SGA
8KB Oracle block size

2.3. Disk configuration

We used 4 HP virtual arrays (VA7400), in Direct Attached Storage (DAS) mode to store the Oracle
database. The VA7400 is a mid range array with two controllers, both the controllers and array
backend are fiber based. The Virtual Array series is built-in with the SAME concept.

The HP VA is a virtual array -- there is no notion of spindles when allocating space for an object. All
the physical disks in the array are put into a storage pool. All files allocated in the VA are striped
across all the spindles in the pool. The storage pool allocation unit is 256KB block. The data
protection is provided at the array physical extent level. Both RAID01 and RAID6 (double parity) are
available. The VA7400 has a maximum of 105 disks with dual active controller. The array cache on
the VA is controller-based for a maximum size of 1 GB.

2.3.1 VA7400 configuration

4 VA7400
2 active controllers per VA7400
1GB cache per controller
45 disks per VA7400
36GB/15k rpm disk drives

3. Workload description and test methodology

The workload is an OLTP application with 40% reads and 60% writes. The IO size varies between
2KB and 16KB and the number of clients associated with this workload is 150. The workload was
designed to put a reasonable load on both the storage and database server. However, the file system
configuration was not able to absorb this load, and, as a result, we also experimented with a medium
workload using 50 clients.

 2

During warm up, the workload was run for a period of 80 minutes. The official measured runs lasted
150 minutes. Each test was repeated twice, obtaining consistent results across the runs. The database
was refreshed using snapshot technology before each test case via Virtual Array Business Copy and
the snapshot was taken off line after the database was successfully created and loaded.

The disk configuration remained constant between the different test cases. We ran our experiments
with two different database configurations, raw and file system based and also introduced additional
testing for each configuration. The raw database setup was tested with both asynchronous and
synchronous IO (default on HP-UX 11i v1). In the case of the file system, we used a combination of
multiple IO slaves and file system mount options. The Oracle online logs were stored in raw volumes
using HP Logical Volume Manager (LVM) in both raw and file system configuration because internal
experiments have demonstrated that logs will take advantage of the absence of file locking and double
buffering (data will be copied directly from user space to disk) that are inherent in Unix file systems.

For all the experiments, the Oracle data files and logs were automatically striped across the entire
available spindles in any given array and controllers. Each array was configured in RAID01. The HP
Logical Volume Manager (LVM) striping was used to provide IO load balancing across the 4
VA7400. This means every logical volume was equally distributed across the 4 VA7400 arrays. The
LVM stripe size was 64KB, but in RAID1 configuration the stripe size does not matter for the OLTP
application we used in our tests.

4. Performance measurements

We used Oracle and HP performance tools to collect statistics during the entire run for each test case.
We compared the different run results using the application throughput measured in number of
transactions per minute, the log_file_parallel_write, ddb_file_sequential_read, IO throughput and
CPU utilization.

5. Experiments

5.1. Raw-device based database

5.1.1 Asynchronous IO

On HP-UX, asynchronous IO is only supported with a raw device (raw disk partition or raw logical
volume), although this will change with HP-UX 11i v3 (internally known as 11.31). With
asynchronous IO configured, Oracle can submit multiple IO requests in parallel. In some cases it may
be necessary to use multiple database writer processes (DBWR) to stress the backend, but we were
able to achieve this with only 2 DBWR processes. In our case, we did not see any improvement
beyond 2 database writer processes. The right number could be determined through the Oracle IO
statistics but is beyond the scope of this paper. The usage of asynchronous IO will require HP-UX
kernel changes and modification of the Oracle initialization parameters file, init.ora. For more
information, consult the Oracle Installation and Administrators Reference Guide documentation on
HP.

 3

5.1.2 Synchronous IO

This configuration is not recommended with raw-device implementation of the database. In this case,
all the IOs are serialized. The only gain is the elimination of double buffering. We run this experiment
only to compare it with the best File System scenario.

5.2. File system based database

HP-UX 11i JFS/OnLine Journaling file system (OEM’d VERITAS VxFS) today only supports
synchronous IO. This will change in the next major release of HP-UX 11i. HP’s developed Advanced
File System (formerly from Tru64 UNIX) will be built-in to HP-UX 11i v3 with async IO capabilities
and is targeted for release second half of 2005. In addition, HP will also have a clustered file system
option with HP-UX 11i v3.. It is generally recommended to use multiple IO slaves with a file system
database because there is a possibility that one DBWR may not be sufficient to keep up with a heavy
workload. In this case the DBWR becomes an efficient scheduler and dispatches the IO between
different IO slaves. We used 40 IO slaves in our test after experimenting with different values.

The file system based database has a lot of limitations. The biggest one is the exclusive file locking for
write operations. In Unix, files are locked for writes to guarantee data integrity and consistency. This
does not allow parallelization of writes. Another limiting factor is the double buffering. The file
system has a buffer cache and Oracle also maintains its own cache. The buffers are being copied from
kernel space (file system buffer cache) to the user space (Oracle buffer cache). This operation
generates a lot of overhead. The file system will also require the management of its metadata and data
structures, which adds extra costs.

In order to improve the performance of a file system based database, new mount options were
introduced to eliminate the double buffering and limit the overhead induced by file system metadata
management. These mount options are only available on HP-UX 11i with the HP OnLine Journaling
File System (JFS) option. HP JFS by default does not include the OnLine option, which is part of the
Enterprise Operating Environment or an add-on product.. We tested the file system with two different
sets of options. The first set included nodatainlog and delaylog while the second set was comprised of
nodatainlog, delaylog, mincache=direct and convosync=direct. The nodatainlog option logs only
the inode update information in the intent log and writes the data directly to the file. In the delaylog
option, some system calls return before the intent log is written. With this mode the writes in the
intent log are delayed. The mincache=direct and convosync=direct allow data to be transferred
directly from Oracle buffer cache to disk and disk to Oracle buffer cache. This avoids the double
buffering by bypassing the file system buffer cache. For more information on the mount options please
consult the man page for mount_vxfs(1m).

We also evaluated the case where the log option is used instead of the delaylog. This measures the
trade-off between no data loss and a potential data loss in case of system crash. We should remind the
reader that the delaylog option offers a similar guarantee as the traditional UNIX file system. Log and
delaylog options are only meant for file system metadata, but they can influence the amount of data
loss during system crash. Our tests showed that the transactional throughput difference between log
and delaylog option is between 8% (medium workload) and 10% (heavy workload).

 4

6. Test results

6.1. File System based Database with multiple IO slaves

6.1.1 Medium Workload (50 clients) vs. Heavy Workload (150 clients) using delaylog and
nodatainlog options

 MEDIUM WORKLOAD HEAVY WORKLOAD
TRANSACTION THROUGHPUT 9051 9847
IO THROUGHPUT 1513 1605
LOG_FILE_PARALLEL_WRITE 1 ms 1 ms
DB_FILE_SEQUENTIAL_READ 12 ms 14 ms
CPU UTILIZATION 51% 52%

6.1.2 Medium Workload vs. Heavy workload using delaylog, nodatainlog, mincache=direct and
convosync=direct options

 MEDIUM WORKLOAD HEAVY WORKLOAD
TRANSACTION THROUGHPUT 19097 20305
IO THROUGHPUT 3048 3203
LOG_FILE_PARALLEL_WRITE 2 ms 2 ms
DB_FILE_SEQUENTIAL_READ 14 ms 19 ms
CPU UTILIZATION 84% 85%

61.3 Medium Workload vs. Heavy Workload using log, nodatainlog, mincache=direct and
convosync=direct options

 MEDIUM WORKLOAD HEAVY WORKLOAD
TRANSACTION THROUGHPUT 17654 18421
IO THROUGHPUT 2595 2904
LOG_FILE_PARALLEL_WRITE 2 ms 2 ms
DB_FILE_SEQUENTIAL_READ 16 ms 18 ms
CPU UTILIZATION 86% 88%

 5

6.2. Raw-device based database with multiple DBWR

6.2.1 Medium Workload vs. Heavy Workload in Raw based database without async IO driver

 MEDIUM WORKLOAD HEAVY WORKLOAD
TRANSACTION THROUGHPUT 23135 28168
IO THROUGHPUT 3316 3898
LOG_FILE_PARALLEL_WRITE 9 ms 9 ms
DB_FILE_SEQUENTIAL_READ 9 ms 19 ms
CPU UTILIZATION 80% 88%

6.2.2 Medium Workload vs. Heavy Workload in Raw based database with async IO driver

 MEDIUM WORKLOAD HEAVY WORKLOAD
TRANSACTION THROUGHPUT 31961 35367
IO THROUGHPUT 4877 5392
LOG_FILE_PARALLEL_WRITE 4 ms 8 ms
DB_FILE_SEQUENTIAL_READ 12 ms 26 ms
CPU UTILIZATION 79% 91%

7. Result Analysis

The results clearly demonstrate that a file system based database with the mount options (log, and
nodatainlog) would be the worst case. There are several reasons for this. The first cause for this result
is the double buffering: copying data buffers between the file system buffer cache and Oracle buffer
cache is causing a high overhead. Second, a write to a file is exclusive due to the inherent properties of
the Unix file system. Third, all the writes are serialized, one IO request after the other. The only
parallelism for the writes in this case is obtained using multiple data files (in our tests we had 42
datafiles).

When the double buffering is avoided using mincache=direct and convosync=direct in conjunction
with nodatainlog and delaylog or nodatainlog and log, the performance improvement is
considerable. Both the IO and the transactional throughput improved by 80% to 100% for the Medium
and Heavy workloads. This indicates that double buffering must be avoided if the only choice
available to a customer is a file system based database implementation. The issue with the exclusive
locking for writes operations still remains. A good recommendation would be to create multiple data
files to increase the number of concurrent IOs and lessen the impact of the exclusive file locking
inherent to Unix File System. For write intensive applications, the tablespaces impacted should be
spread across multiple datafiles. The number of IO slaves should be proportional or close to the
number of datafiles. .

 6

We should acknowledge that running with the delaylog option represents a certain risk in the sense
that there is a potential data loss if a system crashes. The metadata information is not synchronously
written in the intent log. Our experience has shown at most 10% transactional degradation with the log
option.. This is workload dependent. If data loss is unacceptable one should always run with the log
option, but the performance price is not negligible .

The raw database transactional throughput with async IO has a performance improvement for the
Heavy Workload of 92% over the file system database with the following options:log, nodatainlog,
mincache=direct and convosync=direct. . The ease of management should not justify the choice of a
file system database. Today, Oracle Enterprise Manager simplifies the complexity of database
management regardless of the choice of a raw or file system database.

We expect that customers will always use async IO with raw databases. Our intent was to show the
improvement provided by the async IO driver. It would be interesting to evaluate the HP
implementation of asynchronous IO on top of an HP VxFS file system. The expectation is to offer
performance close to raw with async. This is a clear indication that the best choice is to use raw device
with async IO.

We would like to acknowledge that we chose this write intensive workload to show the great
differences that could exist between raw and file system. Whenever ease of management is not an
issue and there is no application constraint, customers should always implement raw based database
with async IO on HP-UX.

 7

 8

8.References
For more information, consult the following references:

Oracle Technology Network
http://otn.oracle.com/deploy/performance/pdf/opt_storage_conf.pdf

Oracle technical white papers
http://technet.oracle.com/deploy/availability/techlisting.html

9.Acknowledgements
We would like to acknowledge Ahmed Alomari, Mamdouh Ibrahim, Vineet Buch, Herve Lejeune and
Mustafa Uysal’s collaboration on this paper.

Authors: Baila Ndiaye, Xumin Nie, Umesh Pathak, Margaret Susairaj

© Copyright Hewlett-Packard Company, 2003.

All rights reserved.

HP and the HP logo are trademarks of the Hewlett-Packard Company.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

All other product names mentioned herein may be trademarks or registered trademarks of their respective companies.

Technical information in this document is subject to change without notice.

Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under copyright laws.

http://otn.oracle.com/deploy/performance/pdf/opt_storage_conf.pdf
http://technet.oracle.com/deploy/availability/techlisting.html

	Oracle/HP White Paper
	April 2004
	Introduction
	Hardware configuration
	Client configuration
	Database server configurations
	Disk configuration
	2.3.1 VA7400 configuration

	Workload description and test methodology
	Performance measurements
	Experiments
	Raw-device based database
	5.1.1 Asynchronous IO
	5.1.2 Synchronous IO

	File system based database

	Test results
	File System based Database with multiple IO slaves
	
	
	
	MEDIUM WORKLOAD
	HEAVY WORKLOAD

	Raw-device based database with multiple DBWR
	6.2.1 Medium Workload vs. Heavy Workload in Raw based database without async IO driver
	6.2.2 Medium Workload vs. Heavy Workload in Raw based database with async IO driver
	
	
	
	MEDIUM WORKLOAD
	HEAVY WORKLOAD

	Result Analysis
	References
	Acknowledgements

